
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Robust Content-based Image Hash Functions Using

Nested Lattice Codes

Author(s) Nguyen Xuan, Thanh

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13630

Rights

Description
Supervisor:Assoc. Prof. Brian Michael Kurkoski,

情報科学研究科, 修士

Robust Content-based Image Hash Functions
Using Nested Lattice Codes

By THANH XUAN NGUYEN

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Brian Michael Kurkoski

March, 2016

Robust Content-based Image Hash Functions
Using Nested Lattice Codes

By THANH XUAN NGUYEN (1310208)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Brian Michael Kurkoski

and approved by
Professor Tadashi Matsumoto

Professor Masashi Unoki

February, 2016 (Submitted)

Copyright c� 2016 by THANH XUAN NGUYEN

Abstract

This contribution uses nested lattice codes to improve fundamental hash functions
for particular image retrieval systems and a promising class of similarity search ap-
plications. Our proposed content-based image hash function takes advantages of
SURF for feature extraction and lattices for quantizing feature vectors to hash val-
ues. The goal is to develop a lattice-based hashing scheme such that there is a
proportional relationship between Euclidean distance and metric distances (Ham-
ming distance or, as in this thesis, weighted Hamming distance and first di↵erence
distance) to increase the hash function’s robustness. As a major result, our pro-
posed two-dimensional nested lattice code reduces the normalized mean square error
(NMSE) by 20% compared to two-dimensional Gray code.
In terms of similarity search, it has been established as an essential paradigm for

a variety of applications, including information retrieval, data mining, multimedia
database searching and machine learning. The similarity search problem is to find
the object (e.g., image, sound, video, file) most similar to a given object in a set of
objects, which are usually represented by a collection of real number feature vectors
in Euclidean space. The most simple solution for comparison is sample-by-sample
which is computationally slow. Our motivation is comparing data more e�ciently
by developing a lattice-based hashing scheme.
In terms of a particular image hashing system, content-based hash functions are

widely used to index and protect data from distortion attacks that steal or alter
data illegally. This method generates the hash value from the image features, then
it is suitable for multimedia files indexing which should be able to tolerate some
minor modifications. In addition, the content-based approach can be applied to
image retrieval systems, such as multimedia database indexing which is simulated
in the experiment section of this thesis.
A framework for the content-based hashing system includes feature extraction and

quantization. First, the input signal is pre-processed to real feature vectors using
signal processing techniques such as singular value decomposition (SVD), speeded up
robust features (SURF), scale invariant feature transform(SIFT), Fourier transform
and other signal processing operations. Then real feature vectors are converted to
binary hash value using codes such as Gray code and Reed-Muller code or, as in this
thesis, lattice code. In this research, we concentrate on improving the quantization
step by using SURF and nested lattice codes.
Lattices are e�cient structures for various geometric, coding and quantization

problems. Lattice code has several advantages compared to a Gray code which is

i

widely used in quantization step. While a Gray code requires a scalar quantizer,
lattices employ vector quantization. It is well-known that vector quantizers have
lower quantization error than scalar quantizers; therefore, a lattice code is more
suitable for quantization.
In summary, this thesis first proposed a weighted Hamming distance and first

di↵erence distance as new metrics versus Euclidean distance. The experiment re-
sult shows that our proposed metrics are better than traditional Hamming distance
in terms of reflecting the similarity between vectors. Second, the Gray code is
replaced by a lattice code, a nested lattice indexing scheme is proposed, and multi-
dimensional nested lattices experiment. In results so far, the combination of two-
dimensional nested lattice and first di↵erence distance reduces the normalized mean
square error (NMSE) by 20% compared to two-dimensional Gray code. Finally, to
construct a complete content-based image hash function, we used SURF to extract
feature vectors in the feature extraction step; then, using nested lattice code for
quantization step. This image hash function takes the advantages of both SURF(a
robust content-based feature extraction against distortions) and nested lattice (an
e�cient quantizing scheme).

Keywords: Nested lattice codes, nested lattice indexing, content-based, image hash
functions.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Associate Profes-
sor Brian Michael Kurkoski for the continuous support of not only my academic
research, but also my life in Japan Advanced Institute of Science and Technology
(JAIST). He instructed me throughout my study with his knowledge, guidance, and
encouragement. Additionally, he granted me an opportunity to conduct research
on a collaborative project, which was supported by JSPS Kakenhi Grant Number
26289119.
I also would like to convey my special thanks to Dr. Ha Thanh Le, who gave

me valuable advice in the first year of my master program in Vietnam. My sincere
thanks also go to Professor Tadashi Matsumoto and Associate Professor Masashi
Unoki as committee members of my midterm and final defenses, who sent instructive
questions and helpful comments to clarify and improve my research.
Last but not least, I owe my loving thanks to my family and my friends. Without

their encouragement and understanding, it would have been impossible for me to
accomplish the master program.

Thank you.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Research motivation . 1
1.2 Research approaches and objectives 2
1.3 A review of image hashing . 3
1.4 Contributions . 3
1.5 Thesis outline . 4

2 Preliminaries 5
2.1 Lattice code . 5

2.1.1 Lattice definition . 5
2.1.2 Voronoi region and Voronoi code 6
2.1.3 Coset of lattice . 6
2.1.4 Lattice quantizer . 7

2.2 Nested Lattice . 7
2.3 Gray code and Gray indexing scheme 9

2.3.1 Gray code . 9
2.3.2 Gray indexing scheme . 10

2.4 Lattice quantizing algorithms . 10
2.4.1 Tie and untie functions . 10
2.4.2 Dn quantizer . 11
2.4.3 Coset lattice quantizer . 12
2.4.4 E8 quantizer . 12
2.4.5 An quantizer . 13
2.4.6 A2 quantizer . 14

2.5 Image feature extraction . 16
2.5.1 Interesting point detector . 16
2.5.2 Speeded up robust features (SURF) descriptor 19

3 Proposed Algorithm 23
3.1 Nested lattice indexing . 23
3.2 Metrics . 24

iv

3.2.1 Euclidean distance . 25
3.2.2 Hamming distance . 25
3.2.3 Weighted Hamming distance 25
3.2.4 First di↵erence distance . 26

3.3 Indexing scheme evaluation based on normalized mean squared error . 26
3.4 The best choice for shift vector a . 27

4 Experimental results 29
4.1 Two-dimensional nested lattice indexing

schemes A2 . 30
4.2 Nested lattice E8 indexing schemes simulation 33
4.3 Feature extraction results using SURF 35
4.4 Simulation of Image database . 37

5 Conclusion 40
5.1 New metric distances . 40
5.2 Nested lattice indexing scheme . 40
5.3 Content-based image hash function 41
5.4 Future work . 42

References 44

Publications 47

v

List of Figures

1.1 A framework for hashing system. 2

2.1 One-dimensional lattice. 5
2.2 Voronoi region V4⇤(a). 6
2.3 The self-similar hexagonal lattice with nesting factor k = 3. 8
2.4 A nested lattice with nesting ratio r = 3. 8
2.5 The steps of the reflect and prefix method to generate Gray sequences. 9
2.6 Hexagonal lattice quantizer. 14
2.7 Image response for Gaussian derivatives convolution. By K. Grau-

man, B. Leibe [29]. 17
2.8 Original input house image. 18
2.9 Detected interesting points using Hessian matrix on house image. . . 18
2.10 Scale pyramid with four down-scale levels. 19
2.11 Scale pyramid with four down-scale levels applied to house image. . . 19
2.12 Choosing dominant orientation using orientation sliding window of

size ⇡
3 . 20

2.13 Choosing and dividing square region based on assigned orientation. . 21
2.14 Some demonstrations of the basis SURF descriptor vectors for sub-

regions. 21

3.1 Voronoi region V2⇤(0). 28
3.2 Voronoi region V2⇤(a), where a = 2/3(g

1

) + 1/3(g
2

). 28

4.1 Case (a): The Hamming distance versus the Euclidean distances of
Gray indexing. 31

4.2 Case (a): The weighted Hamming distance versus the Euclidean dis-
tances of nested A2 lattice indexing. 31

4.3 Case (a): The first di↵erence distance versus the Euclidean distances
of nested A2 lattice indexing. 32

4.4 Case (b): The variation of A2’s NMSE as a function of noise variance. 32
4.5 Case (a): The weighted Hamming distance versus the Euclidean dis-

tances of nested E8 lattice indexing. 33
4.6 Case (a): The first di↵erence distance versus the Euclidean distances

of nested E8 lattice indexing. 34
4.7 Case (b): The variation of E8’s NMSE as a function of noise variance. 34
4.8 Surf features of original grayscale cameraman image. 35

vi

4.9 Surf features of compressed cameraman: JPEG 5%. 36
4.10 Surf features of rotated cameraman image: 30�. 36
4.11 Surf features of noised cameraman image. 37
4.12 Image database simulation process. 37
4.13 Cameraman image under some Stirmark Benchmark attacks. 38
4.14 Example queries results. 39

vii

List of Tables

4.1 Case (a): Nested A2 lattice and Gray indexing scheme simulation
information. 30

4.2 Case (a): Nested E8 lattice indexing schemes results. 33
4.3 Stirmark Benchmark attacks detail. 39
4.4 Database structure, table design. 39

viii

Chapter 1

Introduction

1.1 Research motivation

Similarity search is a common problem in a large variety of applications such as infor-
mation retrieval, data mining, multimedia database searching and machine learning
[1] [2] [3] [4]. A search involves comparing process in a database of objects (e.g.,
image, sound, video, file). The most simple solution for comparison is sample-by-
sample which is computationally slow. Practically, search applications require a
response as quickly as possible to user queries. The major motivation of this thesis
is comparing data more e�ciently by developing a lattice-based hashing scheme.
In terms of particular image hashing system, digital images nowadays are increas-

ingly transmitted over the Internet and between mobile devices such as smartphones.
It is easy to make an unauthorized copy and manipulate the content by using widely
available image processing software. Therefore, image hash functions are used in im-
age indexing and authentication techniques to index and protect data from distor-
tion attacks that steal or alter data illegally. Cryptographic and content-based hash
functions are two primary data hashing techniques. Traditionally, data integrity
issues are addressed by cryptographic hash functions which are key-dependent and
bit sensitive. This method is usually applied to text message and file authentication
which requires all message bits to be unchanged [5] [6] [7]. In contrast, content-
based hash functions generate the hash value from the image features. This method
is suitable for multimedia files indexing which should be able to tolerate some minor
modifications. In addition, the content-based approach can be applied to image re-
trieval systems [8] [9] [10], such as multimedia database indexing which is simulated
in the experiment section of this thesis. Retrieval applications, such as online im-
age search engines, require a response as quickly as possible to user queries. While
sample-by-sample image comparison is computationally slow, robust content-based
hash functions can compare numerous files in multimedia databases e�ciently.
In short, developing an e�cient hashing scheme has a promising class of similarity

search applications. Specifically, this research focuses on image hashing systems by
applying lattice codes.

1

1.2 Research approaches and objectives

Figure 1.1: A framework for hashing system.

A framework for the content-based hashing system is represented in Figure 1.1.
Consider an original input signal s and its modified signal s0. First, input signal s
is pre-processed to real feature vectors x using signal processing techniques such as
singular value decomposition (SVD) [11], speeded up robust features (SURF) [12],
scale invariant feature transform(SIFT) [13], Fourier transform [14] and other signal
processing operations. Then real feature vectors are converted to binary hash value
hash using codes such as Gray code and Reed-Muller code or, as in this thesis,
lattice code. Similarly, modified signal s0 is processed to feature vectors x0, then is
converted to hash value hash0. In this research, we concentrate on improving the
real-to-binary conversion by using SURF and lattice codes.
Euclidean distance is widely known as a good measure of the similarity be-

tween features x and x0 [15]. We let the Euclidean distance between x and x0

be dE = ||x0 � x||, and let the metric distance between hash and hash0 be dM =
MetricDistance(hash, hash0) where dM represents an arbitrary metric on hash val-
ues. By robustness, the greater the di↵erence between two features, the greater the
di↵erence of their hash values that is desired [16]. If features x and x0 are simi-
lar, then hash values hash and hash0 should also be similar. If x and x0 are very
di↵erent, then hash and hash0 should also be di↵erent. Then, we expect dE to be
proportional to dM , for a good hash scheme. Using the Euclidean distance between
feature vectors allows us to study hashing schemes without considering particular
signal processing techniques.
A lattice is a code over an n-dimensional real space, and it has several advantages

compared to a Gray code which is widely used in coding step. While a Gray code
requires a scalar quantizer, lattices employ vector quantization. It is well-known
that vector quantizers have lower quantization error than scalar quantizers [17] [18];
therefore, a lattice code is more suitable for quantization. The goal of this research
is to find a hash-value encoding scheme such that the metric distance between hash
values is proportional to their Euclidean distance. However, it is impossible to
achieve a purely linear relationship, so our objective is to minimize the error be-
tween original Euclidean distance and predicted Euclidean distance based on metric
distances.
To summarize, we first use the relationship between distances (Euclidean dis-

tance versus Hamming distance, weighted Hamming distance and first di↵erence
distance) to select the most appropriate code and coding scheme for quantization

2

step. Afterward, we use SURF technique in the feature extraction step to con-
struct a complete image hashing function. This hashing function finally applies to
a multimedia database experiment.

1.3 A review of image hashing

In fact, many hashing schemes have been proposed, but finding a proportional rela-
tionship as mentioned above remains a challenge.
In 2000, Venkatesan and Ramarathnam [16] used randomized signal processing

strategies and message authentication code (MAC) from cryptography for a non-
reversible compression of images into random binary strings. As a result, it mini-
mizes the probability that two hash values may collide and is robust against image
changes due to compression, geometric distortions, and other attacks.
From another perspective, in 2011, Parrao et al. [19] used image normalization

and SVD as the first signal processing stage, then applied Gray code to obtain
the hash binary sequence in image hash functions. According to their paper, the
robustness of the hash functions was increased against rotation, scaling, and JPEG
attacks.
Faloutsos in 1988 [20], Swaminathan et al. in 2006 [21], Zhu et al. in 2010 [22]

also used Gray code as the discrete-binary conversion stage of image hashing to
improve clustering of similar records. Those studies show that Gray code is better
than natural binary code in binary quantization stage. In 2012, Yuenan et al.[23]
proposed hash functions based on random Gabor filtering and dithered lattice vector
quantization (LVQ). Basically, a four-dimensional lattice is used for quantization;
and then a Gray code normalizes codewords at the end. Their approach can be
considered as using Gabor filtering and a combination of a Gray code and a lattice.

1.4 Contributions

This research has three major contributions, including proposing new metric dis-
tances, an indexing scheme and a complete content-based hash function for image
indexing system.
First, we proposed a weighted Hamming distance and first di↵erence distance

as new metrics versus Euclidean distance. The experiment result shows that our
proposed metrics are better than traditional Hamming distance in terms of reflecting
the similarity between vectors.
Second, the Gray code is replaced by a lattice code, a nested lattice indexing

scheme is proposed, and multi-dimensional nested lattices experiment. This re-
search takes advantage of lattices for quantizing feature vectors to hash values. In
the quantization step, nested lattices tend to keep a proportional relationship be-
tween Euclidean distance and mentioned metric distances (Hamming distance or,
as in this thesis, weighted Hamming distance and first di↵erence distance) to in-
crease the hash function’s robustness. However, it is impossible to achieve a purely

3

linear relationship, so our objective is to minimize the mean squared error of linear
predictor function from metric distance to Euclidean distance among images using
lattice codes. In results so far, the combination of two-dimensional nested lattice
and first di↵erence distance reduces the normalized mean square error (NMSE) by
20% compared to two-dimensional Gray code.
Finally, to construct a complete image hash function, we used SURF to extract

feature vectors in the first step; then, using nested lattice code for quantization step.
This image hash function takes the advantages of both SURF(a robust content-
based feature extraction against distortions) and nested lattice(an e�cient quantiz-
ing scheme).

1.5 Thesis outline

The outline of the remainder of this thesis is as follows. Chapter 2 gives the back-
ground of lattice codes, Gray codes, SURF feature extraction, Hamming distance,
weighted Hamming distance, first di↵erence distance and Euclidean distance met-
rics. This chapter also introduces decoding algorithms for some well-known lattices.
Chapter 3 explains the proposed nested lattice coding method, evaluation method
and how to choose the optimized coset vector a of nested lattice code. Chapter
4 shows simulation results and performance comparison of Gray code and nested
lattice code. Chapter 4 also shows the simulation of a complete image hash function
applied to multimedia database indexing. Chapter 5 is the conclusion and future
work.

4

Chapter 2

Preliminaries

2.1 Lattice code

2.1.1 Lattice definition

Lattices are e↵ective structures for various geometric, coding and quantization prob-
lems. A lattice ⇤ is a linear additive subgroup of Rn. In n dimensions, a lattice
point x 2 ⇤ is an integral, linear combination of the basis vectors:

x = G · b =
nX

i=1

g
i

bi, (2.1)

where
b 2 Zn is a vector of integers;

G =

g
1

g
2

. . . g
n

�
is an n-by-n generator matrix;

and g
i

are n-dimensional basis column vectors, for i 2 {1, 2 . . . n}.

The corresponding fundamental volume of lattice ⇤ is V (⇤) = det (⇤) = | det (G)|.
A lattice ⇤ with expansion factor k forms itself a lattice. We define k⇤ as a nested
lattice with factor k. More detail about nested lattice and its characteristics can be
found in sub-section 3.1.
Some well-known lattices are A2, D4, E8 [17]. The simplest lattice is the integers

Z with generator matrix G = [1], as shown in Figure 2.1. In one dimension, all
lattices only di↵er by scale, so they are considered as equivalent.

Figure 2.1: One-dimensional lattice.

5

2.1.2 Voronoi region and Voronoi code

The Voronoi region [24] [25] or fundamental cell V (x) consists of all points of Rn

which are at least as close to x as to any other lattice point, given by:

V (x) = {z 2 Rn : ||z� x||2 < ||z� y||2, for all y 2 ⇤,y 6= x}. (2.2)

Let Vr⇤(a), integer r, vector a 2 Rn, denote the Voronoi region for r⇤, shifted by
vector a. A Voronoi code Cr⇤(a) consists of every lattice ⇤ point which is placed
inside the Voronoi region Vr⇤(a):

Cr⇤(a) = ⇤ \ Vr⇤(a). (2.3)

Figure 2.2 depicts 16 lattice points inside a solid line Voronoi region V4⇤(a) which
is enlarged 4 times from Vr⇤(0), then translated by vector a.

Figure 2.2: Voronoi region V4⇤(a).

2.1.3 Coset of lattice

A coset of a lattice can be understood as a shifted version of the lattice, which is
shifted by vector a, or formally:

⇤
a

= a+ ⇤ = {a+ x : x 2 ⇤}. (2.4)

The coset itself is not a lattice, but their di↵erence vectors between every pairs
of points form a lattice. The union of ⇤

a

over all a obviously fill the whole space
of Rn. Lattices can also be represented by union of a group of cosets. In some

6

cases, lattice quantization algorithms lead to their cosets quantization algorithms.
It means, instead of quantizing a vector to a lattice, we can quantize the vector to
the lattice cosets. More detail about decoding algorithms can be found at Section
2.4.

2.1.4 Lattice quantizer

A lattice quantizer maps an n-dimensional input vector y = (y1, y2, . . . , yn) to a
lattice point x⇤ 2 ⇤ closest to y, or more formally,

x⇤ = argmin
x2⇤

||y � x||2, (2.5)

where || · ||2 denotes squared Euclidean distance. And, a quantization error vector
e is defined as:

e = y � x⇤. (2.6)

The decoding algorithms for many well-known lattices, such as An, Dn, En are
introduced in Section 2.4. In this research, we implemented A2 and E8 and applied
to our image hashing functions.

2.2 Nested Lattice

Let ⇤1,⇤2 be two n�dimensional lattices with two generator matrixes G1, G2 re-
spectively.

G1 =

g
1,1 g

1,2 . . . g
1,n

�
is an n-by-n generator matrix of ⇤1;

G2 =

g
2,1 g

2,2 . . . g
2,n

�
is an n-by-n generator matrix of ⇤2.

According to nested lattice definition in [28], two n-dimensional lattices (⇤1,⇤2) are
called nested, ⇤1 is fine lattice and ⇤2 is coarse lattice, if

⇤2 ⇢ ⇤1. (2.7)

It means that each basis vector of G2 must be a combination of all basis vectors
of G1, or formally,

G2 = G1 ⇥ J, (2.8)

g2,i =
nX

k=1

jk,ig1,k. (2.9)

where J is n-by-n nesting matrix.

7

An characteristic of nested lattice is nesting ratio r, this number represents the
relation between fine lattice and coarse lattice. In detail, consider a pair (⇤1,⇤2),
where ⇤1 is fine lattice, ⇤2 is coarse lattice, the nesting ratio r is:

r(⇤1,⇤2) =
n

q
V (⇤2)
V (⇤1)

= n
p

det(J). (2.10)

In this research, we consider self-similar nested lattices, a special case of nested
lattices that satisfy nesting matrix J = kI, where I is the identity matrix and nesting
factor k is an integer. In short, ⇤2 = k ⇥ ⇤1 with nesting factor k. In this thesis,
we call nesting factor k to distinguish self-similar nested lattice from nesting matrix
J in general nested lattice cases. Figure 2.3 shows an example of the self-similar
hexagonal lattice with nesting factor k = 3. Figure 2.4 depicts a two-dimensional
nested lattice with nesting ratio r = 3, it means the volume of the coarse lattice is
nine time bigger than the volume of fine lattice.

Figure 2.3: The self-similar hexagonal lattice with nesting factor k = 3.

Figure 2.4: A nested lattice with nesting ratio r = 3.

8

2.3 Gray code and Gray indexing scheme

2.3.1 Gray code

As literature review discussion in Section 1.3 above, Gray code is much better than
natural binary code and widely used in discrete-to-binary conversion stage of current
image hashing. In this research, we used Gray code as a coding scheme to compare
with our proposed nested lattice code schemes.
A Gray code is a binary code where two consecutive codewords di↵er by only

one bit. Gray codes are widely used to reduce the number of bit errors in digital
communication systems [26]. Gray codes are also known as reflected binary code or
single distance code. This section introduces a recursive construction which encodes
binary sequences to Gray codes and a straightforward binary-to-gray conversion
algorithm which is implemented in this research. Notice that, nth level Gray code
Gn represents a class of n bits Gray code, it mean nth level Gray code has 2n

codewords. For instance, G1 has 2 codewords, G2 has 4, and G3 has 8 codewords.

Figure 2.5: The steps of the reflect and prefix method to generate Gray sequences.

Figure 2.5 depicts the algorithm to recursively generate Gray codes from binary
sequences for two next levels from level one. In detail, let consider the first level of
binary Gray code G1 = (0, 1) and finding the second level of Gray code G2. First,
copy two codewords as old components from first level of Gray, then reflect two
copied codewords as new components. We currently have four temporary codewords
{0(old), 1(old), 1(new), 0(new)}. Second, add prefix 0 to old components, add prefix
1 to new components, we have the second level of Gray code G2 = {00, 01, 11, 10}.
Similarly, we can generate the (n + 1)th level of Gray code from nth of Gray code
with n 2 N.
In terms of direct conversion between Gray code and natural binary code, consider

a binary sequence x = {d1, d2, . . . , dn�1, dn} and finding the Gray code of x. To
convert x to Gray code, start from the last bit (the right side) dn. If the dn�1 is 0
copy gn = dn; otherwise replace gn = 1� dn. Then proceed to the next component,
dn�1, . . . , d1 until hit the first component d1. For the first component d1, g1 will

9

be assigned 0. The sequence g1, g2, . . . , gn is the corresponding Gray code of input
binary sequence x. More formally,

gi =

8
>>><

>>>:

0 if i = 1

1� di if i 6= 1; di�1 = 1

di if i 6= 1; di�1 = 0

, for i = 1, . . . , n. (2.11)

2.3.2 Gray indexing scheme

In this sub-section, we introduce m ⇥ n bits Gray code to index an n-dimensional
real input vector (x1, . . . , xn) for xi 2 [0, 2m], i = {1, . . . , n}, uniformly distributed.
First, input vector (x1, . . . , xn) is quantized to closest integer vector by rounding to
the nearest integer component:

(y1, . . . , yn) = QInteger(x1, . . . , xn). (2.12)

Second, translate integer vector (y1, . . . , yn) into binary sequences (b1, . . . , bn). Then,
apply binary-to-gray conversion algorithm mentioned above to convert binary se-
quences bi length m to Gray sequences ci length m. Finally, those n sequences of
Gray code were concatenated to form an unique binary hash sequence.

GrayHash = c1, . . . , cn. (2.13)

2.4 Lattice quantizing algorithms

E�cient quantizing algorithms of lattices (An, En) were introduced by John Conway
[17] [30]. In this thesis, we use those techniques to quantize image’s feature vectors
into lattice points. This section summarizes quantizing algorithms for some well-
known lattices, such as A2 and E8. In short, quantizing algorithms find the closest
lattice points of an input vector.

2.4.1 Tie and untie functions

For later use, tie and untie functions are defined. Basically, tie and untie functions
are used to calculate closest and second closest integer points to a given point,
respectively. Consider an n�dimensional vector x = (x1, x2, . . . , xn) 2 Rn, let tie
function f(x) round x to closest integer vector.

f(x) = (f(x1), f(x2), . . . , f(xn)). (2.14)

10

In contrast, the untie function g(x) rounds vector x in a semi-wrong way. All
elements of x are rounded to the closest integer except element that furthest from
an integer. Let w(x) be the wrong round function, and then the untie function is
defined as:

g(x) = (f(x1), f(x2), . . . , w(xk), . . . , f(xn)). (2.15)

where xk is the element of the vector x with the furthest distance from an integer.
In detail, round function f(x) and wrong round function w(x) are formally defined

as bellow:

x = 0, thenf(x) = 0, w(x) = 1; (2.16)

0 < m x m+
1

2
, thenf(x) = m,w(x) = m+ 1; (2.17)

0 < m+
1

2
x m+ 1, thenf(x) = m+ 1, w(x) = m; (2.18)

�m� 1

2
x �m < 0, thenf(x) = �m,w(x) = �m� 1; (2.19)

�m� 1 x �m� 1

2
< 0, thenf(x) = �m� 1, w(x) = �m. (2.20)

where x 2 R, m 2 Z.

2.4.2 Dn quantizer

Dn(n � 2) lattices just include n�dimensional integer vectors that have even sums.
The process of finding the closest Dn lattice point to x = (x1, x2, ..., xn) can be
applied the idea of the tie and untie functions.
As we mentioned above, f(x) is the closest integer vector to x with smallest

squared Euclidean distance, g(x) is the second closest integer vector to x. According
to the definition of the tie and untie functions, vector f(x) and g(x) di↵er by exactly
one element xk. Therefore, the di↵erence between the sum of elements of f(x) and
the sum of elements of g(x) equals the di↵erence between f(xk) and g(xk) and equals
one. More formally,

X
f(x)�

X
g(x)

= (f(x1), f(x2), . . . , f(xk), . . . , f(xn))

� (f(x1), f(x2), . . . , w(xk), . . . , f(xn))

= f(xk)� w(xk)

= 1.

(2.21)

As a result,
P

f(x) and
P

g(x) are two consecutive integer numbers, one is even,
the other is odd. Therefore, either f(x) or g(x) is a Dn lattice point that satisfies
two conditions: Closest to vector x and has an even sum of components.

11

2.4.3 Coset lattice quantizer

The basic idea of coset lattice quantizer is finding the closest point to a lattice by
finding the closest points to their cosets. Suppose that a lattice ⇤ has d cosets, and
then lattice ⇤ can be represented as a union of d cosets:

⇤ =
d�1[

0

(r
i

+ ⇤). (2.22)

Given a vector x in n�dimensional space, h(x) is the closest point of ⇤ to x. As
a result, the nearest point of r + ⇤ to x is y = h(x � r) + r. So far, finding the
closest point to a coset is possible. Instead of finding closest lattice point ⇤ to x,
we find closest point y

i

= h(x� r) + r of all coset r
i

+⇤ to x. Then comparing the
distances from y

i

to x to select the closest point.

2.4.4 E8 quantizer

In this sub-section, we introduce how to decode E8 lattice with the idea of dual
lattice quantizer above. E8 can be represented by the union of two D8 cosets.

E8 = D8 [(D8 +
1

2
), (2.23)

where

1

2
= (

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
).

Applying the dual lattice quantizer idea, we can find closest lattice point to an
eight-dimensional vector by finding closest D8 cosets point and its coset D8+

1

2

. D8

decoding process is explained in Dn quantizer Section above.
Given vector x:

x = (x1, x2, . . . , x8) 2 R8. (2.24)

First, find the closest D8 lattice point to x by calculating f(x) and g(x), and then
select the vector which has an even sum of coordinates, named y

0

.
Second, find the closest D8 +

1

2

lattice point to x. Similarly, compute f(x� 1

2

) and
g(x� 1

2

), then choose the even sum vector, named y
1

.
Finally, calculate and compare the Euclidean distance between y

0

and y
1

to x and
choose the vector which has smaller distance.
For example, to find the closest point of E8 to

x = (0.1, 0.2, 0.2, 1.4, 1.7,�0.8,�0.7, 1.8).

12

First, we compute:

f(x) = (0, 0, 0, 1, 2,�1,�1, 2), sum = 3, odd.

As we can see, the fourth element of f(x) is the worst round with biggest error
|1� 1.4| = 0.4. Then 4th element will be selected to round in wrong way in g(x).

g(x) = (0, 0, 0, 2, 2,�1,�1, 2), sum = 4, even.

and take y
0

= g(x) = (0, 0, 0, 2, 2,�1,�1, 2).
We similarly compute f(x� 1

2

) and f(x� 1

2

):

x� 1

2
= (�0.4,�0.3,�0.3, 0.9, 1.2,�1.3,�1.2, 1.3),

f(x� 1

2
) = (0, 0, 0, 1, 1,�1,�1, 1), sum = 1, odd,

g(x� 1

2
) = (�1, 0, 0, 1, 1,�1,�1, 1), sum = 0, even.

so

y
1

= g(x� 1

2
) +

1

2
= (�0.5, 0.5, 0.5, 1.5, 1.5,�0.5,�0.5, 1.5).

Finally,

||x� y
0

||2 = 0.71, ||x� y
1

||2 = 0.81.

In conclusion, y
0

= g(x) = (0, 0, 0, 2, 2,�1,�1, 2) is the closest point of E8 to vector
x = (0.1, 0.2, 0.2, 1.4, 1.7,�0.8,�0.7, 1.8).

2.4.5 An quantizer

This section introduces how to find closest An(n � 1) lattice point to an arbitrary
point. Consider vector x 2 Rn+1, quantize vector x to closest An lattice point.
First, compute the sum of all elements of x and replace x by:

s =
nX

i=0

xi, (2.25)

x0 = x� s

n+ 1
(1, 1, . . . , 1). (2.26)

13

Then compute f(x0) = (f(x0
0), . . . , f(x

0
n)) and sum of f(x0)’s elements� =

Pn
i=0 f(x

0
i).

Afterward, compute �(x0
i), then sort x0

i in order of �(x0
i) increasingly.

�(x0
i) = x0

i � f(x0
i). (2.27)

�1

2
 �(x0

i0
) �(x0

i1
) . . . �(x0

in)
1

2
. (2.28)

Finally,
If � = 0, f(x0) is the closest point of An to x.
If � > 0, the closest point of An to x is obtained by subtracting 1 from the compo-
nents f(x0

i0
), . . . , f(x0

i��1
).

If � < 0, the closest point is obtained by adding 1 to the components
f(x0

in), f(x
0
in�1

), . . . , f(x0
in��+1

).

2.4.6 A2 quantizer

A2 lattice or hexagonal lattice quantizer can use the same technique as An above.
However, in this sub-section, we introduce another algorithm, named shifting A2

quantizer which was implemented in this research. The basic idea of shifting A2 is
considering original hexagonal lattice as a union of a lattice and its coset.

Figure 2.6: Hexagonal lattice quantizer.

Visually, Figure 2.6 shows an A2 hexagonal lattice which has generator matrix G
and consists of both red dots and blue dots. As we can see, set of red dots forms a
two-dimensional lattice, called Ared

2 , has generator matrix Gred. Besides, set of blue

14

dots forms a two-dimensional coset lattice, called Ablue
2 , has generator matrix Gblue.

The generator matrixes are defined as:

g
1

=

2

64
1

0

3

75 ,g
2

=

2

64
0

p
3

3

75 ,g
3

=

2

64

1
2

p
3
2

3

75 , (2.29)

G =

g
1

g
3

�
, (2.30)

Gred =

g
1

g
2

�
, (2.31)

Gblue = Gred + g
3

=

g
1

+ g
3

g
2

+ g
3

�
. (2.32)

As we can see, hexagonal lattice A2 is equal to the union of the red lattice and the
blue coset lattice: A2 = Ared

2 [Ablue
2 . So, quantizing an arbitrary point to hexagonal

A2 lattice means finding the closest point to Ared
2 and Ablue

2 . This algorithm firstly
consider quantizing a point to Ared

2 , then using shift technique to consider the closest
point to coset Ablue

2 .
In terms of Ared

2 lattice, two basis vectors g
1

and g
2

are orthogonal, so the integer
formation of Ared

2 forms two-dimensional integers, or other word, Z2. Ared
2 is firstly

transformed into integer format as bellow:

x = bGred) b = (Gred)
�1
x. (2.33)

Now, finding closest integer vector to b means applying tie-function to vector b,
so f(b) is the closest Z2 vector to b. Then, inverse transform f(b) to Ared

2 by
multiplying corresponding generator matrix.

yred = f(b)Gred. (2.34)

In terms of Ablue
2 , this coset lattice is Ared

2 shifted by vector g
2

. Then, the closest
vector of Ablue

2 to x is calculated as:

yblue = (f(b� 1

2
) +

1

2
)Gred. (2.35)

Finally, comparing the Euclidean distance between yred and yblue to x to determine
the closest point with smaller distance.

15

2.5 Image feature extraction

As we mentioned above in sub-section 1.2, a typical hashing framework includes two
main processes: Feature extraction and Quantization. In general, the input signal
can be files, images, videos, etc. Depending on input characteristics, each type of
input signal requires their appropriate feature extraction techniques.
In the scope of this research, we only consider the image as the input signal. This

sub-section introduces SURF, which has been applied to images in our research.
That technique was proved that outperforms state-of-the-art both in speed and
accuracy in 2008 [12]. A feature extraction technique normally includes a detector
and a descriptor. The detector is responsible for selecting interesting points (or key
points) that can represent image’s characteristics. Then, descriptor describes the
detected interesting points by numbers that contain as much information as possible
with low complexity and keeping su�ciently distinctive.

2.5.1 Interesting point detector

Many detectors have been already proposed, but, keep in mind that the purpose is
extracting interesting points from the input image. A suitable detector can select
the same interesting points as much as possible under image distortions, such as
rotation, scaling, noise, or any other kind of attacks. It means that the selected
interesting points should not change even when the image has been distorted. That
leads interesting points regularly be corners, edges and strong texture that usually
keep stable under attacks.
SURF uses Hessian detector that relies on Hessian matrix [12]. Concretely, con-

sider a pixel a = (x, y) in a 2D image I, the a’s Hessian matrix and its determinant
are defined as:

H(a, s) =

2

4Ixx(a, s) Ixy(a, s)

Ixy(a, s) Iyy(a, s)

3

5 , (2.36)

det(H(a, s)) =

������

Ixx(a, s) Ixy(a, s)

Ixy(a, s) Iyy(a, s)

������
= Ixx(a, s)Iyy(a, s)� I2xy(a, s). (2.37)

where
s is the scale level of the current image. Ixx(a, s) is the convolution of Gaussian
second order derivative @2

@x2 on x with I at pixel a. Similarly, Iyy(a, s) is the con-

volution of Gaussian second order derivative @2

@y2
on y with I at pixel a.Ixy(a, s) is

the convolution of Gaussian second order derivative @2

@x@y
on both x and y with I at a.

The convolution between I and Gaussian derivative obtains derivative responses
in vertical and horizontal directions all over the image in pyramid scale. The scale

16

s in scale pyramid guarantee that detector selects best group of interesting points
against scaling attack. Then, searching for strong derivative responses by comparing
determinant values of Hessian matrixes.
Figure 2.7 visualizes the image’s response with Gaussian derivative. In this ex-

periment, input image simply has a white background, some polygons, lines and
dots. Obviously, the interesting points should be the polygon’s corners, head and
tail of lines, and highlighted dots because they are di�cult to disappear by scaling,
rotation or other kinds of attacks. In detail, the top-left image represents Ixx that
responses to Gaussian second order derivative @2

@x2 . As we can see, Ixx highlights
vertical textures. Similarly, Iyy (bottom-right image) and Ix,y (bottom-left) empha-
size the horizontal textures and other directions. In short, each element of Hessian
matrix attempts to capture the texture in determining directions.

Figure 2.7: Image response for Gaussian derivatives convolution. By K. Grauman,
B. Leibe [29].

Figure 2.8 and Figure 2.9 show detected interesting points using Hessian matrix
on a test image with four levels down-scale pyramid (As shown in Figure 2.10 and
Figure 2.11). The green circles represent the detected interesting points on the house

17

image. As we can see, almost all detected interesting points located in corners and
strong texture regions.

Figure 2.8: Original input house image.

Figure 2.9: Detected interesting points using Hessian matrix on house image.

18

Figure 2.10: Scale pyramid with four down-scale levels.

Figure 2.11: Scale pyramid with four down-scale levels applied to house image.

2.5.2 Speeded up robust features (SURF) descriptor

In general, descriptors are used to describe detected interesting points of images.
SURF descriptor obtains image characteristics from local regions centralize at the
interesting point based on orientation. Consider an interesting point, SURF descrip-

19

tor firstly assigns an orientation to the current interesting point. Then, a descriptor
based on Haar wavelet filters is used to gather information around the interesting
point in the selected orientation.

Interesting point orientation assignment

This step attempts to assign a direction to interesting points, so a descriptor can
relatively describe the key points. As a result, the SURF descriptor can be invariant
to image rotation.
Concretely, a circular region centralizes at the key point of radius 6s is considered,

where s is the scale level of selected key point, we named it interesting region. Then,
Haar wavelet filter is applied to interesting region in both vertical and horizontal
directions. After that, Haar wavelet responses are weighted by a Gaussian function
with center at key point and standard deviation � = 2s. The output of Haar wavelet
filtering and Gaussian weighting are two-dimensional vectors corresponding to points
in the interesting region. Figure 2.12 visualizes how to choose dominant orientation
apparently. An orientation sliding window of size ⇡

3 is applied over the interesting
region circle to calculate sum of all output vectors located inside current window.
The longer sum vector, the more sensitive the interesting region response to Haar
wavelet filter. Finally, the dominant orientation is the one that has the longest sum
vector.

Figure 2.12: Choosing dominant orientation using orientation sliding window of size
⇡
3 .

Local descriptor based on Haar wavelet filter

As a result of orientation assignment, this step firstly chooses a square region of
size 20s, centralizes at key point and orients on selected direction. Afterward, the
square region is divided into 4 ⇥ 4 sub-square regions of 5 ⇥ 5 samples, as shown

20

in Figure 2.13. For each sub-region, we apply the Haar wavelet filter and calculate
the responses. However, the SURF descriptor does not use the responses directly, a
four-dimensional vector Haar based on Haar wavelet responses is extracted.

Haar = (
X

dx,
X

dy,
X

|dx|,
X

|dy|). (2.38)

where dx is the horizontal Haar wavelet response (filter size 2s);
P

dx is the sum
of all dx responses within one sub-region; dy is the vertical Haar wavelet response
(filter size 2s);

P
dy is the sum of all dy responses with in one sub-region.

Figure 2.13: Choosing and dividing square region based on assigned orientation.

Figure 2.14: Some demonstrations of the basis SURF descriptor vectors for sub-
regions.

Figures 2.14 shows the Haar vectors of three basic sub-region image patterns. As
we can see, three patterns are obviously distinctive with Haar vectors. As a result,

21

Haar vector is also powerful to distinguish the combination of three basic patterns
above.
Every sub-region is represented by a four-dimensional vector Haar, a square re-

gion have 4⇥4 sub-region, so an interesting point is represented by a 64�dimensional
vector. In short, a SURF descriptor vector is a 64�dimensional vector, which is syn-
thesized from Haar wavelet responses of a square image region.

22

Chapter 3

Proposed Algorithm

A hash scheme maps real numbers to bits. A good hash scheme will preserve distance
as well as possible. That is, the Euclidean distance between two points in the real
space should be proportional to the metric distance between the hash values of
those two points. Our indexing scheme quantizes points into nested lattice points
in multiple levels. If two points are far from each other, they tend to be quantized
to di↵erent lattice points in high levels. In contrast, if two points are close together
in Euclidean space, they should be quantized to same lattice points in high levels,
and quantized to di↵erent lattice points only at low levels. To preserve distance,
the higher the level, the higher the weight the bits groups should be assigned. On
the other hand, consider from the highest level of nested lattice to the lowest level,
the index of the first di↵erent position also represents the di↵erence between two
bit sequences. That is the idea for applying weighted Hamming distance in order to
assign weights exponentially to every group of bits of codewords.

3.1 Nested lattice indexing

We indexed n-dimensional real points using m levels nested lattice in n-dimensional
space. Consider an n-dimensional real input datapoint x 2 [0, 2m�1]n, uniformly
distributed. We define lattices ⇤2i by an n-by-n generator matrix G⇤2i

:

G⇤2i
= 2iG⇤ = 2i

g
1

g
2

. . . g
n

�
, for i 2 {0, 1 . . . (m� 1)}. (3.1)

We also define a shift vector a as below.

a = [a1, . . . , an]. (3.2)

The best choice of shift vector a is explained in detail in Section 3.4.
An algorithm for finding a hash value LatticeHash from a real input vector x is

given in three main steps.
Step 1: We shift the real input x by vector 2ia at the corresponding level 2i or more
formally,

y(i) = x� 2ia, for i 2 {0, 1 . . . (m� 1)}. (3.3)

23

Step 2: Datapoint y(i) is quantized to lattice point z(i) by ⇤2i . In this step, the
corresponding lattice quantizers of ⇤2i are implemented.

zi = Q⇤2i
(y(i)), for i 2 {0, 1 . . . (m� 1)}. (3.4)

Next, we calculate the vector b(i), which is the integer representation of the lattice
point z(i).

b(i) = G�1
⇤2i

z(i), for i 2 {0, 1 . . . (m� 1)}. (3.5)

After that, the vector bi is indexed inside Voronoi region V2⇤2i
(0) which is generated

by magnifying current fundamental region two times. In other words, we indexed the
coset representatives of quotient group ⇤2i+1/⇤2i . For instance, in two-dimensional
lattice A2, codewords in one level includes (0, 0), (0, 1), (1, 0), (1, 1). Particularly,

index(i) = b(i) mod 2, for i 2 {0, 1 . . . (m� 1)}. (3.6)

Step 3: Finally, m n-bit indexi binary sequences corresponding to m levels nested
lattice 20, 21, . . . , 2m�1 are concatenated into a binary hash sequence:

LatticeHash = index(1), index(2), . . . , index(m). (3.7)

In this research, we applied the nested indexing scheme to hexagonal lattice A2

and E8 lattice. Those lattices have generator matrixes as below:

GA2 =

2

41 1/2

0
p
3/2

3

5 , and (3.8)

GE8 =

2

6666666666666666664

2 �1 0 0 0 0 0 1/2

0 1 �1 0 0 0 0 1/2

0 0 1 �1 0 0 0 1/2

0 0 0 1 �1 0 0 1/2

0 0 0 0 1 �1 0 1/2

0 0 0 0 0 1 �1 1/2

0 0 0 0 0 0 1 1/2

0 0 0 0 0 0 0 1/2

3

7777777777777777775

. (3.9)

3.2 Metrics

This paper uses Hamming distance, weighted Hamming distance and first di↵er-
ence distance as metrics versus Euclidean distance to evaluate the normalized mean
squared errors. Based on those errors, we can compare and choose the most e�cient
code and metric distance for image hashing.

24

3.2.1 Euclidean distance

Euclidean distance or Euclidean metric is the distance between two points in Eu-
clidean space. It is fundamental and widely known as a good measure of the simi-
larity between samples. In the case of comparison only, to reduce the computational
complexity, squared Euclidean distance is used more frequently than standard Eu-
clidean distance. Squared Euclidean distance is simply a squared version of Eu-
clidean to remove the square root. For n-dimensional space, Euclidean distance and
squared Euclidean distance from x to y are defined as:

dE = ||y � x|| =

vuut
nX

i=1

(yi � xi)2, (3.10)

d2
E = ||y � x||2 =

nX

i=1

(yi � xi)
2. (3.11)

3.2.2 Hamming distance

Hamming distance is the number of positions that must be changed to transform
one sequence to another [27]. The Hamming distance dH(x,y) between two n-
dimensional vectors of equal length x and y is the number of positions where they
di↵er:

dH(x,y) =
nX

i=1

dH(xi, yi), (3.12)

where

dH(xi, yi) =

8
<

:
0 if xi = yi

1 if xi 6= yi
, for i = 1, . . . , n. (3.13)

We are working with binary vectors, and the Hamming distance simplifies to the
XOR of two vectors.

3.2.3 Weighted Hamming distance

The purpose of weighted Hamming distance is to preserve the distance between vec-
tors. The higher the level of the nested lattice, the higher the weight the bits groups
will be assigned. We propose a weighted Hamming distance measurement which
assigns weights exponentially to every group of bits of sequences of n-dimensional
and m levels:

dWH(x,y) =
m·nX

i=1

widH(xi, yi), (3.14)

25

where

wi = 2bi/nc, for i = 1, . . . ,m · n.

3.2.4 First di↵erence distance

In this paper, we also propose the concept of first di↵erence distance which reflects
the similarity between bit sequences. Two bit sequences will be compared from
the last element to the first element, the index of the first di↵erent element will
be marked as first di↵erence distance. In n-dimensional space, consider two binary
sequences:

x = {(x1, . . . , xn)
(1), . . . , (x1, . . . , xn)

(n)},
y = {(y1, . . . , yn)(1), . . . , (y1, . . . , yn)(n)}.

(3.15)

First di↵erence distance is the index of the first group of n bits that they are di↵erent.
More formally,
For i 2 [0, n], i 2 Z,

dFD(x,y) = i ,

8
<

:
(x1, . . . , xn)

(n�i) 6= (y1, . . . , yn)
(n�i)

(x1, . . . , xn)
(n�j) = (y1, . . . , yn)

(n�j)
(3.16)

8j 2 [0, (i� 1)], j 2 Z. (3.17)

For later use of first di↵erence distance in the lattice indexing scheme, the last
group of bits and the first group of bits correspond to the highest level of lattice and
the lowest level of lattice vectors. In terms of the idea, the first di↵erence distance
counts the number of similar lattice codeword from highest level to lowest level, then
saves the index; therefore the higher value of first di↵erence distance, the greater
dissimilarity between two vectors.

3.3 Indexing scheme evaluation based on normal-
ized mean squared error

In this section, we consider two input distribution cases and introduce normalized
mean squared error (NMSE) as a robustness measurement.
For the hashing system input, we consider two distributions for the original feature

vectors x and the modified vectors x0. In both cases, original vectors x are uniformly
distributed, but modified vectors x0 are di↵erent.
Case (a): x and x0 are both uniformly distributed. Then we apply lattice indexing
scheme and Gray indexing scheme and compare their performance.
Case (b): x is uniform and x0 is obtained by adding Gaussian noise to x, as:

26

x0 = x + N(0, �2). In this case, we vary the Gaussian variance, then analyze how
the noise variance a↵ects the indexing scheme’s performance.
NMSE is used to compare the robustness of indexing schemes. After generating

x and x0 according to the two mentioned cases, input vectors are decoded to binary
sequences. Then, the Euclidean distance dE and other metric distances (dH or, as
in this paper, dWH and dFD) between every pair (x,x0) are computed. Recall the
target is calculating dE from some metric distances dM , so we use least mean squared
error technique to fit dE and dM by a linear predictor function d0E = ↵dM +�, where
↵ and � are coe�cients with least mean squared error. Then, we define the NMSE
between estimated d0E and sample’s dE for n-dimensional space and N pairs of d0E
and dE as:

NMSE =
1

n
MSE =

1

nN

NX

i=1

(d0Ei � dEi)
2
. (3.18)

NMSE is dimensionless. The smaller the NMSE, the better the linearity the indexing
scheme can achieve and the more robust the indexing scheme is.

3.4 The best choice for shift vector a

There are infinite choices for the shift vector a, this sub-section explains how to
choose the optimized vector. Firstly, we introduce the concept of ine�ciently in-
dexed regions (IIR) which consist of distinct points in Euclidean space with zero
Hamming distances between indexed codewords. A set consists of k regionsR1, . . . , Rk

are IIR if and only if there exist pairs of (x,x0) such that:

x 2 Ri,x
0 2 Rj, dE(x,x

0) > 0, dWH(x,x
0) = 0, for i, j 2 {1, . . . , k}, i 6= j. (3.19)

For instance, as shown in Figure 3.1, A and A0 are relatively IIR together, similarly
with B,B0 and C,C 0. All pairs which have one element from A (hash value 01), the
other from A0 (also hash value 01) are indexed to the same codeword with Hamming
distance equal zero, but they have a large Euclidean distance. In short, IIRs increase
the MSE.
Consider a two-dimensional lattice ⇤ and a Voronoi region V2⇤(a). According

to the proposed rules in Section 3.1, all points in V2⇤(a) are indexed as shown in
Figure 3.1 and Figure 3.2 where a = 0 and a = 2/3(g

1

) + 1/3(g
2

) respectively.
Comparing these two cases, while 75% of V2⇤(0) area is IIR, V2⇤(2/3(g1

)+1/3(g
2

))
has only 25%. The objective is to estimate the Euclidean distance between two
points from Hamming distance between those two points with MSE as small as
possible. We believe that minimizing MSE is equivalent to minimizing the area of
IIRs by choosing vector a. As we can see, when moving vector a, V2⇤(2/3(g1

) +
1/3(g

2

)) is the best choice to achieve the minimum percentage of ine↵ective regions.
In this research, for two-dimensional space, we used V2⇤(2/3(g1

) + 1/3(g
2

)). The
centroid of V2⇤(2/3(g1

) + 1/3(g
2

)) is the lattice’s deep hole [17], which is the point
of the plane furthest from the lattice.

27

Figure 3.1: Voronoi region V2⇤(0).

Figure 3.2: Voronoi region V2⇤(a), where a = 2/3(g
1

) + 1/3(g
2

).

28

Chapter 4

Experimental results

This chapter describes our four simulations using quantization coding schemes, fea-
ture extraction, and a complete image indexing database application.
In the two first simulations, we implemented two-dimensional nested lattice code

A2, eight-dimensional nested lattice E8, and Gray code. In particular, nested A2

used coset vector a = 2/3(g
1

)+1/3(g
2

), as explained in Section 3.4. In order to com-
pare to Gray code, we assumed two cases of input data: Case (a) has both original
vectors and modified vectors are uniformly distributed; Case (b) has uniformly dis-
tributed original vectors and additional Gaussian noise vectors as modified vectors.
In addition, we used weighted Hamming distance and first di↵erence distance as new
metric distances versus traditional Hamming distance. So far, the results pointed
out that the combination of two-dimensional nested lattice A2 with coset vector a
and first di↵erence distance is better than eight-dimensional lattice, and reduces the
normalized mean square error (NMSE) by 20% compared to two-dimensional Gray
code.
In terms of feature extraction, we used SURF to detect interesting points from

grayscale images, then obtain feature vectors. In order to indicate the robustness
of SURF, we applied SURF to both original images and distorted images, such
as rotation, JPEG compression, noise attack. The simulation shows that SURF
interesting points and feature vectors are perceptually stable under attacks. Key
points were mainly located at strong texture areas, edges. In other words, SURF
extracts feature vectors based on the content of the images. This research does
not improve SURF, we only show its e�ciency under distortion, and then take the
advantage by applying SURF to our hashing system.
The last simulation is constructing an image indexing database. This database

application used a complete nested lattice image hashing function. As we mentioned
above, we took the advantage of SURF as a feature extraction, then apply two-
dimensional nested lattice A2 as a quantizer. This is an application of a particular
content-based image hashing function, and we firmly believe that nested lattices can
become a coding-based scheme for a class of similarity search application.

29

4.1 Two-dimensional nested lattice indexing
schemes A2

A two-dimensional nested lattice and a Gray code indexing scheme were imple-
mented and simulations were ran with the two input distribution cases (Case (a)
and Case (b)) which are described in Section 3.3. For fair comparison, we used:
dimension n = 2, fundamental volume equal to one (V (⇤) = 1), level m = 7 means
14 bits per hash value, 104 two-dimensional real input data points (or vectors)
x 2 [0, 2m�1]2 uniformly distributed in Case (a) and 104 additional two-dimensional
Gaussian noise vectorsN(0, �2) in Case (b). Particularly, these two indexing schemes
are based on two corresponding quantizers, therefore quantization error depends on
the lattice (and is slightly better for the hexagonal lattice). The density of points
relates the possible number of hash values to the quantization error, and that is why
we fairly compared lattice and Gray quantizer with fundamental volume equal to
one.
When the input vectors x and x0 are uniformly distributed, as in Case (a) in

Section 3.3, the (dE, dH) for every sample pairs in the dataset, along with its lin-
ear predictor function for Gray indexing are shown in Figure 4.1. Similarly, the
(dE, dWH) and (dE,dFD) for every possible pairs, along with their linear predictor
functions for nested lattice indexing are shown in Figure 4.2 and Figure 4.3, re-
spectively. Table 4.1 depicts the NMSE and other details about this comparison
simulation. The smaller the NMSE, the better the linearity the indexing scheme
can achieve.

Table 4.1: Case (a): Nested A2 lattice and Gray indexing scheme simulation infor-
mation.

Indexing scheme Metric distance NMSE

Gray code dE vs. dH 113.7115

Lattice code A2 dE vs. dWH 106.8708

Lattice code A2 dE vs. dFD 91.7450

When the input x is uniformly distributed and x0 is Gaussian distributed, as in
Case (b) in Section 3.3, we adjust noise intensity by changing Gaussian variance
�2. The (dE, dH), (dE,dFD) between original vectors x and noisy vectors x0 are
computed and fitted by linear predictor functions. Figure 4.4 represents the variation
of NMSE values of linear predictor functions as a function of noise variance �2 for
two-dimensional Gray indexing and lattice indexing.
We observe that the nested lattice indexing generally has better performance

than Gray code indexing. In Case (a), the combination of nested lattice indexing
and first di↵erence distance reduces approximately 20% NMSE compared to Gray
indexing. In Case (b), on average, nested lattice indexing has smaller NMSE than
Gray indexing.

30

Figure 4.1: Case (a): The Hamming distance versus the Euclidean distances of Gray
indexing.

Figure 4.2: Case (a): The weighted Hamming distance versus the Euclidean dis-
tances of nested A2 lattice indexing.

31

Figure 4.3: Case (a): The first di↵erence distance versus the Euclidean distances of
nested A2 lattice indexing.

Figure 4.4: Case (b): The variation of A2’s NMSE as a function of noise variance.

32

4.2 Nested lattice E8 indexing schemes simulation

This section shows the simulation of eight-dimensional nested lattice E8, called
SIM2. The process similar to two-dimensional nested lattice A2, called SIM1.
Consistently, we still experimented two case studies and using NMSE as the evalu-
ation index, explained in Section 3.3. Two di↵erences between SIM1 and SIM2:
First, whereas SIM1 input was two-dimensional vectors, SIM2 input was eight-
dimensional vectors. However, the volume of lattice’s fundamental regions are both
equal one, it guarantees the fair comparison. Second, SIM1 used nested A2 indexing
scheme, while SIM2 used nested E8 indexing scheme. Since NMSE is dimensionless,
which is normalized by dimension, then the comparison is fair.
Figure 4.5, 4.6, 4.7, and table 4.2 show the visualization and numerical results.

In conclusion, the combination of nested A2 and first di↵erence distance still is the
best choice for quantization stage.

Table 4.2: Case (a): Nested E8 lattice indexing schemes results.

Indexing scheme Metric distance NMSE

Lattice code E8 dE vs. dWH 105.1206

Lattice code E8 dE vs. dFD 110.4302

Figure 4.5: Case (a): The weighted Hamming distance versus the Euclidean dis-
tances of nested E8 lattice indexing.

33

Figure 4.6: Case (a): The first di↵erence distance versus the Euclidean distances of
nested E8 lattice indexing.

Figure 4.7: Case (b): The variation of E8’s NMSE as a function of noise variance.

34

4.3 Feature extraction results using SURF

As discussed previously, we used SURF in the feature extraction step of our hash
function. This section shows the robustness of SURF under some attacks, such as
rotation, noise, and JPEG compression.
For visualization, we used a standard test picture named cameraman, grayscale,

resolution 512 ⇥ 512. Figure 4.8 depicts the original cameraman image with the
green circles represent detected interesting points. Figure 4.9, 4.10, 4.11 indicate
distorted cameraman images and their identified interesting points respectively. As
we can see, over all the images, the greens points, which visualize interesting points
are almost similar, and locate on edges and strong texture areas. That shows the
robustness of SURF under image distortions; it means perceptually similar images
have similar SURF feature vectors. Our image hash function takes advantage of
SURF to tolerate small image modifications and attacks.

Figure 4.8: Surf features of original grayscale cameraman image.

35

Figure 4.9: Surf features of compressed cameraman: JPEG 5%.

Figure 4.10: Surf features of rotated cameraman image: 30�.

36

Figure 4.11: Surf features of noised cameraman image.

4.4 Simulation of Image database

Figure 4.12: Image database simulation process.

We designed a simple image database system to apply proposed content-based
image hash function. This simulation consists of four main steps, as shown in Figure
4.12: prepare input images dataset; apply SURF feature vector extraction; apply

37

nested lattice A2 code; store images with their hash sequences and do some queries.
This experiment used following tools:

• Matlab R2014a tools and Matlab programming language.

• Postgresql 9.3 [31]: An open source database.

• Postgresql JDBC driver [32]: Link between Postgresql and Matlab.

• Stirmark Benchmark 4.0 [33]: A tool which is used to distort image database.

In terms of database structure design, our database simply has only one table
named images to store all necessary information. Table 4.4 describes the meaning
of each column in our database.
In terms of the image dataset, we firstly choose some standard test images, such

as cameraman, lena, and mandrill. Afterward, we use Stirmark Benchmark tool to
attack every input image, then collect distorted images. Figure 4.13 shows some
images under Stirmark Benchmark attacks. The attacks detail are described in
Table 4.3. In the end, we have a dataset of 520 distorted images which is generated
from ten original images.
Next, we process distorted image dataset with the content-base image hash func-

tion using nested lattice code. As shown in Figure 4.12, our hash function uses
SURF extraction in the first stage to select 50 64-dimensional feature vectors from
each image. Then two-dimensional A2 nested lattice quantize each 64�dimensional
SURF vectors to 320-bit sequence, the final hash value has length of 16000 bit, or 2
kB. Images and their hash values are stored in Postgresql database.
In order to show the advantage of this database system, we run some queries.

In detail, suppose that we have an image S, and then we want to search the most
similar image in the database. Input: An image S; Ouput: A list of the most
similar images in database. This is a search process: Firstly, image S is hashed
into hash sequence H, then compare H with hash values of existing images in the
database which is column hash a2. In terms of comparing first di↵erence distance,
a list of similar hash values with input H is selected. The result is a list of images
corresponds to the list of selected hash values. Some queries input and results are
plotted, as shown in Figure 4.14.

Figure 4.13: Cameraman image under some Stirmark Benchmark attacks.

38

Table 4.3: Stirmark Benchmark attacks detail.

Attack Attack description Number of
distorted images

Rotation Rotate from 0 to 180
degree

12

JPEG compression Compression ratio 5%
to 100%

20

Noise Noise from 0% to
100%

20

Table 4.4: Database structure, table design.

Column Data type Description

id serial The index of the record, we used this col-
umn as primary key. Type serial mean
auto increment integer.

name text The name of the image

path text The path to image on disk. We do not
save the whole image blob of bits in the
database, we save them on disk and their
path. It makes the database lightweight.

hash a2 text The hash value, which is result of nested
lattice A2 quantizer.

Figure 4.14: Example queries results.

39

Chapter 5

Conclusion

In summary, the main contributions of this research include:

• E�cient metric distances: weighted Hamming distance and first di↵erence
distance.

• Nested lattice indexing scheme with coset vector a.

• Build a complete content-based hash function for image indexing system using
SURF as feature extraction and nested lattice as a quantizer.

5.1 New metric distances

We proposed the weighted Hamming distance and the first di↵erence distance as
new metrics versus Euclidean distance. The purpose of both weighted Hamming
distance or first di↵erence distance is to preserve the distance between vectors.
Weighted Hamming distance assigns weights exponentially to every group of bits
of sequences. The higher the level of nested lattice, the higher the weight the bits
groups will be assigned. In terms of first di↵erence distance, this metric counts the
number of similar lattice codeword from highest level to lowest level, then saves the
index; therefore the higher value of first di↵erence distance, the greater dissimilar-
ity between two vectors. The experiment result shows that our proposed metrics
are better than traditional Hamming distance in terms of reflecting the similarity
between vectors.

5.2 Nested lattice indexing scheme

A lattice code replaced the Gray code, a nested lattice indexing scheme is proposed,
and multi-dimensional nested lattices experiment. As discussed, Gray code is much
better than natural binary code and widely used in discrete-to-binary conversion

40

stage of current image hashing. This research used Gray code as a base coding
scheme to compare with our proposed nested lattice code schemes. Precisely, we ex-
amined the combination of proposed metrics distance (includes weighted Hamming
distance and first di↵erence distance) and nested lattice code versus the existing
technique of Gray code and Hamming distance.
The nested lattice indexing scheme takes advantage of lattices for quantizing fea-

ture vectors to hash values. In the quantization step, nested lattices tend to keep
a proportional relationship between Euclidean distance and mentioned metric dis-
tances (Hamming distance or, as in this paper, weighted Hamming distance and
first di↵erence distance) to increase the hash function’s robustness. To compare
among indexing schemes, we compared their normalized mean square error. As
experimental results so far, the combination of two-dimensional nested lattice and
first di↵erence distance reduces the normalized mean square error (NMSE) by 20%
compared to two-dimensional Gray code.
In addition, coset lattices are considered. There are infinite choices for the shift

vector or coset vector a, we explained how to choose the optimized a in Section 3.4.
So far, we only have the best choice of a = 2/3(g

1

) + 1/3(g
2

) for hexagonal lattice
A2 since higher dimensional lattices are di�cult to visualize. For future work, we
plan to look for the optimized coset vectors for higher dimensional lattices.
In short, developing an e�cient indexing scheme has a promising class of similarity

search applications which usually deal with comparing feature vectors. Notably, this
research focuses on image hashing systems by applying proposed nested lattice codes.

5.3 Content-based image hash function

We constructed a complete image hash function and experimented with multimedia
database indexing. Our image hash function used SURF to extract feature vectors
from images; then, using nested lattice code for quantization step. This image hash
function takes the advantages of SURF, which is a robust content-based feature
extraction against distortions such as rotation, scaling or compression. On the other
hand, the hash function also takes the advantages of proposed nested lattice which
reflects the similarity between feature vectors by the similarity between codewords.
In our multimedia database simulation, images are stored with their correspond-

ing hash sequences. The hash sequences (or hash values) are generated by applying
proposed hash function (the combination of SURF and two-dimensional nested lat-
tice code), so those hash sequences contain the SURF features which represent the
image’s characteristics. For retrieving image from this database system, instead of
image comparing sample-by-sample, we can compare their hash sequences using first
di↵erence distance metric, then infer the similarity between images.

41

5.4 Future work

As future work, we intend to investigate on higher dimensional lattices with the
expectation of a better relationship between metric distance and Euclidean distance.
We plan to optimize the coset vector a for higher dimensional lattices even though
they are di�cult to visualize, especially for E8. On the other hand, multimedia
database indexing is just a simple application of nested lattice code, we would like
to pursue the class of similarity applications. Since many promising applications in
machine learning, information retrieval, and other areas have to work with feature
vector, so we believe that nested lattice indexing scheme become a based coding
scheme in quantization stage.

42

This thesis was prepared according to the curriculum for the Collaborative Edu-
cation Program organized by Japan Advanced Institute of Science and Technology
and University of Engineering and Technology, Vietnam National University, Hanoi.

43

References

[1] Faloutsos, Christos, and Douglas W. Oard. ”A survey of information retrieval
and filtering methods.” (1998).

[2] Faloutsos, Christos, et al. ”E�cient and e↵ective querying by image content.”
Journal of intelligent information systems 3.3-4 (1994): 231-262.

[3] Cost, Scott, and Steven Salzberg. ”A weighted nearest neighbor algorithm for
learning with symbolic features.” Machine learning 10.1 (1993): 57-78.

[4] Hastie, Trevor, and Rolbert Tibshirani. ”Discriminant adaptive nearest neigh-
bor classification.” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 18.6 (1996): 607-616.

[5] Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of applied cryptography. CRC press, 1996.

[6] Preneel, Bart. ”Cryptographic hash functions.” European Transactions on
Telecommunications 5.4 (1994): 431-448.

[7] Bellare, Mihir, Ran Canetti, and Hugo Krawczyk. ”Keying hash functions
for message authentication.” Advances in Cryptology?CRYPTO?96. Springer
Berlin Heidelberg, 1996.

[8] Huang, Chung-Lin, and Dai-Hwa Huang. ”A content-based image retrieval sys-
tem.” Image and Vision Computing 16.3 (1998): 149-163.

[9] Gudivada, Venkat N., and Vijay V. Raghavan. ”Content based image retrieval
systems.” Computer 28.9 (1995): 18-22.

[10] Abdel-Mottaleb, Mohammed S., and Santhana Krishnamachari. ”Image re-
trieval system.” U.S. Patent No. 6,754,675. 22 Jun. 2004.

[11] Andrews, Harry C., and Claude L. Patterson III. ”Singular value decomposition
(SVD) image coding.” Communications, IEEE Transactions on 24.4 (1976):
425-432.

[12] Bay, Herbert, et al. ”Speeded-up robust features (SURF).” Computer vision
and image understanding 110.3 (2008): 346-359.

44

[13] Lowe, David G. ”Distinctive image features from scale-invariant keypoints.”
International journal of computer vision 60.2 (2004): 91-110.

[14] Ozaktas, Haldun M., Zeev Zalevsky, and M. Alper Kutay. The fractional Fourier
transform. Wiley, Chichester, 2001.

[15] Agrawal, Rakesh, Christos Faloutsos, and Arun Swami. E�cient similarity
search in sequence databases. Springer Berlin Heidelberg, 1993.

[16] Venkatesan, Ramarathnam, et al. ”Robust image hashing.”Image Processing,
2000. Proceedings. 2000 International Conference. Vol. 3. IEEE, 2000.

[17] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, New
York, NY, Springer-Verlag, 3rd ed., 1999.

[18] Gray, Robert M. ”Vector quantization.” ASSP Magazine, IEEE 1.2 (1984):
4-29.

[19] Ricardo Antonio Parrao Hernandez, Mariko Nakano Miyatake, and Brian M.
Kurkoski. ”Robust image hashing using image normalization and SVD decom-
position.” MWSCAS, 2011 IEEE 54th Midwest Symposium on. IEEE, 2011.

[20] Faloutsos, Christos. ”Gray codes for partial match and range queries.” Software
Engineering, IEEE Transactions on 14.10 (1988): 1381-1393.

[21] Swaminathan, Ashwin, Yinian Mao, and Min Wu. ”Robust and secure image
hashing.” Information Forensics and Security, IEEE Transactions on 1.2 (2006):
215-230.

[22] Zhu Guopu, et al. ”Fragility analysis of adaptive quantization-based image
hashing.” Information Forensics and Security, IEEE Transactions on 5.1 (2010):
133-147.

[23] Li, Yuenan, et al. ”Robust image hashing based on random Gabor filtering and
dithered lattice vector quantization.” Image Processing, IEEE Transactions,
2012.

[24] John H. Conway, N. J. A. Sloane, ”A Fast Encoding Method for Lattice Codes
and Quantizers”, IEEE Trans. Inf. Theory IT-29, 820-824, 1983.

[25] Conway, J. H., and N. J. A. Sloane. ”On the Voronoi regions of certain lattices.”
SIAM Journal on Algebraic Discrete Methods 5.3 (1984): 294-305.

[26] Gray, Frank. ”Pulse code communication.” U.S. Patent. 17 Mar. 1953.

[27] Hamming, Richard W. ”Error detecting and error correcting codes.” Bell Sys-
tem technical journal 29.2 (1950): 147-160.

45

[28] Zamir, Ram. Lattice Coding for Signals and Networks: A Structured Coding
Approach to Quantization, Modulation, and Multiuser Information Theory.
Cambridge University Press, 2014.

[29] Beaudet, Paul R. ”Rotationally invariant image operators.” International Joint
Conference on Pattern Recognition. Vol. 579. 1978.

[30] Convay, J. H., and N. J. A. Sloane. ”Fast quantizing and decoding algorithms
for lattice quantizers.” IEEE Trans Inform Theory 28.2 (1982): 227-232.

[31] http://www.postgresql.org/.

[32] https://jdbc.postgresql.org/.

[33] http://www.petitcolas.net/watermarking/stirmark/.

46

Publications

Major research

[1] Thanh Xuan Nguyen, Ricardo Antonio Parrao Hernandez, Brian Michael
Kurkoski, ”Robust Content- Based Image Hash Functions Using Nested Lattice
Codes”, in Proc. of International Workshop on Digital-forensics and Watermark-
ing (IWDW), Japan, Oct. 2015.

[2] Thanh Xuan Nguyen, Ricardo Antonio Parrao Hernandez, Brian Michael
Kurkoski, ”Nested Lattice Hashing Scheme for Similarity Search Applications”,
in Proc. of IEICE 2015, pp. 19-24, Error Correcting Codes (ECC), Japan, Sep.
2015.

[3] Thanh Xuan Nguyen, Ricardo Antonio Parrao Hernandez, Brian M.
Kurkoski, ”Image hashing using lattice codes”, Workshop on Lattice Coding and
Start Code, University of Electro-Communications (UEC), Japan, Jun. 2015.

Minor research

[4] Do, K. P., Nguyen, B. T., Nguyen, X. T., Bui, Q. H., Tran, N. L., Nguyen, T.
N. T., Vuong, V. Q., Nguyen, H. L. and Le, T. H., 2015. Spatial Interpolation and
Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam.
Journal of Information Processing Systems. 11, 4, 556–572.

[5] Nguyen*, X. T., Nguyen*, B. T., Do*, K. P., Bui*, Q. H., Nguyen*, T. N.
T., Vuong**, V. Q. and Le*, T. H., 2015. ”Spatial Interpolation of Meteorolog-
ical Variables in Vietnam using the Kriging Method”, Journal of Information
Processing Systems. 11, 1, 134–147.

47

	Abstract
	Acknowledgements
	Introduction
	Research motivation
	Research approaches and objectives
	A review of image hashing
	Contributions
	Thesis outline

	Preliminaries
	Lattice code
	Lattice definition
	Voronoi region and Voronoi code
	Coset of lattice
	Lattice quantizer

	Nested Lattice
	Gray code and Gray indexing scheme
	Gray code
	Gray indexing scheme

	Lattice quantizing algorithms
	Tie and untie functions
	Dn quantizer
	Coset lattice quantizer
	E8 quantizer
	An quantizer
	A2 quantizer

	Image feature extraction
	Interesting point detector
	Speeded up robust features (SURF) descriptor

	Proposed Algorithm
	Nested lattice indexing
	Metrics
	Euclidean distance
	Hamming distance
	Weighted Hamming distance
	First difference distance

	Indexing scheme evaluation based on normalized mean squared error
	The best choice for shift vector a

	Experimental results
	Two-dimensional nested lattice indexing schemes A2
	Nested lattice E8 indexing schemes simulation
	Feature extraction results using SURF
	Simulation of Image database

	Conclusion
	New metric distances
	Nested lattice indexing scheme
	Content-based image hash function
	Future work

	References
	Publications

