
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
命令セットによるマイクロアーキテクチャへの影響に

関する研究 [課題研究報告書]

Author(s) 桑田, 正明

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13635

Rights

Description Supervisor:田中　清史, 情報科学研究科, 修士



Study on Influence of Instruction Set on
Microarchitecture

Masaaki Kuwata (1310704)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 6, 2016

Keywords: Instruction Set Architecture,FPGA,MIPS,ARM,SPARC.

Instruction sets that von-Neumann-type processors execute are diverse,
but the superiority or inferiority is barely discussed because there are many
similarities in order to provide general-purpose programmability. However,
instructions to be used vary according to target applications, and it is
expected that difference in performance appears from ISA(Instruction Set
Architecture) to ISA, considering instruction efficiency.
In this study, for the purpose of clarifying how ISA influences microarchi-

tecture, I targeted FPGA (Field Programmable Gate Array) and developed
microarchitecture of several ISAs. Specifically, I clarified how the difference
in ISA affected speed / hardware size by actually designing the processor
for each ISA, and comparing the results that I implemented. In addition,
I arranged common components which were independent of ISA, similar
components, and special components, and showed that processors for dif-
ferent ISAs could be designed by choosing and connecting components with
simple modification.
I adopted instruction sets of MIPS, ARM and SPARC as the target ISAs

in this study. (Although SPARC is not common or practical in these days,
I involved SPARC for a comparison to MIPS and ARM which are widely
used.)
In chapter 1, I show the background, the purpose, the study methodology,

and the organization of this report.

Copyright c⃝ 2016 by Masaaki Kuwata

1



In chapter 2, I show the history and background of ISAs and the instruc-
tion formats of each ISA, and show basic design of the processor based
on each ISA and results of the simulation. I show MIPS first. As a basic
design of the MIPS processor, I designed it with a single cycle implemen-
tation where an instruction is executed in one clock cycle without cache
memories. The following instructions are implemented.

• add,sub,and,or,slt,addi,sw,lw,beq,bne

I designed this processor by using Verilog HDL in this study and referring
to David A. Patterson and John L. Hennessy’s ”Computer Organization
and Design”, 4th edition, first volume, figure 4.21. I aimed at running
a program that calculates 1+2+3+4+5+6+7+8+9=45 using add instruc-
tions, store instructions, branch instructions, and load instructions, whose
correctness was confirmed to in simulation in this study.
I show ARM next. As a basic design of the ARM processor, I designed

it with a single cycle implementation as the MIPS one, without cache
memories. The following instructions are implemented.

• MOV,ADD,SUB,AND,CMP,STR,LDR,BNE,BEQ,BAL

(Although ARM processors in general have 16-bit wide instructions, called
Thumb instructions, that are aimed at improving the cord efficiency, the
Thumb instructions are out of the scope of this study.) I designed this
processor with Verilog HDL and referred to ”ARM Architecture Refer-
ence Manual version6 (ARM DDI 0100HJ-00)” by ARM Ltd. Similar to
the MIPS’s case, I tried to calculate 1+2+3+4+5+6+7+8+9=45 using
move instructions, store instructions, add instructions, compare instruc-
tions, branch instructions, and load instructions, in the simulation.
I show SPARC next. As a basic design of the SPARC processor, I de-

signed it with a single cycle implementation and no cache memories. The
following instructions are implemented.

• ADD,SUB,SUBcc,AND,OR,ST,LD,BE,BNE,BL,SAVE,RESTORE

In addition, I designed two cases, with the register window and without the
register window. I designed it with Verilog HDL and referred to SPARC
International Inc.’s ”The SPARC Architecture Manual Version 8 Revision

2



SAV080SI9308”. I executed a calculation of 1+2+3+4+5+6+7+8+9=45
using add instructions, store instructions, subtract instructions, branch
instructions, and load instructions in the simulation.
In chapter 3, I show the evaluation of the source files, the evaluation of

the circuits which I implemented, and the relations between ISA and the
modules. I show the evaluation of the source files first. The source files are
Verilog module files designed in ISE Design Suite 14.7 of Xilinx,Inc. The
file extension is .v. The file sizes and the number of lines of the source files
of each ISA are as follows.

• MIPS, SPARC (without register window), ARM, and SPARC (with
register window) are in order of increasing sizes and lines.

I show the evaluation of the circuits next. I implemented the circuits in
ISE Design Suite 14.7 of Xilinx, Inc. for Spartan6 FPGA XC6SLX45. The
results of the evaluation of the circuits are as follows.

• MIPS, SPARC (without register window), ARM, and SPARC (with
register window) are in order of increasing FPGA resources.

• MIPS, SPARC (without register window), SPARC (with register win-
dow), and ARM are in order of decreasing frequency.

• MIPS exhibits the highest frequency with the fewest resources.

I show the relations between ISAs and the modules next. I classified mod-
ules of each ISA into common components, similar components, and special
components. The common components are independent of ISA and they
are modules which have the same source codes in all the ISAs. They can
be used to build processors of different ISAs. The similar components are
modules which have partly different source codes in all the ISAs. They
can be used to build processors of different ISAs with a small modification.
The special components are modules which have different source codes from
ISA to ISA or which only one ISA has. They depend on ISA and show
special characteristics of ISA. In addition, I showed differences of similar
components and special components for each module, and showed special
characteristics of ISA. Processors of different ISAs could be organized by
choosing and connecting these common components, similar components,
and special components, with appropriate, slight modifications.

3



In chapter 4, I show the summary of this study.

4


