
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

An Investigation of Machine Learning and a

Consideration on its Application to Theorem

Proving [Project Paper]

Author(s) Ho, Dung Tuan

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13641

Rights

Description Supervisor:Kazuhiro Ogata, 情報科学研究科, 修士



An Investigation of Machine Learning and a consideration on its

application to Theorem Proving

Ho, Dung Tuan (1310065)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 10, 2016

Keywords: Machine Learning, Interactive Theorem Proving, CafeOBJ, Maude,
Lemma Conjecturing.

Systems Verification logically checks if systems satisfy desired properties to make them
reliable. The techniques used are largely classified into Model Checking and (Interactive)
Theorem Proving. This project focuses on Interactive Theorem Proving (ITP) that of-
ten requires eureka steps. One typical eureka step is to discover a non-trivial lemma,
called Lemma Conjecturing. Some techniques have been proposed such that lemmas can
be systematically or automatically discovered, and successfully applied to some specific
applications. None of those techniques, however, can discover all lemmas for all possible
proof problems (not only mathematical but also engineering ones, i.e., systems verifica-
tion. In general, it is necessary to understand proof targets profoundly to some extent
to discovery non-trivial lemmas. Proof targets are systems and/or system behaviours in
Systems Verification. Human users often rely on some information to conjecture such
lemmas. This information characterises some important aspects of reachable states of
systems. But, it is time-consuming to extract the information from a large amount of
reachable states. We predict that Machine Learning can help to do so since the technique
can be applied to big data. In ITP, Machine Learning may extract some patterns from a
large number of reachable states. The patterns expresses some characteristics of the reach-
able states such that they can help human users to get better understanding of not only
the reachable states but also the system’s state machine. Then, the understanding can
hopefully leads the human users to conjecture some non-trivial lemmas for some specific
proof problems. The aim of the project is to learn some advanced techniques of machine
learning, confirming that the technique can be used to extract useful information from
reachable states of systems such that the information helps human users to conjecture
non-trivial lemmas.

A state machine M consists of a set S of states that includes the initial states I and a
binary relation T over states. (s, s′) ∈ T is called a transition. Reachable states RM of M
are inductively defined as follows: I ⊆ RM , and if s ∈ RM and (s, s′) ∈ T , then s′ ∈ RM .
A distributed system DS can be formalized as M and many desired properties of DS
can be expressed as invariants of M . An invariant of M is a state predicate p of M such
that p holds for all s ∈ RM . To prove that p is an invariant of M , it suffices to find an

Copyright c© 2016 by Ho, Dung Tuan

1



Figure 1: Some possible situations when proving that p is an invariant of M

inductive invariant q of M such that q(s)⇒ p(s) for each s ∈ S. An inductive invariant q
of M is a state predicate of M such that (∀s0 ∈ I) q(s0) and (∀(s, s′) ∈ T ) (q(s)⇒ q(s′)).
Note that an inductive invariant of M is an invariant of M but not vice versa.

Finding an inductive invariant q (or conjecturing a lemma q) is one of the most intel-
lectual activities in ITP2. This activity requires human users to profoundly understand
the system under verification or M formalizing the system to some extent. The users
must rely on some reliable sources that let them get better understandings of the system
and/or M to conduct the non-trivial task, namely lemma conjecture. For this end, our
experiences on ITP tell us that it is useful to get better understandings of RM . Some
characteristics of RM can be used to systematically construct a state predicate qi that is
a part of q.

Let P and Q be the sets of states that correspond to predicates p and q, respectively. S,
I, RM , P and Q can be depicted as shown in Fig. ??. Proving that p is an invariant of M
is the same as proving R ⊆ P . Let (s, s′) ∈ T be an arbitrary transition. In each induction
case or a subcase of each induction case, all needed is basically to show p(s)⇒ p(s′) so as
to prove that p is an invariant of M . There are four possible situations: (1) s, s′ 6∈ P , (2)
s 6∈ P and s′ ∈ P , (3) s, s′ ∈ P , and (4) s ∈ P and s′ 6∈ P. p(s)⇒ p(s′) holds for (1), (2)
and (3), but does not for (4). To complete the proof that p is an invariant of M , we need
to know s′ 6∈ RM for (4), namely that s’ is not reachable for (4). To this end, we need to
conjecture a lemma q such that q does not hold for s’. The systematic way to conjecture
lemmas may not work for a complex system because case analysis may have to be repeated
too many times until what to show reduces either true or false. Even if we reach the case
in which what to show reduces false, a lemma conjectured could be so long that we may
find it trouble to prove that the lemma is an invariant of M . Our experiences on ITP
tell us that better understandings of M and/or how M behaves let us conjecture useful
lemmas to complete the proof concerned. Moreover, the properties we are interested in
are invariants. Therefore, it suffices to get better understandings of RM . In general, RM

contains an infinite number of states in which each system state s ∈ S is characterized
by some values that are called observable values. In practical, the characteristics of RM

are correlations among observable values of the elements of RM . Generally, the number

2q may be in the form q1∧ . . .∧ qn. Each qi may be called a lemma and is an invariant of M if q is an inductive invariant
of M , although qi may not be an inductive invariant of M .

2



Figure 2: Four state patterns of MSCP

Figure 3: Six state patterns of MABP

of the elements of RM is unbounded and then a huge number of reachable states are
generated from M . The task of extracting correlations among a huge number of data
(reachable states in our case) is the role of Machine Learning (ML). However, classical
machine-learning techniques only work for a database whose elements are expressed in
propositional form, while our database consists of system states expressed in first-order
form. There is the ML technique that can deal with first-order forms: Inductive Logic
Programming (ILP). This is why we use ILP.

We have conducted two case studies on Alternating Bit Protocol (ABP, a simplified
version of Sliding Window Protocol used in TCP) and Simple Communication Protocol
(SCP, a simplified version of ABP) using a framework in which Progol, an ILP system,
has been mainly used to extract some characteristics of the reachable states of their state
machines formalizing the protocols. We had conducted verification case studies in which
it is proved that both protocols enjoy what is called the reliable communication property
that whenever the current data to be delivered is i, the data upto i or i − 1 have been
successfully delivered to the receiver from the sender without any duplications nor drops.
Through those verification case studies, we drew four possible reachable state patterns (see
Fig. ??) for SCP and six possible reachable state patterns (see Fig. ??) for ABP. Those
state patterns can be used as oracles for judging if learned hypotheses are reasonably
good.

3


