
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Memory Constrained Algorithms for Geometric

Problems

Author(s) 小長谷, 松雄

Citation

Issue Date 2016-06

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/13719

Rights

Description Supervisor:上原　隆平, 情報科学研究科, 博士

Memory Constrained Algorithms for Geometric Problems

by

Matsuo KONAGAYA

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Ryuhei Uehara

School of Information Science
Japan Advanced Institute of Science and Technology

June , 2016

Abstract

Due to recent advancement of technologies of CPU and memory grow in recent years, the
possibility of lack of memory space decreases while executing a program. However, the con-
straint of using limited memory spaces can be required in process on small devices such as dig-
ital cameras and cellular phones, because of their volume restriction. In the theoretical sense,
considering required space, not only running time, for problems is to be meaningful to catch its
complexity.

To design memory constrained algorithms, we have to define our computation model as
follows. The memory space in which every stored item is allowed to be read, overwritten is
called as the work-space. We use a standard random access machine, so that invoking an item
in a memory space takes in constant time. We assume that input data is stored in a read-only
array. Thus, no reordering and overwriting to the array are possible. In this paper, we proposed
memory constrained algorithms for geometric problems as follows.

First, we consider computing a farthest-point Voronoi diagram using work-space of size
O(log n) bits. Given sets of n points in a plane, a farthest-point Voronoi diagram for the set
partition of the plane to regions, such that each region, there exists a farthest point in the set
from any point in the region. The situation of using only work-space of size O(log n) bits is
the most strict constraint in our computation model. To invoke every input item stored in a
space, sufficient large space is necessary for the work-space to distinguish every index. We call
algorithms which is designed under such memory constraint as constant work-space algorithms.
It is known as log-space algorithms in computational complexity theory. The algorithm for the
Voronoi diagram can have quite simple implementation and also runs in reasonable running
time. Moreover, we also consider the problem of finding the smallest enclosing circle for given
points, which is applications of farthest-point Voronoi diagram. The problem is one of the
fundamental geometric problems as same as Voronoi diagram. We present that our algorithm
for finding the smallest enclosing circle can be designed using in constant work-space.

Second, we turn to the Depth-Frist Search (DFS), which is a basic algorithm in many areas,
using in O(n) bits work-space. The work-space is lager than constant size, the algorithm could
be faster by using the space efficiently. Typically, the sublinear work-space for an input size
is supposed when memory constrained algorithms are invented. Instead of using work-space
larger than constant size, we devise algorithms to be able to accomplish efficient space usage.
So, we investigate fundamental algorithms to obtain somewhat techniques for designing space
efficient algorithms. In this paper, we provide algorithms performing DFS on a directed or
undirected graph with n vertices and m edges using only O(n) bits. If the work-space of size
O(n log n) bits is available, DFS can be implemented easily by using stack data structure. The
advantage of the stack can find the next vertex to be visited in constant time. To find such
a vertex without O(n log n) bits stack, all vertices are maintained by four colors and our DFS
algorithms trace given graph in many times as the tracing proceeds.

Third, we also provide an adjustable work-space algorithm for the segment intersection
problems. Roughly speaking, the model of an adjustable work-space algorithm can perform
with work-space of an arbitrary size between O(1) and O(n) words. Given n line segments in
a plane, we invent adjustable work-space algorithms for detecting a segment intersection and
for reporting all pairs of intersecting line segments. Specially, algorithm of detecting a segment
intersection can be practical, which means that no complicated data structure is needed in the
algorithm. We also obtain practical algorithms of reporting segment intersecting pairs for input
of c slopes line segments in which the input has at most c different slopes. In general, however,

i

the number of line slopes can be n. In this case, we have to use a sophisticated data structure.
Finally, we give polynomial-time algorithms for subgraph isomorphism problems for small

graph classes of perfect graphs. This work comes from on the way that we try to design memory
constrained algorithms for geometric graphs. So far, the memory constrained algorithms for
the graphs have not be achieved yet. Although this work is out of the framework of memory
constrained algorithms, we include into this paper as a future topics.

Key words: Computational geometry, Algorithms, Memory constrained algorithms,
Space-Time tradeoffs

ii

Contents

Abstract i

1 Introduction 2
1.1 Memory constrained algorithms . 2
1.2 Framework of memory constrained algorithms 3

1.2.1 A constant work-space algorithm . 3
1.2.2 O(n) bits work-space algorithms . 3

1.3 Adjustable work-space algorithms . 4
1.4 Paper organization . 4

2 Preliminaries 6
2.1 Computation model . 6

3 Constant work-space algorithm for farthest-point Voronoi Diagram 7
3.1 Notations and functions for farthest-point Voronoi diagram 7
3.2 Functions for supporting constant work-space algorithm 9
3.3 Applications of the algorithm . 10
3.4 How to cope with degeneracies . 12

3.4.1 Degeneracy caused by collinear points 12
3.4.2 Degeneracy caused by cocircular points 13

3.5 Concluding Remarks in Chapter 3 . 14

4 Depth-First Search Using O(n) Bits 15
4.1 The DFS problem . 15
4.2 Related work . 16
4.3 Preliminaries . 16
4.4 Characterizations for the Gray and Black Vertices 17
4.5 O(n) bits DFS Algorithms . 19
4.6 Tree-Walking . 21
4.7 DFS in O(log n)-Space for undirected Graphs with O(1)-Size Feedback Vertex

Set . 22

5 Adjustable work-space algorithms for segment intersection problems 24
5.1 Segment Intersection Detection . 24
5.2 Segment Intersection Reporting . 25

5.2.1 Isothetic Segments . 26
5.2.2 Algorithm Using Property Partition 27
5.2.3 Algorithm Using Filtering Search . 27
5.2.4 Segment Overlaps . 29
5.2.5 Segments of at Most c Different Slopes 32
5.2.6 General Case . 32

5.3 Conclusions and Future Works of Chapter 4 34

iii

6 Polynomial-Time Algorithms for Subgraph Isomorphism in Small Graph Classes of
Perfect Graphs 35
6.1 Introduction . 35

6.1.1 Our results . 36
6.1.2 Related results . 36

6.2 Preliminaries . 37
6.2.1 Definitions of the problems . 37
6.2.2 Graph classes . 38

6.3 Polynomial-Time Algorithms . 39
6.3.1 Finding co-chain subgraphs in chordal graphs 39
6.3.2 Finding threshold subgraphs in trivially perfect graphs 39

6.4 NP-completeness . 42
6.5 Conclusion of Chapter 6 . 44

Bibliography 45

Publications 50

1

Chapter 1

Introduction
There are increasing demands for highly functional consumer electronics such as printers, scan-
ners, and digital cameras. To achieve this functionality they need sophisticated embedded soft-
ware. One fundamental difference from software used in conventional computers is that there is
little allowance of work-space which can be used by the software. Programs have been devel-
oped under the assumption that sufficient memory space is available. The situation, however,
asks us to design algorithms which work in small memory space.

1.1 Memory constrained algorithms
Work-space of an algorithm is a memory space used to store input data and results of temporary
calculation for supporting its algorithm. To design memory constrained algorithms we assume
that such work-space is given as a auxiliary space different from input and output space. Fur-
thermore, we assume that input space is read-only space, and output space is write-only space,
which means that those of space are not available as work-space.

Typically, the amount of work-space for an algorithm is limited into sublinear space for
input data of length n, e.g. the work-space of size O(

√
n) words. For example, there is a

quite reasonable algorithm to use work-space of O(
√

n) words for an binary image of size
O(
√

n) × O(
√

n) [12]. Especially, one extreme sublinear constraints is to use only constant
number of words. We just compute and maintain a constant number of words for input data
consists of n items, and thus it takes work-space of O(1) words of size O(log n) bits. Algorithms
under this constraint have been extensively studied in complexity theory [5]. We call such
algorithm as log-space algorithms or constant work-space algorithms in this paper.

We also consider more flexible usage of work-space for an algorithm than above constraint.
Work-space used in an algorithm for a problem involves its performance. Precisely, since there
is tradeoffs between time and work-space for the algorithm, thus it runs in slower if less memory
space is available. In theoretical sense, studies of time-space tradeoffs of an algorithm for
a problem could give better comprehensions for its complexity rather than investigating only
either time or space requirement. Many results for time-space tradeoffs have been appeared
so far since early 1980s [59]. In particular, Beame and Borodin showed that lower bound for
sorting problem of time-space product, which is the complexity of (running time of sorting) ×
(required space amount), under the machine model of branching program [17, 3]. Therefore, we
also consider another memory constrained algorithms which can perform with a work-space of
an arbitrary size. More precisely, work-space of the algorithm for input data of size n is required
in O(s) words, where s is parameter with 1 ≤ s ≤ n. We call such algorithms as adjustable
work-space algorithms. In recent years, there are many adjustable work-space algorithms for
geometric problems [52, 7, 41]. Chan and Chen provide algorithms for computing convex hull
for given n points in a plane [22]. It is known as one of early adjustable work-space algorithms
applied for geometric problems. Their algorithm outputs the convex vertices for input points in

2

the increasing order in O((n/s)(n + s log s)) time with O(s) words.
In this paper, we present memory constrained algorithms for geometric problems. We clas-

sify the algorithms with type of the work-space following Section 1.2 and Section 1.2.2, respec-
tively.

1.2 Framework of memory constrained algorithms
Instead of not using a large memory space, constant work-space algorithms could work on every
machine. The algorithm can apply to process for massive data set such as so-called streaming
algorithms [60]. On the other hand, however, the constraint to the constant work space seems
too severe for practical applications. So, it is necessary to assume that much more work-space
is available in algorithms rather than constant work-space.

1.2.1 A constant work-space algorithm
In this paper, we present limitted work-space algorithms for two fundamental problems. One
of the them is that we present a constant work-space algorithm for drawing a farthest-point
Voronoi diagram in Chapter 3. Farthest-point Voronoi diagram is obtained for a point set of n
points in a plane. The diagram partitions into unbounded regions surrounded by line segments
and rays. Each region has a point p in the given set such that p is the farthest point from any
point in its region.

It is usually described using a doubly-connected edge list, which can be computed in O(n log n)
time for n points. It supports the following operations

• To enumerate all Voronoi vertices,

• To enumerate all directed Voronoi edges,

• To determine whether a specified point is on the convex hull, and

• To follow the boundary of the Voronoi region for a point on the convex hull if we specify
the point.

Once the doubly-connected edge list is constructed for a given set of points S of n points in
O(n log n) time using O(n) work space, we can enumerate all vertices in O(1) time per vertex. In
the constant work-space algorithm, with no preprocessing time we can enumerate all Voronoi
vertices in O(n) time per each vertex. It is just the same for Voronoi edges. Following the
boundary of a Voronoi region is also done in O(n) time per step.

1.2.2 O(n) bits work-space algorithms
The other constraint is somewhat relaxed from constant work-space algorithms. In Chapter 4,
we investigate how one can perform Depth-First Search (DFS) of a given graph using limited
amount of memory. DFS, being one of the most fundamental and important ways to search or
explore a graph, is used as a subroutine in many prominent graph algorithms [70]. A better
understanding of DFS in terms of space complexity and memory-efficient algorithms is desir-
able, but it appears that such aspects of DFS have not been considered much. This is perhaps
because the problem is trivial if one uses O(n log n) bits of memory on one hand, where n is the
number of vertices of a graph, and, on the other hand, the problem is P-complete [65] and thus
polylogarithmic-space algorithms are unlikely to exist.

3

1.3 Adjustable work-space algorithms
We propose adjustable work-space algorithms for segment intersection problems. The work-
space is sublinear, however, work-space of the size O(s) words is available, where s is parameter
with 1 ≤ s ≤ n.

The problem has been well studied. Given n segments in the plane, we can report all K inter-
sections in O(n log n+K) time if we can use work-space of size O(n) words. SinceΩ(n log n+K)
time is required in the worst case, the algorithm given by Balaban [15] achieving O(n log n+K)
time and O(n) words is optimal.

In Section 5.1 we begin with a simple adjustable work-space algorithm for segment inter-
section detection, which runs in O((n2/s) log s) time using work-space of O(s) words for a set
of n line segments stored in a read-only array. Section 5.2 extends the result to the problem
of reporting intersections using O(s) work space. We present three different adjustable work-
space algorithms all of which run in O((n2/s) log s + K) time for a set of n isothetic segments
(e.g. when given segments are horizontal or vertical). We need some special treatment if input
segments may overlap each other, that is, if their intersection (in the mathematical sense) is a
line segment, not a line. We show this problem can be resolved using techniques called filter-
ing search given by Chazelle [25] . We also present an adjustable work space algorithm for
a general set of segments with arbitrary slopes. The algorithm runs in roughly O(n2/

√
s + K)

time.
We aim to design adjustable work-space algorithms so that it can be simple implementation

into a program. Thus, algorithms should not be adopted complicated data structures such as
multi-layer data structure [29]. Although our algorithm for segment intersection detection ap-
plies for plane sweep algorithms provided by Bentley and Ottman [19], it is still quite simple.
We also aim to obtain deterministic algorithms. The product of time and space required in an
algorithm for a problem should have an optimal lower bound. Considering memory constrained
algorithms like adjustable work-space algorithm is helpful to understand for the study.

1.4 Paper organization
We present memory constrained algorithms for geometric problems in this paper. In Chapter 2,
we define computation model on which our algorithms execute.

In Chapter 3, we propose memory constrained algorithms for fundamental geometric prob-
lem, but it is not adjustable work-space. The problem is to find a farthest-point Voronoi diagram
for given n points in a plane. In the chapter, we present constant work-space (i.e. O(log n) bits)
algorithm for the problem. The algorithm consists of some functions which also perform using
only constant work-space. Those functions are described in Section 3.2 with their implementa-
tions. Especially, we can obtain an simple algorithm for an application of farthest-point Voronoi
diagram, which is the problem of finding smallest enclosing circle. So, we give algorithms for
drawing farthest-point Voronoi diagram and its application in Section 3.3.

We present another memory constrained algorithm in Chapter 4 for Depth-First Search,
which traces all vertices and edges in depth-first order for a given graph with n vertices and m
edges. We show that Depth-First search can implement using the work-space of size O(n) bits
in Section 4.5. Furthermore, in Section 4.6 we provide also a constant work-space algorithm
which performs Depth-First Search for spacial graphs of tree and O(1)-size feedback vertex set.

In Chapter 5, we present adjustable work-space algorithm for segment intersection prob-
lems. Precisely, given n line segments in a plane, the objectives of the problem are to find

4

a segment intersection or to report all pairs of intersecting line segments. In Section 5.1 we
present an adjustable work-space algorithm for the former problem which is called as Segment
Intersection Detections, in Section 5.2 algorithms are given for the latter problem of Segment
Intersection Reporting, respectively. Both of the algorithms can work on the work-space of size
O(s) words, where s is parameter with 1 ≤ s ≤ n, which means an arbitrary size is available as
its work-space.

In Chapter 6, as an additional work of this paper, we also give the results of the polynomial-
time algorithms for Subgraph Isomorphism problems. And we prove the NP-hardness of the
Subgraph Isomorphism problem in small graph classes for perfect graph. It was supposed
to consider designing memory constrained algorithms associated with some geometric graphs
classes. It remains one of the future work.

5

Chapter 2

Preliminaries

2.1 Computation model
To design memory constrained algorithms, we define the computation model used in our algo-
rithms (Fig 2.1). First of all, we assume that our algorithms run on the standard RAM model.

The work-space is storages in which every stored element is allowed to be read, overwritten
and removed. We measure the amount of work-space with the number of words associated with
the size of input data. Work-space of a word is assumed to be large enough to store an input
data or pointer. In this paper, we use the term of words for represent the amount of work-space.
Assuming that one word equals to O(log n) bits, we also use the term of bits to denote the size.
We also assume that the work-space is given different form input and output space.

In addition, we assume that input data of size n is stored in a read-only array. So, no reorder-
ing elements and overwriting in the array are possible while the algorithm is running. Output
data is not stored in a memory space. Each element of output data is immediately reported when
it is just generated. The facts imply the space of input and output storing are not available as
the work-space. As a motivation of using read-only property, given input data, we may want to
perform several different algorithms. If we reorder input points for an algorithm, then we have
to reorder them for another one. For example, a good ordering for closet-point Voronoi diagram
may be different from one for farthest-point Voronoi diagram. In fact, a problem of finding the
minimum-width annulus for a set of points in the plane can be solved using both of the Voronoi
diagrams. The topic is described in Section 3.3.

Input OutputC P U

Memory

r/o w/o

Work Space

r/w

Figure 2.1: Diagram of computation model

6

Chapter 3

Constant work-space algorithm for
farthest-point Voronoi Diagram
In this chapter, we presents a constant work-space algorithm for drawing a farthest-point Voronoi
diagram. Voronoi diagram for a set of n points in the plane, which is a collection of algorithms
for supporting various operations on the diagram using only a constant number of words of
O(log n) bits in addition to a read-only array to store the given point set. We show the oper-
ations to be supported can be executed in O(n) time without using only constant work-space
(without using any extra array). This is an extension of our previous results [6, 11, 14, 13].

3.1 Notations and functions for farthest-point Voronoi dia-
gram

We define some notations for farthest-point Voronoi diagram and functions for supporting the
constant work-space algorithm. We consider algorithm for a farthest-point Voronoi diagram
FV(S) for a set S of n points in the plane. For simplicity we assume that given points are in
general positions, that is no four points of S are cocircular and thus every vertex of FV(S) is
incident to exactly three Voronoi edges. This restriction will be removed later. A diagram is
defined by Voronoi regions and Voronoi edges. A Voronoi region FVR(pi) for a point pi ∈ S is
the region such that the point pi is farthest among the point set S from any point in the region.
Each Voronoi region is known to be an infinite polygonal region, whose boundary consists of
two infinite edges and (possibly no) finite edges with two endpoints. In this paper we orient
Voronoi edges on the boundary of a Voronoi region FVR(pi) so that the Voronoi region for the
point pi lies to their left. Each Voronoi edge lies between two Voronoi regions. So, by E(pi, p j)
we denote a Voronoi edge between two Voronoi regions FVR(pi) and FVR(p j) with FVR(pi)
to its left (and FVR(p j) to its right). Thus, the oppositely directed edge, called the twin edge, is
denoted by E(p j, pi). By our assumption exactly three Voronoi edges meet at each endpoint of
Voronoi edges, which defines a Voronoi vertex. Thus, we can assume that each Voronoi vertex
is characterized by three points from an input points such as V(pi, p j, pk).

It is well known that only those points of an input point set on its convex hull have their
Voronoi regions [29, 64].

An example of a farthest-point Voronoi diagram is shown in Figure 3.1. In the figure, the
leftmost point among the input points is denoted by p1 and other input points on the convex hull
are denoted by p2, . . . , p5 in the counter-clockwise order. The Voronoi region FVR(p1) for the
point p1 is shadowed in the figure.

A farthest-point Voronoi diagram is defined by Voronoi vertices, Voronoi edges which are
either directed rays or directed line segments, and Voronoi regions which are infinite regions.
It is common to use a doubly-connected edge list (DCEL in short) to represent a farthest-point

7

p1

p2 p3

p4

p5

FV R(p1)

FV R(p2)

FV R(p3)

FV R(p4)
FV R(p5)

E(p1, p2)

E(p1, p5)

E(p1, p3)

E(p1, p4)

V (p1, p4, p5)

V (p1, p3, p4) V (p1, p2, p3)

Figure 3.1: Farthest-point Voronoi diagram. Vertices on the convex hull are {p1, . . . , p5}.
FVR(pi) and E(pi, p j) are the Voronoi region for point pi and Voronoi edge for two points
pi and p j, respectively.

Voronoi diagram. The DCEL consists of three collections of records [29].

Vertex record: A vertex record of a vertex v stores the coordinates of v and a pointer IncidentEdge(v)
to a directed edge outgoing of v.

Face record: A face record of a face f stores a pointer FirstVoronoiEdge(f) to the first Voronoi
edge on the boundary of the face f , which is a ray from the infinity.

Edge record: An edge record of a Voronoi edge e stores a pointer NextVoronoiEdge(e) to the
next Voronoi edge on the same boundary and a pointer IncidentFace(e) to the face to its
left.

We support these functions, IncidentEdge(v), FirstVoronoiEdge(f), NextVoronoiEdge(e),
and IncidentFace(e) by providing the following functions.

FirstExtremePoint(S) returns the leftmost extreme point (more exactly, the index of the point)
in a set S of points.

CounterClockwiseNextExtremePoint(pi) returns the index of the extreme point next to pi in
a counter-clockwise order on the convex hull.

FrontEndpointOfVoronoiEdge(E(pi, p j)) returns the index k of the point pk of S that deter-
mines the front (terminating) endpoint V(pi, p j, pk) of a directed Voronoi edge E(pi, p j).

BackEndpointOfVoronoiEdge(E(pi, p j)) returns the index k of the point pk of S that deter-
mines the back (starting) endpoint V(pi, p j, pk) of a directed Voronoi edge E(pi, p j).

NextVoronoiEdge(E(pi, p j),V(pi, p j, pk)) returns the next Voronoi edge E(pi, pk) of E(pi, p j)
on the Voronoi region FVR(pi) which starts at the Voronoi vertex V(pi, p j, pk), more
exactly the two indices i and k.

ExtremePoint(pi) returns TRUE if and only if the point pi is on the convex hull.

8

3.2 Functions for supporting constant work-space algorithm

We propose implementations of above functions for supporting our algorithm. Our constant
work-space algorithm first computes the centroid c of the input point set in advance by comput-
ing the average x and y coordinates of all given points. It is well known that the centroid always
lies in the interior of the convex hull for the point set.

The operations listed above can be implemented in linear time using only O(log n) bits as
follows:

FirstExtremePoint(S): The leftmost point in a point set S must be on the convex hull of S
since the left half plane defined by the vertical line through the leftmost point is empty
(i.e., no point of S is contained there). It is easy to find the leftmost point in S in O(n)
time using O(log n) bits.

CounterClockwiseNextExtremePoint(pi): Let pi ∈ S be an extreme point on the convex hull
of S . We define a ray emanating from the point pi in the opposite direction to the centroid
c (refer to Figure 3.2). Then, we rotate the ray in the counter-clockwise order until it
encounters a point of S , which is the point required. This is an intuitive description of
an algorithm. Formally, we find the next extreme point p j as follows. The point p j must
satisfy the following two properties:
(1) (c, pi, p j) is clockwisely oriented since p j must be to the left of the directed line −−→cpi,
and
(2) for any other point pk ∈ S \{pi, p j} with the property (1) the three points pk, pi, p j are
ordered clockwisely since p j lies to the left of −−−→pk pi to minimize the angle with the ray
from pi (see Figure 3.2). Thus, it can be computed in O(n) time using O(log n) bits.

FrontEndpointOfVoronoiEdge(E(pi, p j)): Each Voronoi edge E(pi, p j) is associated with one
or two enclosing circles, whose centers are the endpoints of the edge. Due to our orien-
tation, the front endpoint of a Voronoi edge E(pi, p j) is determined by a point of S lying
to the left of −−−→pi p j. For each such point pk (such that (pi, p j, pk) is counter-clockwisely
ordered) we compute the center of the circle through pi, p j, and pk. This is a kind of
mapping of a point of S into one on the perpendicular bisector of pi and p j. The center
point giving the front endpoint must give an enclosing circle as stated above. Thus, the
center point must be farthest from the center point of pi and p j. Thus, it can be computed
in O(n) time using O(log n) bits. See Figure 3.3. It shows how to find such a point. Given
a Voronoi edge E(p1, p3), extreme points of S lying to the left of the directed line −−−→p1 p3

are p4 and p5. Since p4 corresponds to a larger circle, the front endpoint of the edge is
determined by p4 together with p1 and p3 in this example. It should be noted that the last
Voronoi edge on the boundary of a Voronoi region when we traverse it counterclockwisely
has its front endpoint at infinity and thus its front endpoint is undefined.

BackEndpointOfVoronoiEdge(E(pi, p j)): This is just symmetric to the case of the front end-
point. Thus, the first Voronoi edge on the boundary of a Voronoi region has no back
endpoint.

NextVoronoiEdge(E(pi, p j),V(pi, p j, pk)): Once Voronoi edge E(pi, p j) and its front endpoint
V(pi, p j, pk) are known (more exactly, three indices i, j, and k are known), the next Voronoi
edge is E(pi, pk). Thus, it is done in O(1) time.

9

ExtremePoint(pi) We can easily compute the line Li that is perpendicular to the ray from the
centroid c toward pi. If one of the half plane contains no point of S except pi on the
boundary, then the point pi is on the convex hull by the definition of the convex hull.
Otherwise, it is an interior point. See Figure 3.4. This is done in O(n) time.

In addition, given a Voronoi edge E(pi, p j) and its front endpoint V(pi, p j, pk), we know
the three Voronoi edges E(p j, pi), E(pi, pk) and E(pk, p j) are outgoing edges from the Voronoi
vertex V(pi, p j, pk) ordered in a clockwise way around the vertex. Thus, the algorithm above
behaves like a doubly-connected edge list.

pi

c

pj

pk

Figure 3.2: Finding the counter-clockwise next extreme point using a ray from pi and the cen-
troid c.

p1

p2 p3

p4

p5

FV R(p1)

FV R(p2)

FV R(p3)

E(p1, p3)

V (p1, p3, p4)
V (p1, p2, p3)

Figure 3.3: Finding the front endpoint of a Voronoi edge which is determined by a point of S
lying to the left of the directed line p1 p3. Points lying to the directed line p1 p3 are p4 and p5. The
center point of the circle defined by (p1, p3, p4) is farther than that defined by (p1, p3, p5), and
thus the front endpoint of the directed Voronoi edge E(p1, p3) is the Voronoi vertex V(p1, p3, p4).
On the other hand, only one point p2 lies to the directed line p3 p1, and thus that of E(p3, p1) is
V(p3, p1, p2) = V(p1, p2, p3).

3.3 Applications of the algorithm
Using the constant work-space algorithm for farthest-Point Voronoi diagram, we can of course
draw the diagram for any given set of n points in O(n2) time using only O(log n) bits given as

10

pi

c

pj

Li

Lj

Figure 3.4: Deciding whether a given point is on the convex hull. The point pi is on the convex
hull shown by dotted lines since one of the half plane defined by the line Li is empty. The point
p j is not so since none of the half planes is empty.

Algorithm 1 below.

A constant-work-space algorithm for drawing
the farthest-point Voronoi diagram

Input: A set S = {p1, . . . , pn} of n points.
Output: Voronoi edges and Voronoi vertices of the

farthest-point Voronoi diagram of the set S .
Algorithm{

pi = FirstExtremePoint(S).
i0 = i.
repeat{

p j = CounterClockwiseNextExtremePoint(pi).
pk = FrontEndpointOfVoronoiEdge(pi, p j).
Report the first Voronoi edge E(pi, p j) ema-
nating from the Voronoi vertex V(pi, p j, pk).
repeat{

p j = pk.
pk = FrontEndpointOfVoronoiEdge(pi, p j).
if(pk is undefined) then exit the loop.
Report the Voronoi edge (segment) E(pi, p j)
(pair of indices i and j in practice) and the
Voronoi vertex V(pi, p j, pk) together with
its coordinates and three indices.
}(forever)

} until(i = i0)
Report the last Voronoi edge (ray) E(pi, p j)
emanating from the last Voronoi vertex.
pi = CounterClockwiseNextExtremePoint(pi).
}

We can also compute the smallest enclosing circle of the points set by enumerating all
the Voronoi vertices and Voronoi edges in O(n2) time. The smallest enclosing circle for a

11

point set S is defined either by three points associated with a Voronoi vertex or by a diametral
pair of extreme points. In the former case the point must appear as a Voronoi diagram of the
farthest-point Voronoi diagram. In the latter case, the diametral pair of points mus appear as one
associated with a Voronoi edge. Thus, if we enumerate all Voronoi vertices and Voronoi edges,
we can find the center of the smallest enclosing circle. Since there are O(n) Voronoi vertices
and edges, the algorithm runs in O(n2) time.

Another application is to the smallest annulus of a point set. Given a set S of n points in the
plane, two co-centric circles are called an annulus of S if all the points of S lie between the two
circles. See Figure 3.5. The width of an annulus is the difference of the two radii.

There are two cases to determine the center of the smallest-width annulus. In one case
one of the circles is determined by three points and the other by a single point. In the other
case both of them are determined by two points. The center in the latter case is given as an
intersection of two Voronoi edges, one from the closest-point Voronoi diagram and the other
from the farthest-point Voronoi diagram of S [33]. An algorithm for enumerating all the edges
of the closest-point Voronoi diagram in O(n2) time using O(log n) bits is available [13]. Thus,
a straightforward algorithm is to enumerate all edges of the farthest-point Voronoi diagram for
each edge in the closest-point Voronoi diagram and to check intersection of those edges from
different Voronoi diagrams. This algorithm runs in O(n4) time and O(log n) bits.

Figure 3.5: The minimum-width annulus for a set of points. The closest-point and farthest point
Voronoi diagrams are drawn in solid and dotted lines, respectively, in the figure.

3.4 How to cope with degeneracies
We have assumed that given points are in general positions, that is, (1) no three points are on
a line or (2) no four points are on a circle. In this section we will show how to cope with
degeneracies on given points.

3.4.1 Degeneracy caused by collinear points
Figure 3.6 shows an example of a degeneracy caused by collinear points in which four points
lie on the convex hull of a given point set.

Suppose three points from an input point set S lie on a line and one of the half plane defined
by the line is empty, that is, it contains no point of S . If three points pa, pb, and pc are arranged
in this order on the line, the middle point pb never contributes to the farthest-point Voronoi

12

c

pi

pj

pk

pj

Figure 3.6: Degeneracy caused by collinear points.

diagram for S , in other words, pb has no its own Voronoi region, for any circle touching pb

never includes both of pa and pc, and the point pa (resp., pc) lying outside the circle is farther
from the center of the circle than the other point pc (resp., pa). This means that we can neglect
those intermediate points on the convex hull edges, which are not convex hull vertices. All these
observations lead to the following algorithm for CounterClockwiseNextExtremePoint(pi):

CounterClockwiseNextExtremePoint(pi)
for each point pk ∈ S \{pi} do

if (c, pi, pk) is counter-clockwise then
break;

for each point p j, j = k + 1, . . . , n do
if (c, pi, p j) is counter-clockwise then

if (pk, pi, p j) is counter-clockwise
then pk = p j;

else if (pk, pi, p j) is collinear and (c, pk, p j)
is counter-clockwise then pk = p j;

return pk.

3.4.2 Degeneracy caused by cocircular points
Figure 3.7 shows another type of degeneracy, which is caused by cocircular points. In the figure
five points p1, . . . , p5 on the convex hull lie on a circle.

c
p1

p2
p3

p4

p5

FV R(p1)

FV R(p2)
FV R(p3)

FV R(p4)

FV R(p5)

E(p1, p2)

E(p1, p5)

Figure 3.7: Degeneracy caused by cocircular points.

Suppose we are about to examine a convex hull edge (p1, p2). We first find a Voronoi edge
E(p1, p2), which is a ray from the infinity, as shown in the figure. To compute its front endpoint

13

we examine all the points lying to the left of the directed line from p1 to p2 to find one whose
corresponding circle center is farthest from the middle point of p1 and p2. In this case the three
points p3, p4 and p5 all give the same circle center since they are cocircular. Note that all those
points must be extreme points. What we want is the point closest to p2 in the clockwise order
on the convex hull. Thus, if we find two candidate extreme points pa and pb to define the front
endpoint of a Voronoi edge E(pi, p j) and the four points pa, pb, pi and p j are cocircular, then
we check the orientation of (pi, pa, pb). We choose pa if it is counter-clockwise, and choose
pb otherwise. This extra condition leads to a correct ordering of those cocircular points. In the
example of Figure 3.7, the front endpoint of E(p1, p2) is defined by p3, and thus the next Voronoi
edge should be E(p1, p3). Its front endpoint is defined by p4 and thus the following edge should
be E(p1, p4). In the same manner the Voronoi edge E(p1, p4) is followed by E(p1, p5). So,
we have an edge sequence E(p1, p2), E(p1, p3), E(p1, p4), E(p1, p5). Here note that the Voronoi
edges E(p1, p3) and E(p1, p4) are degenerated edges, that is, their two endpoints coincide.

3.5 Concluding Remarks in Chapter 3
We have presented a constant work-space algorithm for a farthest-point Voronoi diagram, which
is a collection of algorithms to execute all of operations associated with the diagram as effi-
ciently as possible using only constant work-space. A number of problems are left open. One
of them is to establish some trade-off between running time and amount of work-space. Given
work-space of O(s) words, how fast can we compute a farthest-point Voronoi diagram? It is not
known whether we can establish time complexity such as O(n2/s) or O(n2/s log n). To answer
this question we need to devise a algorithm using O(s) space with s ∈ o(n). One typical question
is how fast can we draw a farthest-point Voronoi diagram for a set of n point in the plane using
the work-space of size O(

√
n) words.

14

Chapter 4

Depth-First Search Using O(n) Bits
We provide algorithms performing Depth-First Search (DFS) on a directed or undirected graph
with n vertices and m edges using only O(n) bits. One algorithm uses O(n) bits and runs in
O(m log n) time. Another algorithm uses n+o(n) bits and runs in polynomial time. Furthermore,
we show that DFS on a directed acyclic graph can be done in work-space n/2Ω(

√
log n) bits and

in polynomial time, and we also give a simple linear-time O(log n) bits algorithm for the depth-
first traversal of an undirected tree. Finally, we also show that for a graph having an O(1)-size
feedback set, DFS can be done in O(log n) bits work-space. Our algorithms are based on the
analysis of properties of DFS and applications of the s-t connectivity algorithms due to Reingold
and Barnes et al., both of which run in sublinear space.

4.1 The DFS problem
Before we outline previous work on DFS, we explain some technical details about the DFS
problem. We can cast a DFS problem in various ways. The output can be (1) the DFS tree, or
the output can be (2) the DFS numbering of each vertex, that is, the ordering of vertices with
respect to the time of the first visit, or (3) the input can be a graph together with two vertices u
and v, and the output can be the yes/no answer as to whether vertex u is visited before vertex v
in DFS. For our purposes, which of the three variants above we consider does not matter since
they can all be reduced to each other using O(log n) bits. Furthermore, all the algorithms we
present can directly handle any of the three variants in a straightforward way. For definiteness,
we think of DFS problem as the DFS tree construction problem.

We assume that an input graph is given by an adjacency list. Suppose that DFS is visiting
a vertex v for the first time, reaching v from vertex u. DFS will now visit the first unvisited
neighbor of v, where the “first” is usually with respect to either one of the following two orders:
(1) the appearance order in v’s adjacency list; or, (2) in the case of undirected graphs: under
the assumption that n vertices are numbered 1, . . . , n and with respect to the cyclic ordering
of 1, . . . , n, the unvisited vertex x among v’s neighbors that appears first after u in the cyclic
ordering.

DFS with respect to either one of the two scenarios above is sometimes called lexicograph-
ically smallest DFS or lexicographic DFS or lex-DFS [30], [31] (and sometimes simply called
DFS). Usually, a lex-DFS algorithm can handle both scenarios (1) and (2) in the same manner,
and one does not need to distinguish the two scenarios. All algorithms in this paper perform
lex-DFS.

In contrast to lex-DFS, we can also consider an algorithm that outputs some DFS tree of a
given graph. Such an algorithm treats an adjacency list as a set, ignoring the order of appearance
of vertices in it, and outputs a spanning tree T such that there exists some adjacency ordering
R such that T is the DFS tree with respect to R. We say that such a DFS algorithm performs
general-DFS.

15

4.2 Related work
This paper is concerned with the more classical Random Access Machine (RAM) model, where
input data is in read-only random access memory, and computation proceeds using additional
working space, which, for example, consists of O(log n) or o(n) or O(n) bits. The output will
be stored in a write-only output tape. For this model, recent works have given some new inter-
esting memory-limited algorithms: Elberfeld et al. [34] and Elberfeld and Kawarabayashi [35]
have given O(log n) bits algorithms for solving a family of fundamental graph problems (more
precisely those problems expressibly in monadic second-order language on graphs of bounded
tree-width) and for the canonization of graphs of bounded genus. Very recently, Asano et al. [10]
and Imai et al. [47] have shown that the reachability problem on directed graphs can be solved
using only Õ(

√
n) words for planar graphs.

Reif [65] has shown that lex-DFS is P-complete. Anderson and Mayr [4] have shown that
computing the lexicographically first maximal path, that is, computing the leftmost root-to-leaf
path of the lex-DFS tree, is already P-complete.

Aggarwal and Anderson [2] have shown that general-DFS is computable in RNC, that is,
computable by a randomized parallel algorithm with polynomially many processors and in poly-
logarithmic parallel time in the PRAM model, or, equivalently, by randomized polynomial-size
poly-logarithmic depth circuits. There is no known deterministic NC algorithm for general-
DFS.

In a seminal work, Reingold [66] has given a deterministic O(log n) bits work-space algo-
rithm for the Undirected s-t Connectivity Problem:

Theorem 1 (Reingold [66]) Given an undirected graph and two vertices s and t, determining
whether s and t are connected can be done in deterministic O(log n) bits.

Using Reingold’s algorithm, one can compute a minimum spanning tree of a given graph in
O(log n) bits.

The s-t connectivity problem for directed graphs is NL-complete. This problem can be
solved using O(log2 n) bits and nO(log n) time by Savitch’s algorithm (see [62]). Concerning
polynomial-time algorithms solving this problem, the best known upper bound for space is the
following slightly sublinear one due to Barnes et al. [16]:

Theorem 2 (Barnes et al. [16]) Directed s-t connectivity can be solved deterministically in
work-space n/2Ω(

√
log n) bits and in polynomial time.

This is also the best space upper bound for polynomial-time algorithms solving the following
problems: computing the distance between a vertex s and a vertex t in an undirected or directed
unweighted graph, computing the single-source shortest-path tree in a weighted undirected or
directed graph [46], and a computing the breadth-first search tree.

4.3 Preliminaries
Throughout the paper, we assume that the set of vertices of a given graph is the set {1, . . . , n}.

We think of DFS in the following way: Initially, all the vertices are white. When vertex v
is visited from vertex u, the color of v changes from white to gray and the search head moves
from u to v. When there is no more white neighbor of v, the search at v is finished, the color of
v changes from gray to black, and the search head returns from v to u.

16

Suppose that in a given undirected or directed graph, m vertices are reachable from the DFS
starting vertex s. At time t = 0, all vertices are white. At time t = 1, the starting vertex s
becomes gray. At each time t ≥ 1, exactly one vertex changes its color, either from white to
gray, or, from gray to black. At time t = 2m, the color of s becomes black and the search is
completed. For a vertex v, the discovery time of v is the time when v changes its color from
white to gray and the finishing time is the time when v changes its color from gray to black.

Note that the gray vertices always form a simple path from the starting vertex s to the vertex
where the search head is currently located. We can also think of this path as residing in the
depth-first-search tree.

We let Reachable(x, u,G) denote a subroutine that decides, given a graph G and two vertices
x and u, whether vertex u is reachable from vertex x in G. If G is a directed graph, reachability
is interpreted in terms of a directed path, and if G is undirected, it simply means connectivity.
To implement Reachable(x, u,G) we apply Reingold’s algorithm and Barnes et al.’s algorithm
for the cases of undirected and directed graphs, respectively.

4.4 Characterizations for the Gray and Black Vertices
In this section, for the sake of convenience, we collect our lemmas characterizing the gray
vertices, the gray path, and the black vertices in several settings. These lemmas naturally yield
our algorithms in the next section and they are crucial to explain their correctness. For most
lemmas, proofs are immediate and omitted.

Lemma 3 (All-White Path) Vertex v is visited during DFS while vertex u is gray, (i.e., v is a
descendant of u in the DFS tree) if and only if the following holds: At the time u is discovered,
v is white and v can be reached from u by an all-white path.

Let s be the starting vertex of a DFS. In the following we assume that the state of the DFS
at time t is such that the search head is at a gray vertex u. Let p = ⟨i0 = s, i1, . . . , ik−1, ik = u⟩ be
the gray path at time t, where i j+1 is visited from i j (for 0 ≤ j < k).

The following lemma characterizes the gray path in terms of black vertices.

Lemma 4 (Gray Path from Black Vertices) The gray path p = ⟨i0 = s, i1, . . . , ik−1, ik = u⟩
satisfies the following. For j ∈ {0, . . . , k − 1}, vertex i j+1 is the first vertex x in the adjacency list
of vertex i j such that (1) x is not black at time t, and that (2) x is not in {i0, . . . , i j}.

Proof. Vertex i j+1 becomes gray only after all the vertices in the adjacency list of i j preceding
i j+1 have become non-white. 2

Let C = {i0, . . . , ik} be the set of gray vertices comprising the gray path P. The following
characterization explains how to reconstruct the path P from the set C.

Lemma 5 (Gray Path from Gray Set) Let P′ = ⟨i0, . . . , i j⟩ be the initial segment of P of
length j. Then, the following characterizes the immediate successor x = i j+1 of i j in P.
(1) x is in C.
(2) x is a neighbor of i j.
(3) x is not in {i0, . . . , i j}.
(4) x is the first vertex in the adjacency list of i j satisfying (1), (2), and (3).

17

For our algorithms we need to be able to reconstruct the gray path p = ⟨i0 = s, i1, . . . , ik−1, ik =

u⟩ from the two endpoints s and u alone. The following lemma characterizes the vertices
i1, . . . , ik−1 in such a way that one can reconstruct them given s and u. The proof immediately
follows from Lemma 3 (All-White Path).

Lemma 6 (Gray Path) For j ∈ {1, . . . , k − 1}, vertex i j is the first vertex x in the adjacency
list of i j−1 from which vertex u can be reached without going through any of the vertices in
{i0, . . . , i j−1}.

Corollary 7 (Gray Path Reconstruction) Using an n-bit vector one can reconstruct i1, . . . , ik−1

one by one as follows. For j = 1, . . . , k−1, for each vertex x adjacent to i j−1, use Reachable(x, u,G−
{i0, . . . , i j−1}) and the previous lemma to determine whether x is i j.

When considering DFS on a DAG the characterization and reconstruction of the gray path
simplifies as follows.

Lemma 8 (Gray Path in a DAG) For j ∈ {1, . . . , k − 1}, vertex i j is the first vertex x in the
adjacency list of i j−1 such that vertex u is reachable from x.

Proof. Let P be a directed simple path from x to u. Then no vertex y in {i0, . . . , i j−1} can appear
on the path P since x is reachable from y and the graph is acyclic. 2

Corollary 9 (Gray Path Reconstruction in a DAG) For a DAG, one can reconstruct i1, . . . , ik−1

similarly as in the Gray Path Reconstruction Corollary above but without keeping track of
i0, . . . , i j−1 by replacing the call to the routine Reachable(x, u,G−{i0, . . . , i j−1}) with Reachable(x, u,G).

Let s be a starting vertex of a DFS. Assume that at time t − 1, the gray path is of the form
⟨i0 = s, . . . , ik = u, ik+1 = v⟩, and that at time t, vertex v gets finished, and thus the gray path
is now of the form ⟨i0 = s, . . . , ik = u⟩. Let the adjacency list of vertex u be ⟨l1, . . . , lq−1, lq =

v, lq+1, . . . , lr⟩. DFS has backtracked from v to u and now we want to find the first unvisited,
white vertex x among lq+1, . . . , lr in order to visit x next. If we find out that such an x does not
exist, we backtrack further from u.

Suppose y ∈ {lq+1, . . . , lr}. We can determine whether y has been visited or not, that is,
whether y is black, gray or white using the following lemma.

Lemma 10 (Black Vertex in a Directed Graph) Vertex y is black at time t if and only if there
exist j ∈ {0, . . . , k} and vertex α such that the following hold:

1. The directed edge (i j, α) exists.

2. In the adjacency list of i j, vertex α precedes vertex i j+1.

3. Vertex y is reachable from vertex α without going through any of the vertices {i0, . . . , i j}.

Proof. Vertex y is black if and only if the path from s to y in the DFS tree is lexicographically
smaller than the path from s to u. We can easily finish the proof using the Lemma 3 (All-White
Path). 2

For undirected graphs, we can simplify the lemma above as follows.

18

Lemma 11 (White-Black Not Adjacent in Undirected DFS) During a DFS in an undirected
graph, a white vertex is never adjacent to a black vertex.

Proof. Initially, the property holds, and the property is maintained during DFS since a vertex
becomes black only when all of its neighbors are non-white. 2

Lemma 12 (Black Vertex in an Undirected Graph) Vertex y is black at time t if and only if
the following holds: There exists a vertex w ∈ {l1, . . . , lq−1} such that y is reachable from w
without going through {i0, . . . , ik}.

Proof. When vertex u is first visited from ik−1, none neighbor of us is black by Lemma 11
(White-Black Not Adjacent in Undirected DFS), and hence j and α, as required in Lemma 10
(Black Vertex in Directed Graph), cannot exist if j < k. 2

4.5 O(n) bits DFS Algorithms
Our algorithms maintain the color of each vertex. For example, our 4-color algorithm uses
2 bits per vertex to hold the current color and thus uses 2n bits in total for color information.
Any additional space used is o(n) bits, and thus the space used to maintain the colors dominates
the space complexity of our algorithms.

A basic problem that we face when restricted to O(n) bits work-space is that we cannot store,
for example, the ordered list of the vertices that are currently gray since that would require work-
space of size Θ(n log n) bits. A basic solution is to retrieve information by restarting the search
from the starting vertex.

Algorithm 1: a 4-Color Algorithm. Our first algorithm, Algorithm 1, uses 4 colors for each
vertex. It uses white, gray, and black according to the definitions of these colors explained
in Section 2. To backtrack, it retraces the current gray path using Lemma 5 (Gray Path from
Gray Set) by using one new color, blue, to keep track of the gray vertices in the initial segment
reconstructed so far. We describe the algorithm in greater detail. Initially the starting vertex
is colored gray and all other vertices are colored white. Suppose during the DFS we are at a
vertex u (which must then be gray). If u has a white neighbor then we proceed with the search
going to the first white neighbor of u, which is then colored gray. If u has no white neighbor,
we color u black and backtrack. When backtracking, in case u is the starting vertex the search
ends. Otherwise we need to determine the parent of u which is done by retracing the gray path
as follows. We color the starting vertex blue. Then we repeatedly find the smallest gray vertex v
that is a neighbor of the last vertex that was colored blue until this vertex is u. When u is colored
blue, the parent of u is the last vertex that was colored blue just before that. We then recolor
all blue vertices to be gray (by once again retracing the path), recolor u to be black, and have
successfully backtracked.

Theorem 13 Given an undirected or directed graph G consisting of n vertices and m edges,
DFS on G can be done in O(mn) time and in work-space 2n + O(log n) bits.

Proof. As explained in Section 4.3, the total number of color changes is 2n. Between any two
color changes, each edge is inspected at most O(1) times. 2

19

Algorithm 2: a Faster 4-Color Algorithm. We can speed up Algorithm 1 while still using only
O(n) bits as follows. Algorithm 2 uses a double-ended queue (DEQ) holding O(n/ log n) items,
where each item in the queue is the O(log n)-bit name of some vertex. The queue holds the most
recently visited O(n/ log n) gray vertices.

Backtracking to vertex u can be done in O(1) time if the queue holds u, that is, if the queue
is nonempty. When the queue becomes empty, we reconstruct the gray path in O(m) time, but
such reconstructions happen at most O(log n) times. Thus we have the following.

Theorem 14 DFS on undirected and directed graphs can be done in O(m log n) time and in
O(n) bits.

Remark 1: When using space s, where n ≤ s ≤ n log n, the algorithm above can be adjusted
to run in time O(m n log n/s). Thus this algorithm is memory-adjustable in the sense of [8], [9],
and [49].

Algorithm 3: a 3-Color Algorithm. By repeatedly restarting, we can reduce the number of
colors by one. In each iteration, Algorithm 3 identifies one new black vertex. Starting from
vertex s, we proceed using colors white, gray and black until we find the first gray vertex v that
is now changing its color from gray to black. At such a point, we globally update the color of v
as black, change the color of all the other gray vertices from gray back to white, and start a new
iteration, again from s. Correctness of Algorithm 3 follows from Lemma 4 (Gray Path from
Black Vertices).

Remark 2: In the description of Algorithm 3 above, vertex x being white does not always imply
that x has never been visited: Even when x has been visited, the color of x becomes white again
in a new iteration on the black-or-white graph.

With Algorithm 3 have obtain following theorem.

Theorem 15 For every ε > 0, DFS on undirected and directed graphs can be done in O(mn)
time and in (log2(3) + ε + o(1))n bits.

Three Situations of a DFS. To describe our next two algorithms we think of the following three
situations in which a DFS algorithm can be:

1. First visit: This situation arises if a vertex v has just been visited for the first time. The
successor of v will be the first white vertex in the adjacency list of v if such a vertex exists.
Otherwise we backtrack.

2. Backtrack: When vertex v becomes black, we backtrack to the parent vertex u.

3. Pivot: After backtracking from v to u, if the adjacency list of u is
⟨l1, . . . , lq = v, lq+1, . . . , lr⟩, we wish to find the first white vertex x among lq+1, . . . , lr, and
visit x next if such an x exists; otherwise we backtrack further.

We now describe algorithms in terms of how they proceed in each of the three situations.

Algorithm 4: a 2-Color Algorithm. Our two color algorithm maintains the gray path but does
not distinguish between black and white vertices. The three situations of the DFS are handled
in the following way.

20

1. First visit: When v has just been visited for the first time, the color of v had been white
and has just become gray. This situation is essentially a special case of the situation
Pivot except that there is no vertex v from which we have just returned. To reduce this
situation to the pivot situation, we simply pretend that there is an auxiliary black vertex v
not part of the actual input graph incident only to the edge (u, v) from which we have just
backtracked to u. For this, the vertex v is treated as the first neighbor of u.

2. Backtrack: In order to backtrack we memorize the current vertex u and then retrace the
gray path from the starting vertex s to u. To do so, we first reinitialize so that all ver-
tices are white. Using Corollary 7 (Gray Path Reconstruction), we iteratively reconstruct
the gray path from the starting vertex s to u, and thereby find u’s parent. In applying
Corollary 7 we use the Reachable routine and one color, gray.

3. Pivot: Using Corollary 7 (Gray Path Reconstruction) together with Lemmas 10 and 12
(Black Vertex in Directed/Undirected Graph), we find the white vertex x to be visited next
by using the Reachable routine and using one color, gray. If no such vertex x exists, we
perform a backtracking step.

The space used by Algorithm 4 is n bits plus the space used by the routine Reachable.

Algorithm 5: an algorithm without colors for DAGs. For the case of DAGs, we do not need
to use any color. The algorithm copies the behavior of Algorithm 4, which in the case the input
graph is a DAG simplifies as follows.

1. First visit: As in the case of Algorithm 4, this situation reduces to the pivot situation.

2. Backtrack: Similar to the Backtrack situation of Algorithm 4, we can just retrace the gray
path from the starting vertex s to the current vertex u. Applying Corollary 9 instead of
Corollary 7 we always use Reachable(x, u,G) instead of Reachable(x, u,G−{i0, . . . , i j−1}),
thus avoid using any colors.

3. Pivot: Again Similar to the respective situation in Algorithm 4, we can follow the gray
path by reconstructing one gray edge at a time, thereby forgetting the previous gray edges,
and by then invoking Reachable(x, u,G).

With Algorithms 4 and 5 and Theorems 1 and 2, we can conclude as follows.

Theorem 16 (1) DFS on a directed graph can be done in n+n/2Ω(
√

log n) bits and in polynomial
time.
(2) DFS on an undirected graph can be done in n + O(log n) bits and in polynomial time.
(3) DFS on a DAG can be done either in work-space n/2Ω(

√
log n) bits and in polynomial time or

in work-space O(log2 n) bits and in time nO(log n).

4.6 Tree-Walking
In this section, we consider undirected trees and forests. We give a simple O(log n) bits algo-
rithm for the depth-first traversal of a tree. The algorithm can be extended to an O(log n) bits
algorithm for deciding whether two given vertices are connected in a given forest and to an
O(log n) bits algorithm for deciding if a given undirected graph contains a cycle.

21

Throughout the section, we assume that each vertex u holds a cyclic list of its neighbors,
and Nextu(v) denotes the vertex that immediately follows vertex v in the cyclic list of vertex u.
We can follow a tree in the depth-first order starting from any edge (u, v) as follows:

procedure EdgeFollow(u, v)
c = 0; (u0, v0) = (u, v);
repeat

Output the edge (u, v);
w = Nextv(u);
u = v; v = w; c = c + 1;

until u = u0 and v = v0;
return c;

Lemma 17 Let G be a tree of n vertices and (u, v) be any edge. Then, the procedure EdgeFollow(u, v)
returns 2n − 2 after visiting every edge of G exactly twice.

Proof. We prove the lemma by induction on n. Let Ad j(u) = (v = v0, v1, . . . , va) and Ad j(v) =
(u = u0, u1, . . . , ub) be the cyclic adjacency list of u and v, respectively. We also assume that
removal of (u, v) from G results in two trees Tu and Tv, where Tu (resp. Tv) is the tree containing
the vertex u (resp. v). By the induction hypothesis, if we apply the procedure EdgeFollow(u, v)
to the tree (u, v) + Tv, then it returns 2|Tv| after traversing all the edges in (u, v) + Tv. Similarly,
applying the procedure EdgeFollow(v, u) to the tree (v, u)+Tu, it traverses all the edges of Tu and
returns 2|Tu|. Since Nextu(v) = v1 and Nextv(ub) = u, we can combine the two edge sequences
produced by EdgeFollow(u, v) and EdgeFollow(v, u) to obtain the complete sequence of the
depth-first search on T . The lemma follows since |Tu ∪ Tv| = n and the edge (u, v) is contained
twice in each of the sequences. Note that the exceptional cases when Tu or Tv is empty are dealt
with appropriately. 2

Theorem 18 Using Edge-Follow, deciding s-t connectivity in a forest and detecting a cycle in
an undirected graph can both be done in O(log n) bits and in O(n) time.

4.7 DFS in O(log n)-Space for undirected Graphs with O(1)-
Size Feedback Vertex Set

Now we consider the case where the input is an undirected graph G = (V, E) having feedback
vertex set F of constant size. A feedback vertex set F ⊆ V of G is a set of vertices such that
G − F contains no cycle. If a graph has a feedback vertex set of constant size, we can easily
find a constant-size feedback vertex set in polynomial time and logarithmic space O(|F| log n).
Thus, from now on, assume that we are given an undirected graph G = (V, E) and a feedback
vertex set F ⊆ V of constant size. Furthermore, without loss of generality, assume that the set F
includes a DFS-starting vertex s. (We may always add s to F if s < F.) Note that G − F is a
forest.

Our overall strategy will be similar to Algorithm 4. By exploiting the fact that G − F is a
forest, we can proceed similarly as in Algorithm 4 without remembering all the gray vertices
and without using any color for reconstructing the gray path.

In particular, for the current gray path P, we only keep in memory the following parts of P:
the vertices x in the feedback set F that appear in P, together with appearance order information,

22

and for each such x, the non-feedback vertices that immediately precede and follow x in P if
such vertices exist.

For simplicity of explanation, assume that precisely four vertices in the set F, namely ver-
tices i, j, k and l, appear in the current gray path P in this order. Then, we will keep in memory
the following parts of path P as our data (We do not keep in memory the parts corresponding to
“. . . ”.):

i, i1, . . . , j0, j, j1, . . . , k0, k, k1, . . . , l0, l, l1, . . . , lc,

where all of the above are in the order of appearance in P, i is the starting vertex s, lc is the
vertex where the current head lies, and, for example, j0, j, and j1 are consecutive vertices in the
path P. It may happen that, for example, i1 = j0, or that neither i1 nor j0 exist (in this case two
feedback vertices i and j appear consecutively in P). Since the size of the feedback vertex set F
is constant, the data above has size only O(log n).

How can we reconstruct the whole gray path P from the data above? Consider, for example,
the vertices appearing between j1 and k0 in the path P. These vertices, together with the appear-
ance ordering, can be characterized as vertices appearing in the unique simple path connecting
vertices j1 and k0 in the forest G − F.

Note that we can follow the vertices appearing in path P consecutively, one at a time, using
only the tree-walking algorithm and without using Reingold’s s-t connectivity algorithm. We
can thus in space O(log n) bits determine at any point in time whether a vertex is gray and within
the same space complexity compute the predecessor of a vertex on the gray path.

In analogy to Algorithm 4 it remains to explain how to perform the pivot situation in a DFS.
In order to proceed as in Algorithm 4, we have to be able to check whether vertices y and z are
connected in G −C, where C is the set of the vertices that are currently gray and vertices y and
z are two neighbors of the vertex u to which we have just backtracked.

We claim that connectivity checking for the restricted case of constant-size feedback ver-
tex set can be done using only the tree-walking algorithm (again without using Reingold’s s-t
connectivity algorithm) as follows. Since paths without internal vertices from the feedback ver-
tex set and without gray vertices can be found using the tree-walking algorithm, it suffices to
show that for each pair of vertices in the feedback vertex set we can determine whether they are
connected in G −C.

For each pair of feedback vertices f and g, we can determine, using tree-walking, whether f
and g are connected by a path going only though non-feedback vertices that are not gray. So,
by first checking whether f and g are connected in G − (C ∪ F), where C is the set of vertices
that are currently gray, and taking the transitive closure, we can obtain the complete table as to
which pairs of feedback vertices are connected in G − C. Note that since F has constant size,
taking the transitive closure can be done in space O(log n) bits. We conclude the following.

Theorem 19 For undirected graphs whose minimum feedback vertex set are of constant size,
DFS can be done in O(log n) bits using only the tree-walking algorithm (i.e., without appealing
to Reingold’s s-t connectivity algorithm).

23

Chapter 5

Adjustable work-space algorithms for
segment intersection problems
This Chapter presents an efficient algorithm for reporting all intersections among n given seg-
ments in the plane using work-space of arbitrarily given size. More exactly, given a parameter
s which is between Ω(1) and O(n) specifying the size of work-space, the algorithm reports all
the segment intersections in roughly O(n2/

√
s + K) time using O(s) words of O(log n) bits,

where K is the total number of intersecting pairs. The time complexity can be improved to
O((n2/s) log s + K) when input segments have only some number of different slopes.

5.1 Segment Intersection Detection
Segment intersection detection is a problem of determining whether there is any pair of mu-
tually intersecting segments in an input set of segments in the plane. A simple and efficient
algorithm [67] is known for the problem. The algorithm sweeps the plane while visiting each
endpoint of input segments in the sorted order and detects an intersection if any. It runs in
Θ(n log n) time for any set of n segments in the plane using O(n) words.

We design an efficient adjustable work-space algorithm using O(s) words for segment inter-
section detection a given set of segments stored in a read-only array. A variable s is between
Ω(1) and O(n). This algorithm becomes basis of our algorithm for reporting segment intersec-
tions. See sections 5.2 and 5.2.2.

The algorithm first partitions an input set S into m = n/s disjoint subsets S 1, S 2, . . . , S m.
Whenever s does not divide n we add extra dummy segments . So we assume that each subset
has exactly s segments. In practice we just compute the size m of the partition. Since the input
segments are stored in a read-only array, this partition is done in the index order, that is, S 1

contains the first s segments in the array, S 2 consists of the next s segments, and so on. Then,
for each pair (S i, S j) with i < j we perform a plane sweep to detect any intersection among
given segments in the set S i ∪ S j. It is done in O(s log s) time using O(s) words work-space
by a standard plane sweep algorithm. Since we have O((n/s)2) different pairs, the algorithm
runs in O((n2/s) log s) time. The algorithm is referred to as Algorithm 1, where a function
BentleyOttmanPlaneSweep() is a function which implement a standard plane sweep algorithm
by Bentley and Ottman [19].

24

Algorithm 1: Segment intersection detection
Partition the set S into m = n/s disjoint subsets S 1, S 2, . . . , S m using Index Partition.1

for each pair of subsets (S i, S j) ,i, j = 1 . . .m do2

apply BentleyOttmanPlaneSweep(S i ∪ S j).3

if any intersection is found then4

stop after reporting the intersection.5

end6

end7

stop after reporting ”No intersection.”8

Theorem 20 Given n segments in the plane in a read-only array and a parameter value s
between Ω(1) and O(n), Algorithm 1 correctly determines whether there is any intersection
among input segments in O((n2/s) log s) time using O(s) words.

More generally, we propose two different ways of partitioning a given set S of n segments.
Since these methods are simple, it may apply the other problems using limited work space.

Index Partition: A given set S of n elements is partitioned into m = n/s disjoint subsets
S 1, . . . , S m by the indices, that is, S 1 consists of the first s elements in the array storing
S , S 2 of the next s elements, and so on. If s does not divide n, then we add extra dummy
segments.

Property Partition: We are given a set S of n elements and c properties for the elements.
Then, S is partitioned into disjoint subsets S 1, S 2, . . . S r, so that |S i| ≤ s and all elements
of S i are the same have the same property for each i = 1, . . . r. The number r of subsets
is bounded by n/s + c, i.e. r ≤ n/s + c.

The index partition is simple since only index calculation is needed. To have a property partition
we scan the input array while checking properties of the elements. Thus, it takes O(cn) time to
enumerate all the subsets. In this paper we take slopes of segments as properties.

5.2 Segment Intersection Reporting
In this section we consider the segment intersection reporting problem. We report all intersect-
ing pairs among a given set of segments in the plane. It is not so easy to design an algorithm
which it runs in an output sensitive manner. More exactly, if we denote by K the total number of
intersecting pairs, the computation time should be T (n, s) + O(K), where T (n, s) only depends
on the number n of segments and the size s of work-space. The number of segment intersections
could be Θ(n2) in the worst case. If we have Ω(n2) intersections, then a brute-force algorithm
of examining all pairs of segments suffices. Of course, the brute-force algorithm is not optimal
unless K = Ω(n2).

The segment intersection reporting problem has been well studied. The first algorithm by
Bentley and Ottman [19] based on plane sweep runs in O((n + K) log n) time using O(n + K)
words of work-space. It is not so hard to reduce the space to O(n) while keeping the time
complexity. The first output-sensitive algorithm for the problem was given by Mairson and
Stolfi [53] under the name of red-blue intersection. In the problem we are given two sets of
segments colored red or blue. Assuming there is no intersection among segments of the same
color, they gave an optimal algorithm which reports all the intersections in O(n log n + K) time

25

using O(n) words. The result was strengthened by Chazelle and Edelsbrunner [23] and further
by Balaban [15]. Although the algorithm by Chazelle and Edelsbrunner needs O(n + K) words,
Balaban’s algorithm uses only O(n) words and thus it is theoretically optimal.

Very little has been studied so far when work-space is limited to o(n) words. A space-
efficient algorithm is presented by Chen and Chan [26] , which runs in O((n + K) log2 n) time
using only O(log n) words extra work-space assuming that input segments are stored in a regular
read/write array and thus the array can be used as a work-space. Especially, a technique referred
to as an implicit data structure proposed by Munro [58] can be used. In our paper, however, such
a technique cannot be used since input data is stored in a read-only array. Throughout this paper
we assume that no two segments overlap.

5.2.1 Isothetic Segments
We begin with a simple situation where input segments are isothetic segments. For the time be-
ing we assume that no two of them overlap. More exactly, we assume that for any two segments
ℓi and ℓ j of the same direction (horizontal or vertical) no endpoint of ℓi lies on ℓ j. Under this
assumption it is rather easy to design an algorithm for reporting all segment intersections using
only O(s) words in addition to a read-only array storing n input segments.

We can design an algorithm reporting segment intersections by slightly modifying Algo-
rithm 1. It is shown in Algorithm 2.

Algorithm 2: Segment Intersection Reporting for a set of isothetic segments
/* Preprocessing stage: */

Partition the set S into m = n/s disjoint subsets S 1, S 2, . . . , S m using Index Partition.1

/* 1st stage: Reporting all intersections within each subset */

for each subset S i, i = 1 . . .m do2

report all segments intersecting by BentleyOttmanPlaneSweep(S i).3

end4

/* 2nd stage: Reporting all intersections between two subsets */

for each pair (S i, S j) of subsets , i, j = 1 . . .m do5

U ← all horizontal segments in S i and all vertical segments in S j.6

report all segments intersecting by BentleyOttmanPlaneSweep(U).7

U′ ← all vertical segments in S i and all horizontal segments in S j.8

report all segments intersecting by BentleyOttmanPlaneSweep(U′).9

end10

Theorem 21 Given n isothetic segments in the plane stored in a read-only array and a param-
eter value s between Ω(1) and O(n), Algorithm 2 correctly reports all K intersections between
input segments in O((n2/s) log s + K) time using O(s) words.

Proof. Due to the assumption that no two segments overlap each other, no two horizontal
(resp., vertical) segments intersect. Thus, after reporting all intersections within each subset, all
the remaining intersections are made by two isothetic segments from different subsets. Thus,
all the intersections are correctly reported. Since every intersection is reported exactly once, the
algorithm runs in O((n2/s) log s + K) time. 2

26

5.2.2 Algorithm Using Property Partition
In the algorithms above we have partitioned a given set of n isothetic segments into n/s subsets
by index partition. Then, each subset was further decomposed into a set of horizontal segments
and one of vertical segments. In the second stage we take a pair (S i, S j) and perform a standard
plane sweep for the two sets U1 = H(S i) ∪ V(S j) and U2 = V(S i) ∪ H(S j). H(S i) (resp. V(S i))
denotes a set of all horizontal (resp. vertical) segments in S i. Since the partition into subsets is
done only by indices, it may happens that U1 = ∅ and U2 = S i∪ S j or U1 = S i∪ S j and U2 = ∅.
It means that we may have a set of segment of so different sizes for plane sweep in the second
stage.

Here is a simple way of keeping the set size. When an input set S of n isothetic segments
is given, we use the property partition described before. The property we use is the slope of
segment, horizontal or vertical. Using the property we partition a given set S into mh subsets
H1,H2, . . . ,Hmh and mv subsets V1,V2, . . . ,Vmv . Each Hi contains only horizontal segments and
each V j contains only vertical segments. Every Hi, 1 ≤ i ≤ mh consists of exactly s horizontal
segments in the index order. Just the same for V1, . . . ,Vv. Due to the definition mh + mv = n/s.

At the second stage we take two subsets Hi and V j. In the previous algorithms the subsets
were obtained just by computing indices. In this case, however, we maintain two pointers
(indices), one for Hi and the other for V j. The pointer for Hi keeps the last horizontal segment
of Hi. If the last segment for Hi−1 is ℓp, then the pointer starts from p + 1 and then we examine
segments ℓp+1, ℓp+2, . . . by incrementing the pointer until we get s horizontal segments.

Theorem 22 Given n isothetic segments in the plane stored in a read-only array and a param-
eter value s between Ω(1) and O(n), Algorithm 3 correctly reports all K intersections between
input segments in O((n2/s) log s + K) time using O(s) words.

Proof. We partition a set S of n segments into mh subsets H1, . . . ,Hmh and mv subsets
of V1, . . . ,Vmv as above. Now it is obvious that the algorithm reports all K intersections in
O(mhmvs log s+K) time. Since mhmv ≤ (n/(2s))2, its worst running time is still O((n2/s) log s+
K). 2

Algorithm 3: Segment Intersection Reporting for a set of isothetic segments using mono-
color partition.
/* Hi has s horizontal segments. */

/* V j has s vertical segments. */

Partition the set S into mh + mv = n/s disjoint subsets H1, . . . ,Hmh ,V1, . . . ,Vmv using1

Property Partition.
for each subset Hi, i = 1 . . .mh do2

for each subset V j, j = 1 . . .mv do3

report all segments intersecting by BentleyOttmanPlaneSweep(Hi ∪ V j).4

end5

end6

5.2.3 Algorithm Using Filtering Search
There is another way of achieving the running time O((n2/s) log s+K). We use the partition by
index (S 1, S 2, . . . , S m), m = n/s. For each subset S i, we take all horizontal segments in S i and
put them into a data structure so that for any query vertical segment ℓq all k intersections of ℓq

27

Figure 5.1: Trapezoidal decomposition associated with a set of horizontal segments.

Figure 5.2: Trapezoidal decomposition for filtering search in which none of top and bottom
sides of rectangles is incident to more than two vertical edges.

with those horizontal segments in S i can be reported in O(k+ log s) time. The data structure we
use is a trapezoidal decomposition and filtering search [25].

Given a set H(S i) of at most s horizontal segments, we first compute a sufficiently large
rectangle enclosing all the given segments and then extend rays from each endpoint of those
segments until they hit an input segment or the boundary (see Figure 5.1). The resulting planar
subdivision into rectangles is called the trapezoidal decomposition. If we incorporate a data
structure for point location and a graph representing vertical adjacency of those rectangles, then
we can report intersections on an arbitrarily given query vertical segment ℓq by first locating one
of its endpoints and then following the adjacency graph. Unfortunately, this algorithm is not
good enough to achieve our target running time. Suppose we have located the lower endpoint
of ℓq. Then, we want to find a rectangle just above the current rectangle. If a rectangle is
vertically adjacent to many rectangles, then it takes time to find the rectangle intersecting the
query segment. In the data structure defined by Chazelle [25] we add chords (vertical sides) so
that none of top and bottom sides of rectangles is incident to more than two vertical sides. The
trapezoidal decomposition shown in Figure 5.1 is modified using arrowed chords in Figure 5.2.

This problem has been extensively studied. From a theoretical point of view, Chazelle [23]
presented an algorithm with O(s log s) preprocessing time, O(s) words, and O(k + log s) search
time. It is theoretically optimal with respect to the worst case.

In this paper we use the Chazelle’s data structure outlined above. In addition we use his
filtering search technique to achieve the target search time with the linear size of the data struc-
ture.

28

Algorithm 4: Segment Intersection Reporting for a set of isothetic segments using trape-
zoidal decomposition with filtering search.
/* Preprocessing stage: */

Partition the set S into m = n/s disjoint subsets S 1, S 2, . . . , S m using Index Partition.1

for each subset S i, i = 1 . . .m do2

Let H(S i) be a set of all horizontal segments in S i.3

Build a data structure TDi by trapezoidal decomposition and filtering search for4

H(S i).
for each segment ℓq in S do5

if ℓq is vertical then6

Report all intersections of ℓq with H(S i) using the data structure TDi.7

end8

end9

end10

Theorem 23 Given n segments in the plane stored in a read-only array and a parameter value
s between Ω(1) and O(n), Algorithm 4 correctly reports all K intersections between input seg-
ments in O((n2/s) log s + K) time using O(s) words.

Proof. Each subset S i contains at most s horizontal segments. We can build the trapezoidal
decomposition with filtering search in O(s log s) time using O(s) words. Then, for each vertical
segment ℓq we can report all k intersections of ℓq with those in the data structure in O(log s)
time, thus in total O(Ki + n log s) time, where Ki is the number of intersection reported for S i.
Hence, the total running time is given by

∑
i

O(Ki + n log s) = O(K + (n2/s) log s).

2

5.2.4 Segment Overlaps
Now, we assume that there are overlaps among segments of the same slope. Algorithm 2 still
works, but it is not output sensitive anymore. Suppose the first subset S 1 has two horizon-
tal segments ℓp and ℓq which overlap each other. Then, if we apply Algorithm 2, it reports
the intersecting pair (ℓp, ℓq) in the first stage. Then, in the second stage it examines pairs
(S 1, S 2), (S 1, S 3), . . . , (S 1, S m) to perform the plane sweep. For each pair the intersection (ℓp, ℓq)
is detected. Thus, we have to know how to avoid such an intersection due to overlap in the sec-
ond stage.

Now we have three problems:

Isothetic Segment Intersection Reporting: Given a set of isothetic segments, report all inter-
sections of those of different directions.

Horizontal Segment Overlap Reporting: Given a set S of horizontal segments and a query
horizontal segment ℓq, report all segments in S which overlap ℓq.

29

Vertical Segment Overlap Reporting: Given a set S of vertical segments and a query vertical
segment ℓq, report all segments in S which overlap ℓq.

Since the last two problems are just symmetric, we just consider Horizontal Segment Over-
lap Reporting Problem. Once we report all overlaps, we just apply our previous algorithms to
report all intersections of isothetic segments.

Horizontal Segment Overlap Reporting

We are given a set S of n isothetic segments. We have seen two different ways of decomposing
S into subsets of size O(s), one by indices and the other by slopes. In either way we have
O(s) horizontal segments and we want to report all overlaps with them. For that purpose we
first build a binary search tree using their y-coordinates as keys. Then, two or more horizontal
segments may have the same y-coordinate. We create just one leaf node for those segments
sharing the same y-coordinate. We apply the Chazelle’s filtering search technique to those
segments [25]. Since all those horizontal segments have the same y-coordinate, they can be
regarded as intervals. Thus, given a query interval, we can report all k intervals in the data
structure intersecting the query one in O(k + log s) time.

Theorem 24 Given n segments without any overlap in the plane stored in a read-only array
and a parameter value s between O(1) and O(n), Algorithm 5 correctly reports all Kh overlaps
between input horizontal segments in O((n2/s) log s + Kh) time using O(s) words.

Proof. Each subset S i contains at most s horizontal segments. We can build the binary search
tree in O(s log s) time. Then, for each leaf node containing more than one segment we reform
them for filtering search. It is done in in linear time using linear space (since all the segment
endpoints can be sorted in the preprocessing step). Then, we can report all Khi interval overlaps
in an output sensitive way using the filtering search. Hence, the total running time is given by∑

each S i

O(s log s + Khi + n log s) = O(Kh + (n2/s) log s).

2

Algorithm 5: Horizontal Segment Overlap Reporting for a set of horizontal segments
using the filtering search.

Input: A set S of n horizontal or vertical line segments in the plane stored in a read-only
array and a parameter value s.

Output: All Kh overlaps among the input horizontal line segments.
/* Preprocessing stage: */

Partition the set S into m = n/s disjoint subsets S 1, S 2, . . . , S m using Index Partition.1

for each subset S i do2

Let H(S i) be a set of all horizontal segments in S i.3

Build a binary search tree using y-coordinates of those horizontal segments.4

At each leaf node containing more than one segment, build the data structure for5

filtering search. for each horizontal segment ℓq in S i ∪ · · · ∪ S m do
Report all overlaps of ℓq with H(S i) except (ℓq, ℓq) using the data structure.6

end7

end8

30

Symbolic Perturbation

Once we have reported all overlaps among segments of the same slope (horizontal or vertical),
we report all intersections between horizontal and vertical segments. What is required here is
to avoid reporting segment overlaps among those of the same slope.

It is easy. For example, Algorithm 2 can be adapted as follows. In the first stage we do not
need to report segment overlaps. For the purpose we vertically shift each horizontal segment,
say ℓp, by pδ for a positive small constant δ. For each vertical segment, we extend it upper
endpoint upward by nδ. If the constant δ is small enough, this extension causes no problem.
More exactly, this modification does not create any new intersection. After the modification we
perform a standard plane sweep.

In the plane sweep algorithm we have three different types of events caused by left and
right endpoints of horizontal segments and vertical segments. At a left endpoint of a horizontal
segment, say ℓp, we insert ℓp into a data structure called a y-list which keeps all horizontal
segments intersecting the current vertical sweep line in the sorted order. We order them by
the lexicographical order using their y-coordinates and indices. That is, when two horizontal
segments ℓp and ℓq overlap each other and p < q, we decide ℓp < ℓq. Or, more formally, for two
horizontal segments ℓp and ℓq, ℓp < ℓq holds if the y-coordinate of ℓp is smaller than that of ℓq
or they are equal and p < q. This is equivalent to shifting each horizontal segment ℓp vertically
by pδ for a small positive constant δ > 0.

At a right endpoint of a horizontal segment, say ℓq, we just delete ℓq from the y-list. When
the sweep line comes to a vertical segment, say ℓr, we locate its two endpoints in the y-list. For
the lower endpoint, we use its y-coordinate so that it becomes below any horizontal segment of
the same y-coordinate if any. For the upper endpoint, we use its y-coordinate plus nδ so that it
lies above any horizontal line of the same y-coordinate if any. Once we locate the two endpoints
in the y-list, we can report all kr intersections on ℓr in O(kr + log s) time.

In practice we do not use the constant δ. The same operations are done in a symbolic
manner. This simple symbolic perturbation is effective to avoid duplicate report of overlapping
segments. The time complexity of the resulting algorithm is just the same as before.

An example is given in Figure 5.3. There are 12 horizontal segments ℓ1, . . . , ℓ12 and two
vertical segment ℓ13 and ℓ14. Among them the three segments ℓ5, ℓ8, ℓ10 and two endpoints (the
upper endpoint of ℓ13 and the lower endpoint of ℓ14) have the same y-coordinate in the figure.
After the modification stated above, the three horizontal lines are vertically shifted by their
indices. The upper endpoint of ℓ13 lies above all of them and the lower endpoint of ℓ14 below
them.

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

ℓ10

ℓ12

12

22

30
32

38

55

64

72

ℓ14

ℓ13

Figure 5.3: A set of horizontal segments with overlap. Three segment ℓ10, ℓ8, ℓ5 have the same
y-coordinate 55, but they are slightly shifted in the figure.

31

5.2.5 Segments of at Most c Different Slopes
The algorithm for isothetic segments can be extended to a more general case where given seg-
ments have at most c different slopes, where c is O(n/s). In Algorithm 3 above, by using
Property Partition, we can get the subset of given set in which all segments are either horizontal
or vertical. The number c of slope is two because given segments are isothetic.

Even segments in given set S have at most c different slopes, the Property Partition is conve-
nient (see Algorithm 6). A given set S is partitioned into disjoint different subsets S 1, S 2, . . . , S r

so that |S i| ≤ s and all segments of S i have the same slope for each i = 1, . . . , r. Then, for each
pair (S i, S j), we apply the plane sweep algorithm for the union of the two sets to report all
intersections. If the slope of segment in S i and S j is same, no intersections are reported. Since
no two segments of the same slope intersect or overlap.

Algorithm 6: Segment intersection reporting for a set of segments of at most c different
slopes.
/* Preprocessing stage: */

Partition the set S into disjoint subsets S 1, S 2, . . . , S r using Property Partition, where1

r ≤ n/s + c.
for each subset S i, i = 1 . . . r do2

for each subset S j, j = j + 1 . . . r do3

report all segments intersecting by BentleyOttmanPlaneSweep(S i ∪ S j).4

end5

end6

αp

αq

Figure 5.4: Trapezoidal decomposition defined by two distinct slopes αp and αq, where all the
segments have the slope αp and a query segment has the slope αq.

Theorem 25 Given n segments of at most c different slopes, where c = O(n/s), in the plane
stored in a read-only array and a parameter value s between Ω(1) and O(n), Algorithm 5
correctly reports all K intersections between input segments in O((n2/s + c2s) log s + K) time
using O(s) words.

It is not so hard to adapt Algorithm 6 so as to report segment overlaps as well. We can
use the same mechanism as before. For each pair of slopes we define a similar trapezoidal
decomposition as shown in Figure 5.4. If we rotate segments of those slopes so that they are
isothetic each other then the same mechanism works.

5.2.6 General Case
We have efficient algorithms when given segments do not have many different slopes. Unfortu-
nately, none of our algorithms works efficiently without the condition. So, we need a completely

32

Algorithm 7: Segment intersection reporting for a general set of segments.
/* Preprocessing stage: */

t = s1/(1+ε).1

Partition the set S into m = ⌈n/t⌉ disjoint subsets S 1, S 2, . . . , S m using Index Partition.2

/* 1st stage: Reporting intersections within each subset. */

for each subset S i, i = 1 . . .m do3

report all segment intersections by BentleyOttmanPlaneSweep(S i)4

end5

/* 2nd stage: Reporting intersections between two subsets. */

for each subset S i, i = 1 . . .m do6

Build a data structure Di for S i.7

for each segment ℓr ∈ S i+1 ∪ · · · ∪ S m do8

Report all intersections of ℓr with those segments in S i using the data structure Di.9

end10

end11

different idea for a general case.
A key data structure is one proposed by Agarwal and Sharir [1] based on a so-called CSW

data structure [24] by Chazelle, Sharir, and Welzl. We use the following result by Agarwal and
Sharir [1].

Theorem 26 (Agarwal and Sharir [1]) Given a collection S of n segments in the plane, a con-
stant ε > 0, and a parameter s with n1+ε ≤ s ≤ n2, we can preprocess S into a data structure
of size s, in time O(s1+ε), so that, given any query segment ℓq, we can report all K segments of
S intersecting ℓq in time O(n1+ε/

√
s + K), or can count the number of such segments in time

O(n1+ε/
√

s).

We assume that there is no overlap among given segments. A basic framework of our
algorithm is just the same as before. After partitioning a given set S into at most m = n/s
disjoint subsets S 1, . . . , S m, in the first stage we report all intersections within each subset, and
then in the second stage we report all intersections between segments from distinct subsets. For
the second stage, we build a data structure Di for each subset S i given by Agarwal and Sharir
mentioned above and then report intersections for each segment in the remaining subset.

Theorem 27 Given n segments in the plane stored in a read-only array and a parameter value
s between Ω(1) and O(n), Algorithm 6 correctly reports all K intersections between input seg-
ments in O(n2s−

1−ϵ
2(1+ϵ) + K) time using O(s) words for any small constant ε > 0.

Proof. Given n segments and a parameter value s, let t be s1/(1+ε) for a small constant ε >
0. Then, we partition the set S into m = ⌈n/t⌉ disjoint subset S 1, . . . , S m, each of t = O(s)
segments. For each subset S i we construct a data structure Di of size O(t1+ε) = O(s) in O(t(1+ε)2

)
time Theorem 6 [1]. Using this data structure, we can report all intersections of a query segment
ℓr with those segments in S i in time O(t1/2(1+ε)+K(S i, ℓr)), where K(S i, ℓr) is the number of those
intersections of ℓr with the segments in S i. Then, the total running time T (n) is given by

T (n) =
∑⌈n/t⌉

i=1 O(t log t + K(S i) + t(1+ε)2
+ nt

1
2 (1+ε)

+
∑
ℓr∈S i+1∪···∪S m

K(S i, ℓr)),

33

where K(S i) is the number of intersections within the set S i. Since we have

⌈n/t⌉∑
i=1

K(S i) +
∑

ℓr∈S i+1∪···∪S m

K(S i, ℓr) = O(K),

we obtain

T (n) = O
(

n
t t log t + n

t t(1+ε)2
+ n

t nt
1
2 (1+ε) + K

)
= O(n log t + ntε

2+2ε + n2
√

t(1−ε)
+ K).

Replacing t1+ε with s, i.e. t = s
1
ε , we can obtain

T (n) = O
(n
1 + ε

log s + ns
ε2+ε
1+ε + n2s−

1−ε
2(1+ε) + K

)
.

2

5.3 Conclusions and Future Works of Chapter 4
In this paper we have presented adjustable work-space algorithms for detecting and reporting
intersections among given segments. Those algorithms run in work-space of any size between
Ω(1) and O(n) words, assuming that n input segments are stored in a read-only array. In our
conjecture, segments do not have many different slopes in reality. If the number of different
slopes is bounded by O(n/s) our algorithms run efficiently. However, if the assumption does
not hold, our algorithm has to use a sophisticated data structure which is too impractical. So,
one of the most important open problems is to devise a more practical algorithm for the general
case.

34

Chapter 6

Polynomial-Time Algorithms for Subgraph
Isomorphism in Small Graph Classes of
Perfect Graphs
Given two graphs, Subgraph Isomorphism is the problem of deciding whether the first graph
(the base graph) contains a subgraph isomorphic to the second graph (the pattern graph). This
problem is NP-complete for very restricted graph classes such as connected proper interval
graphs. Only a few cases are known to be polynomial-time solvable even if we restrict the
graphs to be perfect. For example, if both graphs are co-chain graphs, then the problem can be
solved in linear time.

In this paper, we present a polynomial-time algorithm for the case where the base graphs
are chordal graphs and the pattern graphs are co-chain graphs. We also present a linear-time
algorithm for the case where the base graphs are trivially perfect graphs and the pattern graphs
are threshold graphs. These results answer some of the open questions of Kijima et al. [Discrete
Math. 312, pp. 3164–3173, 2012]. To present a complexity contrast, we then show that even if
the base graphs are somewhat restricted perfect graphs, the problem of finding a pattern graph
that is a chain graph, a co-chain graph, or a threshold graph is NP-complete.

6.1 Introduction
The problem Subgraph Isomorphism is a very general and extremely hard problem which asks,
given two graphs, whether one graph (the base graph) contains a subgraph isomorphic to the
other graph (the pattern graph). The problem generalizes many other problems such as Graph
Isomorphism, Hamiltonian Path, Clique, and Bandwidth. Clearly, Subgraph Isomorphism is
NP-complete in general. Furthermore, by slightly modifying known proofs [37, 28], it can be
shown that Subgraph Isomorphism is NP-complete when G and H are disjoint unions of paths
or of complete graphs. Therefore, it is NP-complete even for small graph classes of perfect
graphs such as proper interval graphs, bipartite permutation graphs, and trivially perfect graphs,
while Graph Isomorphism can be solved in polynomial time for them [27, 51]. For these graph
classes, Kijima et al. [48] showed that even if both input graphs are connected and have the
same number of vertices, the problem remains NP-complete. They call the problem with such
restrictions Spanning Subgraph Isomorphism.

Kijima et al. [48] also found polynomial-time solvable cases of Subgraph Isomorphism in
which both graphs are chain, co-chain, or threshold graphs. Since these classes are proper
subclasses of the aforementioned hard classes, those results together give sharp contrasts of
computational complexity of Subgraph Isomorphism. However, the complexity of more subtle
cases, like the one where the base graphs are proper interval graphs and the pattern graphs are
co-chain graphs, remained open.

35

Table 6.1: NP-complete cases of Spanning Subgraph Isomorphism.
Base Pattern Complexity Reference

Bipartite Permutation NP-complete [48]
Proper Interval NP-complete [48]

Trivially Perfect NP-complete [48]
Chain Convex NP-complete [48]

Co-chain Co-bipartite NP-complete [48]
Threshold Split NP-complete [48]
Bipartite Chain NP-complete This paper

Co-convex Co-chain NP-complete This paper
Split Threshold NP-complete This paper

Table 6.2: Polynomial-time solvable cases of Subgraph Isomorphism.
Base Pattern Complexity Reference

Chain O(m + n) [48]
Co-chain O(m + n) [48]
Threshold O(m + n) [48]

Bipartite permutation Chain Open
Chordal Co-chain O(mn2 + n3) This paper

Trivially perfect Threshold O(m + n) This paper

6.1.1 Our results
In this paper, we study the open cases of Kijima et al. [48], and present polynomial-time algo-
rithms for the following cases:

• the base graphs are chordal graphs and the pattern graphs are co-chain graphs,

• the base graphs are trivially perfect graphs and the pattern graphs are threshold graphs.

We also show that even if the pattern graphs are chain, co-chain, or threshold graphs and the
base graphs are somewhat restricted perfect graphs, the problem remains NP-complete. The
problem of finding a chain subgraph in a bipartite permutation graph, which is an open case of
Kijima et al. [48], remains unsettled. See Tables 6.1 and 6.2 for the summary of our results.

6.1.2 Related results
Subgraph Isomorphism for trees can be solved in polynomial time [57], while it is NP-complete
for connected outerplanar graphs [69]. Therefore, the problem is NP-complete even for con-
nected graphs of bounded treewidth. On the other hand, it can be solved in polynomial time
for 2-connected outerplanar graphs [50]. More generally, it is known that Subgraph Isomor-
phism for k-connected partial k-trees can be solved in polynomial time [56, 40]. Eppstein [36]
gave a kO(k)n-time algorithm for Subgraph Isomorphism on planar graphs, where k and n are
the numbers of the vertices in the pattern graph and the base graph, respectively. Recently,
Dorn [32] has improved the running time to 2O(k)n. For other general frameworks, especially
for the parameterized ones, see the recent paper by Marx and Pilipczuk [54] and the references
therein.

Another related problem is Induced Subgraph Isomorphism which asks whether the base
graph has an induced subgraph isomorphic to the pattern graph. Damaschke [28] showed that

36

Induced Subgraph Isomorphism on cographs is NP-complete. He also showed that Induced
Subgraph Isomorphism is NP-complete for the disjoint unions of paths, and thus for proper in-
terval graphs and bipartite permutation graphs. Marx and Schlotter [55] showed that Induced
Subgraph Isomorphism on interval graphs is W[1]-hard when parameterized by the number of
vertices in the pattern graph, but fixed-parameter tractable when parameterized by the num-
bers of vertices to be removed from the base graph. Heggernes et al. [44] showed that Induced
Subgraph Isomorphism on proper interval graphs is NP-complete even if the base graph is con-
nected. Heggernes et al. [45] have recently shown that Induced Subgraph Isomorphism on proper
interval graphs and bipartite permutation graphs can be solved in polynomial time if the pat-
tern graph is connected. Belmonte et al. [18] showed that Induced Subgraph Isomorphism on
connected trivially perfect graphs is NP-complete. This result strengthens known results since
every trivially perfect graph is an interval cograph. They also showed that the problem can be
solved in polynomial time if the base graphs are trivially perfect graphs and the pattern graphs
are threshold graphs.

6.2 Preliminaries
All graphs in this paper are finite, undirected, and simple. Let G[U] denote the subgraph of
G = (V, E) induced by U ⊆ V . For a vertex v ∈ V , we denote by G − v the graph obtained
by removing v from G; that is, G − v = G[V \ {v}]. The neighborhood of a vertex v is the set
N(v) = {u ∈ V | {u, v} ∈ E}. A vertex v ∈ V is universal in G if N(v) = V \ {v}. A vertex v ∈ V
is isolated in G if N(v) = ∅. A set I ⊆ V in G = (V, E) is an independent set if for all u, v ∈ I,
(u, v) < E. A set S ⊆ V in G = (V, E) is a clique if for all u, v ∈ S , (u, v) ∈ E. A pair (X,Y) of sets
of vertices of a bipartite graph H = (U,V; E) is a biclique if for all x ∈ X and y ∈ Y , (x, y) ∈ E.
A component of a graph G is an inclusion maximal connected subgraph of G. A component
is non-trivial if it contains at least two vertices. The complement of a graph G = (V, E) is the
graph Ḡ = (V, Ē) such that {u, v} ∈ Ē if and only if {u, v} < E. The disjoint union of two graphs
G = (VG, EG) and H = (VH, EH) is the graph (VG ∪ VH, EG ∪ EH), where VG ∩ VH = ∅. For a
map η : V → V ′ and S ⊆ V , let η(S) denote the set {η(s) | s ∈ S }.

6.2.1 Definitions of the problems
A graph H = (VH, EH) is subgraph-isomorphic to a graph G = (VG, EG) if there exists an
injective map η from VH to VG such that {η(u), η(v)} ∈ EG holds for each {u, v} ∈ EH. We
call such a map η a subgraph-isomorphism from H to G. Graphs G and H are called the base
graph and the pattern graph, respectively. The problems Subgraph Isomorphism and Spanning
Subgraph Isomorphism are defined as follows:

Problem 28 Subgraph Isomorphism
Instance: A pair of graphs G = (VG, EG) and H = (VH, EH).
Question: Is H subgraph-isomorphic to G?

Problem 29 Spanning Subgraph Isomorphism
Instance: A pair of connected graphs G = (VG, EG) and H = (VH, EH), where |VG| = |VH |.
Question: Is H subgraph-isomorphic to G?

37

Chain Threshold Cochain

Bipartite

permutation

Trivially

perfect
Proper

interval

Cograph Interval

Chordal CobipartitePermutation

Convex

Perfect

Bipartite

Split

Figure 6.1: Graph classes.

6.2.2 Graph classes
Here we introduce the graph classes we deal with in this paper. For their inclusion relations, see
the standard textbooks in this field [21, 38, 68]. See Figure 6.1 for the class hierarchy.

A bipartite graph B = (X,Y; E) is a chain graph if the vertices of X can be ordered as
x1, x2, . . . , x|X| such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(x|X|). A graph G = (V, E) with V =
{1, 2, . . . , n} is a permutation graph if there is a permutation π over V such that {i, j} ∈ E if
and only if (i − j)(π(i) − π(j)) < 0. A bipartite permutation graph is a permutation graph that
is bipartite. A bipartite graph H = (X,Y; E) is a convex graph if one of X and Y can be ordered
such that the neighborhood of each vertex in the other side is consecutive in the ordering. It
is known that a chain graph is a bipartite permutation graph, and that a bipartite permutation
graph is a convex graph.

A graph is a co-chain graph if it is the complement of a chain graph. An interval graph is the
intersection graph of a family of closed intervals of the real line. A proper interval graph is the
intersection graph of a family of closed intervals of the real line where no interval is properly
contained in another. A graph is co-bipartite if its complement is bipartite. In other words,
co-bipartite graphs are exactly the graphs whose vertex sets can be partitioned into two cliques.
From the definition, every co-chain graph is co-bipartite. It is known that every co-chain graph
is a proper interval graph.

A graph is a threshold graph if there is a positive integer T (the threshold) and for every
vertex v there is a positive integer w(v) such that {u, v} is an edge if and only if w(u) + w(v) ≥ T .
A graph is trivially perfect if the size of the maximum independent set is equal to the number
of maximal cliques for every induced subgraph. It is known that a threshold graph is a trivially
perfect graph, and that a trivially perfect graph is an interval graph.

A split graph is a graph whose vertex set can be partitioned into a clique and an independent
set. A graph is chordal if every induced cycle is of length 3. Clearly, every threshold graph is
a split graph, and every split graph is a chordal graph. It is known that every interval graph is a
chordal graph. It is easy to see that any split graph (and thus any threshold graph) has at most
one non-trivial component.

A graph is perfect if for any induced subgraph the chromatic number is equal to the size of
a maximum clique. Graphs in all classes introduced in this section are known to be perfect.

38

6.3 Polynomial-Time Algorithms
In this section, we denote the number of the vertices and the edges in a base graph by n and m,
respectively. For the input graphs G and H, we assume that |VG| ≥ |VH | and |EG| ≥ |EH |, which
can be checked in time O(m + n).

6.3.1 Finding co-chain subgraphs in chordal graphs
It is known that co-chain graphs are precisely {I3,C4,C5}-free graphs [43]; that is, graphs having
no vertex subset that induces I3, C4, or C5, where I3 is the empty graph with three vertices and
Ck is the cycle of k vertices. Using this characterization, we can show the following simple
lemma.

Lemma 30 A graph is a co-chain graph if and only if it is a co-bipartite chordal graph.

Proof. To prove the if-part, let G be a co-bipartite chordal graph. Since G is co-bipartite, it
cannot have I3 as its induced subgraph. Since G is chordal, it does not have C4 or C5 as its
induced subgraph. Therefore, G is {I3,C4,C5}-free.

To prove the only-if-part, let G be a co-chain graph, and thus it is a co-bipartite graph.
Suppose that G has an induced cycle C of length k ≥ 4. Then k cannot be 4 or 5 since it does
not have C4 or C5. If k ≥ 6, then the first, third, and fifth vertices in the cycle form I3. 2

Now we can solve the problem as follows.

Theorem 31 Subgraph Isomorphism is solvable in O(mn2 + n3) time if the base graphs are
chordal graphs and the pattern graphs are co-chain graphs.

Proof. Let G = (VG, EG) be the base chordal graph and H = (VH, EH) be the pattern co-chain
graph. We assume that G is not complete, since otherwise the problem is trivial.
Algorithm: We enumerate all the maximal cliques C1, . . . ,Ck of G. For each pair (Ci,C j),
we check whether H is subgraph-isomorphic to G[Ci ∪ C j]. If H is subgraph-isomorphic to
G[Ci ∪C j] for some i and j, then we output “yes.” Otherwise, we output “no.”
Correctness: It suffices to show that H is subgraph-isomorphic to G if and only if there are two
maximal cliques Ci and C j of G such that H is subgraph-isomorphic to G[Ci ∪ C j]. The if-part
is obviously true. To prove the only-if-part, assume that there is a subgraph-isomorphism η
from H to G. Observe that for any clique C of H, there is a maximal clique C′ of G such that
η(C) ⊆ C′. Thus, since H is co-bipartite, there are two maximal cliques Ci and C j such that
η(VH) ⊆ Ci ∪C j. That is, H is subgraph-isomorphic to G[Ci ∪C j].
Running time: It is known that a chordal graph of n vertices with m edges has at most n maximal
cliques, and all the maximal cliques can be found in O(m + n) time [20, 42]. Since G[Ci ∪ C j]
is a co-chain graph by Lemma 30, testing whether H is subgraph-isomorphic to G[Ci ∪C j] can
be done in O(m + n) time [48]. Since the number of pairs of maximal cliques is O(n2), the total
running time is O(mn2 + n3). 2

6.3.2 Finding threshold subgraphs in trivially perfect graphs
Here we present a linear-time algorithm for finding a threshold subgraph in a trivially perfect
graph. To this end, we need the following lemmas.

Lemma 32 If a graph G has a universal vertex uG, and a graph H has a universal vertex uH,
then H is subgraph-isomorphic to G if and only if H − uH is subgraph-isomorphic to G − uG.

39

Proof. To prove the if-part, let η′ be a subgraph-isomorphism from H − uH to G − uG. Now we
define η : VH → VG as follows:

η(w) =

uG if w = uH,

η′(w) otherwise.

Let {x, y} ∈ EH. If uH < {x, y}, then {η(x), η(y)} = {η′(x), η′(y)} ∈ EG. Otherwise, we may
assume that x = uH without loss of generality. Since uG is universal in G, it follows that
{η(x), η(y)} = {η(uH), η(y)} = {uG, η

′(y)} ∈ EG.
To prove the only-if-part, assume that η′ is a subgraph-isomorphism from H to G. If there

is no vertex v ∈ VH such that η′(v) = uG, then we are done. Assume that η′(v) = uG for some
vertex v ∈ VH. Now we define η : VH \ {uH} → VG \ {uG} as follows:

η(w) =

η′(uH) if w = v,
η′(w) otherwise.

Let {x, y} ∈ EH. If v < {x, y}, then {η(x), η(y)} = {η′(x), η′(y)} ∈ EG. Otherwise, we may assume
without loss of generality that v = x. Since uH is universal in H, it follows that {η(x), η(y)} =
{η′(uH), η′(y)} ∈ EG. 2

A component of a graph is maximum if it contains the maximum number of vertices among
all the components of the graph. If a split graph has a non-trivial component, then the compo-
nent is the unique maximum component of the graph.

Lemma 33 A split graph H with a maximum component CH is subgraph-isomorphic to a graph
G if and only if |VH | ≤ |VG| and there is a component CG of G such that CH is subgraph-
isomorphic to CG.

Proof. First we prove the only-if-part. Let η be a subgraph-isomorphism from H to G. We
need |VH | ≤ |VG| to have an injective map from VH to VG. Since CH is connected, G[η(V(CH))]
must be connected. Thus there is a component CG such that η(V(CH)) ⊆ V(CG). Then η|V(CH),
the map η restricted to V(CH), is a subgraph isomorphism from CH to CG.

To prove the if-part, let η′ be a subgraph-isomorphism from CH to CG. Let RH = VH \
V(CH) = {u1, . . . , ur}, and let RG = VG \ η′(V(CH)) = {w1, . . . , ws}. Since |VH | ≤ |VG| and
|V(CH)| = |η′(V(CH))|, it holds that r ≤ s. Now we define η : VH → VG as follows:

η(v) =

wi if v = ui ∈ RH,

η′(v) otherwise.

Since H is a split graph, any component of H other than CH cannot have two or more vertices.
Thus the vertices in RH are isolated in H. Therefore, the map η is a subgraph-isomorphism from
H to G. 2

The two lemmas above already allows us to have a polynomial-time algorithm. However, to
achieve a linear running time, we need the following characterization of trivially perfect graphs.

A rooted tree is a directed tree with a unique in-degree 0 vertex, called the root. Intuitively,
every edge is directed from the root to leaves in a directed tree. A rooted forest is the disjoint
union of rooted trees. The comparability graph of a rooted forest is the graph that has the same
vertex set as the rooted forest, and two vertices are adjacent in the graph if and only if one
of the two is a descendant of the other in the forest. Yan et al. [72] showed that a graph is a
trivially perfect graph if and only if it is the comparability graph of a rooted forest, and that

40

such a rooted forest can be computed in linear time. We call such a rooted forest a generating
forest of the trivially perfect graph. If a generating forest is actually a rooted tree, then we call
it a generating tree.

Theorem 34 Subgraph Isomorphism is solvable in O(m+n) time if the base graphs are trivially
perfect graphs and the pattern graphs are threshold graphs.

Proof. Let G = (VG, EG) be the base trivially perfect graph and H = (VH, EH) be the pattern
threshold graph.
Algorithm: The pseudocode of our algorithm can be found in Algorithm 8. We use the procedure
SGI which takes a trivially perfect graph as the base graph and a threshold graph as the pattern
graph, and conditionally answers whether the pattern graph is subgraph-isomorphic to the base
graph. The procedure SGI requires that

• both the graphs are connected, and

• the base graph has at least as many vertices as the pattern graph.

To use this procedure, we first attach a universal vertex to both G and H. This guarantees that
both graphs are connected. We call the new graphs G′ and H′, respectively. By Lemma 32,
(G′,H′) is a yes-instance if and only if so is (G,H). After checking that |VG′ | ≥ |VH′ |, we use the
procedure SGI.

In SGI(G,H), let uG and uH be universal vertices of G and H, respectively. There are such
vertices since G and H are connected trivially perfect graphs [71]. Let CH be a maximum
component of H − uH. For each connected component CG of G − uG, we check whether CH is
subgraph-isomorphic to CG, by recursively calling the procedure SGI itself. If at least one of
the recursive calls returns “yes,” then we return “yes.” Otherwise we return “no.”
Correctness: It suffices to prove the correctness of the procedure SGI. If |VH | = 1, then H is
subgraph-isomorphic to G since |VG| ≥ |VH | in SGI. By Lemmas 32 and 33, H is subgraph-
isomorphic to G if and only if there is a component CG of G − uG such that CH is subgraph-
isomorphic to CG. (Recall that any threshold graph is a split graph.) The procedure just checks
these conditions. Also, when SGI recursively calls itself, the parameters CG and CH satisfy its
requirements; that is, CG and CH are connected, and |V(CG)| ≥ |V(CG)|.
Running time: For each call of SGI(G,H), we need the following:

• universal vertices uG and uH of G and H, respectively,

• a maximum component CH of H − uH,

• the components CG of G − uG, and

• the numbers of the vertices of CG and H − uH.

We show that they can be computed efficiently by using generating forests. Basically we apply
the algorithm to generating forests instead of graphs.

Before the very first call of SGI(G,H), we compute generating trees of G and H in linear
time. Additionally, for each node in the generating trees, we store the number of its descendants.
This can be done also in linear time in a bottom-up fashion.

At some call of SGI(G,H), assume that we have generating trees of G and H. It is easy
to see that the root of the generating trees are universal vertices. Hence we can compute uG

and uH in constant time. By removing these root nodes from the generating trees, we obtain
generating forests of G−uG and H −uH. Each component of the generating forests corresponds

41

Algorithm 8: Finding a threshold subgraph H in a trivially perfect graph G.
G′ := G with a universal vertex1

H′ := H with a universal vertex2

if |VG′ | ≥ |VH′ | then3

return SGI(G′,H′)4

else return no5

end6

Require G and H are connected, and |VG| ≥ |VH |7

Procedure SGI(G, H)8

if |VH | = 1 then9

return yes10

end11

uG := a universal vertex of G12

uH := a universal vertex of H13

CH := a maximum component of H − uH14

forall components CG of G − uG do15

if |V(CG)| ≥ |V(H − uH)| then16

if SGI(CG, CH) = yes then17

return yes18

end19

end20

end21

return no22

to a component of the corresponding graphs. Thus we can compute the components of G − uG

and a maximum component of H − uH, with their generating trees, in time proportional to the
number of the children of uG and uH. The numbers of the vertices of CG and H − uH can be
computed easily in constant time, because we know the number of the descendants of each node
in generating trees.

The recursive calls of SGI take only O(n) time in total since it is proportional to the number
of edges in the generating trees. Therefore, the total running time is O(m + n). 2

6.4 NP-completeness
It is known that for perfect graphs, Clique can be solved in polynomial time [39]. Since co-
chain graphs and threshold graphs are very close to complete graphs, one may ask whether the
problem of finding co-chain graphs or threshold graphs can be solved in polynomial time for
perfect graphs. In this section, we show that this is not the case. More precisely, we show
that even the specialized problem Spanning Subgraph Isomorphism is NP-complete for the case
where the base graphs are somewhat restricted perfect graphs and the pattern graphs are co-
chain or threshold graphs.

It is known that Maximum Edge Biclique, the problem of finding a biclique with the max-
imum number of edges, is NP-complete for bipartite graphs [63]. This implies that Subgraph
Isomorphism is NP-complete if the base graphs are connected bipartite graphs and the pattern
graphs are connected chain graphs, because complete bipartite graphs are chain graphs. We

42

sharpen this hardness result by showing that the problem is still NP-complete if we further re-
strict the pattern chain graphs to have the same number of vertices as the base graph. That is, we
show that Spanning Subgraph Isomorphism is NP-complete when the base graphs are bipartite
graphs and the pattern graphs are chain graphs.

Since the problem Spanning Subgraph Isomorphism is clearly in NP for any graph class,
we only show its NP-hardness here. All the results in this section are based on the following
theorem and lemma taken from Kijima et al. [48].

Theorem 35 (Kijima et al. [48]) Spanning Subgraph Isomorphism is NP-complete if

1. the base graphs are chain graphs and the pattern graphs are convex graphs,

2. the base graphs are co-chain graphs and the pattern graphs are co-bipartite graphs, or

3. the base graphs are threshold graphs and the pattern graphs are split graphs.

Lemma 36 (Kijima et al. [48]) If |VH | = |VG|, then H is subgraph-isomorphic to G if and only
if Ḡ is subgraph-isomorphic to H̄.

For a graph class C, let co-C denote the graph class {Ḡ | G ∈ C}. The next lemma basically
shows that if C satisfies some property, then the hardness of Spanning Subgraph Isomorphism
for C implies the hardness for co-C.

Lemma 37 Let C and D be graph classes such that co-C and co-D are closed under universal
vertex additions. If Spanning Subgraph Isomorphism is NP-complete when the base graphs
belong to C and the pattern graphs belong to D, then the problem is NP-complete also when
the base graphs belong to co-D and the pattern graphs belong to co-C.

Proof. Given two connected graphs G ∈ C and H ∈ D with |VG| = |VH |, it is NP-complete
to decide whether H is subgraph-isomorphic to G. By Lemma 36, H is subgraph-isomorphic
to G if and only if Ḡ is subgraph-isomorphic to H̄. By Lemma 32, Ḡ is subgraph-isomorphic
to H̄ if and only if Ḡ′ is subgraph-isomorphic to H̄′, where Ḡ′ and H̄′ are obtained from Ḡ and
H̄, respectively, by adding a universal vertex. Therefore, H is subgraph-isomorphic to G if and
only if Ḡ′ is subgraph-isomorphic to H̄′. Clearly, Ḡ′ ∈ co-C and H̄′ ∈ co-D, they are connected,
and they have the same number of vertices. Thus the lemma holds. 2

A graph is a co-convex graph if its complement is a convex graph. Clearly co-convex graphs
are closed under additions of universal vertices.

Corollary 38 Spanning Subgraph Isomorphism is NP-complete if

1. the base graphs are co-convex graphs and the pattern graphs are co-chain graphs,

2. the base graphs are bipartite graphs and the pattern graphs are chain graphs, or

3. the base graphs are split graphs and the pattern graphs are threshold graphs.

Proof. The NP-completeness of the case (1) is a corollary to Theorem 35 (1) and Lemma 37.
To prove (3), we need Theorem 35 (3), Lemma 37, and the well-known facts that threshold
graphs and split graphs are self-complementary [38]. That is, the complement of a threshold
graph is a threshold graph, and the complement of a split graph is a split graph.

For (2), we cannot directly apply the combination of Theorem 35 (2) and Lemma 37 since
bipartite graphs and chain graphs are not closed under universal vertex additions. Fortunately,
we can easily modify the proof of Theorem 35 (2) in Kijima et al. [48] so that the complements
of the base graphs and the pattern graphs are also connected. Then, Lemma 36 implies the
statement. Since it will be a repeat of a known proof with a tiny difference, we omit the detail.

2

43

6.5 Conclusion of Chapter 6
We have studied (Spanning) Subgraph Isomorphism for classes of perfect graphs, and have
shown sharp contrasts of its computational complexity. An interesting problem left unsettled
is the complexity of Subgraph Isomorphism where the base graphs are bipartite permutation
graphs and the pattern graphs are chain graphs. It is known that although the maximum edge
biclique problem is NP-complete for general bipartite graphs [63], it can be solved in polyno-
mial time for some super classes of bipartite permutation graphs (see [61]). Therefore, it might
be possible to have a polynomial-time algorithm for Subgraph Isomorphism when the pattern
graphs are chain graphs and the base graphs belong to an even larger class like convex graphs.

44

Bibliography
[1] P. K. Agarwal and M. Sharir. Applications of a new space-partitioning technique. Discrete

Computonal Geometry, 9:11–38, 1993.

[2] A. Aggarwal and R. Anderson. A random nc algorithm for depth-first search. Combina-
torica, 8(1):1–12, 1988.

[3] Borodin Allan, J. Fishcher Michael, G. Kirkpatrick David, A. Lynch Nancy, and Tompa
Martin. A time-space tradeoff for sorting on non-oblivious machines. Journal of Computer
and System Sciences, 22(3):351 – 364, 1981.

[4] R. Anderson and E. Mayr. Parallelism and the maximal path problem. Information Pro-
cessing Letters, 24(2):121–126, 1987.

[5] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

[6] T. Asano. Constant-work-space algorithms: how fast can we solve problems without
using any extra array? In Proceedings of the19th Annual International on Symposium Al-
gorithms Computation (ISAAC), invited talk, volume 5369 of Lecture Notes in Computer
Science, page 1. Springer-Verlag, 2008.

[7] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz.
Memory-constrained algorithms for simple polygons. Computational Geometry,
46(8):959 – 969, 2013.

[8] T. Asano, A. Elmasry, and J. Katajainen. Priority queues and sorting for read-only data.
In Proceedings of the 10th Annual Conference on Theory and Applications of Models of
Computation, Lecture Notes in Computer Science, volume 7876, pages 32–41. Springer-
Verlag, 2013.

[9] T. Asano and D. Kirkpatrick. Time-space tradeoffs for all-nearest-larger-neighbors prob-
lems. In Proceedings of Algorithms and Data Structures, 13th International Symposium,
Lecture Notes in Computer Science, volume 8037, pages 61–72. Springer-Verlag, 2013.

[10] T. Asano, D. Kirkpatrick, K. Nakagawa, and O. Watanabe. Mathematical Foundations
of Computer Science 2014: 39th International Symposium, MFCS 2014, Budapest, Hun-
gary, August 25-29, 2014. Proceedings, Part II, chapter Õ(

√
n)-Space and Polynomial-

time Algorithm for the Planar Directed Graph Reachability, pages 45–56. Springer Berlin
Heidelberg, 2014.

[11] T. Asano and M. Konagaya. Zero-space data structure for farthest-point voronoi diagram.
In Abstract of the 4th Annual Meeting of Asian Association for Algorithms and Computa-
tion, page 14, 2011.

[12] T. Asano and R. Kumar. A small-space algorithm for removing small connected compo-
nents from a binary image. IEICE Transactions, 96(6):1044–1050, 2016.

45

[13] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-working-space algorithms for
geometric problems. Journal of computational geometry, 2(1):46–68, 2011.

[14] T. Asano, W. Mulzer, and Y. Wang. Constant-work-space algorithm for a shortest path
in a simple polygon. In Proceeding of the 4th Workshop on Algorithms and Computation
(WALCOM), pages 9–20, 2010.

[15] I. J. Balaban. An optimal algorithm for finding segments intersections. In Proceedings of
the 11th ACM Symposium on Computational Geometry, pages 211–219, 1995.

[16] G. Barnes, J. Buss, W. Ruzzo, and B. Schieber. A sublinear space, polynomial time
algorithm for directed s-t connectivity. SIAM Journal of Computing, 27(5):1273–1282,
1998.

[17] Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
Journal of Computation, 20(2):270–277, 1991.

[18] Rémy Belmonte, Pinar Heggernes, and Pim van ’t Hof. Edge contractions in subclasses
of chordal graphs. Discrete Appl. Math., 160:999–1010, 2012.

[19] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric inter-
sections. IEEE Transaction on Computers, C-28(9):643–647, 1979.

[20] Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse
Matrix Computation, volume 56 of The IMA Volumes in Mathematics and its Applications,
pages 1–29. Springer Verlag, 1993.

[21] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey.
SIAM, 1999.

[22] M. Timothy Chan and Y. Eric Chen. Multi-pass geometric algorithms. Discrete & Com-
putational Geometry, 37(1):79–102, 2006.

[23] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in
the plane. Journal of the ACM, 39(1):1–54, 1992.

[24] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range
searching and new zone theorems. In Proceedings of the 6th ACM Symposium on Compu-
tational Geometry, pages 23–33, 1990.

[25] B. M. Chazelle. Filetering search: a new approach to query-answering. SIAM Journal on
Computing, 15:703–724, 1986.

[26] E. Y. Chen and T. M. Chan. A space-efficient algorithm for segment intersection. In
Proceedings of the 15th Canadian Conference on Computational Geometry, pages 68–71,
2003.

[27] Charles J. Colbourn. On testing isomorphism of permutation graphs. Networks, 11:13–21,
1981.

[28] Peter Damaschke. Induced subgraph isomorphism for cographs is NP-complete. In WG
’90, volume 487 of Lecture Notes in Comput. Sci., pages 72–78, 1991.

46

[29] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, third edition, 2008.

[30] P. de la Tore and C. Kruskal. Fast parallel algorithms for lexicographic search and path-
algebra problems. Journal of Algorithms, 19:1–24, 1995.

[31] P. de la Tore and C. Kruskal. Polynomially improved efficiency for fast parallel single-
source lexicographic depth-first search, breadth-first search. Theory of Computing Sys-
tems, 34:275–298, 2001.

[32] Frederic Dorn. Planar subgraph isomorphism revisited. In STACS 2010, volume 5 of
LIPIcs, pages 263–274, 2010.

[33] H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakanishi. Roundness algorithms using the
voronoi diagrams. In Abstract of the First Canadian Conference on Computational Ge-
ometry, page 41, 1989.

[34] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of bodlaender
and courcelle. In Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2010), pages 143–152, 2010.

[35] M. Elberfeld and K. Kawarabayashi. Embedding and canonizing graphs of bounded genus
in logspace. In Proceedings of the 46th Annual ACM Symposium on the Theory of Com-
puting (STOC 2014), pages 383–392, 2014.

[36] David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3:1–27, 1999.

[37] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[38] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of
Annals of Discrete Mathematics. North Holland, second edition, 2004.

[39] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[40] Arvind Gupta and Naomi Nishimura. The complexity of subgraph isomorphism for classes
of partial k-trees. Theoret. Comput. Sci., 164:287–298, 1996.

[41] S. Har-Peled. A small-space algorithm for removing small connected components from a
binary image. Journal of computational geometry, 7(2):19–45, 2016f.

[42] Pinar Heggernes. Treewidth, partial k-trees, and chordal graphs. Partial curriculum in
INF334 - Advanced algorithmical techniques, Department of Informatics, University of
Bergen, Norway, 2005.

[43] Pinar Heggernes and Dieter Kratsch. Linear-time certifying recognition algorithms and
forbidden induced subgraphs. Nordic J. Comput., 14:87–108, 2007.

[44] Pinar Heggernes, Daniel Meister, and Yngve Villanger. Induced subgraph isomorphism
on interval and proper interval graphs. In ISAAC 2010, volume 6507 of Lecture Notes in
Comput. Sci., pages 399–409, 2010.

47

[45] Pinar Heggernes, Pim van ’t Hof, Daniel Meister, and Yngve Villanger. Induced subgraph
isomorphism on proper interval and bipartite permutation graphs. Submitted manuscript.

[46] T. Imai. Polynomial-time memory constrained shortest path algorithms for directed graphs
(in japanese). In Proceedings of the 12th Forum on Information Technology, volume 1,
pages 9–16, 2013.

[47] T. Imai, K. Nakagawa, A. Pavan, N. Vinodchandran, and O. Watanabe. An o(n1/2+ϵ)-space
and polynomial-time algorithm for directed planar reachability. In Proceedings of 2013
IEEE Conference on Computational Complexity, pages 277–286, 2013.

[48] Shuji Kijima, Yota Otachi, Toshiki Saitoh, and Takeaki Uno. Subgraph isomorphism in
graph classes. Discrete Math., 312:3164–3173, 2012.

[49] M. Konagaya and T. Asano. Reporting all segment intersections using an arbitrary sized
work space. IEICE Transactions, 96-A(6):1066–1071, 2013.

[50] Andrzej Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic time.
Theoret. Comput. Sci., 63:295–302, 1989.

[51] George S Lueker and Kellogg S. Booth. A linear time algorithm for deciding interval
graph isomorphism. J. ACM, 26:183–195, 1979.

[52] Barba Luis, Korman Matias, Langerman Stefan, Sadakane Kunihiko, and I. Silveira Ro-
drigo. Space-time trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129,
2015.

[53] Harry G. Mairson and Jorge Stolfi. Theoretical Foundations of Computer Graphics and
CAD, volume 40, chapter Reporting and Counting Intersections Between Two Sets of Line
Segments, pages 307–325. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988.

[54] Dániel Marx and Michał Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). CoRR,
abs/1307.2187, 2013.

[55] Dániel Marx and Ildikó Schlotter. Cleaning interval graphs. Algorithmica, 65:275–316,
2013.

[56] Jiřı́ Matoušek and Robin Thomas. On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math., 108:343–364, 1992.

[57] David W. Matula. Subtree isomorphism in O(n5/2). In B. Alspach, P. Hell, and D.J.
Miller, editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete
Mathematics, pages 91–106. Elsevier, 1978.

[58] J. I. Munro. An implicit data structure supporting insertion, deletion and search in o(log2 n)
time. Journal of Computer and System Science, 33(1):66–74, 1986.

[59] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12(3):315 – 323, 1980.

[60] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2):117–236, 2005.

48

[61] Doron Nussbaum, Shuye Pu, Jörg-Rüdiger Sack, Takeaki Uno, and Hamid Zarrabi-Zadeh.
Finding maximum edge bicliques in convex bipartite graphs. Algorithmica, 64(2):311–
325, 2012.

[62] C. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[63] René Peeters. The maximum edge biclique problem is NP-complete. Discrete Appl. Math.,
131:651–654, 2003.

[64] F. P. Preparata and M. I. Shamos. Computational geometry. An introduction. Texts and
Monographs in Computer Science. Springer-Verlag, New York, 1985.

[65] J. Reif. Depth-first search is inherently sequential. Information Processing Letters,
20(5):229–234, 1985.

[66] O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):17:1–17:24,
2008.

[67] M. I. Shamos and D. J. Hoey. Geometric intersection problems. In Proceedings of the
17th IEEE Symposium on Foundation of Computer Science, pages 208–215, 1976.

[68] Jeremy P. Spinrad. Efficient Graph Representations, volume 19 of Fields Institute mono-
graphs. American Mathematical Society, 2003.

[69] Maciej M. Sysło. The subgraph isomorphism problem for outerplanar graphs. Theoret.
Comput. Sci., 17:91–97, 1982.

[70] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[71] E. S. Wolk. A note on “The comparability graph of a tree”. Proc. Amer. Math. Soc.,
16:17–20, 1965.

[72] Jing-Ho Yan, Jer-Jeong Chen, and Gerard J. Chang. Quasi-threshold graphs. Discrete
Appl. Math., 69(3):247–255, 1996.

49

Publications
Journal paper

[1] M. Konagaya and T. Asano, “Reporting All Segment Intersections Using an Arbitrary
Sized Work Space”, IEICE Transactions, Vol.E96-A, NO.6, pp.1066–1071, 2013.

[2] M. Konagaya, Y. Otachi and R. Uehara, “Polynomial-Time Algorithms for Subgraph
Isomorphism in Small Graph Classes of Perfect Graphs”, Discrete Applied Mathematics,
Vol.199, pp.37–45, 2016.

International conference

[3] M. Konagaya and T. Asano, “Zero-space Data Structure for Farthest-point Voronoi Dia-
gram”, The 4th Annual Meeting of the Asian Association for Algorithms and Computa-
tion, p.44, 2011.

[4] M. Konagaya and T. Asano, “Algorithm for reporting all segment intersections using work
space of arbitrary size”, In Proc, The 15th Japan-Korea Joint Workshop on Algorithms
and Computation, pp.124–131, 2012.

[5] M. Konagaya, Y. Otachi and R. Uehara, “Polynomial-Time Algorithms for Subgraph
Isomorphism in Small Graph Classes of Perfect Graphs”, The 11th Annual conference on
Theory and Applications of Models of Computation, Lecture Notes in Computer Science,
Volume 8402, pp.216–228, Springer, 2014.

[6] T. Asano, T. Izumi, M. Kiyomi, M. Konagaya, H. Ono, Y. Otachi, P. Schweitzer, J. Tarui
and R. Uehara, “Depth-First Search Using O(n) bits”, The 25th International Sympo-
sium on Algorithms and Computation, Lecture Notes in Computer Science, Volume 8889,
pp.553–564, Springer, 2014.

Domestic conference and symposium

[7] 小長谷松雄, 浅野哲夫, “Constant-space Data Structure for Farthest-point Voronoi Dia-
gram”,第 10回情報科学技術フォーラム, RA-004, 2011.

[8] 小長谷松雄, 浅野哲夫, “Constant-space Data Structure for Farthest-point Voronoi Dia-
gram”,夏の LAシンポジウム, pp.S3:1–S3:5, 2011.

[9] 小長谷松雄,浅野哲夫, “Algorithm for Reporting All Segment Intersections Using Work
space of Arbitrary Size”, IEICE Tech. Rep., COMP2012-7, Vol. 112, No. 21, pp.45–52,
2012.

[10] 小長谷松雄, 浅野哲夫, “単純多角形内部の最短経路発見のためのメモリ調節可能ア
ルゴリズム”, IEICE Tech. Rep., COMP2013-48, Vol. 113, No. 371, pp.59–62, 2013.

[11] 大舘陽太, 上原隆平, 小長谷松雄, “Polynomial-Time Algorithms for Subgraph Isomor-
phism in Small Graph Classes of Perfect Graphs”, IPSJ SIG Technical Report, 2013-AL-
147-12, pp. 1-6, 2014/03/03-04.

50

