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Chapter 1

Introduction

For a long time, games have been chosen as one of the testbeds for human intelli-

gence. Chess, for example, has been one of the most prominent games and used to

be a measure of intelligence for both human and computers for a long time. In the

beginning, researches about games mostly focused on how to make a strong com-

puter program, also called AI, and board games such as Chess and Checkers were

the default testbed. As time progresses, computer programs’ strength increased

and surpassed the human champion level in these games. Gomoku was solved in

1993 by Victor Allis [1]. The Checkers program Chinook by Jonathan Schaeffer

was considered to be equal to the World Champion Emeritus Marion Tinsley [2].

Chess champion Garry Kasparov lost to IBM’s Deep Blue in 1997 [3]. And most

recently, Go champion Lee Sedol lost to Google’s AlphaGo in March 20161. In

most of these cases, the strength of computer programs comes from the combi-

nation of human expertise and sheer computational power of computers. Thus,

it is fairly safe to say that in that kind of games, which is two-player zero-sum

deterministic game, the computer will eventually surpass human. However, the

strength of AI in other kinds of games is not so impressive. Video game is an

area where computer programs are still lacking. A huge amount of efforts have

been invested in creating powerful computer programs for many types of video

games. The most famous success might be from Google DeepMind group in Atari

games [4]. They use the Deep Reinforcement Learning technique which allows

the program to train by self-playing. The technique was also employed in Google

AlphaGo and contributed a fair share to its success [5]. However, in the world of

video games, those Atari games are among the simplest ones. Researches in more

1https://deepmind.com/alpha-go
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2 Chapter 1 Introduction

complex games have not enjoyed much successes. There currently are many video

game competitions for computers to support researches. It is a very exciting area

in the game research. In this thesis, we study the problem of real-time fighting

video game.

1.1 Problem Statement

The challenge posed by fighting games is very different from board games. Board

games is typically classified as a two-player zero-sum turn-based deterministic

game. Fighting game is a real-time zero-sum non-deterministic game. The main

difference is the real-time property. The player needs to issue a command to

the character in a very short time frame. Because of this time limit, most tree

search algorithm in board games cannot be applied directly. Therefore, many of

AIs for fighting games are rule-based. Those approaches are fine when building

a playable agent, however, human players can quickly recognize these rules and

exploit them. Because of that, in most popular fighting games in the market, the

mode human versus human is considered real games while human versus computer

AI is considered to be practice sessions.

In this thesis, we aim to build a strong and adaptable AI for a fighting game

testbed called Fighting ICE. Our expectation is to build an AI that can learn

from past matches and adapt to new opponents. To do so, we use Monte-Carlo

Tree Search as the base of our player and support it by Reinforcement Learning.

1.2 Thesis Structure

The thesis consists of 6 chapters. We introduce the background of our problem in

this chapter. In chapter 2, we present a comprehensive view of our testbed, the

Fighting ICE project. In chapter 3, we present related works on our approach,

namely Monte-Carlo Tree Search and Reinforcement Learning. In chapter 4, we

present the detail of our approach in solving the two research questions. In chapter

5, we present and discuss the results of our experiments. Finally, in chapter 6, we

conclude the outcome of this research.



Chapter 2

The Fighting ICE Environment

In this chapter we introduce our game of choice: Fighting ICE. The game has

been developed by the Intelligent Computer Entertainment Lab. (ICE Lab.) from

Ritsumeikan University [6]. It was first introduced in [7] in CIG 2013 and its

competition has been held annually since then.

2.1 Game Details

The game features two characters fighting each other in a two-dimensional arena,

i.e., the character can only move up, down, left or right. We show, in Figure 2.1, a

screen-shot of the game. On the top of the screen, there are the basic information

of players: Hit Point (HP) and Energy. Hit Point is used to calculate the score

of the game. It starts at O and decreases whenever a character gets hit by the

opponent, hence the negative value is seen in the screen-shot. Energy is needed to

perform certain actions, which is gained from hitting the opponent or hit by the

opponent.

There are three kinds of actions:

• Move actions will change the position of a character and while moving, the

character will always face the opponent. Some of the possible movements

are RUN FORWARD, DASH BACKWARD, JUMP FORWARD or JUMP

BACKWARD.

3



4 Chapter 2 The Fighting ICE Environment

Figure 2.1: An in-game screenshot showing the two characters, named ZEN.
The purple flying object is a THROW attack. The number at the top center is

the remaining time as millisecond.

• Attack actions are actions that can damage the opponent (decrease their

HP). Four types of attacks are available: HIGH, MIDDLE, LOW and THROW.

Each type has a different properties, most notably related to GUARD ac-

tions. THROW or projectile attacks have the distinction of being separate

from the user, moving independently in a fixed direction for several seconds.

• Guard actions can block or reduce damage from the opponent’s attacks.

There are 3 types of guard:

– STAND GUARD: block or reduce damage from HIGH and MIDDLE

attacks.

– CROUND GUARD: block or reduce damage from LOW attacks.

– AIR GUARD: block or reduce damage from attack on AIR (i.e. while

jumping).

An attack has 3 phases: STARTUP, ACTIVE and RECOVERY phases. The

STARTUP phase is when the character starts to perform an action, but no damage
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is done to the opponent. The ACTIVE phase is when the opponent can be hit.

The RECOVERY phase is after the ACTIVE phase, before the character returns

to the normal state. Moreover, some attacks have a CANCELABLE phase where

the character can immediately perform another attack without waiting for the

RECOVERY phase to end. Figure 2.2, taken from the official website1 illustrates

these phases.

Figure 2.2: Sample motion data

One round in Fighting ICE last 60 seconds. To simulate a real-time environment,

each second is divided into 60 frames, which means that 1 frame correspond to

16.67ms. At the start of a frame, the game manager will send game information

to both players. In order to execute an action in a frame, a player needs to

decide its action within that frame. Moreover, there is a 15-frame delay in the

information sent, which means that the information that players received is of

15 frames ago. This lag, which mimics the delay of human perception, ensures

that player cannot use simple counter tactics by just choosing an action that can

counter the opponent’s action of the previous frame. The organizer hopes that this

condition will promote more human-like AIs. At the current version, the game has

3 characters: Zen, Garnet and LUD. Each character has different actions as well

as properties such as sizes.

2.2 Competition

The game is featured in Fighting Game AI Competition, organized by ICE Lab.

and hosted by Computational Intelligence & Games (CIG). The competition has

1http://www.ice.ci.ritsumei.ac.jp/ ftgaic/index-2a.html
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been held annually since 2013 and the next competition will be held in September,

2016.

To maintain fairness between different algorithms, some restrictions are imposed.

First, multi-thread processing is prohibited. All players must run on a single CPU.

Second, the memory available is limited to 512MB and limited file I\O. As a result,

simple algorithms cannot run better through the use of multi-threading or using

large precomputed tables. Each player will be given 5 seconds prior to a match

to prepare. A match consists of 3 rounds, each is 60-second long. At the end of a

round, the score for a player will be calculated by the following formula:

opponent′s HP

player′s HP + opponent′s HP
∗ 1000

The player who has a higher score wins the round and the player who wins 2

rounds wins the match.

This year, 2016, submitted AIs must be able to play all three characters in three

leagues. In a league, all AIs will play the same character with others in a round-

robin format. The final result will be based on the results of three leagues. More

detail information on the competition can be found in 2.

2.3 Works on Fighting ICE

Because of the real-time nature of the games, the agent has very limited time,

only less than 17ms to decide an action. The game also has a large state-space

as other games in this category. As a result, common algorithms in board games

cannot be applied directly to the game. In fact, most of agents participated in

the previous competitions are rule-based. The champion of 2015 competition is

Machete, a rule-based agent. It chooses its actions based on several conditions

such as the distance to the opponent, current position or amount of energy.

As a result, it only uses a few very effective actions and wins because it acts faster

than most opponents. The champion of 2014 competition was CodeMonkey which

used Dynamic Scripting [8], a method that utilises the reinforcement learning idea

to dynamically switching the rules on-line. It has more than 20 highly refined rules.

Each rule has a priority given by programmers. At the start of a match, it will

2http://www.ice.ci.ritsumei.ac.jp/ ftgaic/index-3c.html
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choose a small set of rules to use. The action which the highest-priority matched

rule chooses will be used. Every 4 seconds, it will re-estimate the effectiveness of

rules and swap ineffective rules out. The authors reported that it can adapt to a

new opponent in 12-32 seconds.

There are several agents based on machine learning techniques but generally

weaker. For example, MizunoAI [9], an agent from ICE Lab., uses k-nearest

neighbor algorithm together with a simulator to predict the move of the oppo-

nent. From the start of a match, it stores the opponent moves in memory. Then

it simulates the match with the above opponent’s actions and chooses an action

which gives the best result. Later, the improved version, JerryMizuno AI [10], also

incorporates fuzzy control to better deal with the problem of lacking information

about the opponent at the start of a match.

This year, the ICE lab publishes a base MCTS AI for the Fighting ICE competi-

tion. Although the implementation is quite simple, its strength is quite good. We

will discuss more about this player in chapter 4.





Chapter 3

Related Works

In our player, we use a combination of Monte-Carlo Tree Search and Reinforce-

ment Learning. Both methods have been successfully applied to various problems,

especially in game playing. Monte-Carlo Tree Search is currently one of the most

popular topics while Reinforcement Learning have been a long time prominent

learning algorithm. In this chapter, we summarise general information about

Monte-Carlo Tree Search and Reinforcement Learning.

3.1 Game Tree Search

Game tree search is the basic concept in game programming that dated from

1950s by Shannon[11]. Commonly, game tree search is associated with Minimax

algorithm and board games such as Chess. In these board games, there are 2

players that take turn to play. Figure 3.1 illustrates a simple tree in Minimax

framework. In the tree, nodes represents game position and edges represents

moves. Each layer, or ply, in the tree represents a turn for a player. The root node

corresponds to the current game position, from where the search are conducted.

Game positions in children nodes are reachable from the game positions in parent

node represent by the linking edge. Each node associates with a value that are

an estimated number represents the relative advantage between the two players.

A positive number may signify that the current player has an advantage and a

negative number may signify the opponent has an advantage. Thus, a player will

try to gain the most advantage by choosing move that lead to a disadvantage for

the other player. In the Minimax framework, that means the player in the Max

9



10 Chapter 3 Related Works

Figure 3.1: A game tree in Minimax framework. The value of a node in MAX
layer is the maximum value of its children while the value of a node in MIN

layer is the minimum value of its children.

layer will choose move lead to situation with maximum value while the player in

the Min layer will choose move lead to situation with minimum value. The tree

is usually expanded to a given limit and then an evaluation function is used to

estimate the value of the game positions in leaf nodes. The estimated values are

then backup to the root of the tree and a decision can be made upon these values.

3.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a very flexible method in building game

AIs. Monte-Carlo is a term often used to denote simulation-based techniques. In

the early 2000s, Monte-Carlo based methods were successfully applied to games

such as Scrabble [12] and Poker [13]. Since the breakthrough in computer Go

[14][15][16], Monte-Carlo based techniques have become very popular in games

research. Monte-Carlo Tree Search is a game tree search algorithm which uses

Monte-Carlo techniques. The advantage of MCTS is that it relies little on hu-

man. In Minimax tree search, it is essential to have a good evaluation function

which is often resulted from years of human experience on the game. As a result,

in games such as Go, where it is very hard to find a good evaluation function,

Minimax based methods failed to reach professional level. MCTS provides a con-

venient and effective way of estimating an evaluation function. Later in General
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Game Playing, a framework designed to prevent the existing of a strong heuris-

tics or evaluation functions, MCTS quickly became the prominent approach[17].

Recently, the famous AlphaGo [5] also incorporates MCTS.

The concept of MCTS is very simple. MCTS builds a search tree incrementally

by repeatedly runs many iterations. A node in the tree corresponds to a game

situation with the current one is the root node. The game situation in a child node

is usually reachable from the game situation in parent node in some predefined

steps, usually corresponding to a move or action in game. Each iteration to build

the tree in MCTS consists of 4 phases:

• Selection: An urgent leaf node is selected. The selected leaf node is the

result of balancing between exploitation, keep visiting promising nodes, and

exploration, choose nodes that have not been visited frequently.

• Expansion: The selected leaf node is expanded.

• Simulation: A simulation or playout is run from the selected node. A simula-

tion is a sequence of actions, could be choose randomly or by some predefined

distributions, that leads the game situation to the terminal state or a chosen

limit.

• Back-propagation: The result of the simulation is updated backward from

the selected leaf node.

The best move is usually decided by the aggregated result of all iterations. Figure

3.2, taken from [18], illustrates the 4 phases of MCTS.

An important point in MCTS is how to balance between exploitation and explo-

ration. It need to explore new node in order to find better actions while it also

need to exploit known good nodes to gain more confidence in these corresponding

actions. The common way to solve this dilemma is to use UCB1 [19]. UCB stands

for Upper Confidence Bound, a concept from the multi-armed bandit problem, and

UCB1 is the most simple formula to calculate it. Thus, the most common type of

MCTS is call UCT (Upper Confidence Bound applied to Tree) [20]. From a node

n, a selection policy which use UCB1 will choose a child node c which maximizes:

UCB1(c) = R(c) + C ∗

√
ln visit(n)

visit(c)
(3.1)
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Figure 3.2: The four phases of Monte-Carlo Tree Search

In the above equation,R(c) is the average reward of node c. visit(n) is the number

of times node n has been visited. visit(c) is the number of times node c has been

visited. C is a constant to balance between the first term and the second term.

The first one encourages choosing known good nodes, i.e. encourages exploitation.

The second one encourages choosing less visited nodes, i.e. encourages exploration.

Monte-Carlo Tree Search has been applied to real-time games. In Ms Pac Man

vs Ghost, several attempts have been made in using MCTS and some have found

great successes. However, in those attempts, most divides the continuous game

into small discrete steps, such as when a character meets a junction or another

character, and then applies the MCTS to the now discrete game [21] [22]. Tron is

another real-time game where MCTS has been applied. Once again, the game is

conveniently divided into small step and the typical MCTS is applied [23] [24].

3.3 Reinforcement Learning

Reinforcement Learning (RL) is a class of learning methods in which an agent

learns by trial-and-error through interacting with the environment. Its history

dated back to the early days of Artificial Intelligence and has been applied to

creating game AIs many times. The most famous achievement of RL in game

AIs is probably the Checkers program [25] by Samuel and TD-Gammon [26] by

Tesauro. Recently, another huge achievement with RL is [4] and [5] from Google

DeepMind group. Outside of game playing, RL is often applied to Robotics and

Control [27].



Chapter 3 Related Works 13

Figure 3.3: The agent-environment interaction in reinforcement learning

Reinforcement Learning methods are methods that take advantage of some special

properties of Reinforcement Learning problem. In a RL problem, there usually

are a learner, also called an agent, an environment for the agent to interact with

and a goal that the agent needs to achieve. Usually, the goal is to maximize the

expected sum of immediate rewards that the agent can accumulate overtime by

interacting with the environment. Figure 3.3, taken from [28], shows the relation

between components of a RL problem. Here, the agent interacts with environment

in discrete time step t = 0, 1, 2... Formally, we can define a RL problem as:

• A set of states of the environment S

• A set of actions available to the agent A

• A set of scalar rewards, often is real number

The agent need to learn a optimal policy Π = S 7→ A that maximizes the goal.

A RL method can be viewed by how rewards are calculated. There are 3 common

ways [29]:

• Finite horizon model. The agent try to maximize the expected reward in

a fixed limit l: E(
l∑

t=0

rt) . The limit could be time or number of transition

between states.

• Infinite horizon discounted model: the agent try to maximize the ex-

pected reward in unlimited time with rewards in the future have a geomet-

rically discounted factor γ, 0 < γ < 1 : E(
∞∑
t=0

γtrt)
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• Average reward model: the agent try to maximize the average of inter-

mediate reward in unlimited time: limh→∞E( 1
h

h∑
t=0

rt)

Different view of the reward may lead to different policy learned.

A RL method can also be viewed by how it learn the optimal policy.

• The first way is to learn a value function V . A value function could be

the expected long term reward for a state V (s),or a pair of state and ac-

tion V (s, a). Once established, the agent can execute the optimal policy by

choosing the action that lead to state with maximum expected value.

• Another way is to learn the optimal policy directly. The agent may start

with arbitrary policy π. Then, it try to calculate a value function V (s|π)

that results from the policy π and try to improve π by assuming V (s|π) is

the correct value function, as in learning through value function. The above

procedure is repeated until a desired policy is obtained.



Chapter 4

Our Approach

We design our player with 3 goals:

• The player will be able to play competitively in most situations.

• The player will have the ability to improve on its own.

• The player will can quickly adapt to new opponent.

We use Monte-Carlo Tree Search to build a flexible player, which can satisfy the

first goal. We improve the player with Reinforcement Learning to satisfy the

second goal. The third goal is currently left out, we will focus on that in near

future. In this chapter, we describe our player and how the first two goals are

achieved. First, the Monte-Carlo Tree Search module is described. Then, the

Reinforcement Learning and how the two modules work together are presented.

4.1 Real-Time Monte-Carlo Tree Search

This year, the organizer of Fighting ICE competition released a new based AI,

called MctsAi. As the name suggested, it uses Monte-Carlo Tree Search. The new

based AI is decently strong. It can defeat 3 of the top 4 competitors in last year

tournament, losing only to the champion. We have investigated it and seen that

its method is sound. Therefore, we based our player on it. First, we describe the

detail of the base MctsAi. Then, we describe how we improve upon it.

15



16 Chapter 4 Our Approach

Figure 4.1: The search procedure of MctsAi.

4.1.1 MctsAi

In Fighting ICE environment, the convenient method of dividing time into well-

defined steps is not effective. There are more than 30 possible actions for the

player to choose. Each action has different execution times. Thus, it is possible

but very inefficient to do so. In MctsAi, they have to relax the search procedure

because of the above reason. Instead of the common game tree with 2 players, they

build a one-player tree. The root node is still correspond to current game situation.

However, the child node just represents one possible actions from current situation

without concrete game information. A leaf node becomes a sequence of moves of

a player from current game situation. A playout from a leaf node is carried out

as a simulation from current game situation for 60 frames with 2 sequences of

moves. One sequence is the sequence from the root node to current leaf node

with filled random chosen moves to have a predefined length. The sequence for

the opponent is a randomly generated sequence of possible moves of the same

length. Since the playout will not reach end game, the simulated game situation

is evaluated by a simple evaluation function which returns the amount of HP

difference changed from current game situation. Figure 4.1 summarizes the search

procedure of MctsAi.
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Figure 4.2: The search procedure of our player. Improved from MctsAi.

4.1.2 Our Improvements

Our first improvement is a better opponent model. In MctsAi, the opponent

is essentially modeled by a random AI. We think it could be better simply by

mirroring the tree search procedure for the opponent. The new procedure is shown

in Figure 4.2 Our investigation shown that the new player is slightly better than

MctsAi. In a 60 rounds test, the improved MctsAi won 32 rounds vs 28 rounds won

by MctsAi. It also have better records again Machete, the last year champion. Also

in 60 rounds test, MctsAi loss 23-37, while the improved one loss 27-33. The result

is significant enough for us to conclude about the effectiveness of the improvement.

We also believe that it will become even better with the second improvement.

The second improvement is reducing the number of considered moves in a game

state. Without any reduction, for a state, there are about 20 possible moves. For

16ms, we found out that only about 350 simulations can be run. That number

is quite small. We have tried to improve that but it is very hard because of the

limitation of using only a single thread and the high computational cost of using

the simulator. Therefore, to adequately explored a move, the number of considered

moves in a game state must be reduced. Reinforcement Learning is chosen to prune

less promising moves. Details on how we use Reinforcement Learning is presented

in the next section.
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4.2 Reinforcement Learning with Monte-Carlo

Tree Search

The task of our Reinforcement Learning module is to suggest promising moves in

any given states. Our MCTS will only choose from those suggested moves. By

doing so, the moves will be explored more carefully by MCTS and their estimated

values will be more accurate. After that, the estimated values from MCTS will

be used by RL to improve the suggestions. Figure 4.3 summarizes the above

procedure.

Figure 4.3: The design of our player. Reinforcement learning module suggests
moves for Monte-Carlo Tree Search and uses the evaluated values to update.

Our RL learns a state-action value function, which estimates the amount of HP

gained or lost of our player in a small time window, which is experimentally chosen

to be 1s in current implementation. The endgame score is not chosen because the

long time of a match and the large number of actions and states make estimating

endgame score very hard. Also, we think that there is little relation between states

that are several seconds apart in this game.

We represent a game state s as a vector of several chosen features of two players

such as distance, energy, etc. For the purpose of generalization, similar game

states are sorted into a hashed state H(s). Thus, all state-action values of states

with same H(s) is stored together using a look-up table.

To select moves, we rank moves in descending order by UCB1 and select the top

moves. We use a similar formula as in MCTS:

UCB1(m) = R(H(s),m) + C ∗

√
ln visit(H(s))

select(H(s),m)

R(H(s),m) is the average state-action values of moves m in hashed state H(s).

visit(H(s)) is the number of times hashed stateH(s) has been visited. select(H(s),m)

is the number of times move m has been selected by RL in hashed state H(s).
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After evaluated by MCTS, all suggested moves will be updated in the same way

as in MCTS.

select(H(s),m)t+1 = select(H(s),m)t + 1

visit(H(s))t+1 = visit(H(s))t + 1

R(H(s),m)t+1 = R(H(s),m)t +
1

select(H(s),m)
∗ rt+1

Currently, we do not use any real game results, so there are some oversight in the

estimation of MCTS. However, we think that it is not very important. As several

moves are suggested, there are a high chance that a good move is presented to

MCTS. With less moves to considered, the speed and accuracy of MCTS will

be enhanced and RL will benefit from more accurate estimations and multiple

updates.





Chapter 5

Result and Discussion

We have described our player in previous chapter. In this chapter, we report

how we train our player. Then, we compare the performance of our player with

five others and present the results. After that, we discuss about strengths and

weaknesses of our player and future improvements.

5.1 Training

Our player have been trained for 10000 rounds. Currently, it only trained for the

character Zen because of the lack of comparable AIs for other characters. We

choose five opponents for the training: Machete, Jay Bot, Ni1mir4ri, RatioBot

and MctsAI. The first four are the top competitors of the 2015 Fighting ICE

Competition, taken from the competition official website1. The last one, MctsAI,

is the base player for this year competition. Our player repeatedly played with

each of them for 2 matches before changing to the next. Since our reinforcement

learning module only used estimated results from Monte-Carlo Tree Search, our

training method is essentially self-play. Different opponents only help advance the

game to different states. Figure 5.1 shows the change of average score of our player

during the training. It can be seen that our player started at a relatively good

performance with average score of 350 in matches with the others. It is because of

the ability of Monte-Carlo Tree Search. Even when only several randomly chose

moves are nominated for a given state, MCTS can choose the best of them. The

1http://www.ice.ci.ritsumei.ac.jp/ ftgaic/index-R.html
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Figure 5.1: Change of average score of 60 rounds of our player in training
period. The score varies from 0 to 1000.

Machete MctsAi Jay Bot Ni1mir4ri RatioBot Our player
Machete 76 46 59 84 56
MctsAi 44 100 69 90 73
Jay Bot 74 20 16 96 46

Ni1mir4ri 61 51 104 99 56
RatioBot 36 30 24 21 22

Our player 64 47 74 64 98

Table 5.1: Comparing our player and 5 other players. Each plays with another
for 120 rounds. The number on the cell shows the number of times that the
player on the row won the player on the column. Numbers larger than 60 are

marked bold.

score peaks after 6000 rounds. To further improve it, we need to improve on MCTS

and state representation of RL.

5.2 Experiment

We compare our player’s performance with the same 5 players in training. A

player will fight 40 matches or 120 rounds with each other players. The results are

shown on Table 5.1. We can see that, the main difference between our player and

MctsAi is that while our player have better performance against Machete, MctsAi
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has better performance against some others. We can also see the evidence of the

rule-based approach in Machete, Jay Bot, Ni1mir4ri, and RatioBot. RatioBot

is rather weak and lost to all others. Machete lost to Jay Bot and Ni1mir4ri

while having best records against 2 Monte-Carlo Tree Search approaches. Jay Bot

won Machete and Ni1mir4ri won Jay Bot with significantly high scores while lost

to both search approaches. Our observation revealed that, our player has weaker

resistance to projectile attacks than MctsAi and lost many matches because of that

reason. And Jay Bot, Ni1mir4ri and MctsAi all use projectile attacks frequently.

The reason MctsAi frequently uses projectile attacks while our player does not

may attribute to the more random nature of the opponent modelling in MctsAi.

While our player may predict that the attack will not hit, MctsAi may predict

otherwise because the opponent in MctsAi’s perspective acts randomly. Moreover,

these projectile attacks have high damage, consequently, high evaluated values will

be returned by the evaluation function. In our player, that attack may not be

suggested as a good move and, in the long run, the action to dodge that attack

will also not be suggested. On the other hand, the more wins over Machete of

our player are noteworthy. It shows that by limiting the number of considered

moves, Monte-Carlo Tree Search has the potential to overcome strong rule-based

approaches. After the remaining issues are solved, we can expect that our player

can dominantly defeat the others.

5.3 Future Improvements

Having discussed the strengths and weaknesses of our player, we have identified

several point for future improvements. The points in this section are points that

we think most important and have significant impacts on the performance of our

player.

• Parameters tuning. This is a importance aspect in any machine learning

application. In our system, both Monte-Carlo Tree Search and Reinforce-

ment Learning have their own set of parameters. In total, there are about

10 parameters in need of tuning. We have empirically set all of them, but

still, we feel that the chosen parameters are not optimal.

• Better state representation. Currently, we choose a rather simple state

representation. It is because of the limit of time as well as space. This
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limits the refinement of the state and as a result, the refinement of the

suggested actions. Another reason is the lack of generalization in the simple

representation. For example, there are states which are only different by one

variable which has little effect on the chosen action. However, our player does

not know that and treats them totally unrelated. As a result, the learning

speed is reduced. We would like to improve it by a better representation

and we have been working on with a neural network representation which is

expected to resolve both issues above.

• Better in-game adaptation. There are many different opponents and

different play styles. Also, we cannot say there is an optimal way to defeat

all of them. The way we limit our actions to speed up the search also limit

our ability to quickly adapt to new opponents. Hence, this is also a much

need improvement in our player.

• Horizon effect. Because the speed of the simulator is not great, the more

we simulate, the more time it takes for a playout. Our experience shows

that longer simulation time significantly reduce the number of playout per

time frame. As a result, we agree with the 60-frame limit from MctsAi. But

there are many cases where 60 frames is too short. The projectile attacks’

issue discussed in previous section is one of the problems. Because projectile

attacks generally last more than 3 seconds, which is 180 frames. Thus the

chosen limit practically ignore most of projectile attacks that are far away.

This is evident when we watching the AI plays. It seldom uses projectile

attacks unless in close range, and it ignores opponent’s projectile attacks

that are far away and later could not dodge because of the chosen actions.

• Improve Monte-Carlo Tree Search. Monte-Carlo Tree Search is the core

of our player. The strength of our player totally depends on the potential of

MCTS. The purpose of Reinforcement Learning is to improve the speed and

accuracy of MCTS. But, MCTS has certain weaknesses and those weaknesses

still exists in our player. Thus, we need to improve MCTS in order to improve

our player’s strength.



Chapter 6

Conclusion

In this thesis, we have experimented a method of combining Monte-Carlo Tree

Search and Reinforcement Learning in building a fighting game player in Fighting

ICE environment. MCTS is the core of the AI strength. Both the game playing

engine and feedback for RL rely on MCTS. The job of RL is to specify a small

number of promising actions for MCTS, thus increase its accuracy on differenti-

ating the best of those promising actions. The method shown its potential in its

learning capability and improved strength. Although there exists some issues, it

is still stronger than all top 4 AIs from last year competition.

Among the remaining issues, the most urgent one is state representation. We

expect that a better representation as a neural network can solve multiple issues

such as better generalization and finer distinction between states at the same time.

For that reason, it has the top priority in our future works before the next Fighting

ICE competition in this September.

In conclusion, we have shown that the combination of Monte-Carlo Tree Search

and Reinforcement Learning is very suitable for fighting video games. The AI is

more flexible and stronger than commonly used ruled-based approaches. It can

also adapt to new opponents, although at current implementation, the speed of

adaptation is not very fast.
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[20] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.

In European conference on machine learning, pages 282–293. Springer, 2006.

[21] Spyridon Samothrakis, David Robles, and Simon Lucas. Fast approximate

max-n monte carlo tree search for ms pac-man. IEEE Transactions on Com-

putational Intelligence and AI in Games, 3(2):142–154, 2011.



Bibliography 29

[22] Nozomu Ikehata and Takeshi Ito. Monte-carlo tree search in ms. pac-man. In

2011 IEEE Conference on Computational Intelligence and Games (CIG’11),

pages 39–46. IEEE, 2011.

[23] Spyridon Samothrakis, David Robles, and Simon M Lucas. A uct agent for

tron: Initial investigations. In Proceedings of the 2010 IEEE Conference on

Computational Intelligence and Games, pages 365–371. IEEE, 2010.

[24] Niek GP Den Teuling and Mark HM Winands. Monte-carlo tree search for

the simultaneous move game tron. Univ. Maastricht, Netherlands, Tech. Rep,

2011.

[25] Arthur L Samuel. Some studies in machine learning using the game of check-

ers. IBM Journal of research and development, 3(3):210–229, 1959.

[26] Gerald Tesauro. Td-gammon: A self-teaching backgammon program. In

Applications of Neural Networks, pages 267–285. Springer, 1995.

[27] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research, page

0278364913495721, 2013.

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction, volume 1. MIT press Cambridge, 1998.

[29] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-

ment learning: A survey. Journal of artificial intelligence research, 4:237–285,

1996.


	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Structure

	2 The Fighting ICE Environment
	2.1 Game Details
	2.2 Competition
	2.3 Works on Fighting ICE

	3 Related Works
	3.1 Game Tree Search
	3.2 Monte-Carlo Tree Search
	3.3 Reinforcement Learning

	4 Our Approach
	4.1 Real-Time Monte-Carlo Tree Search
	4.1.1 MctsAi
	4.1.2 Our Improvements

	4.2 Reinforcement Learning with Monte-Carlo Tree Search

	5 Result and Discussion
	5.1 Training
	5.2 Experiment
	5.3 Future Improvements

	6 Conclusion
	Bibliography

