
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Information Filtering System with Reliability-

ranked Agents

Author(s) Tran Xuan, Hoang

Citation

Issue Date 2016-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13737

Rights

Description Supervisor:東条　敏, 情報科学研究科, 修士

Master’s Thesis

Information Filtering System with
Reliability-ranked Agents

1410208 Tran Xuan Hoang

Supervisor : Professor Satoshi Tojo
Main Examiner : Professor Satoshi Tojo

Examiners : Associate Professor Minh Le Nguyen
Associate Professor Kiyoaki Shirai

School of Information Science
Japan Advanced Institute of Science and Technology

August 2016

Information Filtering System with
Reliability-ranked Agents

Tran Xuan Hoang (1410208)
School of Information Science

Japan Advanced Institute of Science and Technology

June 29, 2016

Keywords: information filtering, artificial neural networks, probabilistic reasoning,
multi-agent system.

Today, information overload has become a serious problem with the explosive growth
of resources available on the Internet. Web users are commonly overwhelmed by huge
amount of data and are faced with the challenge of finding the most relevant and reliable
information in a timely manner. It is critical to use intelligent software systems to assist
users in finding the right information from an abundance of Web pages. Furthermore, if
researchers can quickly find out, from an article database, appropriate research papers
and/or academic journals which they believe that they should take time to read just by
using intelligent software, their time for searching will be saved.

In order to solve the problem, this research proposes a model of multiple agents in
which they gather data, exchange it together, and be ranked by the process of analyz-
ing reliability using probabilistic reasoning. Belief and reliability among agents will be
changed during the time they interact with each other. The process of ranking and clas-
sifying each agent is able to be trusted or not, therefore, are meaningful since they help
us find out which one we should believe. From that result, important decisions can be
made.

Basically, the significance of this research can be divided into two main points. Firstly,
this research provides us a method of classifying agents as reliable or untrustworthy.
This classification method is a good technique for solving a wide range of problems.
Secondly, a concrete implementation of an information filtering system will demonstrate
the advantages of flexible application of probabilistic reasoning in analyzing the reliability
of agents as well as the application of neural networks in extracting useful information.
Using the system to download and filter webpages and/or articles, all what users see are
articles that really interest him/her. This research will also have a variety of applications
for solving other problems such as predicting game strategies, finding malfunction parts,
analyzing detective stories, etc.

This research aims to obtain two main goals. Firstly, the research aims to find a
method of analyzing reliability of intelligent agents for ranking them when they exchange
information together. In a simple view point, agents are intelligent autonomous computer
programs (software). Autonomous software can be independent of human’s control and
has the ability to make its own decisions while intelligent software includes some quali-
ties that the human mind has, such as the ability to understand language, to recognize
picture, to solve problem and to learn. The second goal of this research is to construct an
information filtering system that contains multiple intelligent agents, ranks them bases on
their reliability and filters out useful data (find out reliable and trustworthy health infor-
mation) gathered and exchanged by them using a combination of statistical probability
and neural networks.

i

Acknowledgements

I would like to acknowledge and thank Professor S. Tojo, Doctor K. Sano and the members
of Tojo-laboratory in the School of Information Science, JAIST that assisted me with this
research. Their continued support, excitement and willingness to provide feedback made
the completion of this research an enjoyable experience.

ii

Contents

Contents iii

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Information Filtering System . 1
1.1.2 Previous Work on Filtering . 1

1.2 Goals . 2
1.3 Thesis Structure . 2

2 Background 3
2.1 Information Filtering and Information Retrieval 3
2.2 Intelligent Agents and Multi-agent Systems 3
2.3 Supervised Learning, Unsupervised Learning and Artificial Neural Networks 4
2.4 Information Filtering in a Nutshell . 5

2.4.1 Vector Space Model . 5
2.4.2 Bayesian Network . 5
2.4.3 Fuzzy Model . 6

3 Proposed System 7
3.1 General Model of the System . 7
3.2 An Example of Agent Network . 9
3.3 Scoring Article’s Interestingness Using Neural Networks 12

3.3.1 Backpropagation Neural Network Approach 12
Vectors of Input Data . 12
Error-Correction Rules . 13
Artificial Neurons . 13
Backpropagation Neural Network (BPNN) 15
Forward Phase . 17
Backward Phase . 17
Number of Hidden Layers . 21
Initialization of Weights . 21
Stopping Criteria . 22
Input Normalization . 22
Summary and Algorithm . 25

3.3.2 Self-Organizing Map Approach . 28
General Model . 28
Detailed Architecture and Algorithm 33

iii

3.4 Ranking Agents . 35
3.4.1 Reliability of Each Agent . 35
3.4.2 Reliability Updating Tables . 37
3.4.3 Trustworthiness of Filtered Information 38

4 Experiments 42
4.1 Generate Datasets for Trainings Agents . 42
4.2 Conduct Experiments with Single Agents 44

5 Conclusions and Future Directions 46
5.1 Conclusions . 46
5.2 Future Work . 46

A Training Datasets 47

B The Information Filtering Application 50

Bibliography 55

iv

List of Tables

1.1 Typical information filtering systems and frameworks 1

2.1 Information filtering versus information retrieval 3

4.1 Training datasets’ sizes . 42
4.2 Experiments with single agents . 44
4.3 Experiments with Okapi BM25 function 45

A.1 List of research areas and corresponding raw keywords used to generate
training datasets . 48

A.2 Keyword lists for generating training datasets 49

v

List of Figures

2.1 Backpropagation neural network and self-organizing map 4

3.1 Proposed model of the information filtering system 7
3.2 An example of the general system model 9
3.3 An example of the general system model - using neural networks to learn

users’ research areas and interests . 10
3.4 Input data for training BPPN . 12
3.5 A neuron in the BPNN . 13
3.6 Example of sigmoid functions with and without threshold 15
3.7 General backpropagation neural networks 16
3.8 Normalizing input vectors . 23
3.9 Normalizing inputs of multiple criteria . 24
3.10 Detailed architecture of the BPNN for scoring articles’ interestingness . . . 26
3.11 General architecture of two-dimensional self-organizing map 28
3.12 Decrease in the size of the neighboring area on SOM 30
3.13 Gaussian function for adjusting weights . 31
3.14 Learning rate function for SOM . 32
3.15 Detailed architecture of the SOM for scoring articles’ interestingness 34
3.16 Agents in two consecutive levels exchange information 35
3.17 Reliability updating table . 37
3.18 An example of the general system model with modified version of reliability

updating tables . 38
3.19 Naive conversion of reliability updating table into conditional probability

table . 38
3.20 An example of the general system model with conditional probability tables 39

4.1 Distributions of input vectors in training datasets 43

5.1 Future research direction on representing the entire multi-agent system of
information filtering by logical formulas . 46

vi

Chapter 1

Introduction

1.1 Motivation

1.1.1 Information Filtering System
Information filtering system appeared as the information or data available on the Internet
became explosive and the web users’ demand on filtering out unnecessary information
while keeping relevant information became huge enough that data scientists started to
conduct the very beginning studies on this topic. Information filtering usually sticks to
user profiles - that is users give the filtering system profiles of descriptions showing their
interests, tastes or preferences on information they expect and the system bases on those
descriptions will gather and select and present to them only information that is seen as
matching and relevant.

1.1.2 Previous Work on Filtering
The following table briefly summarizes some of typical information filtering systems and
frameworks.

Table 1.1: Typical information filtering systems and frameworks. In the Author
column, only one author name is listed for each filter.

Year Filter Motivation Author

1970s SMART Vector Space Model Salton
1977 FRUMP Natural Language DeJong
1985 RUBRIC Probabilistic Logic Cooper
1991 FERRET Genetic Algorithms Mauldin
1995 SIFT Vector Space Model Yan
1996 InRoute Bayesian Network Callan
1997 framework Fuzzy Model Miyamoto

1998 - 2005 LSI Vector Space Model Deerwester
2008 framework Vector Space Model Zimmer
2016 framework Bayesian Linear Bangrui

The above of course does not list all types of information filtering systems and frame-
works that have been studied by scientist community, but in a certain aspect we see the
lack of neural networks in the field of information filtering. In fact, neural networks appear
in some work relating to information retrieval that is very close to information filtering.

1

However, applying neural networks to the field is still an open direction. In this research,
we put one footstep in finding how useful it would be if we apply neural networks in the
information filtering field. In addition, not only neural networks but the paradigm of
ranking agents will also be investigated through this research.

1.2 Goals
This research aims to obtain two main goals

Goal 1: construct single intelligent agents that are capable of scoring articles’ interest-
ingness. Detailed design of a backpropagation neural network and a self-organizing map
neural network for calculate the interestingness must be clearly provided.

Goal 2: define a mechanism of judging reliability of agents when they connect, ex-
change, cooperate and compete in a group. This mechanism must not depend on how
agents act, or in other words it should not be affected by changes to obtain Goal 1.

1.3 Thesis Structure
The thesis is divided into five chapters: Introduction, Background, Proposed System, Ex-
periments and Conclusions and Future Directions.

Chapter 2 introduces and clarifies the very basic concepts that will be used extensively
in the subsequent chapters, and surveys some of the most popular filtering methods.

Chapter 3 describes the general model of the information filtering system as well as
gives a concrete example about the model. Two types of neural network, the backprop-
agation neural network (BPNN) and the self-organizing map (SOM), are explained in
detail, namely their architecture, mathematical foundation, algorithm. These two neural
networks play an important role in the software application developed.

Chapter 4 is about conducting experiments and main finding. The process of gener-
ating training datasets will first be explained, then the comparison with previous method
is shown.

Chapter 5 summarizes main contributions of this research and mentions some future
directions. Appendix A describing the training datasets and Appendix B giving a short
introduction to the software application developed are located at the end of the thesis.

2

Chapter 2

Background
In this chapter, basic concepts that are used throughout this thesis are explained. We do
not deepen our understanding on these concepts but clarify them briefly so that reading
the next chapters of the thesis will be easier. A brief summary of popular methods of
information filtering will be explained at the end of this chapter.

2.1 Information Filtering and Information Retrieval
Information filtering and information retrieval are terminologies usually applied in con-
nection with text information. Although both tasks have some common goals of obtaining
the right information, they are however different in some aspects that are summarized as
the following table

Table 2.1: Information filtering versus information retrieval.

Information Filtering Information Retrieval

Purpose Filter out irrelevant data, recom-
mend users only information that
is relevant to them

Selecting relevant information
from database(s) for users’
queries

Based on Descriptions of individual or
group preferences, often called
profiles

Sentence(s) describing in the
form of questions, often called
queries

In short, information filtering is about processing a stream of coming information
to match users’ set of likes, tastes and preferences while information retrieval is about
answering immediate queries from a library of available information. In this thesis we are
dealing with information filtering problem.

2.2 Intelligent Agents and Multi-agent Systems
In this thesis, we use the term intelligent agents to refer to intelligent computer programs
that are able to filter information. The computer programs can run independently or co-
operate and compete in a group. If one of these computer programs runs independently,
it is called a single agent. In the case a group of computer programs connect in a net-
work, exchange data together with the common goal of presenting relevant information to
users, they form a multi-agent system. Cooperating helps the agent system enhances the
diversity of information sources gathered, while competing actively promotes the agents’
accuracy and reliability.

3

2.3 Supervised Learning, Unsupervised Learning and
Artificial Neural Networks

In supervised learning, the agent learns from a set of given training datasets

T = {(e, elabel)|e ∈ a set of sampling examples}

so that when it receives a new example enew that is not specified label yet, it will be able
to find an example e0 ∈ T that is the most similar with enew and labels the new example
as e0

label.

In contrast to supervised learning, in unsupervised learning the agent is provided with
an unlabeled set of sampling examples

U = {e},

and tries to detect potentially useful clusters of these sampling examples. When the agent
receives a new example enew, it will use the trained knowledge to cluster the new example
into one of groups of sampling examples to which enew is mostly similar.

Artificial neural networks have been applied in a variety of science areas ranging from
image or speech recognition to gene prediction and cancer classification. They are inspired
by research on neural cells’ sensory processing in human brains. An artificial neural
network normally simulates the network of human brain neurons in a computer and is
trained by algorithms that imitate the sensory processing so that it can learn to solve many
types of problems [14]. Backpropagation and self-organizing map are the two network
types that will be investigated in this thesis. The former as illustrated on the left hand
side in fig. 2.1 is trained by a supervised learning algorithm in which all the weights are
initialized to small random values. For each sampling example e, the network returns an
output ereal. The squared difference between ereal and elabel is then computed. The sum
of all these numbers over all sampling examples is called the total error. The smaller the
total error is, the more accurate the network is. Therefore, this total error is propagated
backward through the network to adjust the weights so that it will gradually become
smaller. The self-organizing map as depicted on the right hand side is trained by an

. . . .

0.71
0.8

0.5

0.45

0.25
0.05

0.6

interesting

not interesting

. . . .

. . . .

0.75
0.3

0.25

0.8

0.01

0.7

0.01

0.7
0.9

0.05
0.4

0.3

a bit interesting

almost not interesting

Figure 2.1: Backpropagation neural network and self-organizing map. Circles are
neurons. Arrow and dashed lines are links between neurons, numeric values are
weights associated with links.

unsupervised learning algorithm in which weights are adjusted so that similar sampling
examples will be mapped onto nearby neurons that form a sub-map.

4

2.4 Information Filtering in a Nutshell
In this section, we survey some popular methods which has been widely studied and
proved as the most successful filtering paradigms.

2.4.1 Vector Space Model
Salton in [25] proposed the vector space model (SVM) that was originally applied in infor-
mation retrieval. The SVM after that was applied in information filtering task and have
become the most popular method in both textual information retrieval and information
filtering. In the SVM, each document di (may be seen as a piece of information) and
the query q for searching the most relevant (may be considered as useful or interesting)
document are represented in the form of vectors

di = [wi1, wi2, . . . , wiN]
q = [wq1, wq2, . . . , wqM]

where win is the weight of term (keyword or single word) nth in document di and wqm
is the weight of term (keyword or single word) mth in the query q. The idea is that q
is now considered as a very short document and the two vectors are normalized to have
the same size so that the set of documents di and the query q can be evaluated in the
same multiple-dimensional space. The cosine similarity between the query vector and a
document vector become the measure of score of the document for that query

score(di,q) = cos(di,q) = di · q
‖di‖‖q‖

where the nominator is the dot product of two vectors, and ‖.‖ is the vector length
operator. The higher the cosine value is, the more similar the document and the query
are. Therefore, in order to filter out a set of highly relevant documents, we compute the
cosine similarities between the query vector and each document vector in the collection,
sorting the resulting scores and selecting the top-score documents.

The SVM is effective if the length of the documents and the document collection’s size
are small because with a large document, the dot production the the document vector and
the query vector may require ten of thousands of arithmetic operations - that makes the
SVM become not reasonable for the filtering task. To overcome this problem, Deerwester
et al. in [6] proposed a method called latent semantic indexing in which both the document
and query vectors are casted into lower-rank (smaller size) vectors enabling us to compute
the similarity score with reasonable cost but still ensure accuracy.

2.4.2 Bayesian Network
The basic idea of using Bayesian network in filtering information is that the nodes of
the network may represent topics and beliefs suggests what information is placed at a
certain node. Degree of beliefs combining with the inference rule of the network provides
a systematic mechanism of selecting information related to a particular topic. Callan is
one of pioneers on this direction with the work of high speed document filtering by using
inference networks [5]. He constructed the InRoute document filtering system that com-
putes the degree of belief belterm(t) on how much each term t in a document contributes
into the relevant between the document and the user’s keyword profile using the term

5

frequency-inverse document frequency tf -idf defined as follows

belterm(t) = 0.4 + 0.6 · ntf · idf

ntf = 0.4 + 0.6 · tf

tf + 0.5 + 1.5 · dl

avgdl

idf =
log

(
C + 0.5
df

)
log(C + 10)

where
tf is the frequency of term t in the document,
dl is the document legnth,
avgdl is the average document length in the document set,
C is the number of documents in the document set, and
df is the number of documents in which term t appears.

2.4.3 Fuzzy Model
The idea of using fuzzy model in filtering information was proposed by Miyamoto as he
extended it from his original idea of using fuzzy set theory to design a common framework
for information retrieval [19, 20]. The information filtering systems in practice usually
have to consider more than one criterion when gather and filter information. In such case,
one mathematical model is not sufficient to deal with the accuracy of evaluating these
criteria. Since fuzzy logic and fuzzy set theory provide us a general method to tackle this
accuracy keeping problem, it is natural to apply them into the filtering task. Representing
text in the form of fuzzy linguistic variables is also a flexible way to compute its similarity
or relevant with respect to user’s profile.

6

Chapter 3

Proposed System

In this chapter, we start with the main design for the framework of filtering information
using neural networks and probabilistic reasoning.

3.1 General Model of the System
The information filtering system proposed in this thesis contains a set of agents cooper-
ating in a network as in fig. 3.1. Recall that, in this thesis information is understood as
research articles, and our agent-based system performs the task of filtering information
means it will collect and present only the articles that the user may find highly interesting
or useful.

𝐴𝑔𝑒𝑛𝑡 0

𝐴𝑔𝑒𝑛𝑡 1. 𝑛 𝐴𝑔𝑒𝑛𝑡 1.2 𝐴𝑔𝑒𝑛𝑡 1.1

Sub-network 1

Internet
PC

Sub-network 2

Internet
PC

Sub-network 𝑛

Internet
PC

Rank Agent

1 𝐴𝑔𝑒𝑛𝑡 1. 𝑛

...

𝑖 𝐴𝑔𝑒𝑛𝑡 1.1

...

𝑛 𝐴𝑔𝑒𝑛𝑡 1.2

Figure 3.1: Proposed model of the information filtering system. Connecting in a
tree-structured network, lower level agents send (represented as blue dashed arrows)
their list of keywords that specify what kind of articles they want to search to higher
level agents. Leaf-node agents gather (represented as dark red arrows) articles from
the Internet or personal computers (PCs), the other non-leaf-node agents receive
(represented as black dotted arrows) articles from their higher level agents that have
been receiving keywords directly from them. Each lower level agent, after receiving
articles from higher level agents using its own knowledge, will score those articles
again to retrieve only the ones that have high interestingness and usefulness, and
rank the sending agents in reliability of providing high score articles (i.e. Agent 0
may rank the higher level agents and creates a ranking table as above).

7

In order to suggest the user which articles are interesting and useful, we proposed the
model of agent system (fig. 3.1 page 7) which conducts the following steps:

1. Agent 0 first sends (picturized as blue dashed arrows) a list of keywords given by user
to all agents (Agent 1.1, Agent 1.2, ..., Agent 1.n) at the higher nodes specifying
what research article topics she wants to find.

2. After receiving the list of keywords from Agent 0, Agent 1.1 in Sub-network 1 may
add extra keywords based on its knowledge, then sends the extended list of keywords
to all higher level agents that connect directly to it. If there is no other agent
connecting to Agent 1.1, she becomes a leaf-node agent (agent who does not send
keywords to any other agents). Agent 1.2, ..., Agent 1.n perform the same task as
Agent 1.1 in Sub-network 2, ..., Sub-network n, respectively.

3. The receive-add-and-send-keyword process in step 2 propagates upward until it
reaches agents at the leaf nodes of the tree-structured network.

4. Each leaf-node agent gathers (illustrated as dark red arrows) articles from the In-
ternet or from the personal computer that she runs on, then uses its own knowledge
to select only articles that are in its interests and could be interesting and useful
with respect to the lower level agents as well.

5. Each non-leaf-node agent receives (illustrated as black dotted arrows) articles from
all higher level agents that received keywords directly from it, then scores again
those articles based on its knowledge and selects only the highly-scored ones to send
to the agent in the lower level.

6. The receive-score-select-and-send-article process in step 5 propagates downward un-
til it reaches Agent 0 at the root node. Agent 0 finally selects a set of articles that
were considered as highly interesting at the higher level agents and at Agent 0 itself
to recommend the user that those articles are worth reading.

7. All agents in the network will continue to exchange keywords and articles as in
steps 2 and 5 asynchronously - that is, for example, not all agents in the same level
receive articles or keywords from other agents at the same time, the numbers of
times two higher level agents send articles to the same lower level agent are not
necessary to be equal. While the articles are being exchanged between agents, each
agent in the lower level ranks the agents in the higher level that directly send article
to it and creates a table representing reliability degrees of these higher level agents
based on their numbers of sent articles that are highly scored as interesting by
the lower level agent. For example, Agent 0 after checking how many articles sent
from Agent 1.1, Agent 1.2, ..., Agent 1.n are evaluated as interesting will create a
reliability updating table similar to the one in the bottom right corner of fig. 3.1.
The reliability updating tables will be used as a basic of selecting articles from and
providing feedback for the higher level agents.

Each agent in the network may operate entirely automatically or semi-automatically in
case she is controlled and utilized by a user. Because users may have different interests in
reading research articles, each agent in the network is designed to has one neural network
for capturing its user’s preferences. Our network of agents becomes a system retrieving
articles that are in the common interest of a majority of agents. If all agents in the
network are possessed, used and updated by users, a network of exchanging and filtering
research papers for researcher will be formed.

8

3.2 An Example of Agent Network
In this section, a concrete example will be introduced with the purpose of making the
general model introduced in the previous section easier to understand. Imagine six re-
searchers major in six research areas as in fig. 3.2:

• Logic
• Public announcement logic
• Dynamic epistemic logic
• Dynamic logic
• Machine learning
• Information filtering system with reliability-ranked agents

that share some common knowledge but are perspectively different. Each researcher
trains one agent so that it can recognize the researcher’s interests in his/her expertise
area. Researchers will exchange research articles together by means of these agents as
support tool of scoring and filtering gathered articles.

𝐴𝑔𝑒𝑛𝑡 0

𝐴𝑔𝑒𝑛𝑡 1

𝐴𝑔𝑒𝑛𝑡 4

𝐴𝑔𝑒𝑛𝑡 2

𝐴𝑔𝑒𝑛𝑡 3

𝐴𝑔𝑒𝑛𝑡 5
Internet

PC

Internet
PC

Internet
PC

Public
announcement
logic

Machine
learning

Dynamic
epistemic logic

Logic

Dynamic logic

Information filtering
system with reliability-
ranked agents

[probabilistic public
announcement logic,
classification, learning]

[classification,
learning, neural
network]

[probabilistic public
announcement logic]

[probabilistic public
announcement logic]

[probabilistic public
announcement logic,
epistemic logic]

[probabilistic public
announcement logic,
epistemic logic,
probabilistic reasoning]

Rank Agent Reliability

1 𝐴𝑔𝑒𝑛𝑡 1 0

2 𝐴𝑔𝑒𝑛𝑡 2 0

Rank Agent Reliability

1 𝐴𝑔𝑒𝑛𝑡 3 0

2 𝐴𝑔𝑒𝑛𝑡 4 0

Rank Agent Reliability

1 𝐴𝑔𝑒𝑛𝑡 5 0

Figure 3.2: An example of the general system model. Six agents specializing in
6 research areas exchange information in a network. Starting from Agent 0, a list
of keywords is sent upward through all branches to agents in the higher level at
which the list of keywords may be preserved or modified so that each receiver agent
will keep only keywords that are familiar and meaningful in its research area. The
keyword list is propagated until it reaches leaf node agents. Initially, the reliability
of higher level agents are set to 0 since no article has been sent. Six humanoid
icons represent six researchers who use six agents as support tool in filtering and
exchanging articles.

Root node Agent 0, as starting point, sends a list of keywords1 to its child nodes
Agent 1 and Agent 2, asking them to provide interesting articles relating to probabilistic

1the list of keywords given by Agent 0’s user (the researcher who utilizes it)

9

public announcement logic, classification and learning. After receiving these keywords from
Agent 0, Agent 1 eliminates the two classification and learning that are not typical rep-
resentative keywords in it research area dynamic logic, while Agent 2 removes keywords
probabilistic public announcement logic with the same reason and adds an extra keyword
neural network into the list. Agent 1 then sends the modified list of keywords to the higher
level Agent 3 and Agent 4 whereas Agent 2 does not because it is already at a leaf node
of the tree-structured network. In the higher layer, Agent 3 preserves the list of keywords
received from Agent 1, Agent 4 adds one extra keyword epistemic logic into the list and
sends it to Agent 5 that in turn adds an additional keyword probabilistic reasoning.

Thus far, each agent has acquired a new list of keywords. Before explaining the role
of the new keyword list, let us take an overview of how to train an agent so that it can
capture what its owner’s interests in his/her research area are. Each agent is provided:

• a default profile of keywords expressing the research area and main research interests,
• and a database of training data that contains a set of articles considered as highly

interesting and relating to the research area
of the researcher who uses it. The agent then trains its neural network using the above two
items as input (details of training agent’s neural network will be discussed later). When
the agent obtained a new list of keywords, it may add these keywords to the default profile
of keywords if the enlarged profile is consistent with its user’s habit. For leaf node agents,
the new list of keywords will also be used for searching articles on the Internet.

Rank Agent Reliability

1 𝐴𝑔𝑒𝑛𝑡 2 0.8

2 𝐴𝑔𝑒𝑛𝑡 1 0.75

Rank Agent Reliability

1 𝐴𝑔𝑒𝑛𝑡 3 0.7

2 𝐴𝑔𝑒𝑛𝑡 4 0.5

Rank Agent Reliability

1 𝐴𝑔𝑒𝑛𝑡 5 0.6

𝐴𝑔𝑒𝑛𝑡 0

𝐴𝑔𝑒𝑛𝑡 1

𝐴𝑔𝑒𝑛𝑡 4

𝐴𝑔𝑒𝑛𝑡 2

𝐴𝑔𝑒𝑛𝑡 3

𝐴𝑔𝑒𝑛𝑡 5
Internet

PC

Internet
PC

Internet
PC

Public
announcement
logic

Machine
learning

Dynamic
epistemic logic

Logic

Dynamic logic

Information filtering
system with reliability-
ranked agents

Figure 3.3: An example of the general system model - using neural networks to
learn users’ research areas and interests. Each agent in the example model (intro-
duced in fig. 3.2) has its own neural network for capturing the research area of its
user. Trained neural networks are used to calculate how much a newly loaded article
is interesting or related to their users. Reliability that expresses the quality of being
trustworthy of sending agents is updated correspondingly.

10

Figure 3.3 shows agents’ utilization of neural networks in learning their users’ expertise.
Possessing a separate neural network, each agent will independently be able to acquire,
update and modify its knowledge about the range of reading interest of its user. For
example, Agent 5 may add the new list of keywords received from Agent 4 (see fig. 3.2)
and uses the modified profile of keywords that mainly describes its user’s reading interest
about logic as well as probabilistic public announcement logic, epistemic logic and probabilistic
reasoning to create its new neural network. This new network then learns its user’s
interest based on the given training article database. While agents are exchanging articles
together, the reliability updating tables are updated so that agents that are more effective
and accurate will be assigned higher reliability and vice versa. Reliability ranking results
will be sent as feedback to successively higher level agents with the purpose of encouraging
them to improve their accuracy in selecting and sending articles.

11

3.3 Scoring Article’s Interestingness Using Neural Net-
works

In this section, we will discuss about two types of neural networks
• Backpropagation Neural Network (BPNN),
• and Self-Organizing Map (SOM)

that are used in this thesis to calculate how interesting articles downloaded from the
Internet or loaded from personal computer are. BPNNs are different from SOMs in the
perspective that they apply supervised learning paradigm for training step. This thesis
however also introduces the SOMs, that are artificial neural networks using unsupervised
learning, with the main purpose of demonstrating compatibility of the general model
proposed in the previous section - our model of information filtering does not depend on
type of neural networks with different learning rules in the training step.

3.3.1 Backpropagation Neural Network Approach
Vectors of Input Data

In construction of a BPNN for capturing a user’s research interests, the first step is to
design input patterns (we will call them as vectors of input data from now on) for the
network.

[𝑘1, 𝑘2, … , 𝑘𝑛]
𝐴𝑔𝑒𝑛𝑡 𝑋

Training Database
of Articles

𝐼 𝑎 ∈ [0, 1]

. . . .

. . . .

[𝐾1, 𝐾2, … , 𝐾𝑚]

𝑓𝑎(𝐾1)

. . .

𝑓𝑎(𝐾2)

𝑓𝑎(𝐾𝑚)

𝑓𝑎(𝑘1)

. . .

𝑓𝑎(𝑘2)

𝑓𝑎(𝑘𝑛)

An articles 𝑎

Figure 3.4: Input data for training BPNN. [k1, k2, . . . , kn] is the list of n keywords
received from lower level agent. [K1,K2, . . . ,Km] is the profile of m keywords dis-
cribing its user’s research area (see fig. 3.2 for a concrete example). fa(ki) and I(a)
are the frequency of keyword ki, and a value in the interval [0, 1] that expresses the
degree of interestingness of an article a, respectively.

Figure 3.4 shows structure of each vector of input data that is used for training the
BPNN of an arbitrary Agent X in the agent network. Structure of the vector is strictly
related to the structure of the BPNN. In this thesis, each input vector is a one-dimensional
array which contains frequencies of keywords in the list received from other agent and
the profile given by the user [fa(k1), fa(k2), . . . , fa(kn), fa(K1), fa(K2), . . . , fa(Km)]. The
number of neurons in the input layer of the BPNN (details of the BPNN will be discussed

12

in the next subsections) is equal to the size of the input vector (n+m). For each article
a in the training database given by the user, one input vector of keyword frequencies
is created and presented to the BPNN. In addition, the article’s interestingness I(a) is
also necessary during the training step because BPNN uses supervised learning. I(a) is
subjectively evaluated by the user based on his/her preferences in reading research papers.

Error-Correction Rules

Given a vector of frequencies F (a) = [fa(k1), fa(k2), . . . , fa(kn), fa(K1), fa(K2), . . . , fa(Km)]
and I(a) for each article a in the training database, the supervised-learning BPNN will
be trained using the error-correction rules so that the trained BPNN will return the ac-
tual interestingness I ′(a) that is approximately equal to the desired one I(a). Essentially,
the key principle of error-correction rules during the learning process is to calculate the
difference2 (I ′(a) − I(a)) to modify the BPNN’s internal parameters so that this differ-
ence will be gradually reduced. Because this difference describes how biased the actually
calculated interestingness I ′(a) is in relative to the desired interestingness I(a), reducing
it by updating the network’s inside parameters means we adjust these parameters to ob-
tain an updated network that returns the interestingness all most equal to what the user
predetermined.

Artificial Neurons

Each artificial neural network consists of a set of artificial neurons (or units) whose com-
putational model was inspired by research on human brain’s nerve net and neuron.

𝑥1

𝑥2

𝑥𝑛

𝑦𝑗

𝑤1𝑗

𝑤2𝑗

𝑤𝑛𝑗

A Neuron 𝑗

Figure 3.5: A neuron in the BPNN. x1, x2, . . . , xn are inputs, w1j , w2j , . . . , wnj are
the weights of the input signals and yj is output of each neuron j.

A typical neuron j, as illustrated in fig. 3.5, has n inputs x1, x2, . . . , xn and n links
connecting from other neurons to it. These links are correspondingly assigned with n
weights3 w1j, w2j, . . . , wnj ∈ R. The total input Xj of a unit j is a linear summation
function of multiplications between the inputs xi and the weights wij on these links

Xj =
n∑
i=1

xiwij (3.1)

Each neuron j has a real valued output yj. In this thesis, the standard sigmoid function
of the total input Xj is chosen to calculate yj

yj(Xj) = 1
1 + e−Xj

(3.2)

2difference between the actually returned output and the desired output is also called the error signal
3weights are also used to refer to internal parameters in the Error-Correction Rules

13

It is not necessary to use exactly the functions given in equations (3.1) and (3.2) for the
computational model of sigmoid neurons in BPNN. Linearly combining the inputs to a
neuron before using the nonlinear function on its output however significantly reduces
the complexity of the learning process [24]. In addition, two main reasons for using the
sigmoid function to calculate the output are:

1. The sigmoid function in eq. (3.2) has the property similar to the input-output rela-
tionships of biological neurons that our artificial neurons try to stimulate. Specifi-
cally, biological neurons map their electric input signals onto {0, 1}: 0 for the case
the voltage exists, 1 for the opposite case. This mapping is normally called the sign
function. Since

lim
Xj→−∞

yj(Xj) = 0, lim
Xj→+∞

yj(Xj) = 1,

yj(Xj) that maps its inputs into the interval (0, 1) can be seen as a smoothed version
of the sign function [1].

2. The derivative of yj with respect to Xj can be represented by itself

dyj
dXj

=
(1

1 + e−Xj

)′

= 1′(1 + e−Xj)− (1 + e−Xj)′

(1 + e−Xj)2

= e−Xj

(1 + e−Xj)2

= 1 + e−Xj

(1 + e−Xj)2 −
1

(1 + e−Xj)2

= 1
1 + e−Xj

− 1
(1 + e−Xj)2

= yj − y2
j

= yj(1− yj). (3.3)

Even if the sigmoid function is the general version with a slope degree coefficient β

σ(x) = 1
1 + e−βx

,

dσ(x)/dx can still be represented by just using σ(x), namely −βσ(x)(1 − σ(x)).
During the learning process of the BPNN, it is proved that the derivatives dyj/dXj

are helpful for updating weights assigned to links between neurons [24], and as the
above eq. (3.3) shows we now know that dyj/dXj can be calculated directly from
yj without requiring extra memories, weights therefore can be adjusted without
the necessary of a large amount of memories (note that there may be thousands of
weights need to be adjusted for each training pass of the BPNN, that may lead to
memory shortage for training process).

Normally, a threshold θj = x0 is added to the weighted sum in eq. (3.1) as a way of shifting
the graph of output yj(Xj) horizontally by θj units of length on the two-dimensional
Cartesian coordinate plane:

Xj =
(

n∑
i=1

xiwij

)
+ θj =

(
n∑
i=1

xiwij

)
+ x0w0j =

n∑
i=0

xiwij =
∑
i

xiwij, (3.4)

14

where w0j = 1.

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2

0.
5

Figure 3.6: Example of sigmoid functions with and without threshold. The red
curve is the graph of function σ1(x) = 1/(1 + e−x), and the blue curve graphically
expresses function σ2(x) = 1/(1 + e−(x+2)). Threshold θ = 2 is the units of length
we need to shift the red curve left to obtain the blue one.

Adding θj to the parameter Xj of the standard sigmoid function (3.2) allows us to
adjust the range of Xj in which the function output is greater than or equal to a constant
and vice versa. If the linear weighted sum Xj = ∑n

i=1 xiwij is much greater than −θj, the
output of yj(Xj + θj) is asymptotic to 1; if Xj is much less than −θj, yj(Xj + θj) will
approach to 0; and if it is extremely close to −θj, yj(Xj + θj) is close to 0.5. Figure 3.6
clearly illustrates the range of parameter x is changed by −2 for σ2(x) to attain the same
outputs that are equal to σ1(x), namely σ2(x− 2) = σ1(x). Generally speaking, the role
of θj in the sigmoid function is to tune the neuron’s output range dynamically without
considering the method used to calculate the total input.

Warren McCulloch and Walter Pitts proposed the first artificial neuron with the lin-
ear threshold computation model in which the total input is also the weighted sum of the
inputs, but the output is calculated by a logic function that returns 0 or 1 and is applied
to construct neural networks that did not perform learning process [18, 26]. However,
networks of such kind of neurons cannot be trained if they have more than one layer,
as needed to tackle even some simple problems [27]. The general classes of problems
therefore would probably not be solved by using the computational model introduced by
McCulloch and Pitts as they require training multiple-layer networks.

We have specified the detailed structure and computational model for linear sigmoid
neurons that we will call them as linear sigmoid units (or units for short). The sig-
moid function and the output are also called activation function and activation value (or
activation for short), respectively. In the next subsection details of the BPNN will be
explained.

Backpropagation Neural Network (BPNN)

In this subsection, we first describe the general architecture of BPNNs and their learning
mechanism. Understanding the general network will help us to gain an accurate and
deep intuitive understanding of the BPNN. We then point out how it can be applied for
calculating articles’ interestingness. All reasons for why the sigmoid function is used as

15

activation function of each unit will be gradually obvious when the network’s learning
process is explained.

Three main basic features of a general BPNN are as follows:
• The computational model of each unit in the network includes a nonlinear activation

function that is differentiable4.
• The network consists of one input layer, one output layer and one or more layers

that are in between both the input and output ones but hidden from (invisible to)
the outside world.

• Connections of units in between layers are assigned with weights that are all adjusted
during the learning process (training step).

Hidden Layers Output Layer Input Layer
. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Figure 3.7: General backpropagation neural networks. Each neural network may
have one or more hidden layers. Units (neurons) in between layers are fully connected
by links showing flow of processing input data that we call it as forward pass, from
left to right and layer-by-layer order.

Figure 3.7 depicts the general architecture of BPNNs. Conventionally, each BPNN
has (i) one input layer in which the number of units is equal to the size of input data
vector, (ii) one output layer in which the number of units depends on how output data is
interpreted, e.g. if the output data is a vector of binary numbers (network is trained so
that each unit in the output layer will return values that are approximate to 0 or 1) that
encode 8 natural numbers 0, 1, . . . , 7, then the output layer will need log2 8 = 3 units,
(iii) one or more hidden layers. The number of hidden layers and number of units in each
layer will be explained later.

The units in hidden layers play the role of detecting features of inputs, and so are
important in operation of the BPNN. As the learning process (training step) progresses
across the BPNN, the hidden units gradually discover the main features that characterize
the training data. These discoveries is made by applying a nonlinear transformation (e.g.
the sigmoid activation function) on the input data (e.g. the total input) into a new space

4A real function is said to be differentiable at a point if its derivative exists at that point. The
derivative of a function f(x) with respect to the variable x is defined as

f
′
(x) = lim

α→0

f(x+ α)− f(x)
α

.

If the above limit exists for all x ∈ R, then f(x) is said to be differentiable.

16

where the elements (e.g. output values) in this space are more easily separated into classes
than could be in the original space [8].

The main purpose in training the BPNN is to find a set of weights assigned to links
in the network so that each time an input vector is presented to the input layer, the
output layer will return an output vector that is the same as or sufficiently close to
the predetermined vector (the desired vector). The training process that uses the error-
correction rule is divided into two phases:

1. Forward phase: the total input of each unit is computed based on inputs received
from units in the left-hand-side adjacent layers, then the activation value is calcu-
lated using the sigmoid function. All activation values of units in the same layer are
then simultaneously propagated as inputs to all units in the right-hand-side succes-
sive layer. This propagation process continues until it reaches the output layer. In
the forward phase, the links’ weights are not modified.

2. Backward phase: an error signal is first calculated by comparing the output of
the network with a desired response.The resulting error signal is then propagated
through the network, again layer by layer, but this time the propagation is per-
formed in the backward direction (from the output layer back to the input layer).
When an unit receives error signals from all other units in the successive layer, all
weights connecting between these units are updated. In this second phase, weight
adjustments are the main task.

Suppose the training data set for the learning process is

T = {(xk,dk)}Kk=1

where

K is the number of pairs of input xk and desired output dk for training,
xk = (xk1, xk2, . . . , xkM) and M is the size of the input layer,
dk = (dk1, dk2, . . . , dkN) and N is the size of the output layer.

Forward Phase

In the forward phase, input vectors xk are presented to the input layer. Note that units
in the input layer are merely set up values received from input vector but do not apply
the sigmoid function to calculate activation value. For each unit j in the hidden layer or
output layer, it total input Xj is calculated using eq. (3.4)

Xj =
∑
i

yiwij, (3.5)

where yi is the activation (output) of unit i in the immediately preceding layer that
directly connects to j. The activation value of j is computed using eq. (3.2).

Backward Phase

Let yk = (yk1, yk2, . . . , ykN) be the actual output vector returned by the output layer
when the input vector xk is presented to the network and the forward phase has finished

17

propagating activation values until the output layer. The error signal at the jth unit in
the output layer, that is produced when the network receives xk as input, is defined by

ekj = dkj − ykj (3.6)

For each actual output yk, the cumulative error Ek occurred at all units in the output
layer is the sum of their error signals. Furthermore, to evaluate the cumulative error,
avoiding positive and negative error signals eliminate each other is important. We do so
by defining the cumulative error as the sum of squared error signals

Ek = 1
2

N∑
j=1

e2
kj = 1

2

N∑
j=1

(dkj − ykj)2, (3.7)

where the scaling factor 1/2 is multiplied to simplify mathematical calculations in subse-
quent analysis that will be clear shortly.

Since the training data set T includes finite K pairs of input-output vectors, the av-
erage error Eav and the total error, E, appear over these training pairs is defined as
follows

Eav = 1
K

K∑
k=1

Ek = 1
2K

K∑
k=1

N∑
j=1

(dkj − ykj)2, (3.8)

E =
K∑
k=1

Ek = 1
2

K∑
k=1

N∑
j=1

(dkj − ykj)2. (3.9)

The learning process here uses error-correction rules, thus the main task now is how to
minimize the total error E. Naturally, desired outputs dkj are given in T and actual
outputs ykj are functions of adjustable weights of the network’s internal links, so what we
need to archive is to find a mechanism that allows us to modify these weights systemat-
ically so that the total error E will be as minimal as possible. There are two strategies
for the weight modification: adjusting weights after each input is fetched to the network
that is known as on-line learning, and adjusting weights after the whole inputs in T are
passed through the network that is named as batch learning.

The on-line learning method changes the weights of the network on an example-by-
example basis. Therefore, the cumulative error Ek becomes the function to be minimized.
This learning method is

• faster than the batch learning [10],
• able to handle large training data set and redundancy in data and avoids the need

to store an accumulated weight change [28].
However, a major concern with on-line learning is that the accuracy of weights after the
network is trained is usually lower than batch learning, or in other words, the knowledge
inside the trained network is not optimal [10].

The batch learning, as its name suggests, changes the weights after all of K training
examples in T are presented to the network. Thus, the average error Eav or the total
error E is the function to be minimized during the training step. The main advantages
of batch learning are

• parallelization of the learning process,
• accurate estimation of the derivative of the total error function E with respect to the

weights. This is important in adjusting weights with minimal biases, hence forming

18

an optimize knowledge base in the network structure.
The batch learning is appropriate when the training data set T is sufficiently representa-
tive of the knowledge that will be trained to the network [10, 17].

In this thesis, we suppose that each agent is given a training database T at the be-
ginning and T contains a large enough number of examples expressing the knowledge
that will be trained to the agent’s neural network. Therefore, the batch learning method
is appropriate for the training step. The remaining of this subsection will concentrate
on explaining the mathematical mechanism for changing the network’s internal weights
based on adjusting the total error E.

A weight correction ∆ij is applied to change the weight wij assigned to the link con-
necting from unit i to unit j. If wij changes, the total error E is also changed. Therefore,
in order to minimize E (or in other words, to gradually change E into a smaller value)
based on changing weights, its partial derivative5 with respect to each weight, ∂E/∂wij,
is necessary to be computed.

The chain rule in calculus suggests

∂E

∂wij
= ∂E

∂yj
· ∂yj
∂wij

= ∂E

∂yj
· ∂yj
∂Xj

· ∂Xj

∂wij
(3.10)

can be calculated by computing three partial derivatives ∂E/∂yj, ∂yj/∂Xj and ∂Xj/∂wij.
Note that in the above two formulas we omit an index k referring to the kth example of
the training data set T .

Starting from each unit j in the output layer, we first calculate ∂E/∂yj. Differentiating
eq. (3.9) without considering the index k gives

∂E

∂yj
= 1

2 · 2(dj − yj)
∂(dj − yj)

∂yj

= yj − dj. (3.11)

We can compute ∂yj/∂Xj using eq. (3.3)

∂yj
∂Xj

= dyj
Xj

= yj(1− yj). (3.12)

To compute ∂Xj/∂wij, we differentiate eq. (3.5) (note that the red index i emphasizes
that it is the index over the set of all units that connect to j directly)

∂Xj

∂wij
=
∂
(∑

i
yiwij

)
∂wij

= yi. (3.13)

5partial derivative of a function f of several variables x1, x2, . . . , xn with respect to variable xi where
1 ≤ i ≤ n is the derivative of f with respect to xi in which only xi is the function’s variable and the
others are considered as constants. Partial derivative of a function f with respect to variable x is usually
denoted by ∂f/∂x.

19

Substituting (3.11), (3.12) and (3.13) into equation (3.10) we have

∂E

∂wij
= (yj − dj)yj(1− yj)yi. (3.14)

Equation (3.14) allows us to adjust the weights of links from all units i in the last hidden
layer to units j in the output layer.

For each unit i in the last hidden layer, we compute ∂E/∂yi by taking into account
all the links starting from i to all units j in the output layer as follows

∂E

∂yi
=
∑
j

(
∂E

∂yij

)
where yij is the output of i and
the input of j

=
∑
j

(
∂E

∂Xj

· ∂Xj

∂yij

)
by chain rule

=
∑
j

(
∂E

∂yj
· ∂yj
∂Xj

· ∂Xj

∂yij

)
by chain rule

=
∑
j

∂E∂yj · ∂yj∂Xj

·
∂
(∑

i
yijwij

)
∂yij


where yij and wij are the out-
put and weight from unit i in
the last hidden layer to unit j
in the output layer respectively

=
∑
j

(
∂E

∂yj
· ∂yj
∂Xj

· wij
)
. (3.15)

Equation (3.15) provides us a straightforward way to calculate ∂E/∂yi based on ∂E/∂yj
in eq. (3.11) and ∂yj/∂Xj in eq. (3.12) that have been computed to modify the weights
of links between the last hidden layer and the output layer. Since ∂E/∂yi is known for
every unit i in the last hidden layer, by applying equations (3.10), (3.12) and (3.13) we can
again compute ∂E/∂whi in which h is the index over units in the layer that is immediately
preceding of the last hidden layer. Therefore, this process can be repeated to compute
∂E/∂yβ and ∂E/∂wαβ, where α and β are units of two consecutively earlier layers.

We have shown that ∂E/∂wij can be computed backwards consecutively from the
output layer through hidden layers and to the output layer. We now consider how it can
be used to update the weight wij that was assigned to the link connecting from i to j.
Since the partial derivative ∂E/∂wij expresses the rate at which the value of E changes
with respect to the change of wij, one solution of adjusting wij is to change it by an
amount ∆ij proportional to ∂E/∂wij

∆ij = −η ∂E
∂wij

(3.16)

where η is called the learning rate parameter that is set prior to the training step. η can
be a fixed constant, or it can decay over time as the learning process proceeds. Adjusting
η allows us to scale the amount ∆ij used to change the weight wij. The negation sign
indicates that weight wij is changed in the direction of decreasing the total error E.

The above technique, that uses equation (3.16) - a partial derivative of error with
respect to weight - to adjust weights and thereby gradually minimizes error, is called

20

gradient descent6. Gradient descent has been studied and widely applied to adjust weights
and optimize error in neural networks. Its advantages are simple implementation and fast
for problems whose the training data set is large enough [3, 15].

Although eq. (3.16) provides an approximation mechanism for the weight adjustments,
an other critical question indeed needs to be answered. It is obvious that if we set up
the learning rate parameter η smaller, the changes to the weights in the network will
be smaller from one training pass to the next. This however leads to a lower rate of
learning (learning process will last longer). On the other hand, the larger we make the
learning rate parameter η in order to speed up the rate of learning, the more unstable
the network with the weights obtained may become. A popular method of increasing
the rate of learning while avoiding the undesirable instability is to modify eq. (3.16) by
introducing a momentum term α ∈ [0, 1], as shown follows

∆ij(t) = −η ∂E
∂wij

(t) + α∆ij(t− 1) (3.17)

where the index t at the initial time is set up to 0 and is incremented by 1 for each training
pass through the whole examples in the training data set T .

We now have the following formula for adjusting an arbitrary weight wij of the network

wij(t+ 1) = wij(t) + ∆ij(t)

= wij(t)− η
∂E

∂wij
(t) + α∆ij(t− 1) (3.18)

Number of Hidden Layers

Brightwell et al. [4] proved that if networks are trained to map from continuous less-than-
or-equal-to-two-dimension input examples onto the set {0, 1}, that is normally used in
two-label classification problems, then one-hidden-layer networks are satisfiable to solve
the problems. In general, theoretical researchers have proved that one hidden layer is
sufficient for a BPNN to approximate any continuous mapping from the input examples
to the outputs with an arbitrary degree of accuracy [2, 7, 21]. Multiple-hidden-layer
BPNNs are appropriate in solving problems in which the inputs are vectors of multiple-
dimentional vectors. In this thesis, the BPNNs we use to score articles’ interestingness
receive input vectors whose each element is an integer showing frequency of a keyword.
The BPNNs reported here, therefore, are designed as single-hidden-layer neural networks.
The number of units in the hidden layer is selected as double of the number of unit in the
input layer.

Initialization of Weights

Usually the initial weights are randomly selected from the range [−a, a]. In literature there
are many suggestions how to estimate the value of parameter a. For instance, Nguyen
and Widraw [22] proposed the evaluation

a = (H) 1
N

6gradient descent is a technique allows us to find a local minimum of a function f(x) by initially
choosing any starting point x = x0; then moving to a neighboring point that is downhill, or in other
words moving x to the direction that the gradient (derivative) f ‘(x) is negative, until a local valley is
reached, or in other word x approaches to the nearest point from x0 where f(x) is locally minimal.

21

for the weights in between the input and hidden layers, where H is the number of units in
the hidden layer, N is the number of units in the input layer. For weights in between the
hidden and output layers, a = 0.5. This method is however applied when the activation
function is the tangent function

tanh(x) = ex − e−x

ex + e−x
. (3.19)

In this thesis, the logistic function is used as activation function, and we choose a = 0.5
for both the input, hidden and output layers. All the weights and thresholds are randomly
selected from the interval [−0.5, 0.5].

Stopping Criteria

The learning process iterates until a stopping criterion is satisfied. Various criteria can
be found in literature. In practice, the following three criteria are widely and commonly
used to terminate the weight adjustments

1. Maximum training time: specifying a training time limit. During the training step,
the training algorithm will check whether its running time so far exceeds the max-
imum limit of allowed time. The training step may go a bit beyond the specified
limit in order to complete the final data pass7.

2. Maximum training data passes: specifying a maximum number of training passes
t∗. Training will be stopped when its total training passes t exceeds the maximum:
t > t∗.

3. Minimum error accuracy: learning process will continue until the total error E or
the average error Eav is less than a sufficiently small gradient threshold ε.

The third criterion may never be satisfied because the gradient descent learning method
does not guarantee that local minimum of the total error will always be found by adjusting
the network’s weights. The research reported in this thesis, therefore, uses both the second
and the third criteria specifying both the maximum training data passes t∗ and the
minimum error threshold ε to check the stopping condition of the training step. Training
will stop when E(t) < ε or t > t∗.

Input Normalization

Normalizing input vectors before presenting it to the input layer is crucial in the succeed
of training the network. LeCun et al. in [16] pointed out that in BPNNs using the tangent
function8, input variable should be preprocessed so that its mean value, averaged over the
entire training examples, is close to 0, or else it will be small compared to its standard

7each data pass is also called an epoch presentation of an input example and get backward phase
finished in on-line learning neural networks, or an epoch presentation of all input examples in the training
data set and get their backward phases finished in batch learning neural networks.

8

−4 −2 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0 the tangent function as defined in eq. (3.19) (graph is on the left hand

side) is a sigmoid function whose value varies in [−1, 1] and symmetric
through the original coordinate (0, 0). This is one of the main reasons
for LeCun et al. in [16] argued that input variable should be normalized
so that its mean value over the whole training data set is close to 0,
because tanh(x) only changes if x is around 0 and is asymptotic to 1
or −1 if x→ ±∞.

22

deviation9. However, the logistic function f(x) = 1/(1 + e−x) used in this research has
values varying in the interval [0, 1] and symmetric at point (0, 0.5), so input vectors are
normalized into the same size vectors that contain elements in the interval [0, 1] and these
elements’ mean value is close to 0.5 compared to the non-normalized elements’ mean
value, e.g. the average of 0.2, 0.3 and 0.9 is closer to 0.5 than the average of 20, 30 and
90, (frequencies of three keywords).

Another important feature we want to characterize when normalizing input vectors is
that elements that are frequencies of keywords expressing the main research interests of
the user should be considered as having higher contributions to the output value since we
design the higher output value the network returns the more interesting the input article
is. We do it by defining a threshold function θ mapping from a set of keywords onto a set
of thresholds showing the maximum frequencies of these keywords.

𝐹

2𝐹

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑓 𝑘𝑥

𝜃 𝑘𝑥

0.5

1.0

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

𝑖 𝑘𝑥

Figure 3.8: Normalizing input vectors. k1, k2, . . . , kn are keywords whose frequen-
cies are elements of each input vector. f(kx) is the frequency of keyword kx. θ(kx) is
a function defining criterion for evaluating kx’s contribution to the total interesting-
ness of each article, e.g. the allowed maximum frequencies. F and 2F are one and
two units of frequencies with respect to function θ. i(kx) is the normalized value of
the frequency of keyword kx, and expresses the contribution of this keyword to the
total interestingness of the article characterized by the input vector.

Figure 3.8 depicts the method of normalizing each input vector

[f(k1), f(k2), . . . , f(kn)]

into
[i(k1), i(k2), . . . , i(kn)]

by defining a threshold function θ(kx) that specifies how much the keyword kx can con-
tribute to the total interestingness of each article. θ is normally defined by users based
on their research area and interests.

9standard deviation is a measure that is used to quantify the amount of variation or dispersion of a
set of data values. A low standard deviation indicates that the data points tend to be close to the mean
value of the set, while a high standard deviation indicates that the data points are spread out over a
wider range of values.

23

The definition of function i(kx) is as follows

i(kx) =


1, if f(kx) ≥ θ(kx)
f(kx)
θ(kx)

, if f(kx) < θ(kx)
. (3.20)

Extensibility: The method of normalization described here can be applied to nor-
malize and reduce dimension of input vectors. For instance, if our neural network is
used to measure not only the interestingness but also the usefulness of articles, each in-
put vector may be in the form of [f(k1), f(k2), . . . , f(kn)] with two threshold functions
θi(kx) and θu(kx) describing the range that each keyword kx can contribute to the total
interestingness and usefulness, respectively.

𝐹𝑖

2𝐹𝑖

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑓 𝑘𝑥

𝜃𝑖 𝑘𝑥

0.5

1.0

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑖 𝑘𝑥

0.5

1.0

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑢 𝑘𝑥

𝐹𝑢

2𝐹𝑢

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑓 𝑘𝑥

𝜃𝑢 𝑘𝑥

0.5

1.0

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

¬𝑢 𝑘𝑥

0.5

1.0

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑖 𝑘𝑥 ∧ 𝑢 𝑘𝑥

0.5

1.0

𝑘1 𝑘2 𝑘3 𝑘𝑛−2 𝑘𝑛−1 𝑘𝑛
𝑘𝑥

. . . .

𝑖 𝑘𝑥 ∧ ¬𝑢 𝑘𝑥

(a) (b)

Figure 3.9: Normalizing inputs of multiple criteria. (a) shows graph of a normal-
ized input vector that describes the interesting and useful degree that each keyword
kx contributes to the total. (b) shows graph of a normalized input vector in the case
the interesting but not useful degree that each keywords contribute to the total.

Using eq. (3.20), each input vector will be normalized into two components that are

24

represented by two functions i(kx) and u(kx) as in fig. 3.9. If our neural network is used
to calculate how interesting and useful each article is, we then can combine these two
components in to one vector whose the xth element is min(i(kx), u(kx)) as illustrated in
graph (a) of fig. 3.9. In case our neural network is used to compute how much interesting
but not useful each article is, the two components can be combined into one vector in which
its xth element has value of min(i(kx),¬u(kx)) where ¬u(kx) = 1− u(kx) as illustrated in
graph (b) of fig. 3.9. In general, we have the following rules for combining multiple input
components together

Negation: ¬c(kx) := 1− c(kx)

Disjunctions:
n∨

α=1
cα(kx) := max{cα(kx) | α = 1, 2, . . . , n}

Conjunctions:
n∧

α=1
cα(kx) := min{cα(kx) | α = 1, 2, . . . , n},

where c(kx), cα(kx) are components normalized by using eq. (3.20), α is an index over the
set of n components being combined.

Summary and Algorithm

We have discussed all necessary details about the BPNN that is used in this research
in order to measure the interestingness of research articles. In this subsection, we put
everything together, show the final design architecture, and summarize the algorithm for
training the neural network.

As discussed in the previous subsection, the BPNN reported in this thesis consists
of one input layer, one hidden layer which has a number of hidden unit as twice as the
number of input units. The output layer is designed to contain only one unit. This
output unit returns activation values in the interval [0, 1] as to indicate the degree of
interestingness of articles. Figure 3.10 on page 26 depicts all of these details. The input
layer has (n+m) normal units that only perform setting (n+m) input values receive from
each input vector

[ia(k1), ia(k2), . . . , ia(kn), ia(K1), ia(K2), . . . , ia(Km)]

normalized from

[fa(k1), fa(k2), . . . , fa(kn), fa(K1), fa(K2), . . . , fa(Km)]

by using eq. (3.20) (see fig. 3.4 for the reason why each input vector has size of (n+m)).
These (n+m) input units do not use the logistic sigmoid function as defined in eq. (3.2).
They only send input values to units in the hidden layer. All 2(n+m) units in the hidden
layer and one unit in the output layer, however, use the logistic function to calculate their
output values. The total error

E = 1
2

K∑
a=1

[I(a)− I ′(a)]2,

where a is an index over the set of K training articles, will be used to check the whether
the network has been successfully trained and the learning process should be stopped.
The training algorithm for the BPNN used in this research is on page 27.

25

𝑓 𝑎
(𝐾
1
)

. . .

𝑓 𝑎
(𝐾
2
)

𝑓 𝑎
(𝐾
𝑚
)

𝑓 𝑎
(𝑘
1
)

. . .

𝑓 𝑎
(𝑘
2
)

𝑓 𝑎
(𝑘
𝑛
)

𝑖 𝑎
(𝐾
1
)

. . .

𝑖 𝑎
(𝐾
2
)

𝑖 𝑎
(𝐾
𝑚
)

𝑖 𝑎
(𝑘
1
)

. . .

𝑖 𝑎
(𝑘
2
)

𝑖 𝑎
(𝑘
𝑛
)

(𝑛
+
𝑚
)

n
o

rm
al

 u
n

it
s

2
(𝑛
+
𝑚
)

si
gm

o
id

 u
n

it
s

1

si
gm

o
id

 u
n

it

.

.

𝐼′
𝑎
∈
[0
,1
]

𝐸
=
1 2

𝐼
𝑎
−
𝐼′
𝑎
2

𝐾

𝑎
=
1

𝐼
𝑎
∈
[0
,1
]

Ea
ch

 a
rt

ic
le

 𝑎
 in

 t
h

e
tr

ai
n

in
g

d
at

a
se

t
o

f
𝐾

ar

ti
cl

es

Normalize

F
ig

ur
e

3.
10

:
D
et
ai
le
d
ar
ch
ite

ct
ur
e
of

th
e
B
PN

N
fo
rs

co
rin

g
ar
tic

le
s’
in
te
re
st
in
gn

es
s.

B
lu
e
da

sh
ed

ar
ro
w
ss

ho
w
th
e
di
re
ct
io
ns

of
ba

ck
pr
op

ag
at
e

er
ro
r
fo
r
ad

ju
st
in
g
w
ei
gh

ts
.

26

Algorithm 1: Training the BPNN for Scoring Articles’ Interestingness
Input : Untrained BPNN,

Training data set T = {(F (a), I(a))}Ka=1 contains K articles a,
Maximum training passes t∗, maximum error ε,
Learning rate η, and momentum α

Output: Trained BPNN

1: Initialization:
• initialize the weights for links in between the input, hidden and output

layers randomly in the interval [−0.5, 0.5].
• initialize the total error E = 0, the training pass t = 1

2: Forward Phase: for each training article a whose frequency input vector and
interestingness are given as the following pair

(F (a) = [fa(k1), fa(k2), . . . , fa(kn), fa(K1), fa(K2), . . . , fa(Km)] , I(a))
• normalize input F (a) into

i(a) = [ia(k1), ia(k2), . . . , ia(kn), ia(K1), ia(K2), . . . , ia(Km)]
and present it to the input layer.

• each input unit receives and forwards the corresponding value from i(a) to
all units in the hidden layer.

• each hidden unit computes total input using eq. (3.5) and activation value
using eq. (3.2), then forwards the activation value to the output unit. The
output unit in term performs the same task of calculating total input and
activation value I ′(a).

• calculate total error E = E + 1
2[I(a)− I ′(a)]2

3: Backward Phase:
• compute partial derivatives ∂E/∂wij for the weights wij of links between

hidden units and the output unit using equations (3.10), (3.11), (3.12) and
(3.13) in which the activation value of the output unit j is yj = I

′(a).
• update weights wij of links between the hidden units and the output

unit using eq. (3.18) shown again as follows
wij(t+ 1) = wij(t)− η

∂E

∂wij
(t) + α∆ij(t− 1).

• compute partial derivatives ∂E/∂wij for the weights wij of links between the
input units and the hidden units using equations (3.10), (3.15), (3.12) and
(3.13).

• update weights wij of links between the input units and the hidden units
using eq. (3.18).

4: Stopping Criteria Test: if the average error Eav = E/K < ε or the number of
training passes t > t∗, then stop the training; else set up E = 0, increase t = t+ 1,
go back to step 2 Backward Phase and repeat for the next training pass until one
of the stopping criteria is satisfied.

27

3.3.2 Self-Organizing Map Approach
In this section, an other type of neural network, namely the self-organizing map (SOM),
will be explained and shown how it can be applied to measure the interestingness of ar-
ticles. Recall that the purpose of introducing both BPNN and SOM is to emphasize the
flexibility of our framework of filtering information. In particular, we want to demon-
strate that both supervised and unsupervised learnings can be used to scoring articles’
interestingness, so there may be a variety of other methods that can play the same role
of the BPNN and SOM applied in this research.

General Model

The main characteristic that differentiates SOMs from other types of neural networks is
that they map nearby input patterns onto nearby output units (output neurons) on the
map. This ideal was inspired from biological research on the cortex of highly developed
animal brains [9]. Figure 3.11 depicts the essential architecture of a SOM in which the
map is a four-by-four lattice of output units. Each output unit is fully connected from
all units in the input layer via links that are assigned with weights. In order to keep
the picture easier to understand, only some links are drawn. The weights of all links
connecting to an output unit form a weight vector for the unit.

. . . .

Output Layer Input Layer

winning unit

boundary of
neighboring
units

Figure 3.11: General architecture of two-dimensional self-organizing map. Each
output unit is connected with all input units. The winning unit is the one whose
weight vector is best matching with the input pattern compared to the other ones.
All units around the winning unit but not go beyond the boundary are called neigh-
boring units. The boundary of neighborhoods needs not to be square, but may also
be rectangular, hexagonal, etc.

Generally, each SOM has m output units, arranged in a one-, two- or more-than-two-
dimensional lattice, and n input units receiving n-dimensional input vectors (patterns).
However, the two-dimensional SOMs are usually already effective enough for approximat-
ing similarity relations of high-dimensional data items [13]. We therefore will concentrate
on these two-dimensional maps in this thesis. Let an input vector randomly selected from
the input space be denoted by

x = [x1, x2, . . . , xn]. (3.21)

28

Since there are m output units, there are accordingly m weight vectors associated with
them. Let wj denote one of these weight vectors

wj = [wj1, wj2, . . . , wjn], 1 ≤ j ≤ m. (3.22)

SOMs are designed to classify a set of continuous-valued input vectors x into m or
less-than-m clusters using self-organization process. During the self-organization process,
the cth output unit whose weight vector wc most closely matches with the input pattern
x is chosen as the winning unit. Typically, the minimum of the Euclidean distance10

between the input pattern and the weight vector is the criterion for searching the winning
unit

c = argmin
j
{‖x−wj‖}. (3.23)

After the winning unit c is identified, its neighboring units will next be determined by
a neighborhood function

N : index k of a unit→ a set of indices of the unit k’s neighboring units. (3.24)

Note that, we read the index of a unit as its name, i.e. unit k is the kth unit. In general,
the weight vectors of neighboring units are not close to the input pattern. All the weight
vectors associated with the winning unit c and its neighboring units N(c) are updated
in a direction that the modified weight vectors will match better with the input. The
following formula is commonly used for update

wj = wj + hcj[x−wj], j ∈ {c} ∪N(c), (3.25)

where hcj is called the weight adjusting factor function11 showing the rate of the weight
modifications. The self-organizing algorithm trains the map with assumption of the above
equation will converge and produce the wanted order for weight vectors and so the order
for output units will be. Rewriting eq. (3.25) in the form of coordinates we have the
following formula for adjusting weights assigned to links connecting from all input units
to output units j ∈ {c} ∪N(c) illustrated as the dark red area in fig. 3.11

[wj1, wj2, . . . , wjn] =
[wj1 + hcj(x1 − wj1), wj2 + hcj(x2 − wj2), . . . , wjn + hcj(xn − wjn)]. (3.26)

10the Euclidean distance between two vectors x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn] in Euclidean
n-space is defined by the Pythagorean formula

‖x− y‖ = ‖y− x‖ =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2 =

√√√√ n∑
i=1

(xi − yi)2

The smaller the Euclidean distance between two vectors is, the more similar they are. Sometimes, in
order to avoid having to calculate the square root, the square of Euclidean distance is used to measure
the similarity between two vectors.

11in many literature, the weight adjusting factor function is called as the neighborhood function. In this
thesis, however, in order to make things distinguished we separate the neighborhood function N , whose
task is to determine neighboring units, from the weight adjusting factor function hcj whose main task
is to determine the rate of adjusting the weights associated with the winning unit c and its neighboring
units j ∈ N(c).

29

Each time eq. (3.25) is used to update weight vectors associated with units in the
set {c} ∪ N(c), the map’s state is changed. We trace the map’s states by introducing a
parameter t, showing the number of iterations in weight updates, into equations (3.23),
(3.24) and (3.25) as follows

c = argmin
j
{‖x(t)−wj(t)‖}, (3.27)

N(k)(t) : (unit k, time t)→ a set of indices of the unit k’s
neighboring units at time t,

(3.28)

wj(t) = wj(t) + hcj(t)[x(t)−wj(t)], j ∈ {c} ∪N(c)(t). (3.29)

The extremely popular choice of the weight adjusting factor function hcj(t) is

hcj(t) = α(t) exp
(
−‖c− j‖

2

2σ2(t)

)
(3.30)

where α(t) is the learning rate that is a slowly decreasing function of time, ‖c − j‖ is
the Euclidean distance between the winning unit c and its neighboring unit j, and σ(t) is
another decreasing function that is the half of the square neighboring area’s edge or the
radius of the circular neighboring area. σ(t) helps the function N(c)(t) to determine all
neighboring units of the winning unit c at time t. Figure 3.12 illustrates the case in which
the neighboring area is a square with edge of 2σ(t0) at the beginning (equal to the map’s
size). Its size, during the training step is gradually reduced to 2σ(t) at time t, and may
be decreased to contain only the winning unit.

𝑐

𝑗 𝑐 − 𝑗

2𝜎(𝑡0)

2𝜎(𝑡0)

2𝜎(𝑡)

Figure 3.12: Decrease in the size of the neighboring area on SOM. Initially, the
size of the neighboring area may be equal to the size of the map and equal to 2σ(t0).
Function σ is then gradually decreased to 2σ(t) at time t during the training that
makes the number of neighboring units of the winning unit is reduced over time. At
the end, the area is small even may be only the winning unit, and map obtains its
stable state.

Since 2σ2(t) is the square of the one half of the diagonal of the neighboring area and
c is in the center of the area, we always have

0 ≤ ‖c− j‖2 ≤ 2σ2(t)

⇒ 0 ≥ −‖c− j‖
2

2σ2(t) ≥ −1.

30

At the beginning of the training, σ(t) = σ(t0). The further the training progresses, the
smaller σ(t) < σ(t0) will become. This leads to

−‖c− j‖
2

2σ2(t) tends to reduce from 0 to −1.

Therefore,

exp
(
−‖c− j‖

2

2σ2(t)

)
tends to reduce from exp(0) = 1 to exp(−1) ≈ 0.3679

as illustrated in fig. 3.13. exp(−‖c− j‖2/2σ2(t)) is also called a Gaussian function.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.3679

−
0.

25

0.9394131

−
0.

85

0.4855369

−
||c − j||2

2σ2(t)

exp



 −

||c − j||2

2σ2(t)






Figure 3.13: Gaussian function for adjusting weights. During the learning process,
t increases from t0 to the current time (current iteration) t, σ reduces from σ(t0)

to σ(t), −‖c− j‖
2

2σ2(t) reduces from 0 to −1, and exp
(
−‖c− j‖

2

2σ2(t)

)
reduces from 1 to

0.3679.

The learning rate α(t) should also be a decreasing function over time t so that the
multiplication of α(t) and function exp(−‖c− j‖2/2σ2(t)) will create a decreasing function
hcj(t) of increasing time t. There are various functions satisfying to be selected as α(t),
i.e.

Inverse of time: α(t) = 1
t
;

Linear of time: α(t) = 1− t

tmax
, where tmax is the maximum of t;

Heuristic of time: α(t) = α(t0) exp
(
− t

T

)
,

where t0 is the initial time and T is a time constant and should
be greater than tmax.

In this thesis, α(t) is defined as follows

α(t) = α(t0)
(
α(tmax)
α(t0)

) t

tmax , (3.31)

31

where α(t0) = 1.0, α(tmax) = 0.005. Substituting real values into eq. (3.31) gives

α(t) = (0.005)
t

tmax (3.32)

Figure 3.14 illustrates two learning rate functions α(t), one with tmax = 20, and the other
with tmax = 1000. It is easy to realize, from these two functions’ graphs, that the learning
rates α(t) monotonically decrease with strikingly similar ratio when t increases in both
cases although 20 is quite different from 1000.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(t0 = 0, α(t0) = 1)

(tmax = 20, α(tmax) = 0.005)

t

α(
t)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(t0 = 0, α(t0) = 1)

(tmax = 1000, α(tmax) = 0.005)

t

α(
t)

Figure 3.14: Learning rate function for SOM. α(t) monotonically decays with the
very similar graph in both cases tmax = 20 and tmax = 1000. Furthermore, both
learning rates are gradually asymptotic to α(tmax) and become stable when t→ tmax.

The decreases of α(t) and exp(−‖c− j‖2/2σ2(t)) combine together making hcj(t) re-
duced over time t, thus the amounts hcj(t)[x(t) − wj(t)] that are used to adjust weight
vectors wj(t) are gradually smaller with increasing t. Note that, while the Gaussian func-
tion reduces to shrink the winning area (to reduce the number of output units whose
associated weights need to be modified), the learning rate function reduces with the pur-
pose of decreasing the amounts of weight changes.

Using the similar strategy of decreasing learning rate α(t) as defined in eq. (3.31), in
this thesis the σ(t) function is defined as follows

σ(t) = σ(t0)
(
σ(tmax)
σ(t0)

) t

tmax , (3.33)

where σ(t0) = 1 is half of the size of the SOM (the SOM is designed to have a 2-by-2 grid
of output units), and σ(tmax) = 0.2. Substituting these real values into eq. (3.33) gives

σ(t) = (0.2)
t

tmax (3.34)

Initialization of weights and tmax: Functions that have been described so far may
not be optimal, but they are usually sufficient for self-organizing features in SOMs [13].
We now answer the final question about how the weights are initialized at the beginning.
It has been demonstrated that random initialization of weights may not be the best or
fastest policy, the weighs finally coverage if tmax is big enough [12]. A rule of thumb for
archiving statistical accuracy is that tmax should be at least 500 times the number of
output units [12]. In this thesis, tmax is set up as 1000 times the number of output units.

32

Detailed Architecture and Algorithm

Linking every thing discussed in the previous subsection, we have the final design of the
SOM as in fig. 3.15 on page 34 and the following algorithm for training it.

Algorithm 2: Training the SOM for Scoring Articles’ Interestingness
Input : Untrained SOM,

Training data set T = {(F (a), I(a))}Ka=1 contains K articles a,
Weight change threshold W , maximum training passes tmax,
Initial and final learning rates: α(t0), α(tmax),
Half of the initial and final sizes of the neighboring area: σ(t0), σ(tmax)

Output: Trained SOM

1: Initialization:
• randomly choose values in the interval [0.4, 0.6] for the initial weight vectors

wj(t0).
• initialize the training pass t = t0 = 0.

2: Article Presenting and Best Matching Search: for each article a ∈ T , perform the
following steps

• normalize input F (a) into
i(a) = [ia(k1), ia(k2), . . . , ia(kn), ia(K1), ia(K2), . . . , ia(Km)]

and present it to the input layer.
• each input unit receives and forwards the corresponding value from i(a) to

all units in the hidden layer.
• find the winning unit c using eq. (3.27) in which x(t) = i(a).

3: Weight Updating:
• calculate neighboring units N(c)(t) of c using σ(t) and eq. (3.28).
• calculate the weight adjusting factor hcj(t) using eq. (3.30).
• for each units j ∈ {c} ∪N(c)(t), adjust weight vectors associating with it

using eq. (3.29) shown again as follows
wj(t) = wj(t) + hcj(t)[x(t)−wj(t)].

4: Learning Rate and Neighboring Area’s Size Tuning:
• update learning rate α(t) using eq. (3.31) or its value-substituted eq. (3.32).
• update σ(t) using eq. (3.33) or its value-substituted eq. (3.34).

5: Continuation Condition Checking: if the number of training passes t > tmax then
stop the training; else increase t = t+ 1, go back to step 2 Article Presenting and
Best Matching Search and repeat for the next training pass.

33

Ea
ch

 a
rt

ic
le

𝑎

 in
 t

h
e

tr
ai

n
in

g
d

at
a

se
t

(𝑛
+
𝑚
+
1
)

in
p

u
t

u
n

it
s

4

o
u

tp
u

t
u

n
it

s

.

𝑓 𝑎
(𝐾

1
)

. . .

𝑓 𝑎
(𝐾

2
)

𝑓 𝑎
(𝐾

𝑚
)

𝑓 𝑎
(𝑘

1
)

. . .

𝑓 𝑎
(𝑘

2
)

𝑓 𝑎
(𝑘

𝑛
)

𝐼
𝑎

Normalize

𝑖 𝑎
(𝐾

1
)

. . .

𝑖 𝑎
(𝐾

2
)

𝑖 𝑎
(𝐾

𝑚
)

𝑖 𝑎
(𝑘

1
)

. . .

𝑖 𝑎
(𝑘

2
)

𝑖 𝑎
(𝑘

𝑛
)

𝐼
𝑎

F
ig

ur
e

3.
15

:
D
et
ai
le
d
ar
ch
ite

ct
ur
e
of

th
e
SO

M
fo
r
sc
or
in
g
ar
tic

le
s’

in
te
re
st
in
gn

es
s.

T
he

ou
tp
ut

la
ye
r
is

a
tw

o-
by

-t
w
o
la
tt
ic
e
of

fo
ur

un
its

th
at

re
pr
es
en
t
fo
ur

cl
us
te
rs

of
ar
tic

le
s
w
ho

se
in
te
re
st
in
gn

es
s
dr
op

in
on

e
of

fo
ur

in
te
rv
al
s:

[0
,0
.2

5)
,[

0.
25
,0
.5

),
[0
.5
,0
.7

5)
an

d
[0
.7

5,
1.

0]
.
A
n

ex
tr
a
in
pu

t
un

it
is

ad
de

d
to

re
ce
iv
e
I
(a

)
fo
r
ea
ch

ar
tic

le
a
in

th
e
tr
ai
ni
ng

da
ta

se
t
T

sin
ce
I
(a

)s
is

kn
ow

n
be

fo
re

th
e
tr
ai
ni
ng

st
ep

an
d
w
e
do

no
t
w
an

t
to

w
as
te

th
is

in
fo
rm

at
io
n.

A
ft
er

th
e
SO

M
ha

s
be

en
tr
ai
ne

d,
a
ne

w
ar
tic

le
a

ne
w
’s

in
te
re
st
in
gn

es
s
is

ca
lc
ul
at
ed

by
:
fir
st

fin
di
ng

th
e

w
in
ni
ng

un
it

as
a

ne
w
’s

in
pu

t
ve
ct
or

is
pr
es
en
te
d
to

th
e
tr
ai
ne

d
SO

M
,a

nd
th
en

th
e
in
te
re
st
in
gn

es
s
of
a

ne
w
is

as
sig

ne
d
to

th
e
av
er
ag

e
of

th
e

in
te
re
st
in
gn

es
s
of

al
la

rt
ic
le
s
th
at

ar
e
cl
as
sifi

ed
as

be
lo
ng

to
th
e
sa
m
e
w
in
ni
ng

un
it
of
a

ne
w
.

34

3.4 Ranking Agents
We now consider how to calculate agents’ reliability when they exchange information
(articles and feedback) together. The calculation result is used to rank these agents and
find out which ones are trustworthy and which ones are unreliable. If an agent receives
feedback informing that its reliability is not high enough, it knows that the performance
of sending articles to the lower level agent is not sufficient and may revise criterion in
selecting articles from higher level agents so that the performance will be improved and
hence the reliability will also be better.

3.4.1 Reliability of Each Agent
Figure 3.16 depicts two consecutive levels. A higher level agent Xi each time sends xi
articles to the lower level Y , Y will select only x+

i and eliminate x−i articles that are scored
as highly interesting and not highly interesting respectively.

. 𝐴𝑔𝑒𝑛𝑡 𝑋1 𝐴𝑔𝑒𝑛𝑡 𝑋2 𝐴𝑔𝑒𝑛𝑡 𝑋𝑘

𝐴𝑔𝑒𝑛𝑡 𝑌

Figure 3.16: Agents in two consecutive levels exchange information. Higher level
agents X1, X2, . . . , Xk send articles to and receive feedback from lower level agent
Y . Each time agent Xi (1 ≤ i ≤ k) sends a set of articles to agent Y , some articles
in this set are selected as highly interesting while the others are eliminated by Y .

Let us drop the index i and consider an arbitrary agent X, at its nth sending session,
sends xn articles to agent y. Let x+

n and x−n respectively denote the number of articles
that are selected and the number of articles that are ignored (eliminated or unselected)
by Y . A constraint between x+

n and x−n is xn = x+
n + x−n . Performance, rn(X), at the nth

session of X can be evaluated by the following formula

rn(X) = x+
n

x+
n + x−n

(3.35)

However, eq. (3.35) only evaluates X’s efficiency at the nth session without considering
the previous sessions. We therefore need to relate the performance rn(X) at session n and
rk(X) at sessions k where 0 ≤ k < n to compute the reliability of X during the entire
exchanging process. Analyzing a series of sessions starting from the 0th, the 1st, . . . , to the
nth in which reliability of each session is computed based on both the preceding sessions
and the session itself we have:

Session 0:
r0(X) = 0

35

Session 1:

r1(X) = x+
1

x+
1 + x−1

· · · · · ·
Session n− 1:

rn−1(X) = x+
1 + x+

2 + . . .+ x+
n−1

(x+
1 + x−1) + (x+

2 + x−2) + . . .+ (x+
n−1 + x−n−1)

Session n:

rn(X) = x+
1 + x+

2 + . . .+ x+
n−1 + x+

n

(x+
1 + x−1) + (x+

2 + x−2) + . . .+ (x+
n−1 + x−n−1) + (x+

n + x−n)

In order to rewrite rn(X) using rn−1(X) we compute the difference between their
inversion as follows

1
rn(X) −

1
rn−1(X) =

[
(x+

1 + x−1) + (x+
2 + x−2) + . . .+ (x+

n−1 + x−n−1) + (x+
n + x−n)

x+
1 + x+

2 + . . .+ x+
n−1 + x+

n

]
−[

(x+
1 + x−1) + (x+

2 + x−2) + . . .+ (x+
n−1 + x−n−1)

x+
1 + x+

2 + . . .+ x+
n−1

]

=
(

1 + x−1 + x−2 + . . .+ x−n−1 + x−n
x+

1 + x+
2 + . . .+ x+

n−1 + x+
n

)
−
(

1 + x−1 + x−2 + . . .+ x−n−1
x+

1 + x+
2 + . . .+ x+

n−1

)

= X−n−1 + x−n
X+
n−1 + x+

n

− X−n−1
X+
n−1

where X−n−1 = x−1 + x−2 + . . .+ x−n−1 =
n−1∑
i=1

x−i

and X+
n−1 = x+

1 + x+
2 + . . .+ x+

n−1 =
n−1∑
i=1

x+
i

= X−n−1X
+
n−1 + x−nX

+
n−1 −X−n−1X

+
n−1 −X−n−1x

+
n(

X+
n−1 + x+

n

)
X+
n−1

= x−nX
+
n−1 −X−n−1x

+
n(

X+
n−1 + x+

n

)
X+
n−1

.

⇒ 1
rn(X) = 1

rn−1(X) + x−nX
+
n−1 −X−n−1x

+
n(

X+
n−1 + x+

n

)
X+
n−1

= 1
rn−1(X) +

x−n
X+
n−1

X+
n−1 +X−n−1

−
(
X+
n−1 +X−n−1

X+
n−1 +X−n−1

− X+
n−1

X+
n−1 +X−n−1

)
x+
n(

X+
n−1 + x+

n

) X+
n−1

X+
n−1 +X−n−1

= 1
rn−1(X) + x−n rn−1(X)− [1− rn−1(X)]x+

n(
X+
n−1 + x+

n

)
rn−1(X)

36

⇒ 1
rn(X) =

(
X+
n−1 + x+

n

)
+ x−n rn−1(X)− [1− rn−1(X)]x+

n(
X+
n−1 + x+

n

)
rn−1(X)

= X+
n−1 + (x+

n + x−n)rn−1(X)(
X+
n−1 + x+

n

)
rn−1(X)

.

Therefore, we have the following equation that shows the relation between rn(X) and
rn−1(X)

rn(X) =

(
X+
n−1 + x+

n

)
rn−1(X)

X+
n−1 + (x+

n + x−n)rn−1(X) (3.36)

where:
(X+

n−1 + x+
n) is the total number of articles that are cumulatively selected

by Y from session 0 to session n,
rn−1(X) is the reliability of X evaluated by Y after session n − 1 has

been finished,
X+
n−1 is the total number of articles that are cumulatively selected

by Y from session 0 to session n− 1,
(x+

n + x−n) is the total number of articles sent by X during session n.

3.4.2 Reliability Updating Tables
Equation (3.36) suggests us that if a receiver agent Y wants to compute reliability rn(X)
of a sender agent X after session n is conducted, all Y has to memorize are only X+

n−1
and rn−1(X). The reason is that at session n, after receiving xn articles from X, Y will
check and select x+

n articles and ignore x−n remaining ones. Thus, at session n, Y knows
what exactly x+

n and x−n are by itself. Y therefore can compute all terms in eq. (3.36)
that is used to measure X’s reliability at an arbitrary session n. These analyses lead us
to the design of the following reliability updating table that is created, kept and updated
by agent Y to measure reliability of agents X1, X2, . . . , Xk as modeled in fig. 3.16.

Agent Session Reliability
Total num. of

selected articles

𝑋1 𝑛1 − 1 𝑟𝑛1−1 𝑋1 𝑋1 𝑛1−1
+

𝑋2 𝑛2 − 1 𝑟𝑛2−1 𝑋2 𝑋2 𝑛2−1
+

⋯ ⋯ ⋯ ⋯

𝑋𝑘 𝑛𝑘 − 1 𝑟𝑛𝑘−1 𝑋𝑘 𝑋𝑘 𝑛𝑘−1
+

Agent Session Reliability
Total num. of

selected articles

𝑋1 𝑛1 𝑟𝑛1 𝑋1 𝑋1 𝑛1
+

𝑋2 𝑛2 𝑟𝑛2 𝑋2 𝑋2 𝑛2
+

⋯ ⋯ ⋯ ⋯

𝑋𝑘 𝑛𝑘 𝑟𝑛𝑘 𝑋𝑘 𝑋𝑘 𝑛𝑘
+

Update

Figure 3.17: Reliability updating table. Design of a table that agent Y uses to
calculate reliability of sender agents X1, X2, . . . , Xk as depicted in fig. 3.16. At step
ni − 1, Y saves rni−1(Xi) and (Xi)+

ni−1 for agents Xi where 1 ≤ i ≤ k is an index
over the set of k sender agents. When Xi send articles to Y in the next session ni,
Y will update their reliability rni−1(X) to rni(X) using eq. (3.36) and their total
numbers of articles, (Xi)+

ni
= (Xi)+

ni−1 + x+
ni
, that are selected as highly interesting

from the beginning to session ni. Note that ni where 1 ≤ i ≤ k are not necessary to
be equal since some agents may be active and do many sending sessions while the
others may be not.

Agent Y with the reliability updating table described in fig. 3.17 can rank agents
X1, X2, . . . , Xk based on the third column Reliability, e.g. sorting table rows by comparing

37

values in the third column. Using the design that have been discussed so far, we now turn
back to our example introduced in section 3.2 and modify the reliability updating tables
in fig. 3.2 as well as fig. 3.3. The modification result is shown in the following fig. 3.18.

𝐴𝑔𝑒𝑛𝑡 0

𝐴𝑔𝑒𝑛𝑡 1

𝐴𝑔𝑒𝑛𝑡 4

𝐴𝑔𝑒𝑛𝑡 2

𝐴𝑔𝑒𝑛𝑡 3

𝐴𝑔𝑒𝑛𝑡 5

A. S. R. Total #

𝐴3 𝑛 𝑟𝑛 𝐴3 𝐴3𝑛
+

𝐴4 𝑚 𝑟𝑚 𝐴4 𝐴4𝑚
+

A. S. R. Total #

𝐴1 𝑝 𝑟𝑝 𝐴1 𝐴1𝑝
+

𝐴2 𝑞 𝑟𝑞 𝐴2 𝐴2𝑞
+

A. S. R. Total #

𝐴5 𝑛 𝑟𝑛 𝐴5 𝐴5𝑛
+

Figure 3.18: An example of the general system model with modified version of re-
liability updating tables. A1, A2, . . . , A5 are the names of 6 agents. Three reliability
updating tables are created and owned by Agent 0, Agent 1 and Agent 4. A., S.,
R. and Total # are abbreviations of the reliability updating table’s column headings
in fig. 3.17. With these tables, Agent 0 is able to find out in Agent 1 and Agent 2
which one is more reliable, Agent 1 is able to find out in Agent 3 and Agent 4 which
one is more reliable, and Agent 4 is able to judge Agent 5’s reliability numerically.

3.4.3 Trustworthiness of Filtered Information
We now turn to our final question: how trustworthy is the information that is filtered by
the agent network? In other words, how much can we trust in the filtering result returned
by the root agent? In order to answer the question, this thesis proposes a naive method
in which each non-leaf-node agent’s reliability updating table is used to naively convert
into a conditional probability table as in the following fig. 3.19

𝑋1 𝑋2 ⋯ 𝑋𝑘 𝑃 𝑌|𝑋1, 𝑋2, … , 𝑋𝑘

𝑟 𝑟 ⋯ 𝑟 𝑃 𝑌 = 𝑟|𝑋1 = 𝑟, 𝑋2 = 𝑟,… , 𝑋𝑘 = 𝑟

𝑟 𝑟 ⋯ 𝑢 𝑃 𝑌 = 𝑟|𝑋1 = 𝑟, 𝑋2 = 𝑟,… , 𝑋𝑘 = 𝑢

⋯ ⋯ ⋯ ⋯ ⋯⋯⋯

𝑢 𝑢 ⋯ 𝑟 𝑃 𝑌 = 𝑟|𝑋1 = 𝑢, 𝑋2 = 𝑢,… , 𝑋𝑘 = 𝑟

𝑢 𝑢 ⋯ 𝑢 𝑃 𝑌 = 𝑟|𝑋1 = 𝑢, 𝑋2 = 𝑢,… , 𝑋𝑘 = 𝑢

naively
convert

2
𝑘

 ro
w

s

𝑟: reliable 𝑢: unreliable

Agent Session Reliability
Total num. of

selected articles

𝑋1 𝑛1 𝑟𝑛1 𝑋1 𝑋1 𝑛1
+

𝑋2 𝑛2 𝑟𝑛2 𝑋2 𝑋2 𝑛2
+

⋯ ⋯ ⋯ ⋯

𝑋𝑘 𝑛𝑘 𝑟𝑛𝑘 𝑋𝑘 𝑋𝑘 𝑛𝑘
+

Figure 3.19: Naive conversion of reliability updating table into conditional prob-
ability table.

38

The conditional probability table on the right hand side in fig. 3.19 consists of k
columns for k sender agents and a column for the conditional probability of Y is reliable
given the sender agents’ reliability states (r and u stand for two possible reliability states:
reliable and unreliable respectively). Each agent Xi’s reliability state is decided based on
it reliability rni

(Xi). If rni
(Xi) ≥ θ where θ ∈ [0, 1] is a threshold showing the minimum

value of reliability an agent should be higher to become reliable, then Xi is considered as
reliable; otherwise it is unreliable.

The probability of an agent Xi is reliable can be calculated by counting the number
of sessions in which its reliability at these sessions is greater than or equal to θ

P (Xi = r) = |{s | 1 ≤ s ≤ ni, rs(Xi) ≥ θ}|
ni

(3.37)

where |.| is the set size operator, ni is the most recent session that have been done, s is
an index over sessions 1, 2, . . . , ni. Obviously, the following equation holds

P (Xi = u) = 1− P (Xi = r). (3.38)

Let us first reconsider the example of the general model that added the reliability updat-
ing tables as in fig. 3.18. Three conditional probability tables that are converted from
these reliability updating tables are added to three corresponding agents. In addition, a
probability table is added for each leaf-node agent with the purpose of saving its proba-
bility of being reliable. The resulting model is illustrated in the following figure

𝑃(𝐴3 = 𝑟)

0.75

𝐴3 𝐴4 𝑃(𝐴1 = 𝑟|𝐴3, 𝐴4)

𝑟 𝑟 0.9

𝑟 𝑢 0.65

𝑢 𝑟 0.55

𝑢 𝑢 0.05

𝐴1 𝐴2 𝑃(𝐴0 = 𝑟|𝐴1, 𝐴2)

𝑟 𝑟 0.95

𝑟 𝑢 0.7

𝑢 𝑟 0.8

𝑢 𝑢 0.3

𝑃 𝐴2 = 𝑟

0.6

𝐴5 𝑃(𝐴4 = 𝑟|𝐴5)

𝑟 0.8

𝑢 0.25

𝑃(𝐴5 = 𝑟)

0.65

𝐴𝑔𝑒𝑛𝑡 0

𝐴𝑔𝑒𝑛𝑡 1

𝐴𝑔𝑒𝑛𝑡 4

𝐴𝑔𝑒𝑛𝑡 2

𝐴𝑔𝑒𝑛𝑡 3

𝐴𝑔𝑒𝑛𝑡 5

A. S. R. Total #

𝐴3 𝑛 𝑟𝑛 𝐴3 𝐴3𝑛
+

𝐴4 𝑚 𝑟𝑚 𝐴4 𝐴4𝑚
+

A. S. R. Total #

𝐴1 𝑝 𝑟𝑝 𝐴1 𝐴1𝑝
+

𝐴2 𝑞 𝑟𝑞 𝐴2 𝐴2𝑞
+

A. S. R. Total #

𝐴5 𝑛 𝑟𝑛 𝐴5 𝐴5𝑛
+

Figure 3.20: An example of the general system model with conditional probability
tables. Three conditional probability tables for Agent 0, Agent 1 and Agent 4, and
three probability tables for Agent 3, Agent 5, Agent 2 are added to the example
model that is previously shown in fig. 3.18. A0, A1, . . . , A5 are the abbreviated
names of agents and are used as variables in probability formulas. Numeric values
are given to make both conditional probability tables and probability tables concrete,
i.e. P (A0 = r|A1 = r,A2 = r) = 0.95 is the probability of A0 is reliable (information
provided by A0 is trustworthy) given both A1 and A2 are reliable. P (A0 = u|A1 =
r,A2 = r) = 1− P (A0 = r|A1 = r,A2 = r) = 0.05.

39

Answering the question how trustworthy is the information (articles) filtered by the
agent network in fig. 3.20 is equivalent to answering what is the probability of all agents
in the network are reliable. The calculation of P (A0, A1, A2, A3, A4, A5) where each each
variable may be r or u is the more general approach for answer a wider range of questions
regarding to the accuracy of the network.

In order to compute P (A0, A1, A2, A3, A4, A5), we assume that each agent’s reliability
depends only on the higher-adjacent-level agents that directly connect to it (the connec-
tions are depicted as black arrows in fig. 3.20), and is independent from all others, i.e.
Agent 1’s reliability depends only on Agent 3 and Agent 4. This assumption is reasonable
because

• all articles received from Agent 5 are rechecked, scored, and selected by Agent 4, so
the quality of articles that Agent 4 sends to Agent 1 is centrally decided by Agent 4.
It is therefore suitable for assuming that Agent 1’s reliability depends on Agent4.
Furthermore, Agent 1’s reliability also depends on Agent 3 since it plays the same
role of sending articles as Agent 4.

• obviously, Agent 1’s reliability is independent of both Agent 0 and Agent 2 since
no article is sent from these two agents to Agent 1.

With the above assumption, we have

P (A0|A1, A2, A3, A4, A5) = P (A0|A1, A2),
P (A1|A2, A3, A4, A5) = P (A1|A3, A4),
P (A2|A3, A4, A5) = P (A2)
P (A3|A4, A5) = P (A3)

The chain rule12 in probability theory gives

P (A0, A1, A2, A3, A4, A5) = P (A0|A1, A2, A3, A4, A5)× P (A1|A2, A3, A4, A5)×
P (A2|A3, A4, A5)× P (A3|A4, A5)× P (A4|A5)× P (A5)

= P (A0|A1, A2)× P (A1|A3, A4)×
P (A2)× P (A3)× P (A4|A5)× P (A5). (3.39)

Using eq. (3.39) and referring to the conditional probability tables in fig. 3.20, we can
compute P(A0, A1, A2, A3, A4, A5) for all 26 = 64 value assignments of 6 variables
A0, A1, A2, A3, A4, A5. For example,

P (A0 = r, A1 = r, A2 = r, A3 = r, A4 = r, A5 = r)
= P (A0 = r|A1 = r, A2 = r)× P (A1 = r|A3 = r, A4 = r)×
P (A2 = r)× P (A3 = r)× P (A4 = r|A5 = r)× P (A5 = r)

= 0.95× 0.9× 0.6× 0.75× 0.8× 0.65 = 0.20007

is the probability of the network is trustworthy with every agent is reliable.
12the chain rule expresses probability of the conjunction of a set of variables using conditional proba-

bilities

P (x1, x2, . . . , xn) = P (xn|xn−1, . . . , x1)P (xn−1|xn−2, . . . , x1) · · ·P (x2|x1)P (x1) =
n∏
i=1

P (xi|xi−1, . . . , x1)

where P (x1, x2, . . . , xn) is the probability of x1 and x2 and . . . and xn; P (xn|xn−1, . . . , x1) is the condi-
tional probability of xn given that xn−1 and . . . and x1.

40

P (A0 = r, A1 = r, A2 = u,A3 = u,A4 = r, A5 = r)
= P (A0 = r|A1 = r, A2 = u)× P (A1 = r|A3 = u,A4 = r)×
P (A2 = u)× P (A3 = u)× P (A4 = r|A5 = r)× P (A5 = r)

= 0.7× 0.55× (1− 0.6)× (1− 0.75)× 0.8× 0.65 = 0.09009

is the probability of the network is trustworthy with all agents are reliable except two leaf
node agents, Agent 2 and Agent 3, are unreliable. It is easy to observe that the network’s
trustworthiness in this case is relatively low compared with the case all agents are reliable.

41

Chapter 4

Experiments

In this chapter, results obtained from experimental evaluation of our proposed system
are reported. We describe the datasets used, experimental methodology and performance
measures that are appropriate for verifying experiment evaluation.

4.1 Generate Datasets for Trainings Agents
We created 8 training datasets representing 8 research areas that 8 intelligent agents will
learn to be able to score the interestingness of articles in these areas. Table A.1 shows lists
of raw keywords selected to describe the 8 research areas. Each compound raw keyword
is then split into smaller single words to be counted appearing frequency in each article.
We will call the single words as keywords from now on. The list of research areas, their
keywords and numbers of keywords are summarized in table A.2.

Table 4.1: Training datasets’ sizes.

Research Area Training Dataset’s Size

1 Artificial Intelligence 1012
2 Neural Networks 1163
3 Deep Learning 1043
4 Computer Networks 1247
5 Natural Language Processing 1375
6 Logic 849
7 Fuzzy Logic 886
8 Modal Logic 911

Since judging interestingness is subjective and depends on individual’s interest, in or-
der to keep the objectivity of our experiments, we randomly generated 8 training data
sets with the number of data vectors (input vectors of agents’ neural networks) in each
dataset is reported in table 4.1. The criteria for creating each data vector are: (i) the
more frequently the keywords appear, the higher the interestingness would be but not all
the cases, (ii) only a reasonable number of keywords should be allowed because an article
containing all keywords in the list is not practical. Figure 4.1 on page 43 graphically
visualizes distributions of data vectors in 8 training datasets. We can see that the distri-
butions satisfy the two required criteria mentioned. Our agents, therefore, if are trained

42

with these training datasets, will also have the ability of reflecting the interestingness in
relation with the number of appearing keywords.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Artificial Intelligence

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Neural Networks

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Deep Learning

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Computer Networks

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Natural Language Processing

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logic

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fuzzy Logic

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modal Logic

Figure 4.1: Distributions of input vectors in training datasets. The vertical and
horizontal axes represent the interestingness and the number of appearing keywords,
respectively.

After randomly generating a vector of keyword frequencies [f(k1), f(k2), . . . , f(kn)] for
each article that is assumed to exist in practice, we calculate the interestingness I of the

43

article as follows
I = 1

n

n∑
x=1

i(kx)

where i(kx) is computed using eq. (3.20) in which 0 ≤ f(kx) ≤ 160 and θ(kx) = 10 for all
x = 1, 2, . . . , n.

The reason why we chose data vectors be randomized is not only to keep our experi-
ments objective but it is also because we have already split the list of raw keywords into
single words without paying attention to the natural language relations between them.
However, in vector space models, even though the use of natural language understanding
for measuring text’s feature is not considered, the use of words has been found to be quite
effective [11].

4.2 Conduct Experiments with Single Agents
In order to verify that agents were trained to have sufficient knowledge and are able to
score the interestingness of articles that they have never been presented before, we ran 8
experiments and obtained the following result:

Table 4.2: Experiments with single agents. ∆ is the abstract difference between the
interestingness returned by agents and the interestingness assigned to each article
before conducting experiments.

Agent
majoring in

Number of
Articles Scored

Accuracy (%) in the case

∆ < 0.1 ∆ < 0.15 ∆ < 0.2 ∆ < 0.25
Artificial Intelligence 47 36.17 53.19 63.83 76.60
Neural Networks 71 36.62 54.93 69.01 76.06
Deep Learning 44 36.36 61.36 70.45 72.73
Computer Networks 48 29.17 52.08 58.33 64.58
Natural Language Processing 60 31.67 55.00 66.67 70.00
Logic 62 25.81 54.84 67.74 69.35
Fuzzy Logic 54 25.93 48.15 66.67 77.78
Modal Logic 55 27.27 43.64 63.64 72.72
Average 55 31.13 52.90 65.79 72.48

In order to evaluate the above result, the probabilistic relevance framework BM25 was
chosen to compare with our neural network framework. BM25 or sometimes called Okapi
BM25 is a formal framework for document retrieval that had ever been the most successful
text-retrieval algorithms [23]. The BM25 function score(a,K) that is used to score the
relevant (we consider as the interestingness) of each article a with respect to the query
K = [k1, k2, . . . , kn] (the list of keywords) is as follows

score(a,K) =
n∑
i=1

IDF(ki)
fa(ki)(c+ 1)

fa(ki) + c

(
1− b+ b

dl

avgdl

) , (4.1)

where fa(ki) is the frequency of keyword ki in the article a, dl is the the length of a in
words, avgdl is the average length in words of all articles in the testing dataset. c and b
are two free parameters. Normally, 0 < b < 0.8 and 1.2 < c < 2. IDF(ki) is the inverse

44

document frequency weight of the keyword ki and is computed as follows

IDF(ki) = log N − n(ki) + 0.5
n(ki) + 0.5 , (4.2)

where N is the total number of articles in the testing dataset, and n(ki) is the number of
articles containing ki.

8 experiments in 8 research areas were conducted using the BM25 function with 8
testing databases same as in experiments with agents. In each experiment, b is fixed with
value of 0.75 while c is assigned with three values: 1.4, 1.6 and 1.8. The average of three
values returned by function score(a,K) for three values of c is computed and normalized
into a value in the interval [0, 1]. Result of using the BM25 function is summarized in the
following table

Table 4.3: Experiments with Okapi BM25 function. ∆ is the abstract difference
between the interestingness returned by the Okapi BM25 function and the interest-
ingness assigned to each article before conducting experiments.

Agent
majoring in

Number of
Articles Scored

Accuracy (%) in the case

∆ < 0.1 ∆ < 0.15 ∆ < 0.2 ∆ < 0.25
Artificial Intelligence 47 29.79 44.68 59.57 68.09
Neural Networks 71 12.68 21.13 30.99 36.62
Deep Learning 44 11.36 25.00 29.55 47.73
Computer Networks 48 10.42 20.83 25.00 27.08
Natural Language Processing 60 23.33 30.00 35.00 43.33
Logic 62 8.06 12.90 16.13 25.81
Fuzzy Logic 54 42.59 59.26 68.52 81.48
Modal Logic 55 12.73 21.82 38.18 61.82
Average 55 18.87 29.45 37.87 49.00

The results obtained from experiments with single agents in table 4.2 and with the
Okapi BM25 ranking function in table 4.3 provide us strong evidence that by using neural
networks, agents score articles’ interestingness with the accuracy higher than the tradi-
tional popular BM25 framework. In 8 experiments, there are 7 in which our agents’
performance is much better than function score. Furthermore, the average accuracy of
our agents in the case error ∆ < 0.2 that is acceptable in practice is approximately 1.7373
times higher than the average accuracy of the BM25 function. This suggests us that ran-
domly generating training datasets so that agents can learn users’ preferences meets the
requirement of saving time while still ensuring acceptable accuracy.

45

Chapter 5

Conclusions and Future Directions

5.1 Conclusions
In this research, we have proposed a model of multi-agent systems using neural networks
to evaluate the new coming information and using probabilistic reasoning in combination
with reliability updating mechanism to manage agents’ performance. The flexibility of
the system was demonstrated via showing that both supervised and unsupervised learn-
ings can be integrated into the model without affecting the process of agent ranking. The
reliability updating tables were proposed with the formula on how to calculate and update
agents’ reliability. Introducing these tables also provides us a mathematical and system-
atical way to determine the trustworthiness of filtered information. The final contribution
of this research is that we have shown by using neural network to score the interestingness
of research articles, the accuracy obtained is approximately 1.7 times higher than using
the popular BM25 function and is about 31.13% to 65.79%.

5.2 Future Work
The next directions of our research inheriting from this research include (i) improve the
accuracy of scoring interestingness by considering the natural language relations between
keywords - the things that have been ignored, (ii) apply the designed model to other
areas and deploy the developed system to more users, (iii) continue the research on
applying probabilistic dynamic epistemic logic and hybrid logic in representing the entire
information filtering process in logical formulas.

𝑤1 𝑤2

𝑤3 𝑤4

𝑤6 𝑤5

𝑤1 𝑤2

𝑤3 𝑤4

𝑤6 𝑤5

𝑤1 𝑤2

𝑤3 𝑤4

𝑤6 𝑤5

𝜑 ¬𝜑

𝑤1, 𝑤3

𝑤2, 𝑤4

𝑤5, 𝑤6 ≤𝑖

Classified as 𝜑

Classified as ¬𝜑

Unclassified

Classify𝑖(𝑎, 𝜑)
𝑎

𝜑

¬𝜑

≤𝑖

𝑎 𝜑

¬𝜑

≤𝑖
′

𝑎

𝜑

¬𝜑

≤𝑖
′

If 𝑀, 𝑎𝑉 ⊨ 𝜑

If 𝑀, 𝑎𝑉 ⊭ 𝜑

Figure 5.1: Future research direction on representing the entire multi-agent system
of information filtering by logical formulas. The idea is to represent the system using
logical model in which agents’ reliability is formalized by plausibility relation. When
an object’s label is determined, the model is updated.

46

Appendix A

Training Datasets

This appendix provides the details of training datasets used in all experiments of this re-
search. All training datasets are available in directory TrainingDataSets at the following
url

https://github.com/TranXuanHoang/InformationFilteringSystem

Each training dataset consists of a data definition file infofilter.dfn defining the list
of keywords that describe the user’s research area, a data file infofilter.dat containing
input vectors for training neural networks and a returned-after-training file filterAgent.ser.
For example, in the dataset for training an agent majoring in fuzzy logic, the infofilter.dfn
file that defines variables expressing the list of keywords (see table A.2) and the interest-
ingness is as follows

continuous fuzzy

continuous logic

continuous membership

continuous function

continuous approximate

continuous reasoning

continuous set

continuous axiomatic

continuous theory

continuous predicate

continuous defuzzification

continuous vagueness

continuous linguistic

continuous variable

continuous t-norm

continuous ClassField

Each keyword’s frequency
is represented as a
variable whose values are
normalized into the
continuous interval [0, 1]

Variable expresses
the interestingness

Keyword

File infofilter.dat saves input vectors with each in one line as the following description

0 11 5 6 0 0 0 2 1 10 11 1 0 18 0 0.36

34 2 0 142 34 12 0 0 3 0 21 53 11 33 0 0.56

4 2 1 0 0 3 0 1 4 0 1 1 6 2 3 0.18

.

fuzzy logic t-norm
ClassField
(interestingness)

One input vector

File filterAgent.ser contains all information about the backpropagation neural network
and the self-organizing map that have been trained. In order to avoid having to train the
neural networks again, just place this file in the same directory where the information
filtering application (see appendix B) is run in the next time.

47

https://github.com/TranXuanHoang/InformationFilteringSystem

Table A.1: List of research areas and corresponding raw keywords used to generate
training datasets. (RK) Number of Raw Keywords. 8 training datasets are
generated to train 8 agents which major in 8 different research areas. Raw keywords
are given to describe these areas. The terminology raw keywords refers to originally
given keywords (phrases) that are not split into smaller words.

#
Research
Area (RK) List of Raw Keywords

1 Artificial
Intelligence 14

artificial intelligence, machine learning, deep learning,
reinforcement learning, neural network, intelligent agent,
knowledge, reasoning, learning, planning, decision, natural
language processing, classification, robotic

2 Neural
Networks 18

neural network, multilayer perceptron, backpropagation,
self-organizing map, convolutional neural network, recurrent
neural network, weight update, gradient descent, adaptive
learning, competitive learning, supervised learning,
unsupervised learning, online learning, batch learning,
hidden layer, unit, activation, feed-forward

3 Deep
Learning 11

deep learning, multiple processing, multilayer neural
network, convolutional neural network, backpropagation
algorithm, supervised learning, reinforcement learning,
recurrent neural networks, stochastic gradient descent, deep
feedforward, pattern recognition

4 Computer
Networks 25

computer networks, Internet, application layer, presentation
layer, session layer, transport layer, network layer, data link
layer, physical layer, router, gateway, bridge, port, socket,
IP address, MAC address, TCP/IP, UDP, protocol, wireless
LAN, DNS, link state routing algorithm, distance vector
routing algorithm, multimedia, security

5
Natural
Language
Processing

24

natural language processing, text classification, word,
lexical, dictionary, bilingual corpus, query, regular
expression, n-gram tagging, syntax, context free grammar,
feature structure, information extraction, information
retrieval, part-of-speech tagging, hidden Markov models,
precision, recall, question answering, automata, parse tree,
Chomsky normal form, CKY algorithm, machine translation

6 Logic 22

logic, validity, completeness, soundness, truth table, true,
false, formal deduction, propositional logic, first-order logic,
negation, conjunction, disjunction, implication, all
quantifier, some quantifier, syntax, semantics, premise,
conclusion, tautology, theorem

7 Fuzzy Logic 10
fuzzy logic, membership function, approximate reasoning,
fuzzy set, axiomatic fuzzy set theory, fuzzy predicate logic,
defuzzification, vagueness, linguistic variable, t-norm

8 Modal Logic 12
modal logic, knowledge operator, belief operator, Kripke
model, posibility, necessary, modal axiom, proof system,
sound, complete, possible world semantic, consistent

48

Table A.2: Keyword lists for generating training datasets. (K) Number of
Keywords. Each list of keywords is created from its corresponding list of raw
keywords in table A.1 by splitting compound raw keywords into single words and
keeping only one word if the word is duplicated.

#
Research
Area (K) List of Keywords

1 Artificial
Intelligence 19

artificial, intelligence, machine, learning, deep, reinforcement,
neural, network, intelligent, agent, knowledge, reasoning,
planning, decision, natural, language, processing,
classification, robotic

2 Neural
Networks 25

neural, network, multilayer, perceptron, backpropagation,
self-organizing, map, convolutional, recurrent, weight, update,
gradient, descent, adaptive, learning, competitive, supervised,
unsupervised, online, batch, hidden, layer, unit, activation,
feed-forward

3 Deep
Learning 20

deep, learning, multiple, processing, multilayer, neural,
network, convolutional, backpropagation, algorithm,
supervised, reinforcement, recurrent, networks, stochastic,
gradient, descent, feedforward, pattern, recognition

4 Computer
Networks 33

computer, networks, Internet, application, layer, presentation,
session, transport, network, data, link, physical, router,
gateway, bridge, port, socket, IP, address, MAC, TCP/IP,
UDP, protocol, wireless, LAN, DNS, state, routing,
algorithm, distance, vector, multimedia, security

5
Natural
Language
Processing

42

natural, language, processing, text, classification, word,
lexical, dictionary, bilingual, corpus, query, regular,
expression, n-gram, tagging, syntax, context, free, grammar,
feature, structure, information, extraction, retrieval,
part-of-speech, hidden, Markov, models, precision, recall,
question, answering, automata, parse, tree, Chomsky, normal,
form, CKY, algorithm, machine, translation

6 Logic 25

logic, validity, completeness, soundness, truth, table, true,
false, formal, deduction, propositional, first-order, negation,
conjunction, disjunction, implication, all, quantifier, some,
syntax, semantics, premise, conclusion, tautology, theorem

7 Fuzzy Logic 15
fuzzy, logic, membership, function, approximate, reasoning,
set, axiomatic, theory, predicate, defuzzification, vagueness,
linguistic, variable, t-norm

8 Modal Logic 18
modal, logic, knowledge, operator, belief, Kripke, model,
posibility, necessary, axiom, proof, system, sound, complete,
possible, world, semantic, consistent

49

Appendix B

The Information Filtering
Application

This appendix introduces an information filtering application developed by this thesis’s
author as a demonstration for all concepts, designs and algorithms we have discussed in
the previous chapters. Key functions of the application will mainly be explained with the
purpose of providing manual instructions on how to use the application.

The application was developed in Java. Source code and runnable .jar app can be
downloaded from the following url:

https://github.com/TranXuanHoang/InformationFilteringSystem

Source code: in directory src from the above url
Runnable file: in directory app from the above url

Starting Window: when the application is started, its main graphical user interface
(GUI) is as the following figure. The top half of the GUI is a table containing information

of articles that will be loaded from personal computer or downloaded from the Internet.
Subject column shows articles’ subjects, Approve column contains check boxes so that
user can tick on to indicate which articles are selected to be sent to other user. Score
column is the interestingness of articles and is automatically computed by the app. Rating
column allows user to score articles’ interestingness again if the app’s returned scores is
not correct.

50

https://github.com/TranXuanHoang/InformationFilteringSystem

Add, Change, Remove Keywords: select Keywords > Customize..., then a dia-
log box will appear and keywords can be added, changed or removed. Hit Save Keywords
button to save any change.

Train Agent’s Neural Networks: first place training data file infofilter.dat in
the same directory where the app was started, then select Filter > Train Neural Networks

Dowload Articles: select File > Download Article..., enter URL of the article
to be downloaded, then hit Download button.

51

Enlarge Article’s Content Viewing Area: click on the up/down arrow button in
the middle left of the GUI to enlarge the area of viewing article’s content.

Load Articles from Personal Computer: select File > Load Article..., then
on the appearing file chooser dialog select an article file or hold Shift key and select
multiple files, finally click Open button or hit Enter on the keyboard.

Rate Articles Again: if an article downloaded from the Internet or loaded from PC
are assigned wrong Rating value, just click on the value and a drop down list will appear
to allow selecting other appropriate rating.

52

Set up Network Connections: select Exchange > Network Connections... to
open a dialog.

• If the app plays the role of receiving articles from other apps (other agents), it is a
server and on the right hand side of the dialog we just need to specify Port Number
and Max Connections then click Run Server button.

• If the app plays the role of sending articles to an other app (lower level agent), it
is a client. On the left hand side of the dialog box, specify the IP Address and
Port Number of the server to which it will connect and send articles, then click
Connect button.

Right below the buttons, there are two text areas for tracing connection status and two
text fields for sending messages with app to which this app are connecting. These two
text fields are just active when connection is successful.

Show All Client Apps: to visualize connections from other apps (from other agents)
select Exchange > Network of Agents.... A window will appear with a directed graph
consisting of nodes representing apps (agents) and edges representing connection direc-
tions. Labels of edges are IP addresses and port numbers of client apps.

53

Send Articles: after connecting to another app (server agent), articles can be sent by
fist clicking on the check boxes in the Approve column that correspond to articles which
has high score, then selecting Exchange > Send Article(s).

Check Reliability of Agents: to show reliability of all other apps (client agents) that
are connecting to your app directly, select Exchange > Reliability of Agents... and
a windows will appear with information relating to reliability of these client agents.

And More...: the app has other utility functions such as: just double-clicking on the
Subject of an article will cause the operating system starts its default application to open
the article; or the app can read and score the interestingness of articles in 5 file types,
namely .txt, .docx, .pptx, .pdf and .html.

54

Bibliography

[1] M. Anthony. Discrete Mathematics of Neural Networks: Selected Topics, chapter 1,
pages 3–8. Monographs on Discrete Mathematics and Applications. Society for In-
dustrial Mathematics, 2001. ISBN 978-0-89871-480-7.

[2] Y. Bengio and Y. Lecun. Scaling learning algorithms towards AI. MIT Press, 2007.
URL http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf.

[3] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent,
pages 177–186. Physica-Verlag HD, Heidelberg, 2010. ISBN 978-3-7908-2604-
3. doi: 10.1007/978-3-7908-2604-3_16. URL http://dx.doi.org/10.1007/
978-3-7908-2604-3_16.

[4] G. R. Brightwell, C. Kenyon, and H. Paugam-Moisy. Multilayer neu-
ral networks: One or two hidden layers? In Advances in Neu-
ral Information Processing Systems 9, NIPS, Denver, CO, USA, Decem-
ber 2-5, 1996, pages 148–154, 1996. URL http://papers.nips.cc/paper/
1239-multilayer-neural-networks-one-or-two-hidden-layers.

[5] J. Callan. Document filtering with inference networks. In Proceedings of the 19th
Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’96, pages 262–269, New York, NY, USA, 1996. ACM.
ISBN 0-89791-792-8. doi: 10.1145/243199.243273. URL http://doi.acm.org/10.
1145/243199.243273.

[6] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-
dexing by latent semantic analysis. Journal of the American Society for Information
Science, 41(6):391–407, 1990.

[7] L. V. Fausett. Fundamentals of Neural Networks: Architectures, Algorithms, and
Applications, chapter 6, pages 289–333. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1994. ISBN 0-13-334186-0.

[8] S. Haykin. Neural Networks and Learning Machines, chapter 4, pages 112–221. Pear-
son Education, 3 edition, 2009. ISBN 978-0131471399.

[9] A. K. Jain, J. Mao, and K. Mohiuddin. Artificial neural networks: A tutorial. IEEE
Computer, 29:31–44, 1996. doi: 10.1109/2.485891. URL http://dx.doi.org/10.
1109/2.485891.

[10] L. C. Jain, M. Seera, C. P. Lim, and P. Balasubramaniam. A review of online learning
in supervised neural networks. Neural Computing and Applications, 25(3):491–509,
2014. ISSN 1433-3058. doi: 10.1007/s00521-013-1534-4. URL http://dx.doi.org/
10.1007/s00521-013-1534-4.

55

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://papers.nips.cc/paper/1239-multilayer-neural-networks-one-or-two-hidden-layers
http://papers.nips.cc/paper/1239-multilayer-neural-networks-one-or-two-hidden-layers
http://doi.acm.org/10.1145/243199.243273
http://doi.acm.org/10.1145/243199.243273
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1007/s00521-013-1534-4
http://dx.doi.org/10.1007/s00521-013-1534-4

[11] T. John. Managing the Infoglut: Information Filtering Using Neural Networks, pages
305–324. Springer US, Boston, MA, 1994. ISBN 978-1-4615-2734-3. doi: 10.1007/
978-1-4615-2734-3_16. URL http://dx.doi.org/10.1007/978-1-4615-2734-3_
16.

[12] T. Kohonen. The Basic SOM, pages 105–176. Springer Berlin Heidelberg, 2001.
ISBN 978-3-642-56927-2. doi: 10.1007/978-3-642-56927-2_3. URL http://dx.doi.
org/10.1007/978-3-642-56927-2_3.

[13] T. Kohonen. Essentials of the self-organizing map. Neural Networks, 37:52 – 65, 2013.
ISSN 0893-6080. doi: 10.1016/j.neunet.2012.09.018. URL http://dx.doi.org/10.
1016/j.neunet.2012.09.018. Twenty-fifth Anniversay Commemorative Issue.

[14] A. Krogh. What are artificial neural networks? Nature, 26:195–197, feb 2008. doi:
10.1038/nbt1386. URL http://dx.doi.org/10.1038/nbt1386.

[15] Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng. On optimization
methods for deep learning. In L. Getoor and T. Scheffer, editors, Proceedings of the
28th International Conference on Machine Learning (ICML-11), ICML ’11, pages
265–272, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

[16] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Effiicient backprop. In Neural
Networks: Tricks of the Trade, pages 9–50. Springer Berlin Heidelberg, 1998. ISBN
978-3-540-49430-0. doi: 10.1007/3-540-49430-8_2. URL http://yann.lecun.com/
exdb/publis/pdf/lecun-98b.pdf.

[17] C. P. Lim and R. F. Harrison. An incremental adaptive network for on-line supervised
learning and probability estimation. Neural Networks, 10(5):925 – 939, 1997. ISSN
0893-6080. URL http://dx.doi.org/10.1016/S0893-6080(96)00123-2.

[18] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. ISSN 1522-
9602. doi: 10.1007/BF02478259. URL http://dx.doi.org/10.1007/BF02478259.

[19] T. Miyake and S. Miyamoto. Information filtering using fuzzy models. 1:32–37, Oct
1997. doi: 10.1109/ICIPS.1997.672734. URL http://dx.doi.org/10.1109/ICIPS.
1997.672734.

[20] S. Miyamoto. Information retrieval based on fuzzy associations. Fuzzy Sets and
Systems, 38(2):191 – 205, 1990. ISSN 0165-0114. URL http://dx.doi.org/10.
1016/0165-0114(90)90149-Z.

[21] T. Nakama. Comparisons of Single- and Multiple-Hidden-Layer Neural Networks,
pages 270–279. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-
642-21105-8. doi: 10.1007/978-3-642-21105-8_32. URL http://dx.doi.org/10.
1007/978-3-642-21105-8_32.

[22] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural net-
works by choosing initial values of the adaptive weights. In Initial Values of the
Adaptive Weights, International Joint Conference of Neural Networks, pages 21–26,
1990. doi: 10.1109/IJCNN.1990.137819. URL http://dx.doi.org/10.1109/IJCNN.
1990.137819.

56

http://dx.doi.org/10.1007/978-1-4615-2734-3_16
http://dx.doi.org/10.1007/978-1-4615-2734-3_16
http://dx.doi.org/10.1007/978-3-642-56927-2_3
http://dx.doi.org/10.1007/978-3-642-56927-2_3
http://dx.doi.org/10.1016/j.neunet.2012.09.018
http://dx.doi.org/10.1016/j.neunet.2012.09.018
http://dx.doi.org/10.1038/nbt1386
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://dx.doi.org/10.1016/S0893-6080(96)00123-2
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1109/ICIPS.1997.672734
http://dx.doi.org/10.1109/ICIPS.1997.672734
http://dx.doi.org/10.1016/0165-0114(90)90149-Z
http://dx.doi.org/10.1016/0165-0114(90)90149-Z
http://dx.doi.org/10.1007/978-3-642-21105-8_32
http://dx.doi.org/10.1007/978-3-642-21105-8_32
http://dx.doi.org/10.1109/IJCNN.1990.137819
http://dx.doi.org/10.1109/IJCNN.1990.137819

[23] S. Robertson and H. Zaragoza. The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.
ISSN 1554-0669. doi: 10.1561/1500000019. URL http://www.staff.city.ac.uk/
~sb317/papers/foundations_bm25_review.pdf.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, oct 1986. doi: 10.1038/323533a0.
URL http://dx.doi.org/10.1038/323533a0.

[25] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, Nov. 1975. ISSN 0001-0782. doi: 10.1145/361219.
361220. URL http://doi.acm.org/10.1145/361219.361220.

[26] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. ISSN 0893-6080. URL http://dx.doi.org/10.1016/j.neunet.
2014.09.003.

[27] P. J. Werbos. Computational intelligence from ai to bi to ni. Proc. SPIE, 9496:
94960R–94960R–9, 2015. doi: 10.1117/12.2191520. URL http://dx.doi.org/10.
1117/12.2191520.

[28] D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for
gradient descent learning. Neural Networks, 16(10):1429–1451, 2003. ISSN 0893-
6080. doi: 10.1016/S0893-6080(03)00138-2. URL http://dx.doi.org/10.1016/
S0893-6080(03)00138-2.

57

http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf
http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf
http://dx.doi.org/10.1038/323533a0
http://doi.acm.org/10.1145/361219.361220
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1117/12.2191520
http://dx.doi.org/10.1117/12.2191520
http://dx.doi.org/10.1016/S0893-6080(03)00138-2
http://dx.doi.org/10.1016/S0893-6080(03)00138-2

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.1.1 Information Filtering System
	1.1.2 Previous Work on Filtering

	1.2 Goals
	1.3 Thesis Structure

	2 Background
	2.1 Information Filtering and Information Retrieval
	2.2 Intelligent Agents and Multi-agent Systems
	2.3 Supervised Learning, Unsupervised Learning and Artificial Neural Networks
	2.4 Information Filtering in a Nutshell
	2.4.1 Vector Space Model
	2.4.2 Bayesian Network
	2.4.3 Fuzzy Model

	3 Proposed System
	3.1 General Model of the System
	3.2 An Example of Agent Network
	3.3 Scoring Article's Interestingness Using Neural Networks
	3.3.1 Backpropagation Neural Network Approach
	Vectors of Input Data
	Error-Correction Rules
	Artificial Neurons
	Backpropagation Neural Network (BPNN)
	Forward Phase
	Backward Phase
	Number of Hidden Layers
	Initialization of Weights
	Stopping Criteria
	Input Normalization
	Summary and Algorithm

	3.3.2 Self-Organizing Map Approach
	General Model
	Detailed Architecture and Algorithm

	3.4 Ranking Agents
	3.4.1 Reliability of Each Agent
	3.4.2 Reliability Updating Tables
	3.4.3 Trustworthiness of Filtered Information

	4 Experiments
	4.1 Generate Datasets for Trainings Agents
	4.2 Conduct Experiments with Single Agents

	5 Conclusions and Future Directions
	5.1 Conclusions
	5.2 Future Work

	A Training Datasets
	B The Information Filtering Application
	Bibliography

