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Abstract

Question answering systems have been developed with the goal to produce high quality and human-like answers.
Especially, question answering systems on legal domain are really practical. However, building legal question
answering systems with good quality is quite a hard challenge. Not only reading and understanding legal terms
requires expertise knowledge, but also legal language is at different level of complication.

We aim to build an appropriate deep learning model for legal question answering systems and particularly
target the document re-ranking phase of the systems. With deep learning is emerging as a powerful machine
learning approach, we evaluate several deep learning architectures for modeling text into computational vector
space so as to compare them with similarity measures.

While there are numbers of deep learning architectures, we are interested in Convolutional Neural Networks
for the task. The models have strong performance in Computer Vision, especially object recognition. Models
based on Convolutional Neural Networks are also implemented for Natural Language Processing and have been
gaining more improvement so as more attention, though, it’s probably quite strange that the models treat a
text as an image. Despite of the nature of deep learning models, which require no manual feature extraction,
we investigate the capability of deep learning models with additional features for further improvement.

We evaluate the models on three question answering corpora with various characteristics. One of them is on
open domain and the other two are on legal domain. Though they are all question answering related tasks, the
actual requirements are quite distinguishable. Interestingly, one of our experimental corpora is limited in data
size which is a theoretically and practically huge disadvantage for deep learning models which are data-oriented
and hungry for observable instances. We then use a strong feature that can be extracted from the corpus to
enrich the models. While combining additional features is not new, we experiment in a different way. We set
the additional features as starting point of learning for the models. The experiment results show that deep
learning models with appropriate configuration can perform well on legal domain data.

In the future, we’d like to further investigate the structural information of complicated texts like legal docu-
ments and building a deep architecture which is capable of encoding structural information into its parameters
for more robust document modeling.

Keywords: Deep Learning, Question Answering, Legal Domain, Document Re-ranking
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Chapter 1

Introduction

1.1 Research Aim

This research aims to adapt deep learning method for QA systems especially on legal
domain. For that, we set forth our study to find answers for the following questions.
First, can we apply deep learning for legal question answering systems? We compare
several developed deep learning models on designated legal question answering corpora.
Second, can we improve legal question answering systems with deep learning? We
investigate a way to enrich deep learning model with external features.

1.2 Motivation

QA is a research field of information retrieval and Natural Language Processing (NLP)
and focuses on building systems that response user questions with answers instead of
long list of relevant documents. In other words, a QA system stands between a normal
search engine and users. The system analyzes result from the search engine, extract
core information to response the users.

Legal is one of challenging domains on which QA systems can be developed. Legal
documents are far more complicated than daily newspapers in the way that most of
them require expert knowledge to understand correctly. Searching for an answer of a
legal question, however, is very important yet not quite easy for common users. A well
designed legal QA system not only saves time and effort but also supports dealing with
technical difficulty of legal text.

Deep learning is a machine learning technique that aims at modeling high-level ab-
straction of data [3, 4] that higher level features are learned from lower level. For
illustration, from pixels of an image as the first level, a deep learning model can learn
vertical, horizontal, diagonal lines, or curves as the second level, then triangles, rectan-
gles, circles as the third level, and so on. This phenomenon shows that deep learning is
capable of generating very complex features from a simple input which is a major dif-
ference from costly hand crafted features required for machine learning techniques like
support vector machine. Beside traditional machine learning techniques, deep learning
is greatly concerned in this research because of its success in many research areas, for
examples, signal processing, image processing, and also NLP.

Deep learning has been proved to be efficient in NLP. It has achieved state-of-the-
art results in NLP sub-fields, such as constituency parsing [5], sentiment analysis [6],
machine translation [7], and other NLP areas.

1



1.3 Related Work

Researches on QA tasks from the past to the present are usually linguistics analysis and
deep learning. On one hand, linguistics methodology focuses on extracting linguistics
features from corpus for learning a strong machine learning models such as support
vector machine, adaboost. Wherein, tree-like structures, for example dependency trees,
constituency trees with tree-based algorithms such as tree edit distance are very popular
and efficient approaches [8, 9, 10, 11, 12, 13]. Additional approaches are lexical-based
[14, 15], or word-alignment [16]. On the other hand, deep learning is an approach
of automatic learning which reducing the heuristic processing of text. Despite of the
deference, combinations of deep learning and linguistics are attractive.

Deep learning is recently gaining dramatically attraction in NLP, especially QA.
For QA tasks, deep learning has been approached in several ways. Wang et al. use
deep belief networks to model semantic relevance for community-based question-answer
pairs [17]. The input of the model is a word-occurrence vector of a question or an
answer. The approach focuses on its content and ignores any syntactic constraints
which leads to loss of information. In the different way, Lyyer et al. [18] exploit the
syntactic dependency tree of a question and apply a recursive neural network on this
tree to classify a given set of answer candidates. The approach makes use of syntactic
information but the architecture is very sensitive to word order and words modifying.
One way that not requiring tree structures is using Recurrent Neural Network (RNN)
or Long Short-Term Memory (LSTM) [19, 20]. This problem can be adapted by a
Convolutional Neural Network (CNN) where related work are sentence modeling by
Kalchbrenner et al. [21] for sentence classification tasks, answer selection by Yu et al.
[22], vector representation similarity-based models [23, 24]. A CNN typically processes
over windows of text which keeps local context and not too sensitive to word changing.

Legal, a very strict and challenging domain though, is practical for building QA
systems. Quaresma and Rodrigues [25] build a QA system on legal domain by rep-
resenting legal documents in logical forms. Their system exploit syntactic, semantic
and legal ontology for the task to transform questions and legal clauses into discourse
structures then applies logical inference to find the true answer. There are also work
utilizing some characteristics of legal documents such as logical structure recognition,
mining reference information, etc [26, 27, 28]. A different method is to use ranking
models to assign score to each answer candidate [29], but may or may not consider
logical relation between questions and answers.

1.4 Significance

Deep learning approach can be used to mitigate the lack of specialist knowledge to ex-
tract adequate features for machine learning methods such as support vector machine,
adaboost. Deep learning models also have the benefits of their scalability, flexibility,
adaptivity. We can change the size of the models or treat each models as specific mod-
ules to combine them into a more sophisticated architecture to use in specific problem
without the hassle of feature engineering.



1.5 Contributions

We experiment variate deep learning models on designated legal question answering
corpora. Then we evaluate the impact of additional features to the performance of
deep learning models. We analyze the effectiveness and limitations of our method.

1.6 Thesis Outline

The remainder of this thesis is organized as follows:

e Review of Literature (Chapter 2): We give an overview of legal question
answering systems, study-related deep learning techniques and models.

e Method (Chapter 3): We describe our approach to build a hybrid deep learn-
ing model and compare the model with other models described in Chapter 2.
We also analyze some datasets for experiments of the models. We present our
experiments. We analyze the results of the experiments.

e Discussion (Chapter 4): We discuss some findings from the experiments. We
analyze the effectiveness and limitations of the models.

e Conclusions (Chapter 5): We conclude our study and state our future work
direction.



Chapter 2

Review of Literature

2.1 Legal Question Answering (QA) Systems

Question Answering (QA) is a research field of information retrieval and Natural Lan-
guage Processing (NLP) and focuses on building systems that response users questions
with answers instead of long list of relevant documents. In other words, a QA system
stands between a normal search engine and users. The system analyzes result from
the search engine, extract core information to response the users. Thus, a Question
Answering (QA) system often consists of several modules such as question analysis,
indexed knowledge source, answer analysis, etc.

o)
ﬁl (=)
Question Document Document Document Answer
Preprocessing Retrieval Preprocessing Re-ranking Selection
x Text Preprocessing f i i

Tokenization

Lemmatization Re-ranking
Model

Stopword Removal

Figure 2.1: A Question Answering (QA) system.
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Figure 2.2: Document retrieval and re-ranking phases in a QA system.

Document re-ranking is a very important phase in a QA system. This phase usually
involves building a re-ranking model. The re-ranking model receives retrieved docu-
ments from keyword-based retrieval module and the given question to compute the
score of each document, then return the ranked list of documents ordered descending
by the scores. The keyword-based retrieval module only applies keyword matching
without the knowledge of question-document relationships. Therefore, the re-ranking
model is trained to learn the relationships in order to re-ranking the documents more
semantically.

Legal is one of closed domains on which QA systems can be developed. Legal docu-
ments are far more complicated than daily newspapers in the way that most of them
require expert knowledge to understand correctly. Searching for an answer of a legal
question, however, is very important yet not quite easy for common users. A well
designed legal QA system not only saves time and effort but also supports technical
difficulty of legal text.

2.2 Deep learning

Deep learning is a machine learning techniques that aims at modeling high-level ab-
straction of data in the form of artificial neural networks [3, 4, 30, 31, 32, 33, 34, 35].

2.2.1 Artificial Neural Networks

Artificial neural networks are composed of linear and non-linear transformations orga-
nized as multi-layer networks where each layer consists of artificial neurons.



Figure 2.3: An artificial neuron with n inputs.

An artificial neuron (Figure 2.3) receives multiple inputs and emits one output signal.
It comprises:

e A weighting ormapping function f with a set of weights ¢

e A bias value b

e An activation or transformation function ¢, which is often one of the following:

Sigmoid
1
olx) = 1+e®
Hyperbolic tangent
tanh(a:) — i
Rectifier
rec(r) = max(0, x)
Softplus
softplus(x) = log(1 + €*)
Linear
linear(x) = x
Softmax
6:)31 GI»L‘ exK
softmax([z1, ..., xi, ..., Tx]) = o T Ty

(2.1)

(2.2)
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Figure 2.4: Sigmoid function.

)
1
0

x
-1

Figure 2.5: Hyperbolic tangent function.

Sigmoid and hyperbolic tangent functions are often used quite differently. On one
hand, hyperbolic tangent function is usually used for non-linear transformation to
output signal in positive (+) or negative (-), which represents two opposite states. On
the other hand, sigmoid function is usually used for switches, gates in order to filter
out some input values.



Figure 2.6: Rectifier function.

Figure 2.7: Softplus function.

Figure 2.8: Linear function.
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Figure 2.9: Softmax activation from left to right.

The output of the neuron is computed by:

y=o(f(x)+0) (2.7)

e X =[xy, T,...,x,] : input of the neuron.
e y : output of the neuron.

e f : weighting or mapping function.

e b : bias.

e ¢ : activation or transformation function.

e n : size of the input.

Figure 2.10: An artificial neural layer with m artificial neurons.



An artificial neural layer (Figure 2.10) consists of artificial neurons. The output of
the layer is composed of the output of each neuron and computed by:

y = ¢(f(x) +b) (2.8)

® X =[xy, Z,...,x,] : input of the layer.

f=[f1, f2y -y frn] : Weighting or mapping functions.
e b=[by,bs,..,by] : biases.

oy =I[y1,Y2, ., Ym| : output of the layer.

¢ : activation or transformation function.

n: size of input.

m: number of neurons.

o iOutput 0f§
. 1 Artificial Neural Layer 2 : Network !

3 o iOutput of
3 Input | 3Ar‘c1f1c1al Neural Layer 1 | Layerl ||

Figure 2.11: An artificial neural network with 2 layers.

An artificial neural network (Figure 2.11) is then built by stacking multiple artificial
neural layers one by one. The output of one layer becomes the input for the next layer:

hy = ¢i(fi(hy-1) + by) (2.9)
e [ : layer [.
e f} : weighting or mapping functions of layer [.

e b : biases of layer .

10



¢; : activation or transformation function of layer I.

h; = [hy1, hug, -y Bum, ] = output of layer [.
e hy = x : input of the network.

e h; =y : output of the network.

e m;: number of neurons in layer [.

e [ : total number of artificial neural layers.

Apparently, there’s no definite solution for optimization of artificial neural net-
works. Gradient descent is a well-known method for estimating the weights 8 =
[V ¥g ... ¥; ... Op| resulting in approximately optimized artificial neural networks.
Given an artificial neural network G(6) which has an optimal weights 7"  there’s
is a loss function:

L(0) = Error(G(0),G(8°F"™a)) (2.10)
Gradient of loss function is:

0L 0L oL oL

LO)=| — — .. . ——
ViL,9) 0 oYy 09, dUp

(2.11)

While the gradient of a function refers to the incremental direction and velocity of
the function, the direction of function variables to reduce the function is then inferred
from the additive inverse of the gradient. The the loss function, thus, can be iteratively
reduced by updating @ in the gradient descent direction:

0=06-nV(L,0) (2.12)

The learning rate n defines how far the weights @ change. If the learning rate is large,
the update is fast but may jumps over the optimal point. Otherwise, if the learning
rate is small, the update is slow but more probably converges to one optimal point.
However, too small learning rate also may results in a local optimal point sincere most
artificial neural networks are high dimensional.

11



loss

optimal loss

optimal weight

Figure 2.12: Gradient descent.

2.2.2 Convolutional Neural Networks (CNNs)

CNNs are deep neural networks that learn patterns from data with convolutions and
stores them in their feature maps with the preferences of depth and breadth. CNNs
have strong performances in computer vision, especially object recognition [36]. The
way CNNs work is definitely the reason of that success. A CNN divides the input
into sliced regions and scans through its input and applies its feature maps to find the
regions of interest which are the portions of the input that most match with its defined
or learned feature maps (Figure 2.13). Moreover, an object need to be recognized may
locate in different regions for each image so as in NLP, important information may be
some small piece of texts or contexts of interest in whole long documents.

Each convolutional operation, the main part of every CNN, is composed from the
following parameters:

e Filter size: how large the feature maps of the network are. This defines the area
that the needed information should fall in in usual input.

e Number of feature maps: how many possible patterns that the network should
be able to capture.

e Stride: how the operations move to the next region. In Figure 2.13, stride is
1 x 0, which means that each time, the operations move one step vertically and
no step horizontally.

12
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Input Matrix Feature Maps Outputs

Figure 2.13: Convolutional operations with filter size of 3 x4, 2 feature maps, and stride
of 1 x 0. If a region is highly similar to one feature map, its convoluted value (output)
is high and vice versa. The operations result in two vectors with six convoluted values
for each feature map.

2.2.3 Pooling Layers

A pooling layer is usually an intermediate layer in a deep neural network. It often has
linear activation function and bias value 0. It transforms its usually large and variant-
size input into smaller and fixed-size output by applying its operation as follows.

hi = pOOlng(hZ‘_l) (213)
where the pooling operation is often one of the following.
e max: selecting the max value of the input.

e average: computing the average value of the input.

13



e k-max pooling: select the k max values of the input.

e dynamic k-max pooling: similar to k-max pooling with the value of k is
determined by the input (for example, input size).

Pooling layers are often placed on top of convolutional layers in CNNs or the similar
architectures to extract the regions of interest from input.

9
4 2 9
7 8 1 8
0 3 5 » 9
6 5 5
6 2 6
8 1 1
1 1 9
2 3
2

Figure 2.14: Max pooling operation.

2.3 Deep Learning for Modeling Texts

In this section, we describe several deep learning models that achieve high performances
in tasks related to comparing texts and used in our experiments.

2.3.1 word2vec: Distributed Word Representations

A word2vec model encodes each words into a distributed representation, proposed by
Mikolov et al. [1]. It can be trained in continuous-bag-of-word or skip-gram method.
Both the methods have the same objective: a distributed representation of a word is
estimated by possible surrounding context of this word. Thus, the representations hold
the context distribution information of the word. In other words, if two representations
are similar, their represented words have similar context usages or are used in similar
situations.

14



Input projection  output

w(t-2)

w(t-1)

w(t)

w(t+1)

7o

w(t+2)

Figure 2.15: A word2vec model trained by skip-gram.

Skip-gram. From a corpus, a set of all text windows with size 2k + 1 is extracted.
For each text window corresponding to representation vectors wy_g, ..., Wy_1, Wy, Wyi1,
...y Wik, the method estimates the representation w; by predicting the surround rep-
resentations wy_g, ..., Wy_1, Wii1, ..., Wipg. Lhis training method utilizes an artificial
neural network with the following layers:

1. Input layer: receiving middle word’s representation w;

2. Projection layer: apply transformation from input vector w; to output vector

concatenated of wy g, ..., Wi_1, Wii1, ooy Wi
T
projection(w;) = Wi (2.14)
Wi+1
| Witk |
3. Output layer: the predicted representations w;_g, ..., Wi_1, Wi1, ooy Wik

As the name suggested, the model is a kind of distributional model. As the mech-
anism of skip-gram, by predicting the same word over different surrounding words or
the variation of contexts, the model estimates the distribution of a word in all contexts
and saves this into a distributed vector.
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Country and Capital Vectors Projected by PCA
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Figure 2.16: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vec-
tors of countries and their capital cities. [1]
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Table 2.1: Word clusters from training a word2vec model.

proviso provision  obligee consent seller buyer
wherein oversight obligor authorization retailer bidder
stipulation  provisions he/she stipulated buyer seller
therefor requirement mandatory injunction collector  broker
disclaiming limits pledgees obligated vendor lender
offeror reduction mortgagee stipulate trader purchaser
accordance guidelines mortgagor  stipulating dealer investor
offeree protections  sub-pledge obligation merchant shareholder

2.3.2 Paragraph Vectors (PVs): Distributed Representations
of Sentences and Documents

This method is proposed by Le and Mikolov [37] to model variant-length text chunks
into fixed-size vectors.

The training mechanism is similar to word2vec model’s with one additional repre-
sentation of the text chunk itself (Figure 2.17). For each text chunk, a set of text
windows is also extracted. Each context window is now represented by these vectors
D, wy_p, ..., Wi_q, Wy, Wiy1, ..., Wik, Where D is the additional representation of the
text chunk participating in the process of predicting surrounding context as seen in
word2vec training process.

The training has two steps. First, the distributed representations of all words in a
given corpus is estimated and fixed. Second, the distributed representation D of each
text chunk in the corpus is estimated.

Classifier m

Average/Concatenate 11T
Paragraph Matrix----- > W W W

| | |
Paragraph the cat sat
id

Figure 2.17: PV model architecture.

2.3.3 Deep Structured Semantic Models with Convolutional-
Pooling Structure (CDSSMs)

The architecture is proposed by Shen et al. [38] which uses the similar idea of modeling
the semantic relationship of a given document pair by using convolution layers instead
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of simple non-linear dense layers by Huang et al. [24]. The model is evaluated on
dataset from Web documents.

Semantic layer: y 128

Affine projection matrix: W;

Max pooling layer: v 300 ||
Max pooling operation max max max
Convolutional layer: h; 0300 [|[ ]300 || ... [[]300

Convolution matrix: W,

Word hashing layer: f, | 30k || 30k ][ 30k | ... [ 30k || 30k |
Word hashing matrix: Wy T T T /‘\ T
Word sequence: x; <s> Wi W wr <s>

Figure 2.18: CDSSM architecture.

The architecture (Figure 2.18) has the following layers:

1.

Word hashing layer: tri-letter hashing. For each word of a given text, it is
split into a set of tri-letter grams. For example, the word ’buyer’ is split into
{'#bu’; 'buy’, "uye’, 'yer’, 'er#’ }. A tri-letter vocabulary is built from all sets
of tri-letter grams. The vocabulary is then used to map each set into a one-hot
vector representing the occurrence of each tri-letter gram by value 1, otherwise
0. One-hot vectors of all words are stacked to form the input of the next layer,
convolutional layer.

Convolutional layer. Usual convolutional operation on the input from tri-letter
hashing.

. Max pooling layer. Select the max values as the most salient features out of the

convolutional layer output.

Semantic layer. The layer applies affine projection matrix to generate more com-
plex features from pooled features.

The output of semantic layer is the final representation of each input text. Similarity
of a text-pair is calculated by cosine of the two corresponding final representations.
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Given a set of similar text-pairs, the training algorithm of the model is first generate
a set of dissimilar text-pairs from randomly sampling each new negative text-pair by
replacing its second text with the second text of the other pairs. Then the training
algorithm estimates the model parameters by maximizing the similarity of similar pairs
and dissimilarity of dissimilar pairs.

2.3.4 Learning to Rank Short Text Pairs with Convolutional
Deep Neural Networks (L2ZRSTP-CNN)

This architecture is proposed by Severyn and Moschitti [23] which learns semantic
relationship from input text pairs with a convolutional-pooling structure combined
with additional features by softmax layer. The model is evaluated in reranking short
text pairs where questions and documents are limited to a single sentence.

convolution pooled similarity join hidden
feature maps representation matching layer layer

sentence matrix softmax

\\\
™~

Fq

document

e
1 |/

The cat sat on the mat

\\
Fay \
g Fq
// -
Where was the cat ? additional
features Xfeat

Figure 2.19: L2RSTP-CNN architecture.

The architecture (Figure 2.19) contains the following layers:

1. Word embedding layer. This layer maps each word in each of a given text pair
into a vector representation by using a pre-trained word2vec model. The word
vectors are stacked into a sentence matrix.

2. Convolution layer. Convolutional operations slice over the sentence matrices to
capture the similarity of context patterns in the input with the own feature maps.

3. Max pooling layer. This layer selects the maximum similarity score for each
feature map as the most salient score and then outputs pooled representations.

4. Join layer. This layer concatenates pooled representations of the given text pair,
the similarity matching of the pooled representations, and additional features
(word overlapping features).
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5. Hidden layer with softmax. This layer applies affine function to map the input
into a vector with output size of 2. Then the softmax operation selects the
greater of the two elements of the output vector as the predicted label (relevant
or irrelevant).

The model is trained as a binary classification problem. In the training process of
the model, two groups of text-pairs are generated. One group is similar or relevant
text-pairs which is assigned with label 1. The other group is dissimilar or irrelevant
text-pairs which is assigned with label 0. Then a categorical loss function is used to
estimate the parameters of the model. After training, the model outputs the label
distribution for each text-pair which is then treated as ranking score.
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Chapter 3

Method

3.1 Enriched Deep Learning Models with External
Features

In this section, we describe how we enrich the selected deep learning model with ex-
ternal features. Our approach to build the re-ranking model, shown in figure 3.1, is
based on the architectures from Kim [39] and Huang et al. [24] that use convolution
layers for auto feature extraction, and additionally combining with external document
features. The limitation of the two models is that they only extract features from doc-
ument words, but lack some features from the corpus and domain of the documents.
Therefore, together with convolutional features extracted from convolution layers, we
combine them with additional external features (e.g. TF-IDF [40]).

The model consists of two sub-models with the same architecture but different trained
weights. One is for modeling questions and the other is for modeling documents.
The sub-model receives an input text, scans through each windows of words, matches
them with the convolutional feature maps, then pools the most matched one to collect
convolutional features. The features, then, are combined with external features with
a weighting scheme, to output the final representation. These outputs are used to
compute score of a document d given a question ¢: Score(d|q). Finally, we train the
model to maintain the below constraint:

Score(dpositive|q) — Score(dnegative|q) > 0 (3.1)

With two separated sub-models, the model is expected to represent questions and
documents in their own space, then learns the relationship mapping from question
space to document space and vice versa.
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Word-level
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(Word Embedding

Question q Document d

Figure 3.1: Enriched re-ranking model with external features.

Word-level features: transforming input text to matrix representation by
word embedding layer.

For each word in the input text, the model looks up the corresponding embedding
vector w in the word embedding matrix Wempedding € RIVIxembsize (V' is vocabulary and
embsize is the size of each word embedding vector) and concatenates all vector into a
matrix representing the given input text (Equation 3.2).

[ wy; we; ws; ...; ws | = embedding-layer(Wepmpedding, iInput text) (3.2)
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Figure 3.2: Composing word-level features from word embedding matrix Wempedding-

Convolutional-pooling operations.

We then apply convolutional operations on the embedding matrix. To capture local
context information with various granularity, we adopt multiple-size feature mapping
from Kim [39]. From experiments, we select 3, 4 and 5 as feature map sizes for every
150 feature maps. For each feature map, the model slices it through the input matrix to
calculate the similarity between the feature map and each window in the input matrix.
Then, max pooling is applied to select the most salient feature. Totally, the operation
will produce an output vector of size 450 referred as convolutional-pooling features.

Wy
Wi+1

Vconvoluted = SUIN o erature—map (33)
Witk—1

® Wieature—map: A feature map with size k x embsize.
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Wt

o | Wi . a sliding window with size of k from word t"* to word (¢t +k — 1)t
Wetk—1

e o: element-wise multiplication (Hadamard product).

e sum: summation of all elements.

Feature Convoluted Pooled
maps values values

v i

-

Sliding
windows ™.

Word-level
features

Convolutions Max-pooling
< > < >

Figure 3.3: Convolutional-pooling operations with multiple-size feature maps. To cap-
ture context windows with the number of words less than the feature map sizes, we
add dummy word represented by 0 vectors to the beginning and the end of the texts.

Document-level features.

We extract two sets of features from each document. In addition to the convolutional-
pooling features from convolutional-pooling operations, we collect external features
Veaternal Which characterize the document in its corpus.
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Projection layer: multiple linear combinations with a non-linear activation.

From the basic convolutional features veonvotutional—pooting, @ set of linear combinations
Wiroj is carried out to compute more complex derived features vjgeens. A non-linear
transformation is applied to encourage the non-linearity of the features. The non-linear
transformation involves applying linear weighting matrix W,,,; and then non-linear
activation tanh function.

Vlatent = tanh(Wproj : Uconvolutional—pooling) (34)

Y

Viatent

Y

/4

Veonvolutional-pooling proj

Figure 3.4: Affine with non-linear transformation of convolutional-pooling features into
latent features.

Final representation: combination of latent features and external features.

Along with latent features extracted from neural modules, we extracted some hand-
crafted features vegternar, for example TF-IDF. Then we do a simple concatenation of
the external features vepternat and the latent features vygeen: to form the final represen-
tation vyinq of the input text.

Vfinal = |: Vlatent :| (35)

Vexternal
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Figure 3.5: Concatenation of latent features and external features.

Relevant Score.

The relevant score Score(d|q) of a question ¢ and document d is calculated by cosine
of their two final representations vyinq.(q) and vginq(d) respectively.

Score(d|q) = cosine(vina(d), vfina(q)) (3.6)

Our model encourage the impact of external features to the relevant score compu-
tation. By not putting vy, through another layer, which is different from L2RSTP-
CNN, we reduce the effect that external features are out-weighted by latent features
from neural layers. With the random initialization of artificial neurons in the model,
the external features which are fixed can act as the starting point of searching space.
This also means the external features have strong impact to the performance of the
model, which will be discussed in Chapter 4.

3.2 Corpora

This section, we describe the data we used to evaluate the method. The corpora used
in the experiments are named WikiQA, COLIEE 2015, and TREC 2011 Legal Track.
Though the corpora are common in that annotated data is in sentence-sentence pairs
with positive (relevant/responsive) or negative (irrelevant/non-responsive) labels, each
corpus has it own typical characteristic which affects the performance correlation of
experimented models.

3.2.1 Corpora Overview
COLIEE 2015

This is a dataset from Competition on Legal Information Extraction/Entailment (COL-
IEE) 2015' for a legal bar examination. Each question is paired with a couple of civil
articles. While three subtasks involving this dataset are extraction, entailment and
both, only extraction subtask is dealt in the experiments. The task is that given a
question or a statement, retrieve its relevant civil articles from 755 articles in Japanese
Civil Code. The dataset contains 267 training questions in group H[18-23] with and
66 testing questions are in group H25.

'http://webdocs.cs.ualberta.ca/~miyoung2/COLIEE2015/
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(Keeping the Thing Retained by Holders of Rights
of Retention)

Article 298

(1) A holder of a right of retention must possess the
Thing retained with the care of a good manager.

(2) A holder of rights of retention may not use,
lease or give as a security the Thing retained unless
he/she obtains the consent of the obligor; provided,
however, that this shall not apply to uses necessary
for the preservation of that Thing.

(3) If the holder of a right of retention violates
the provisions of the preceding two paragraphs, the
obligor may demand that the right of retention be
extinguished.

H20-12-5

If a holder of a right of retention has consent of the
obligor, or if a pledgee has consent of the pledgor,
then they each may lease any collateral.

Figure 3.6: An example of a question and its relevant article in COLIEE 2015 dataset.

TREC 2011 Legal Track

TREC 2011 Legal Track? has a single task: identifying documents responsive to re-
quests for production that are typical in civil litigation. The dataset contains 3 requests
(topics) and about 670,000 documents. Each topic is a long and complicated sentence
with =70 words. Besides, the documents are in different formats where they can be
email messages, tables, or even unreadable formats, whose content lengths varies in
a large scale. In the experiment, "rel.401”, "rel.402”, and "rel.403” files consisting of

4,625 documents are used, and long documents are truncated to maximum length of
100 words.

2http://plg.uwaterloo.ca/~gvcormac/legallil/treclegalll.html
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Topic 401. All documents or communications that
describe, discuss, refer to, report on, or relate
to the design, development, operation, or market-
ing of enrononline, or any other online service of-
fered, provided, or used by the Company (or any of
its subsidiaries, predecessors, or successors-—in-
interest), for the purchase, sale, trading, or ex-
change of financial or other instruments or prod-
ucts, including but not limited to, derivative in-
struments, commodities, futures, and swaps.

[/ ]Responsive Message.

Enron

P.0.Box 1188

Houston, TX 77251-1188

Mark Palmer

(713) 853-4738

ENRON RESUMES MARKET-MAKING ACTIVITY

IN NORTH AMERICAN NATURAL GAS AND POWER

FOR IMMEDIATE RELEASE: Wednesday, Sept. 12, 2001
HOUSTON Enron announced today it will resume its
market-making activity in North American natural gas
and power. Enron will buy and sell natural gas and
power by phone and over its online transaction plat-
form EnronOnline until noon CDT. We see no reason
for North American natural gas and power markets
to become unstable in the aftermath of yesterdays
tragedies, said Greg Whalley, Enron president and
chief operating officer. These are domestic com-
modities, and the physical infrastructure is secure
and operating. Enrons markets outside of North Amer-
ica will operate according to their normal schedule.
Enron is one of the worlds leading energy, commodi-
ties and services companies. The company markets
electricity and natural gas, delivers energy and
other physical commodities, and provides financial
and risk management services to customers around the
world. Enrons Internet address is www.enron.com.
The stock is traded under the ticker symbol ENE.

[X]Non-responsive Message

Rick,

Please see attached a summary on consultancy and Au-
dit/legal spend for May

Ytd 2001.

Govt Affairs Consultancy FINAL.x1ls

thanks

Greg

Figure 3.7: TREC 2011 Legal Track data examples.
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WikiQA

WikiQA?3 is a dataset for open-domain question answering presented by Microsoft Re-
search. Each question is paired with a paragraph or a list of sentences. A subset of
the sentences is marked as they can answer the question. Thus, the task is to identify

the sentences answering the question given a question and a paragraph. The dataset
contains 2,118 training questions and 633 testing questions.

Question: HOW AFRICAN AMERICANS WERE IMMIGRATED TO
THE US ?
Answer Candidates:

[X ] African immigration to the United States
refers to immigrants to the United States who
are or were nationals of Africa .

[X ] The term African in the scope of this arti-
cle refers to geographical or national origins
rather than racial affiliation .

[X ] From the Immigration and Nationality Act of
1965 to 2007 , an estimated total of 0.8 to
0.9 million Africans immigrated to the United
States , accounting for roughly 3.3 % of total
immigration to the United States during this pe-

riod .

[X ] African immigrants in the United States come
from almost all regions in Africa and do not con-
stitute a homogeneous group .

[X ] They include people from different national
, linguistic , ethnic , racial , cultural and
social backgrounds .

v ] As such , African immigrants are to be
distinguished from African American people
, the latter of whom are descendants of
mostly West and Central Africans who were
involuntarily brought to the United States
by means of the historic Atlantic slave
trade

Figure 3.8: An example in WikiQA dataset. The last answer is the correct one out of
all candidates.

Shttp://aka.ms/WikiQA
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3.2.2 Corpora Analysis
COLIEE 2015

The civil code is organized in the following structure: Part — Chapter — Section —
Subsection — Article — Paragraph (Figure 3.9). While we see that this is valuable
information, we’ve not yet made use of it.

- Part I

— Chapter 1
— Section I
- Subsection 1
- Article 1
- Paragraph (1)
— Paragraph (2)
- Article 2
— Subsection 2

— Section II

— Chapter 2
- Part II

- Part IIT

Figure 3.9: The civil code’s data structure.
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Figure 3.10: Word count statistics for COLIEE 2015 corpus.
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We calculate the word overlapping ratios for each question-article pair after retrieving
top N=10 articles from the civil code using keyword-based retrieval method. The
statistical information in Figure 3.11 and 3.12 shows that there’s a portion of questions
having word overlapping ratios of relevant articles higher than irrelevant articles.

20
- Relevant Articles
" — Irrelevant Articles
=
o 15 ¢
s
=
3}
A
— 10 |
o
g
E
g5 51
Z.

02 04 06 08 1
Word overlap rate

Figure 3.11: Term overlap rate of retrieved articles in top 1 on COLIEE 2015 dataset.

15

10 |

Number of Documents

lan_—

02 04 06 08 1
Word overlap rate

Figure 3.12: Term overlap rate of relevant articles not in retrieved top 10 on COLIEE
2015 dataset.
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— Training Set
= Test Set

1 Recall
0.95 |

0.9 |
0.85 |

0.8 |

| | | | K
20 40 60 80 100

Figure 3.13: Recall rate of selecting top K documents from document retrieval
K=[10,100]

Table 3.1: Article distribution: the number of articles in the Civil Code that occur in
training set, test set and co-occur in both; and the number of relevant articles for each
question.

Training Set Test Set Both Civil Code Per Question
No. Articles 220 72 41 755 1.2 £0.5

TREC 2011 Legal Track

The corpus contains files in the following formats:
e email messages
e attached documents with text paragraphs
e attached statistical tables

e non-text (binary)
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Figure 3.14: Word count statistics of document candidates for TREC 2011 Legal Track
corpus.
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Figure 3.15: Word overlap distribution over document candidates for TREC 2011 Legal
Track corpus.

The huge variation in document format and length (Figure 3.14), and the low word
overlap rate, mostly below 10% as shown in Figure 3.15, suggests that this is a chal-
lenging corpus.
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WikiQA
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Figure 3.16: Word count statistics for WikiQA corpus.
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Figure 3.17: Word overlap distribution over answer candidates for WikiQA corpus.
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Table 3.2: Statistics of the WikiQA dataset [2].
Train Dev  Test Total

# of questions 2,118 296 633 3,047
# of sentences 20,360 2,733 6,165 29,258
# of answers 1,040 140 293 1,473
Average length of questions 716 7.23 7.26 7.18
Average length of sentences 25.29 2459 2495 25.15

# of questions without answers 1,245 170 390 1,805

3.3 Experiments

The goal of our experiments is to evaluate the performances of different models with
various model configurations on the three datasets described in Section 3.2.

3.3.1 Data Pre-processing

Stanford Core NLP toolkit is a popular tool for common NLP tasks developed by
Stanford NLP group. It provides the state of the art performances for preprocessing
texts and helps analyze the corpus.

We preprocess all the three corpora in the following steps:

1. Tokenization: split each input document into the sequence of words.
2. Lowercase: all words are convert to lowercase.

3. Lemmatization: convert each word back to its lemma form. For example, the

NN

words "buy”, "buys”, "bought” are converted to the base form "buy”.

While tokenization is a must to provide the input for the models, the preprocessing
steps 2 and 3 are optional which reduce the variety of word forms to increase matching
effect.

Input Text

Tokenization ————— »  Lowercase —— | Lemmatization

U

Pre-processed
Text

Figure 3.18: Data pre-processing flow.
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(Urgent Management of Business)

Article 698

If a Manager engages in the Management of Business in
order to allow a principal to escape imminent danger
to the principal’s person, reputation or property,
the Manager shall not be liable to compensate for
damages resulting from the same unless he/she has
acted in bad faith or with gross negligence.

Tokenization

( Urgent Management of Business ) Article 698 If a
Manager engages in the Management of Business in or-
der to allow a principal to escape imminent danger
to the principal 's person , reputation or property
, The Manager shall not be liable to compensate for
damages resulting from the same unless he/she has
acted in bad faith or with gross negligence .

Lowercase

( urgent management of business ) article 698 if a
manager engages in the management of business in or-
der to allow a principal to escape imminent danger
to the principal ’'s person , reputation or property
, The manager shall not be liable to compensate for
damages resulting from the same unless he/she has
acted in bad faith or with gross negligence .

Lemmatization

( urgent management of business ) article 698 if a
manager engage in the management of business in order
to allow a principal to escape imminent danger to the
principal ’'s person , reputation or property , the
manager shall not be liable to compensate for damages
result from the same unless he/she have act in bad
faith or with gross negligence .

Figure 3.19: Data pre-processing example.

3.3.2 Experimental Models

We conduct experiments on the above corpora to compare our approach with the
following models (some models are described in section 2.4):
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e TF-IDF: a common method for retrieving documents based on term occurrence
and term weighting [40]. The term occurrence of term ¢ in document d is com-
puted by tf(t,d) as follows:

tf(t,d) = the number of times term ¢ appearing in document d (3.7)

The term weighting of term ¢ in set of documents D is computed by idf (¢, D) as
follows:

Dl
{d e D :ted}

Then, given a set of documents D, the TF-IDF score of term ¢ in document d € D
is computed by tf-idf (t,d € D) as follows:

idf (t, D) = log

(3.8)

tf-idf (t,d € D) =tf(t,d) - idf (t, D) (3.9)
Finally, the relevance score of two documents d; and ds is as follows:

Ztedl teds tf-idf (t, dy) - tf-idf (¢, d2)
Ve U (4?5, idf (1, o)

relevance(dy, dy) = (3.10)

e Paragraph Vector (PV) (Chapter 2 Section 2.3.2). The relevance score of two
documents is the cosine similarity of their corresponding paragraph vectors.

e Deep Structured Semantic Model with Convolutional-Pooling Structure (CDSSM)
(Chapter 2 Section 2.3.3). The relevance score of two documents is the cosine
similarity of their corresponding semantic vectors.

e Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks
(L2RSTP-CNN) (Chapter 2 Section 2.3.4). The relevance score of two documents
is given by the softmax operation of the model.

e Our Approach (Chapter 3 Section 3.1) We experiment our approach with the
following configurations:
— Word embedding: word2vec model with vector size of 64 by skip-gram.
— Convolutional filter sizes: a sub set of {3, 4, 5, 6}.

— Number of feature maps: from 100 to 200 feature maps for each convolu-
tional filter size.

— External Features: we use TF-IDF as external feature because it is simple
yet strong feature in COLIEE 2015 (the main corpus) (Table 3.3).

— Objective: maximizing the score difference between positive document dysitive
and negative article dyegqtive 0f a question ¢ for all questions:

mazimize(Score(dpositive|q) — Score(dnegative|q))Vq (3.11)

— Training strategy: we apply pair-wise ranking optimization. For each ques-
tion ¢, together with its positive documents D, (¢) = {d,}, we sample its
negative documents D_(q) = {d_} from the source dataset. For example,
with COLIEE 2015 dataset, given a question and its relevant article, we
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select 50 irrelevant articles. Then we minimize the following loss function
L to obtain the objective in Equation 3.11. We use exponential function
to magnify the loss if the score of negative documents is much higher than
positive documents.

1 1 1
[ = — eScore(d,|q)—Score(d+|q) (312)
AL, 2 D, 2

d+€D4(q) d-€D_(q)

x (Q: the set of all questions.

x D, (q): the set of positive (relevant/correct/responsive) documents re-
specting to question ¢ € Q).

x D_(q): a sampled set of negative (irrelevant/incorrect/non-responsive)
documents respecting to question q.

Training
Question ¢ instances
q d, @ dm |
airin
d. Y P &
q l d, @ d@ |
2
q l d. a0
o —
q d,@ d.
sampling

Figure 3.20: Diagram of making training data from a corpus.

Training Configurations.

With the dataset without given validation data (TREC 2011 Legal Track and COLIEE
2015), we select 90% as training data and 10% as validation data. We train with
maximum 100 epochs and select the trained parameters producing best performance
on validation data. With models that use word2vec embedding vectors as input, we
train one word2vec model for each corpus by running skip-gram (Chapter 2 Section
2.3.1) algorithm on the joint texts of the corpus and a general large text corpus.

3.3.3 Evaluation
We evaluate each corpus as follows:

e COLIEE 2015. For each test question, top K (K=50) documents are retrieved
by TF-IDF model. After re-ranking the retrieved documents, top T documents
are assigned as relevance. As shown in table 3.1, the average number of articles
per question is 1.2, so we select T=1.
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e WikiQA. We select the first answer candidate as correct answer.

e TREC 2011 Legal Track. We use validation set to calculate score threshold for
selecting responsive messages.

The evaluation metrics including mean average precision, precision, recall, and f-
score are used to evaluate the performances of the models. These metrics are described
as follows.

Precision
. |{relevant documents} U {retrieved documents}| (3.13)
recision = :
retrieved documents
p oved d
Recall
. |{relevant documents} U {retrieved documents}| (3.14)
recision = .
P |{relevant documents}|
F-Score
2 % precision * recall
F- = 3.15
Seore precision + recall ( )
Mean Average Precision (MAP)
AveP
MAP = qu@| 8l @ (3.16)

AveP(q) is average precision given question ¢ computed by the following equation.

AveP = > ey P(k) x zel(k)

|[{relevant documents}|

(3.17)

P(k) is the precision of selecting top k documents as the retrieved documents. rel(k)
is function to check if the document £ of the retrieved documents is relevant or not,
and returns 1 if the document is relevant, otherwise 0.

MAP is one of the effective metric to evaluate the performance of a ranking algorithm
in order to rank relevant instances higher than irrelevant ones.

3.3.4 Experimental Results

The results show a large variation of performances for each corpus of the experimented
models.
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Table 3.3: Performances are measured based on precision (Pre), recall (Rec), F-score
(F1), and mean average precision (MAP) calculated on positive instances (relevant or
responsive documents) only.

WikiQA COLIEE 2015 TREC 2011 Legal Track

Model Pre@l Rec@l F;@1 MAP | Pre@l Rec@l F;@1 MAP Pre Rec Fy MAP
TF-IDF 0.4280 0.3549 0.3881 0.6021 | 0.6667 0.5366 0.5946 0.7034 | 0.1855 0.3312 0.2378 0.2348
PV 0.3333  0.2765 0.3022 0.5136 | 0.5758 0.4634 0.5135 0.5610 | 0.4135 0.2792 0.3333 0.2967
CDSSM 0.3457 0.2867 0.3134 0.5177 | 0.2121 0.1707 0.1892 0.2913 | 0.3132 0.9610 0.4725 0.5581
L2RSTP-CNN  0.5309 0.4403 0.4813 0.6663 | 0.6061 0.4878 0.5405 0.6902 | 0.6724 0.7040 0.6878 0.6530
Our Approach 0.4774 0.3959 0.4328 0.6397 | 0.7121 0.6732 0.6351 0.7561 | 0.3846 0.4545 0.4167 0.4138

Table 3.4: Number of questions having relevant articles at top T=1 in COLIEE 2015
dataset.

TF-IDF PV CDSSM L2RSTP-CNN Our approach
No. of questions 43 38 14 34 47
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Chapter 4

Discussion

4.1 Effectiveness

Without the effort of extracting specialized features, with appropriate configuration,
deep learning models are able to perform well on legal data.

Deep learning models are data-oriented. Deep learning models with pure artificial
neurons show the underperformances on COLIEE 2015 dataset With limited size, but
high performances on TREC 2011 Legal Track dataset with big size. This means with-
out enough of training examples, deep learning models are susceptible to under-train.
One reason is that deep learning models usually have multiple layers with remarkable
number of artificial neurons, or are highly dimensional functions. With the nature of
deep learning models is to find the regularity of data from its observable instances
automatically, the size of training data is vital to the model performances.

In our approach of enriching deep learning models with external features. By no
additional transformation on external features, We limit the search space when training
our model by enforce a starting point from the external features. The approach works
as expected as it improves performance from the starting point. With a good starting
point on COLIEE 2015 dataset, it is able to perform better than L2RSTP-CNN which
using the similar strategy of using external features in different way. With a bad
starting point on TREC 2011 Legal Track, though, it improves from the starting point
but underperforms the pure deep learning models (CDSSM).

Performances on COLIEE 2015 dataset

As our approach performs best on COLIEE 2015, we look at the ranked documents in
the test data to review the actual outputs.
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Table 4.1: Relevant article ranking of our approach compared to TF-IDF. Most of the
cases, as the TF-IDF model gets the top 1 correct, our model gets the top 2.
Compared to TF-IDF

Rank Up Rank Down
Query From To Query From To
H25-8-1 2 1 H25-3-4 1 2
H25-16-3 3 1 H25-11-E 1 2
H25-19-A 2 1 H25-13-3 1 2
H25-22-2 13 1(+12) H25-14-E 1 2
H25-23-1 1 H25-24-A 1 2
H25-30-3 1 H25-29-O0 7 22 (-15)
H25-11-U 7

H25-17-1 27 11 (+16)
H25-17-E 21 8 (+13)
H25-17-0 42 33

H25-21-U 26 5 (+21)
H25-21-E 34 6 (+28)

The improvement in ranking despite of not in top 1 suggests that our model is
actually capable of learning features other than just word overlapping.
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H25-22-2

The obligor shall take on responsibilities which
arise from default of monetary debt unless he/she
may raise the defense of force majeure.

[v'] Article 419 (relevant, selected by our model,
rank 13 by TF-IDF)

(1) The amount of the damages for failure to per-—
form any obligation for the delivery of any money
shall be determined with reference to the statu-
tory interest rate; provided, however, that, in
cases the agreed interest rate exceeds the statutory
interest rate, the agreed interest rate shall pre-
vail.

(2) The obligee shall not be required to prove
his/her damages with respect to the damages set
forth in the preceding paragraph.

(3) The obligor may not raise the defense of force
majeure with respect to the damages referred to in
paragraph 1.

[X] Article 348 (irrelevant, selected by TF-IDF,
rank 2 by our model)

Pledgees may sub-pledge the Thing pledged within
the duration of their rights, upon their own re-
sponsibility. In such cases, the pledgees shall be
responsible for any loss arising from the -pledge
even if the same is caused by force majeure.

Figure 4.1: The article ranking of query H25-22-2 by our model and TF-IDF. Bold texts
are regions of interest our model extracted with convolutional-pooling operations.

For query H25-22-2 (Figure 4.1), while TF-IDF model select Article 348 as predicted
relevant article which is incorrece, our model retrieved the correct relevant Article
419. On one hand, while both articles share key words "force majeure”, the shorter
length of Article 348 gives it the advantage over lengthy Article 419 in term of TF-IDF
calculation. On the other hand, our model is able to capture the word "monetary”
in the question and the word "money” in the first paragraph of Article 419 which are
strongly related to each other. Additionally, with the presence of the key word ”force
majeure”, our model then selects Article 419 as correct relevant article. This suggests
that deep learning models have potential to learn the question-article relationship and
extract the key points of the relationship.
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Table 4.2: Relevant article ranking of our approach compared to PV.

Compared to PV

Rank up Rank up Rank down
Query From To Query From To Query From To
H25-2-U 27 2 H25-17-O >50 33 H25-13-3 1 2
H25-2-E 9 1 H25-19-A >50 1 H25-14-E 1 2
H25-2-O0 7 5 H25-19-1 >50 1  H25-15-4 19 >50
H25-8-1 26 1 H25-21-U 49 5  H25-24-A 1 2
H25-11-A 37 1 H25-21-E 36 6 H25-29-E 1 2
H25-11-U >50 7  H25-22-2 >50 1
H25-11-E >50 2 H25-23-U 20 1
H25-14-A 8 1 H25-23-O 1
H25-16-4 10 1 H25-24-0 2 1
H25-17-1 >50 11 H25-26-1 48 9
H25-17-U >50 13 H25-29-O >50 22
H25-17-E >50 8  H25-30-3 >50 1

Table 4.3: Relevant article ranking of our approach compared to L2RSTP-CNN

Compared to L2ZRSTP-CNN

Rank up Rank down
Query From To Query From To
H25-3-1 2 1 H25-2-U 1 2
H25-3-5 2 1 H25-2-0 4 5
H25-6-E 2 1 H25-11-U 2 7 (-5)
H25-14-A 6 1 (+5) H25-11-E 1 2
H25-14-1 2 1 H25-17-1 4 11 (-7)
H25-16-3 2 1 H25-17-E 2 8 (-6)
H25-16-4 3 1 H25-17-0 11 33 (-22)
H25-17-U 20 13 H25-26-1 2 9 (-7)
H25-21-U 38 5(+33) H25-29-E 1 2
H25-21-E 21 6 (+15)
H25-22-1 2 1
H25-22-3 2 1
H25-22-4 2 1
H25-23-O 4 1
H25-24-A 3 2
H25-26-3 3 1
H25-29-O 29 22
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Table 4.4: Relevant article ranking of our approach compared to CDSSM.
Compared to CDSSM

Rank up Rank up Rank down
Query From To Query From To Query From To
H25-2-1 2 1 H25-19-1 6 1 H25-29-E 1 2
H25-2-U 10 2 H25-21-U >50 5  H25-29-1 3 >50
H25-2-E 4 1 H25-21-E >50 6  H25-15-4 49 >50
H25-2-0 17 5 H25-22-1 >50 1
H25-3-4 12 2 H25-22-2 12 1
H25-3-5 8 1 H25-22-3 >50 1
H25-4-U 1 H25-22-4 >50 1
H25-6-E 19 1 H25-23-1 2 1
H25-8-3 >50 1  H25-23-O 38 1
H25-8-4 8 1 H25-24-A 6 1
H25-11-A >50 1  H25-24-1 1
H25-11-U >50 7  H25-24-O0 2 1
H25-11-E 3 2 H25-26-1 27 9
H25-11-O >50 1  H25-26-2 5 1
H25-13-2 29 1 H25-26-3 1
H25-13-3 3 2 H25-26-4 2 1
H25-13-4 10 1 H25-27-1 >50 1
H25-13-5 21 1 H25-27-2 25 1
H25-14-1 2 1 H25-27-4 8 1
H25-14-E 41 2 H25-29-A 6 1
H25-16-4 23 1 H25-29-U 6 1
H25-17-1  >50 11 H25-29-O >50 22
H25-17-U >50 13 H25-30-3 10 1
H25-17-E >50 8  H25-30-4 >50 1
H25-17-O  >50 33

4.2 Limitations

In current study, we limit ourselves to not yet handle some characteristics of legal
domain which are references, logical structures and language abstraction.

Content/context references

For the sake of consistency and organisability of legal documents, a part of legal text
can refer to other part. For example, the first paragraph Article 568 refers to the
provisions from Article 561 through to the preceding Article (Figure 4.2).

References can be resolved with the following information.
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e Reference expression: the phrase that contains one or more references.

e Referred source: the name or position where a reference points to, which can be
one or several sentences, paragraphs or articles.

e Reference type: the exact content should be referred, usually the cases, the ap-
plicable objects or the provisions of the referred source.

(Warranty in cases of Compulsory Auctions)
Article 568

(1) The successful bidder at compulsory auction
may cancel the contract or demand a reduction from
the purchase money against the obligor in accor-
dance with the provisions from Article 561 through
to the preceding Article.

(2) In the cases set forth in the preceding para-
graph, if the obligor is insolvent, the successful
bidder may demand total or partial reimbursement of
the proceeds against the obligees who received the
distribution of the proceeds.

(3) In the cases set forth in the preceding two para-—
graphs, if obligors knew of the absence of the object
or right and did not disclose the same, or if oblig-
ors knew of the absence but demanded an auction, the
successful bidder may demand compensation for dam-
ages against those persons.

(Seller’s Warranty against Defects)

Article 570

If there is any latent defect in the subject matter of
a sale, the provisions of Article 566 shall apply
mutatis mutandis;provided, however, that this shall
not apply in cases of compulsory auction.

H18-1-2
A compulsory auction is also a sale, so warranty is
imposed the same as for an ordinary sale.

Figure 4.2: Example of a query and its relevant articles referring to other articles.

Language abstraction

In the example shown in Figure 4.3, while the article needs abstraction to describe
all acts applied the same provision, the query, which describe an act happening in
practice, is a specialization under the general case in the article ("a Manager” refers
to 7an individual” or ”the rescuer”, ”principal” refers to ”"another person”, ”imminent
danger” refers to ”getting hit by a car” and ”damages” refers to ”luxury kimono to get
dirty”).

While the abstraction is a part of natural language, the level of abstraction on legal
domain is quite challenging.
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(Urgent Management of Business)

Article 698

If a Manager engages in the Management of Business in
order to allow a principal to escape imminent danger
to the principal’s person, reputation or property,
the Manager shall not be liable to compensate for
damages resulting from the same unless he/she has
acted in bad faith or with gross negligence.

H18-2-2

In cases where an individual rescues another person
from getting hit by a car by pushing that person out
of the way, causing the person’s luxury kimono to
get dirty, the rescuer does not have to compensate
damages for the kimono.

Figure 4.3: Example of a query and its relevant article describing the general case with
high level of abstraction.

Logical structures

Question H20-12-5 showed in Figure 4.4 is one example of logic matching. The answer
to the correctness of the statement in the question can be drawn just from the paragraph
2 of Article 298. This also means if we can locate exact predicate from the article to
match with the corresponding predicate in the question, unnecessary and noisy text
matching can be efficiently mitigated.

(Keeping the Thing Retained by Holders of Rights
of Retention)

Article 298

(1) A holder of a right of retention must possess the
Thing retained with the care of a good manager.

(2) A holder of rights of retention may not use,
lease or give as a security the Thing retained unless
he/she obtains the consent of the obligor; provided,
however, that this shall not apply to uses necessary
for the preservation of that Thing.

(3) If the holder of a right of retention violates
the provisions of the preceding two paragraphs, the
obligor may demand that the right of retention be
extinguished.

H20-12-5

If a holder of a right of retention has consent of the
obligor, or if a pledgee has consent of the pledgor,
then they each may lease any collateral.

Figure 4.4: Example of a query and its relevant article which composed in ”requisite-
effectuation” logical structures.

One solution for this can be to build a module just to decompose the structure of
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the article into designated parts and then only match the associated parts. This can
be modeled as in Figure 4.5.

Score Accumulating

Similarity Measuring

Text Modeling
A A A A A
b@@@é@@é é@@éé@@éd@@d} Text Decomposing
A holder ... retained unless ... obligor ; If ... obligor or if ... pledgor then ... collateral Word Embedding
Document D Query Q

Figure 4.5: Deep learning architecture for structural input
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have presented our study of deep learning for legal question answering systems.
First, we describe our approach to enrich deep learning models with additional fea-
tures from the training corpus. Second, we evaluate our model and other deep learning
models on both open-domain and legal-domain question answering datasets. The re-
sults show the huge impact of data characteristics over the performances of the models.
Our model produces expected performances on COLIEE 2015 and WikiQA datasets
with improvement over TF-IDF and CDSSM, a pure neural-based model. The im-
pact of the additional features shows clearly by the underperformance of our model on
TREC 2011 Legal Track where the additional feature is TF-IDF, a very weak feature.
Finally, we state the limitations that our model has not yet handled, which also means
the room for further improvement.

5.2 Future Work

In our future work, we’d like to resolve the mentioned limitations. First, we're develop-
ing frameworks for analyzing legal references, abstraction and structural decomposition.
Second, a sophisticated architecture that connects these as features comprehensively
will be built. Besides, deep learning with its scalability, flexibility and adaptivity is
promisingly appropriate for the model construction.
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