
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Counterexample-guided abstraction refinement for

points-to analysis of object-oriented programs

Author(s) Vu, Quang Vinh

Citation

Issue Date 2016-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13740

Rights

Description Supervisor:寺内　多智弘, 情報科学研究科, 修士

Counterexample-guided abstraction refinement for
points-to analysis of object-oriented programs

Vu Quang Vinh

School of Information Science
Japan Advanced Institute of Science and Technology

September, 2016

Master’s Thesis

Counterexample-guided abstraction refinement for
points-to analysis of object-oriented programs

1410213 Vu Quang Vinh

Supervisor : Professor Tachio Terauchi
Main Examiner : Professor Tachio Terauchi

Examiners : Professor Mizuhito Ogawa
Associate professor Nao Hirokawa

School of Information Science
Japan Advanced Institute of Science and Technology

August, 2016

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Tachio
Terauchi of the School of Information Science at Japan Advanced Institute of Science
and Technology for his kindly carefully guidance and supports. I greatly appreciate his
expertise, understanding, patience, and tolerating my mistakes.

A very special thanks goes out to Prof. Mizuhito Ogawa and Assoc. Prof. Nao
Hirokawa. They provided me with directions and constructive comments.

I wish to say thank you to all members of Terauchi-laboratory of the Information Science
School at JAIST for helping me to adapt to the new living condition in Japan.

I recognize that this research would not have been possible without the financial aid of
the JAIST-scholarship for the joint program with Vietnam National University, Ho Chi
Minh City (VNU-HCM). I also would like to thank the scholarship from the Japan Student
Services Organization (JASSO) for supporting me the living expenses for 6-month study
in Japan.

Finally, from the bottom of my heart, I want to express my gratitude to my parents
and my sister for their continuous encouragement through the process of my research,
writing this thesis and also my years of studying. This accomplishment would not have
achieved without them.

i

Contents

1 Introduction 1
1.1 Points-to analysis . 1
1.2 Problem . 2
1.3 Method and experiments . 3
1.4 Contributions . 4
1.5 Outline for later chapters . 4

2 Background 5
2.1 Static analysis in Datalog . 5
2.2 Simple points-to analysis program . 6
2.3 Context-sensitive points-to analysis . 9
2.4 Call-site sensitivity, object sensitivity and type sensitivity 12

2.4.1 Call-site sensitivity . 12
2.4.2 Object sensitivity and type sensitivity 12

2.5 Abstraction . 14

3 Proposed method 15
3.1 Adaptive points-to analysis . 15
3.2 Problem restatement . 17
3.3 CEGAR-based algorithm . 17

3.3.1 Choosing abstraction with by maximum satisfiability (MaxSAT) . . 19
3.4 Provenances vs Datalog runs . 20
3.5 Cheap abstraction for refinement . 21
3.6 Partitioned abstraction search . 21
3.7 Repeated abstraction search . 22

4 Related works 24
4.1 Pushdown system . 24
4.2 Abstraction Refinement . 25

5 Implementation 26
5.1 Eliminate non-context predicates from counterexample knowledge 26
5.2 Trace tuples from may fail downcasts . 27
5.3 Rewrite points-to analysis rules . 28

ii

5.4 Integrate Doop and MiFuMax MaxSAT solver 28

6 Experiments 30
6.1 Adaptivity vs. non-adaptivity . 31
6.2 Partition and repetition . 31

7 Conclusion 34

This dissertation was prepared according to the curriculum for the Collaborative Edu-
cation Program organized by Japan Advanced Institute if Science an Technology and Ho
Chi Minh National University.

iii

Chapter 1

Introduction

1.1 Points-to analysis

Points-to analysis is a static analysis technique for programs. Its goal is finding out a set
O of objects (or storage locations) for every pointer p (variables or heap reference) in a
program. It means that each object in O may be pointed to by p while the program is
running. See the Java-like program below for an example.

Example 1.1.1 (A simple Java program).

1 public class P{
2 P id (P obj) {return obj ;}
3 }
4 public class C extends P{
5 void donothing () {}
6 }
7 public class M{
8 public stat ic void main (St r ing [] agr s) {
9 P objP , objC1 , objC2 ;
10 objP = new P() ;
11 objC1 = new C() ;
12 objC2 = objP . id (objC1) ;
13 C objC = (C) objC2 ;
14 }
15 }

There are 3 pointers: objP , objC1 and objC2. Their points-to sets are {‘10’}, {‘11’}
and {‘11’} respectively. Here ‘10’ and ‘11’ represent for the objects created at line numbers
10 and 11.

In general, the points-to problem is undecidable. It is solved under the soundness
property, i.e. finding the set O ⊃ O∗, where O∗ is obtained when the program actually
runs.

1

1.2 Problem

Points-to analysis gives the answer for various verification problems such as downcast
checking and null-pointer detection. In this document, I focus on the downcast problem.
Consider the example program in Section 1.1, class P is a superclass of class C and objC2’s
points-to set is {‘11’}. The statement at line 13, C objC = (C) objC2 ;, is a downcast.
The downcast problem is finding a set of downcasts of an object-oriented program that
will fail when the program runs. Similar to points-to analysis, the downcast problem is
also undecidable. The points-to analysis result helps to solve the downcast problem. In
this case, the above downcast does not fail.

We formally restate the downcast problem as below.
For a Java program, there are:

• A set of classes C, a variables set V , an object set O

• An inheritance relation set R = {(a, b)| (a, b) ∈ (C × C) and a 6= b} - (a, b) ∈ R
means that class a inherits from class b

• A variable-typed relation set T = {(x, a)| x ∈ V and a ∈ C} - (x, a) ∈ T means
that variable x is declared as a pointer of class a

• An object-typed relation set T ′ = {(o, a)| o ∈ O and a ∈ C} - (o, a) ∈ T ′ means
that object o is an instance of class a

• A set of downcast D and each di ∈ D is (x, a) where ∃b (x, b) ∈ T and a is a subclass
of b (b is a superclass of a)

In Example 1.1.1, there are:

• C = {‘P ’, ‘C’}

• V = {‘obj’, ‘objP ’, ‘objC1’, ‘objC2’, ‘objC’}

• O = {‘10’, ‘11’}

• R = {(‘C’,‘P’)}

• T = {(‘obj’, ‘P’), (‘objP’, ‘P’), (‘objC1’, ‘P’), (‘objC2’, ‘P’), (‘objC’, ‘C’)}

• T ′ = {(‘10’,‘P’), (‘11’,‘C’)}

• D = {(‘objC2’,‘C’)}

Definition 1.2.1 (Superclass). A class b is a superclass of class a, iff (a, b) ∈ R+ where
R+ is the transitive closure of R. By contrast, a is a subclass of b, iff b is a superclass of
a.

Definition 1.2.2 (Points-to). Points-to information is a set P ⊆ {(x, o)| x ∈ V and o ∈
O}. (x, o) ∈ P means that variable x points to object o while the Java program is running.

2

Definition 1.2.3 (Fail downcast). A downcast d = (x, a) is a fail downcast, iff ∃(x, o) ∈ P
and o is neither an instance of class a nor an instance of a’s subclass.

The goal of the downcast problem is finding a partition (S, F) of D, where S is the
set of downcasts that will not fail and F is the set of downcasts that may fail. With the
same set D, a solution (S0, F0) is more precise than another solution (S1, F1) if and only
if S0 ⊃ S1. The precise result for Example 1.1.1 is (S = {(‘objC2’,‘C’)}, D = {}). Note
that the points-to information P is the result from a points-to analysis. P decides which
downcast di ∈ D is a fail downcast.

Recall, the points-to problem is undecidable and the downcast problem is also undecid-
able. Hence, we can only compute the set F of downcasts that may fail, instead of finding
the set F ∗ of downcasts that actually fail. Our analysis minimizes the set F as much as
possible.

1.3 Method and experiments

Solving downcast problem with points-to analysis result is straightforward and simple by
following the Definition 1.2.3 to check the super class relation of all points-to information
which are related with a downcast. So that, our research aims to improve the points-to
analysis technique.

Many approaches to points-to analysis have been proposed, such as Andersen’s points-
to analysis [7], the context-free language (CFL) reachability approach (also called the
pushdown approach, see section 4.1). In my master’s thesis research, I use the Doop
framework [3] which follows the Andersen’s approach. The Doop framework also provides
context-sensitive analyses [1]. The bound on the method call sequence length is a pa-
rameter of Doop, which can be used to set the context sensitivity level (the length of the
context chain, see section 2.5). The context-sensitive points-to analysis can be consid-
ered as finite state approach. Unfortunately, the number of states grows hugely when the
bounding depth increases (in my experiment, 2 is the limit).

Zhang et al. [2] have proposed an adaptive pointer analysis method whereby the analysis
precision can vary for the different parts of the program. The idea is to analyze the
parts that are important to the analysis result with a high precision while analyzing the
rest cheaply with a lower precision. I extend their work by using a more fine-grained
granularity of program parts. Particularly, our approach uses different precision levels for
different method call sites, whereas [2] does not.

Instead of analyzing with an expensive abstraction, we follow the approach of [2], that
the precision of an expensive abstraction can be obtained by cheaper abstractions. We
use the counterexample-guided abstraction refinement (CEGAR) based algorithm. The
CEGAR-based algorithm repeatedly performs an analysis step and a refinement step. In
the analysis step, the points-to analysis is executed with an abstraction and counterex-
ample knowledge is accumulated. In the refinement step, a new abstraction is chosen by
the guidance of the accumulated counterexample knowledge for the next iteration.

Because I use the Doop framework for experiments, our points-to analysis keeps the
same features:

3

• Context-sensitive analysis, context-sensitive heap, on-the-fly call-graph discovery,
precise exception analysis, sophisticated reflection analysis, field-sensitive analyses.

• Flow-insensitive pointer analysis, array-element insensitive analysis.

My analysis handles all features of Java, including the features below.

• Inheritance, exception, reflection, recursion.

I do experiments on the DaCapo benchmark [6] with three programs, antlr, chart and
xalan. I compare our adaptive context-sensitive method with the algorithms provided
by the Doop framework. Our CEGAR-based algorithm has several hyper-parameters, I
try with different values to have a good parameter set. How to appropriately set such
hyper-parameters is left for a future work.

1.4 Contributions

• I propose a fine-grained adaptive points-to analysis. It is able to precisely analyze
the essential program parts, while save the cost by treating the other parts cheaply.

• We do experiment on the Doop framework with real Java programs of the DaCapo
benchmark.

• Using MaxSAT for abstraction choosing is firstly proposed by [2], but it does not
work with the Doop framework and big Java programs such as DaCapo’s programs.
I propose a partitioned (for performance) and repeated (for precision) MaxSAT
abstraction picking.

1.5 Outline for later chapters

• Chapter 2 describes the background knowledge of points-to analysis

• Our proposed method is represented in Chapter 3

• Chapter 4 compares our method with the other works

• Details of the implementation and some additional problems are described in Chap-
ter 5

• Experiment data and result are in Chapter 6 and I summarize my work in Chapter
7

4

Chapter 2

Background

Our points-to analysis follows the Andersen’s approach, and it is implemented by the
Datalog language [3]. Hence, this chapter only talks about Andersen’s points-to analysis
under the Datalog syntax.

2.1 Static analysis in Datalog

Datalog is a declarative logic programming language and it is based on predicate logic.
Its syntax is described as below.

Definition 2.1.1 (Syntax of Datalog program).

(Program) C := r (rule) r := l← l.
(Literal) l := p(a) (argument) a := v|d

The over line represents a sequence. We interpret a sequence as the set of the elements
of the sequence when it is clear from the context. For example, a Datalog program C is a
set of rules r. A rule r := l← l has a literal as the head and a sequence of literals as the
body. However, in the later, there is a rule that has a head with many literal. It simply
can be considered as a set of rules that have the same body.

Definition 2.1.2 (Auxiliary definitions and notations).

(Predicate−names) p ∈ P = {p1, p2, ..} (variables) v ∈ V = {x, y, ..}
(Constants) d ∈ D = {0, 1, .., ‘c’, ‘d’, ..} (tuples) ∈ T = P×D∗

(Downcasts) q ∈ Q ⊆ T (abstractions) A ∈ A ⊆ P(T)
(Substitutions) σ ∈ Σ = V→ D

A literal (predicate) consists a predicate name p and a set of arguments (free variables
and constants). A tuple is an instance of a predicate by applying a substitution σ. Not
only our downcast but also the other queries can be easily represented as tuples. The
abstraction is already defined now but reader can skip it until Section 2.5.

A Datalog program starts with a set of facts, where each fact is a tuple, and repeatedly
apply rules r to create more facts until a fixed point reached. In the Datalog language,

5

there is no duplicated tuple, although the same tuple might be created by applying dif-
ferent rules.

Definition 2.1.3 (Semantics of Datalog).

[[C]] ∈ P(T) FC , fc ∈ P(T)→ P(T)
[[C]] = lfp(FC , T0) FC(T) = T ∪ ⋃{fc(T) | c ∈ C}

fl0←l1,..,ln(T) = {σ(l0) | σ(lk) ∈ T for 1 ≤ k ≤ n}

where T0 is the starting facts.

Theorem 2.1.1. A Datalog progam only ends when no more tuple can be produced.

[[C]] = FC([[C]])

2.2 Simple points-to analysis program

Example 2.2.1 (A simple points-to analysis program’s components [12]).
The constants D are:

• Program’s pointers P (variables)
• Program’s heap allocations H
• Methods M
• Method signatures S

• Program’s instructions I
• Object types T
• Integer number N

The input predicates are:

• Allocation(pointer : P, heap : H, inMethod : M)
• Assign(to : P, from : P)
• V irtualInvocation(base : P, sig : M, invocation : I, inMethod : M)
• DefinedArg(method : M,n : N, arg : P)
• DynamicArg(invocation : I, n : N, arg : P)
• DefinedReturn(method : M, rePointer : P)
• DynamicReturn(invocation : I, rePointer : P)
• ObjectType(heap : H, type : T)
• LookUp(type : C, sig : S,method : M)
• PointerType(pointer, type : T)
• InvokedMethod(invo : I,method : M)
• Subtype(subtype : C, supertype : T)
• Cast(to : P, from : P, type : T)

The analyzed predicates are:

6

• V arPointsTo(pointer : P, heap : H)
• CallGraph(invo : I,method : M)

• InterMethAssign(to : P, from : P)
• Reachable(method : M)

The variable set is all the above predicate parameters.

The input predicates encode analyzed program’s instructions. For example, Alloca-
tion(var, heap, inMeth) represents object allocation instructions. A new heap object,
heap, is assigned to the variable, var, in the method, inMeth. Assign, Load, Store, Vir-
tualInvocation respectively represents assigning, object-field loading, object-field storing
and method invocation. DefinedArg encodes the local parameters of the method meth
and DynamicArg encodes the variables passed to method meth by an invocation invo.
Similarly, DefinedReturn and DynamicReturn encode the local return variable and the
return object of the invocation invo. The Subtype denotes superclass relation from Defi-
nition 1.2.1. Note that our points-to analysis supports on-the-fly call graph computation
so that a method invocation described by V irtualInvocation is a virtual call.

The analyzed facts (instances of the analyzed predicates) are the intermediate tuples
and the output of the points-to analysis. For example, V arPointsTo tuples are the main
output (the set P in the definition 1.2.2). Those analyzed facts are created by repeatedly
applying analysis rules from the input facts. Consider the example 1.1.1, the input facts

Table 2.1: The input facts for the example 1.1.1
Line
number

Instructions Facts

2 P id(P obj){return obj;} DefinedArg(‘P:id:P’, 0, ‘obj’), DefinedReturn(‘P:id:P’, ‘obj’)

9 P objP, objC1, objC2;
PointerType(‘objP’,‘P’), PointerType(‘objC1’,‘P’),
PointerType(‘objC2’,‘P’)

10 objP = new P() ; ObjectType(‘10’,‘P’), Allocation(‘objP’, ‘10’, ‘main’)
11 objC1 = new C() ; ObjectType(‘11’,‘C’), Allocation(‘objC1’, ‘11’, ‘main’)

12 objC2 = objP.id(objC1);

VirtualInvocation(‘objP’,‘id:P’, ‘12:objC2 = objP.id(objC1)’),
DynamicArg(‘12:objC2 = objP.id(objC1)’, 0, ‘objC1’),
DynamicReturn(‘12:objC2 = objP.id(objC1)’, ‘ObjC2’),
ThisVar(‘P:id:P’, ‘objP’)

13 C objC = (C) objC2 ; PointerType(‘objC’,‘C’), Cast(‘objC’, ‘objC2’, ‘C’)

others
Subtype(‘C’,‘P’), LookUp(‘P’, ‘id:P’, ‘P:id:P’),
InvokedMethod(‘12:objC2 = objP.id(objC1)’,‘P:id:P’)

are shown in Table 2.1. ‘P : id : P ’ is the method signature for the function id of class
P with one parameter which has type P . ‘12 : objC2 = objP.id(objC1)’ is a method
invocation. An instruction can be simply represented by its line number. Hence, the heap
allocations are denoted as line numbers, {‘10’, ‘11’}. After analyzing, the analyzed facts
are listed below.

7

V arPointsTo(‘objP ’, ‘10’) V arPointsTo(‘objC1’, ‘11’)
V arPointsTo(‘objC2’, ‘11’) V arPointsTo(‘objC’, ‘11’)
V arPointsTo(‘obj’, ‘11’) CallGraph(‘12:objC2 = objP.id(objC1)’, ‘P : id : P ’)
InterMethAssign(‘obj’, ‘objC1’) InterMethAssign(‘objC2’, obj)
Reachable(‘main’) Reachable(‘P : id : P ’)

The simple points-to analysis rules are in Example 2.2.2. I used it to demonstrate how
actually the analysis runs.

Example 2.2.2 (The simple points-to analysis rules).
(1) V arPointsTo(var, heap)← Allocation(var, heap, inMeth).
(2) V arPointsTo(to, heap)← Assign(to, from), V arPointsTo(from, heap).
(3) V arPointsTo(to, heap)← InterMethAssign(to, from), V arPointsTo(from, heap).
(4) V arPointsTo(to, heap)← Cast(to, from, type), V arPointsTo(from, heap).
(5) CallGraph(invo, toMeth)← V irtualInvocation(base, sig, invo, inMeth),

V arPointsTo(base, heap),
ObjectType(heap, heapT), LookUp(heapT, sig, toMeth).

(6) InterMethAssign(to, from)← DefinedArg(meth, n, to), DynamicArg(invo, n, from),
CallGraph(invo,meth).

(7) InterMethAssign(to, from)← DefinedReturn(meth, from), DynamicReturn(invo, from),
CallGraph(invo,meth).

(8) Reachable(‘main’)← .
(9) Reachable(meth)← Reachable(inMeth), CallGraph(invo, inMeth), InvokedMethod(inMeth,meth).

Two first VarPointsTo tuples are created from the Alloc tuples.

V arPointsTo(‘objP ’, ‘10’)← Allocation(‘objP ’, ‘10’, ‘main’).

V arPointsTo(‘objC1’, 111’)← Allocation(‘objC1’, ‘11’, ‘main’).

After applying rules (5), (6) and (7), two InterMethAssign tuples are derived,
InterMethAssign(‘obj’, ‘objC1’) and InterMethAssign(‘objC2’, ‘obj’). Then, rule (3) is
applied twice.

V arPointsTo(‘obj’, ‘11’)← InterMethAssign(‘obj’, ‘objC1’), V arPointsTo(‘objC1’, ‘11’).

V arPointsTo(‘objC2’, ‘11’)← InterMethAssign(‘objC2’, ‘obj’), V arPointsTo(‘obj’, ‘11’).

Finally, the last V arPointsTo tuple comes from rule (4).

V arPointsTo(‘objC’, ‘11’)← Cast(‘objC’, ‘objC2’, ‘C’), V arPointsTo(‘objC2’, ‘11’).

In addition, Cast(‘objC’, ‘objC2’, ‘C’) is a downcast because of PointerType(‘objC2’, ‘P ’)
and Subtype(‘C’, ‘P ’). Moreover, this downcast is not a fail downcast because there is
only VarPointsTo(‘objC2’, ‘11’).

8

2.3 Context-sensitive points-to analysis

This section talks about how to deal with method call sequence, looping method call or
especially recursive. Consider the simple Java program in Example 2.3.1 below.

Example 2.3.1 (A simple Java program with method calls).

1 public class P{
2 P id (P obj) {return obj ;}
3 }
4 public class C extends P{
5 void donothing () {}
6 }
7 public class M{
8 public stat ic void main (St r ing [] agr s) {
9 P objP1 , objP2 , objC1 , objC2 ;
10 objP1 = new P() ;
11 objC1 = new C() ;
12 objC2 = objP1 . id (objC1) ;
13 objP2 = objP1 . id (objP1) ;
14 C objC = (C) objC2 ;
15 C objP = (C) objP2 ;
16 }
17 }

By applying the simple points-to analysis rules in Example 2.2.1, it is easy to compute

InterMethAssign(‘obj’, ‘objC1’), InterMethAssign(‘objC2’, ‘obj’),

InterMethAssign(‘obj’, ‘objP1’), and InterMethAssign(‘objP2’, ‘obj’).

Then,
V arPointsTo(‘objC2’, ‘10’), V arPointsTo(‘objC2’, ‘11’),

V arPointsTo(‘objP2’, ‘10’), andV arPointsTo(‘objP2’, ‘11’)

are derived. But, it is clearly seen that variable objC2 only points to ‘11’ and variable
objP2 only points to ‘10’. This failure is made because two method invocation at line 12
and 13 are treated under the same context. The tuples in the two pairs below

(InterMethAssign(‘obj’, ‘objC1’), InterMethAssign(‘objP2’, ‘obj’),)

and
(InterMethAssign(‘obj’, ‘objP1’), InterMethAssign(‘objC2’, ‘obj′’),)

do not coexist. In order to encode this kind of information, straightforwardly a context
term is added to the predicates. Basically, each method invocation must have a distin-
guished context. These contexts encode the scope of pointers (local variables and object
fields). An instance of the pointer (variable) is cloned for each context. For example,
there should be two different instances of obj for two method invocations at line 12 and
13. Additionally, there are two kinds of context, local-variable context (shortly context)
and heap context. The context and heap context are respectively used for local variables
and object fields.

9

Definition 2.3.1. Context and heap context (HContext) in context-sensitive analysis are
defined as follows:

Context = HContext = Lab∗

where Lab is the set of line numbers.

Example 2.3.2 (A simple context-sensitive points-to analysis program’s components
[12]).
Two following constants set are added.

• C is a set of (local-variable) contexts

• HC is a set of heap contexts

The input predicates are similar to Example 2.2.1.
The analyzed predicates are:

• V arPointsTo(var : V, ctx : C, heap : H, hctx : HC)

• CallGraph(invo : I, callerCtx : C,meth : M, calleeCtx : C)

• InterMethAssign(to : V, toCtx : C, from : V, fromCtx : C)

• Reachable(meth : M, ctx : C)

Additionally, there are two functions:

• Record(heap : H, ctx : C) = newHCtx : HC

• Merge(heap : H, hctx : HC, invo : I, ctx : C) = newCtx : C

The atoms of a context-sensitive points-to analysis are shown in Example 2.3.2. In com-
parison to the Example 2.2.1, two context sets, C and HC, are added. The input predi-
cates are the same, it means that we have no change in the input tuples. All analyzed pred-
icates become context-sensitive and they are inserted by contexts. The InterMethAssign
predicate becomes InterMethAssign(to, toContext, from, fromContext) where toCon-
text and fromContext are the contexts related to variables to and from respectively. For
the output predicates, V arPointsTo(var, ctx, heap, hctx), the context ctx and the var
identify a cloned variable for the variable var in the context ctx. Similarly, (heap, hctx)
pair denotes a cloned heap of the object created at heap in the heap context hctx.

Definition 2.3.2. Merge and Record functions are defined as follows:

Record ∈ Record : Lab× Context→ HContext

Merge ∈Merge : Lab×HContext× Lab× Context→ HContext

where Lab is the set of line numbers.

10

The constants are mostly created at the parsing phase (i.e. the constants in Example
2.2.1 are produced in the parsing phase), but contexts instances are generated while the
analysis rules are applied (inference). The Merge function constructs contexts and the
Record function constructs heap contexts (the basic Datalog language does not have the
function but some variant have). They are in Definition 2.3.2. Note that heap and invo
in Example 2.3.2 are the line numbers. A heap context is created when a new object is
allocated with a heap allocation. A method invocation requires a scope identifier for the
local variables, then a context is constructed by the Merge function. See Example 2.3.3.

Example 2.3.3 (The simple context-sensitive points-to analysis rules).
(1) Record(heap, ctx) = hctx,

V arPointsTo(var, ctx, heap, hctx)← Allocation(var, heap, inMeth).
(2) V arPointsTo(to, ctx, heap, hctx)

← Assign(to, from), V arPointsTo(from, ctx, heap, ctx).
(3) V arPointsTo(to, toCtx, heap, hctx)

← InterMethAssign(to, toCtx, from, fromCtx),
V arPointsTo(from, fromCtx, heap, hctx).

(4) V arPointsTo(to, ctx, heap, hctx)
← Cast(to, from, type), V arPointsTo(from, ctx, heap, hctx).

(5) Merge(heap, hctx, invo, callerCtx) = calleeCtx,
CallGraph(invo, callerCtx, toMeth, calleeCtx)
← V irtualInvocation(base, sig, invo, inMeth),

V arPointsTo(base, callerCtx, heap, hctx),
ObjectType(heap, heapT), LookUp(heapT, sig, toMeth).

(6) InterMethAssign(to, calleeCtx, from, callerCtx)
← DefinedArg(meth, n, to), DynamicArg(invo, n, from),

CallGraph(invo, callerCtx,meth, calleeCtx).
(7) InterMethAssign(to, callerCtx, from, calleeCtx)

← DefinedReturn(meth, from), DynamicReturn(invo, from),
CallGraph(invo, callerCtx,meth, calleeCtx).

Finally, I give an example of the Merge and Record functions as below.

record(heap, ctx) = ctx

merge(heap, hctx, invo, ctx) = ctx⊕ invo
where ⊕ is the concatenating operator. Now, we run the context-sensitive analysis pro-
gram above on the simple Java program in Example 2.3.1. The contexts are three call-
graph paths ‘0’ (for the main method execution), ‘0, 12’ (for the first id function invocation
at line 12) and ‘0, 13’ (for the second one). I use line number 0 to demonstrate the main
function call. Then, there are

(InterMethAssign(‘obj’, ‘0, 13’, ‘objP1’, ‘0’), InterMethAssign(‘objP2’, ‘0’, ‘obj’, ‘0, 13’),)

and

(InterMethAssign(‘obj’, ‘0, 12’, ‘objC1’, ‘0’), InterMethAssign(‘objC2’, ‘0’, ‘obj’, ‘0, 12’),).

11

So that, two data flows, objP1 → obj → objP2 and objC1 → obj → objC2, have been
separated. Additionally, the simple points-to analysis in Example 2.2.2 is a context-
insensitive analysis.

2.4 Call-site sensitivity, object sensitivity and type

sensitivity

Our context-sensitive analysis is cloning approach in which the analyzed program’s com-
ponents (variable, objects) are cloned for each context. Many kinds of context are defined,
such as call-site, object, type [1]. Besides the methods that use a single kind of context,
a hyper approach have been proposed [10] by a combination.

2.4.1 Call-site sensitivity

By changing the definition of Context, HContext and two manipulating functions (Record
and Merge), a type of context-sensitive analysis is established. In Section 2.3, I defined a
call-site-sensitive analysis. Context and HContext are sequences of labels, label ∈ Lab,
where the labels are line numbers of method call instructions (12 and 13 in Example 2.3.1).
Record(heap, ctx) = ctx. A heap context of an allocated object is the call-site (context)
of the caller. The Merge function concatenates the caller’s call site with the current call-
site (for example, Merge(‘10’, ‘0’, ‘12’, ‘0’) = ‘0, 12’). I remark that the contexts in the
call-site sensitive analysis are sequences of call-sites and they also are the call paths in
call-graph. Also, hcontexts are sequences of call-site line numbers.

2.4.2 Object sensitivity and type sensitivity

The call-site-sensitive points-to analysis divides contexts by calling chains. Besides, the
object sensitivity has been proposed [1] as an another way to divide contexts. The object-
sensitive analysis is suggested to work well for object-oriented programs.

Definition 2.4.1. Context and heap context (HContext) in object-sensitive analysis are
as follows:

Context = HContext = Lab∗

where Lab is the set of line numbers of heap allocation instructions.

Example 2.4.1. Record and Merge in object-sensitive analysis are defined as follows:

Record(heap, ctx) = ctx

Merge(heap, hctx, invo, ctx) = hctx⊕ heap

A context now is a sequence of heap allocation line numbers. It starts from ‘0’, which
denotes the heap allocation of the object of Main class. On the other way, variables are
cloned based on base object’s creation. For example, in this instruction base.meth(args),

12

the context inside meth method invocation is identified by the allocation of the base
object. For understanding, see the following example.

Example 2.4.2 (A simple Java program with method calls).

1 public class P{
2 P id (P obj) {return obj ;}
3 }
4 public class C extends P{
5 void donothing () {}
6 }
7 public class M{
8 public stat ic void main (St r ing [] agr s) {
9 P objP1 , objP2 , objC1 , objC2 , objC3 ;
10 objP1 = new P() ;
11 objC1 = new C() ;
12 objC2 = objC1 . id (objC1) ;
13 objP2 = objP1 . id (objP1) ;
14 objC3 = objC1 . id (objC1) ;
15 C objC = (C) objC2 ;
16 objC = (C) objC3 ;
17 }
18 }

Three method invocations at lines 12, 13 and 14 are only considered under two different
contexts. 12 and 13 will have the same context ; because line 12 and line 14 have the
same base object created at line 11 (objC1 = newC();). In this case, the object-sensitive
analysis is still precise enough to conclude that two downcasts at line 15 and 16 are
safe. However, if line 14 is modified to become objC3 = objP1.id(objC1);, the analysis
will fail to prove the safety of the second downcast. At this point, it seems that object
sensitivity is always worse than call-site sensitivity. But it not true. The next section
shows that there are cases where an object-sensitive points-to analysis works better than
a call-sensitive one. In general, the object-sensitive points-to analysis is more scalable
than the call-sensitive analysis.
In 2011, a type-sensitive analysis was proposed by Yannis et. al. [1]. It also takes the
object-oriented concept, likes object-sensitive analysis. Type-sensitive analysis has higher
scalability than object-sensitive analysis but is less precise.

Definition 2.4.2. Context and heap context (HContext) in type-sensitive analysis are as
follows:

Context = HContext = Type∗

where Type is the set of class types. The type-sensitive contexts are defined above. The
manipulating functions only keep the type information instead of heap allocation.

Example 2.4.3.

Record(heap, ctx) = ctx

Merge(heap, hctx, invo, ctx) = hctx⊕ TypeOf(heap)

where TypeOf(·) returns type of the created object.

13

2.5 Abstraction

In order to precisely handle (recursive) call sequence, the context should simply be full
call path. Hence, the context is defined as the sequence of line number in Definition 2.3.1.
However, the contexts will become infinite and our analysis will be undecidable. To this
end, k-context-sensitive analysis [2] abstracts contexts to be finite as follows.

Definition 2.5.1. Context and HContext in k-context- h-heap context- sensitive analysis
are as follows:

Context = Labk, HContext = Labh

.

A bounded version of contexts is described in Definition 2.5.1. Often, only (small)
bounded length contexts are sufficient. Two manipulating functions, Record and Merge
are also changed.

Example 2.5.1. Two manipulating functions of a k-context- h-heap context- sensitive
analysis are as follows:

Record(heap, ctx) = lasth(ctx)

Merge(heap, hctx, invo, ctx) = lastk(ctx⊕ invo)
where the lastn(s) function returns the n last elements of the sequence s.

Consider Example 2.3.1, a 1-context-sensitive points-to analysis is precise enough to
distinguish two invocations of the id method. First, there are

Record(‘10’, ‘0’) = ‘0’, V arPointsTo(‘objP1’, ‘0’, ‘10’, ‘0’)← Allocation(‘objP1’, ‘10’, ‘main’).,
Record(‘11’, ‘0’) = ‘0’, V arPointsTo(‘objC1’, ‘0’, ‘11’, ‘0’)← Allocation(‘objC1’, ‘11’, ‘main’).,
Merge(‘10’, ‘0’, ‘12’, ‘0’) = ‘12’, CallGraph(‘12’, ‘0’, ‘P : id : P ’, ‘12’)

← V irtualInvocation(‘objP1’, ‘0’, ‘12’, ‘main’),
V arPointsTo(‘objP1’, ‘0’, ‘10’, ‘0’),
ObjectType(‘10’, ‘P ’), LookUp(‘P ’, ‘id : P ’, ‘P : id : P ’).

and

Merge(‘11’, ‘0’, ‘13’, ‘0’) = ‘13’, CallGraph(‘13’, ‘0’, ‘P : id : P ’, ‘13’)
← V irtualInvocation(‘objP1’, ‘0’, ‘13’, ‘main’),

V arPointsTo(‘objP1’, ‘0’, ‘10’, ‘0’),
ObjectType(‘10’, ‘P ’), LookUp(‘P ’, ‘id : P ’, ‘P : id : P ’).

Then, there are

(InterMethAssign(‘obj’, ‘13’, ‘objP1’, ‘0’), InterMethAssign(‘objP2’, ‘0’, ‘obj’, ‘13’),)

and

(InterMethAssign(‘obj’, ‘12’, ‘objC1’, ‘0’), InterMethAssign(‘objC2’, ‘0’, ‘obj’, ‘12’),).

14

Chapter 3

Proposed method

3.1 Adaptive points-to analysis

Consider the following Java program.

Example 3.1.1 (A simple Java program for selective points-to analysis).

1 public class P{}
2 public class C extends P{}
3 public class M{
4 public stat ic void main (St r ing [] agr s) {
5 P objP , objC , objP1 , objP2 , objP3 ;
6 objP = new P() ;
7 objC = new C() ;
8 objP1 = fun1 (objP) ;
9 objP2 = fun1 (objC) ;
10 objP3 = fun2 (objP) ;
11 objP3 = fun2 (objC) ;
12 (C) objP1 ; // downcast ‘ d1 ’
13 (C) objP2 ; // downcast ‘ d2 ’
14 (C) objP3 ; // downcast ‘ d3 ’
15 }
16 public stat ic P fun1 (P obj1) { return id (obj1) ;}
17 public stat ic P fun2 (P obj2) {
18 C temp = new C() ;
19 return id (temp) ;}
20 public stat ic P id (P obj) {return obj ;}
21 }

Let us analyze it with the 2-call-site sensitive points-to analysis mentioned in Chapter 2.
The result contains

V arPointsTo(‘objP ’, ‘0’, ‘6’, ‘0’),
V arPointsTo(‘objC’, ‘0’, ‘7’, ‘0’),
V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’),

V arPointsTo(‘objP2’, ‘0’, ‘7’, ‘0’),
V arPointsTo(‘objP3’, ‘0’, ‘18’, ‘0, 10’),
V arPointsTo(‘objP3’, ‘0’, ‘18’, ‘0, 11’).

Therefore, the first downcast at line 12 fails and two remaining are safe. These are the
precise result. On the other hand, if we analyze the above Java program with a 1-call-site

15

sensitive points-to analysis, the analyzed tuples are quite different.

V arPointsTo(‘objP ’, ‘0’, ‘6’, ‘0’),
V arPointsTo(‘objC’, ‘0’, ‘7’, ‘0’),
V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’),
VarPointsTo(‘objP1’, ‘0’, ‘7’, ‘0’),

VarPointsTo(‘objP2’, ‘0’, ‘6’, ‘0’),
V arPointsTo(‘objP2’, ‘0’, ‘7’, ‘0’),
V arPointsTo(‘objP3’, ‘0’, ‘18’, ‘10’),
V arPointsTo(‘objP3’, ‘0’, ‘18’, ‘11’).

The differences make a failure when proving the safety of the second downcast. For
this Java program, a level 1 abstraction is precise enough to analyze the behavior of
fun2, but the method invocations of the fun1 need level 2. This leads to the idea that
we should handle different parts of the program with different abstraction levels. This
section introduces an adaptive context-sensitive points-to analysis, which is able to handle
the parts of the program selectively.
Firstly, I define the contexts in Definition 3.1.1. Context and HContext are sets of the
following context and hcontext respectively.

Definition 3.1.1 (context and heap context in adaptive k-context- h-heap context- sen-
sitive analysis).

context = lab1, ..., labα hcontext = lab1, ..., labβ

where 0 ≤ α ≤ k, 0 ≤ β ≤ h and lab ∈ Lab (set of line numbers).

Definition 3.1.2. Merge and Record functions in adaptive k-context- h-heap context-
sensitive analysis are as follows:

Record ∈ Record : Lab× Context×HAbs→ HContext

Merge ∈Merge : Lab×HContext× Lab× Context× Abs→ HContext

where Abs = [z...k], HAbs = [z...h], and z is the smallest abstraction level, e.g. z = 1.

The abstraction levels are added into two manipulating functions. Then the abstraction
levels no longer are two numbers, k and h. From now, abstraction describes the abstraction
levels for parts of the analyzed program.

Definition 3.1.3. abstraction and heap abstraction in adaptive k-context- h-heap context-
sensitive analysis are as follows:

abstraction = abs1, ..., absn

heapAbstraction = habs1, ..., habsm

where abs ∈ Abs, habs ∈ HAbs, and n and m are numbers of the analyzed program’s
parts.

In detail, our method divides the program by instruction. Hence, n and m are the
numbers of method invocations and heap allocations respectively. An abstraction for
the program in Example 3.1.1 is ‘1,1,1,1,2,1’ (corresponding with the method invocations

16

at lines 8, 9, 10, 11, 16, 18). With it, the program is analyzed precisely. In addition,
‘1,1,1,1,2,1’ is also the least precise abstraction that can prove all downcasts in the above
program. In the rest of this document, only context and abstraction is mentioned in the
examples. The hcontext and heapAbstraction are hidden for simplifying the examples.

Definition 3.1.4 (Abstraction comparison). An abstraction A is more precise than an
abstraction B, if and only if Ai < Bi for any pair (Ai ∈ A,Bi ∈ B)

3.2 Problem restatement

In fact, an adaptive k-context- h-heap context- sensitive analysis is not more precise
than a k-context- h-heap context- sensitive analysis. The equality happens with highest
abstractions (‘k, k, .., k’ and ‘h, h, ..., h’). In my experiment, 3-context- 3-heap context-
sensitive analysis is not achievable because of state explosion. Therefore, I propose ob-
taining the precision of a high-abstracted analysis by running the adaptive analysis with
lower abstractions. The downcast problem is simply restated as below.

Definition 3.2.1 (The downcast problem). Given a Java program P , a setD of downcasts
and a valid abstraction set A.
Compute a partition (T , F) of D, where T contains down casts that can be proved by
some valid abstraction A ∈ A and F is a set of down casts that may fail.

3.3 CEGAR-based algorithm

In order to solve the downcast problem, a CEGAR-based algorithm has been proposed
by Zhang et. al [2]. The CEGAR-based algorithm is shown in Algorithm 1. CEGAR
iteration starts by running the adaptive analysis with the lowest abstraction. After every
analyzing step, the counterexample knowledge is accumulated. It is used to choose an
abstraction for the next iteration.

The key points are the way to represent the counterexample knowledge φ and how it
can guide the abstraction refinement (the choose function). I define φ and choose later.
To give an early taste, I describe how the CEGAR-based algorithm works on Example
3.1.1 with an adaptive 2-call-site sensitive points-to analysis (h = k = 2).
First, The analysis starts with the lowest abstraction, a1 = ‘1, 1, 1, 1, 1, 1’. There are

V arPointsTo(‘objP ’, ‘0’, ‘6’, ‘0’),
V arPointsTo(‘objC’, ‘0’, ‘7’, ‘0’),
V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’),
V arPointsTo(‘objP1’, ‘0’, ‘7’, ‘0’),

V arPointsTo(‘objP2’, ‘0’, ‘6’, ‘0’),
V arPointsTo(‘objP2’, ‘0’, ‘7’, ‘0’),
V arPointsTo(‘objP3’, ‘0’, ‘18’, ‘10’),
V arPointsTo(‘objP3’, ‘0’, ‘18’, ‘11’);

and fail downcasts:

FailDownCast(‘objP1’, ‘’, ‘C’), FailDownCast(‘objP2’, ‘’, ‘C’).

The lowest abstraction means that there is a single context,‘0’, for everywhere. The coun-
terexample knowledge is a chain of inferences. For the first downcast,

17

Algorithm 1 CEGAR-based algorithm

Input: Program P and downcasts D
Output: A partition (T, F) of D, where T contains the down-
castings that will not fail and F is set of the down-casting that may
fail.

a := ⊥ // as initial abstraction (lowest-precision)
φ := {} // φ is accumulated counter-example and initiated as empty set
T := {} and F := D
loop
φ, (T ′, F ′) = Analyze(F, a) // invoke the analysis
T := T ∪ T ′
F := F ′

a := choose(φ, F)
end loop

FailDownCast(‘objP1’, ‘’, ‘C’)
← V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’), Cast(‘objP1’, ‘’, ‘C’).

V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’)
← InterMethAssign(‘objP1’, ‘0’, ‘id(obj1)’, ‘8’), V arPointsTo(‘id(obj1)’, ‘8’, ‘6’, ‘0’).

V arPointsTo(‘id(obj1)’, ‘8’, ‘6’, ‘0’)
← InterMethAssign(‘id(obj1)’, ‘8’, ‘obj’, ‘16’), V arPointsTo(‘obj’, ‘16’, ‘6’, ‘0’).

V arPointsTo(‘obj’, ‘16’, ‘6’, ‘0’)
← InterMethAssign(‘obj’, ‘16’, ‘obj1’, ‘8’), V arPointsTo(‘obj1’, ‘8’, ‘6’, ‘0’).

V arPointsTo(‘obj1’, ‘8’, ‘6’, ‘0’)
← InterMethAssign(‘obj1’, ‘8’, ‘objP ’, ‘0’), V arPointsTo(‘objP ’, ‘0’, ‘6’, ‘0’).

and

InterMethAssign(‘objP1’, ‘0’, ‘id(obj1)’, ‘8’) and InterMethAssign(‘obj1’, ‘8’, ‘objP ’, ‘0’)
are consequences of Abs(‘8’, 1). Abs(‘n’, abs) means that the method invocation at line n is
abstracted with level abs. InterMethAssign(‘id(obj1)’, ‘8’, ‘obj’, ‘16’) and InterMethAs-
sign(‘obj’,‘16’, ‘obj1’, ‘8’) are consequences of Abs(‘16’, 1). The similar thing happens
with the second downcast. Finally, there are two rules below.

FailDownCast(‘objP1’, ‘’, ‘C’)← ..., Abs(‘8’, 1), Abs(‘16’, 1).

FailDownCast(‘objP2’, ‘’, ‘C’)← ..., Abs(‘9’, 1), Abs(‘16’, 1).

The choose function takes φ and F as the inputs. At this point, F includes two first
downcasts. The above inference chains say that

• FailDownCast(‘objP1’, ‘’, ‘C’) may not exist if Abs(‘8’, 1) or Abs(‘16’, 1) dose not
exist.

• FailDownCast(‘objP2’, ‘’, ‘C’) may not exist if Abs(‘9’, 1) or Abs(‘16’, 1) dose not
exist.

18

For example, the choose function returns a2 = ‘1, 1, 1, 1, 2, 1’ as the abstraction for the sec-
ond iteration. Then, only FailDownCast(‘objP1’, ‘’, ‘C’) remains. The counterexample
knowledge now says

• FailDownCast(‘objP1’, ‘’, ‘C’) is produced for any abstraction b = ‘b1, b2 = 1, b3, b4, b5, b6’.

• FailDownCast(‘objP1’, ‘’, ‘C’) is also produced by any abstraction b = ‘b1, b2 =
1, b3, b4, b5 = 1, b6’.

The second iteration returns abstraction a3 = ‘1, 2, 1, 1, 1, 1’ and the third returns a4 =
‘1, 2, 1, 1, 2, 1’. However, FailDownCast(‘objP1’, ‘’, ‘C’) still exists. Recall that the max-
imum abstraction level is 2. Hence the CEGAR-based algorithms stops after the fourth
iteration. The final result is (T = {‘d2’, ‘d3’}, F = {‘d1’}).

3.3.1 Choosing abstraction with by maximum satisfiability (MaxSAT)

In this subsection, the choose function is defined as a partial weighted MaxSAT problem.

Definition 3.3.1 (MaxSAT). MaxSAT is SAT with soft constraints (pairs of clause and
weight). Its goal is to find a model that maximizes the sum of satisfied soft constraints’
weight.

Note that, our points-to analysis is implemented in Datalog language, and it is in pred-
icate logic. However, MaxSAT is a binary (propositional) logic problem. Therefore, any
tuple needs to be converted to a variable. For example, the abstraction a = ‘1, 1, 1, 1, 1, 1′

is encoded as [a1 = 1] ∧ [a2 = 1] ∧ [a3 = 1] ∧ [a4 = 1] ∧ [a5 = 1] ∧ [a6 = 1] where
[ai = 1] is a boolean variable. In the previous CEGAR-based algorithm explanation, the
counterexample knowledge φ after the second iteration is

([a2 = 1]→ [FailDownCast(‘objP1’, ‘’, ‘C’)])

or
(¬[a2 = 1] ∨ [FailDownCast(‘objP1’, ‘’, ‘C’)]).

The choose function is formulated as below.

Definition 3.3.2 (The choose(φ, F) function).

choose(φ, F) = MaxSAT (A ∧ α(F) ∧ φ, γa ∧WF)

where A ∧ α(F) ∧ φ is the hard constraint and γa ∧WF is the soft constraint.

In details,

• A represents the valid abstraction. A =
∧{[ai = z]∨ [ai = z+1])∨ ...∨ [ai = k]| 1 ≤

i ≤ n}; where z is the minimum abstraction level, k is the maximum abstraction
level and n is the number of parts of the analyzed program.

• φ encodes the accumulated counter-example knowledge. See Section 3.4.

19

• The α(F) =
∧{¬[d]| d ∈ F} constraint says that there has to be at least one

downcast to be proved by the chosen abstraction.

• γa denotes the complexity order of the abstraction levels. γa is a set of ([ai =
level], w) tuples. The higher abstraction level has the lower weight.

• WF = {([d],maxw)| d ∈ F} where maxw > sum({w| ([ai = k], w) ∈ γa}) and k
is the maximum abstraction level. The WF constraint enforces that the solution
actually proves at least one downcast in F .

Definition 3.3.3 (Valid abstraction). A = ‘a0, a1, ..., an’ is a valid abstraction of a
program P with an adaptive k-context-sensitive points-to analysis, iff z < ai < k for
0 < i < n.

Theorem 3.3.1. If MaxSAT (A ∧ α(F) ∧ φ, γa ∧WF) returns no solution; then there is
no valid abstraction which can prove a downcast in F .

Consider Theorem 3.3.1, if a MaxSAT solver gives no solution, it means that there is no
model which can satisfy A∧α(F)∧φ. Hence, no downcast in F can be proved by a valid
abstraction. However, some downcasts in F might be still safe, and it can be proved by
some abstractions that are more precise than the highest abstraction (‘k, k, ..., k’). The
CEGAR-based algorithm will terminate if the choose function returns no valid abstraction.

Theorem 3.3.2. The CEGAR-based algorithm with an adaptive k-context-sensitive
points-to analysis solves the downcast problem and gives the same precise results as a
k-context-sensitive points-to analysis does.

3.4 Provenances vs Datalog runs

In the previous section, the counterexample knowledge φ is mentioned as inference chains.
More precisely, φ is a set of analysis rule applications. According to the notations in the
definitions in Section 2.1, a rule is l0 ← l1, .., ln; then a rule application is σ(l0) ←
σ(l1), .., σ(ln) where σ(l0), σ(l0), ..., σ(ln) ∈ T and T is the produced tuples set.
The counterexample knowledge was defined as a set of provenances in [2]; but in our
method, I propose to use the set of Datalog runs as the counterexample knowledge.

Definition 3.4.1 (Datalog runs). The set of Datalog runs produced by a Datalog pro-
gram C is

[C]T =
∧
{σ(l0)← σ(l1), .., σ(ln)| (l0 ← l1, .., ln) ∈ C and σ(l0), ..., σ(ln) ∈ T}

Definition 3.4.2 (Provenance). The set of provenances |C|T is the biggest subset of [C]T
that satisfies

∀σ(r) ∈ |C|T 6 ∃σ
′(r′) ∈ |C|T σ(l0) = σ′(l′0)

where r, r′ ∈ C, σ(r) = σ(l0)← σ(l1), .., σ(ln) and σ′(r′) = σ′(l′0)← σ′(l′1), .., σ
′(l′m).

20

The same tuple can be produced by applying two or more rules. Provenances only keep
the information of the first-producing rule application, while it skips the applications
that create any existing tuple. Differently, Datalog runs save all the producing relations.
Therefore, the Datalog-run counterexample has a higher precision than the provenance
counterexample, and obviously, pays a higher cost.

3.5 Cheap abstraction for refinement

It is not necessary to run the refinement step on the same abstraction with the analysis
step. It is mostly because of the computation cost. The counterexample knowledge can
be modeled with a lower abstraction.

Definition 3.5.1. Datalog runs with lower level abstraction is defined as follows:

[C]′T =
∧
{f(σ(l0))← f(σ(l1)), .., f(σ(ln)).| (l0 ← l1, .., ln.) ∈ C and σ(l0), ..., σ(ln) ∈ T}

where f is a context lowering mapping function.

For example, the Datalog run below is produced by 2-call-site-sensitive analysis.

V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’)
← InterMethAssign(‘objP1’, ‘0’, ‘id(obj1)’, ‘0,8’), V arPointsTo(‘id(obj1)’, ‘0,8’, ‘6’, ‘0’).

Then context constants are mapped to 1-length context.

V arPointsTo(‘objP1’, ‘0’, ‘6’, ‘0’)
← InterMethAssign(‘objP1’, ‘0’, ‘id(obj1)’, ‘8’), V arPointsTo(‘id(obj1)’, ‘8’, ‘6’, ‘0’).

Lower context-level counterexample knowledge means that the refinement step is pro-
cessed with a lower abstraction. It may lead to the false positive results, but at least it
still remains sound. As with the abstract semantic, there is a trade-off between precision
and analysis cost. Note that a higher level abstraction for refinement makes no sense.

3.6 Partitioned abstraction search

In my experiment, it is too costly to use the MaxSAT solver directly for choosing the
abstraction. Hence, I propose a partitioned abstraction search method with a new choose′

function below.

Definition 3.6.1. With a partition (D0, ..., Dn) of F ,

choose′(φ, F) =
⊔
{choose(φ,Di)|i = 1, ..., n}

where Di is a set of downcasts and ∪ is abstraction joining operator.

Definition 3.6.2 (The abstraction joining operator).
With two abstractions, A = A1, A2, ..., An and B = B1, B2, ..., Bn,

A tB = C = C1, C2, ..., Cn

where Ci = max(Ai, Bi).

21

The operation, AtB, returns the least abstraction C that is more precise than A and B.
Our method applies the MaxSAT solver on smaller sub-problems. The original MaxSAT
problem is solved approximately.

Theorem 3.6.1. If choose′(φ, F) = A then A is a model of A ∧ α(F) ∧ φ where

choose(φ, F) = MaxSAT (A ∧ α(F) ∧ φ, γa ∧WF).

3.7 Repeated abstraction search

Consider the example in Section 3.3, after two iterations, the counterexample knowledge
contains this information, φ =

([a2 = 1]→ [FailDownCast(‘objP1’, ‘’, ‘C’)])∧

([a2 = 1] ∧ [a5 = 1]→ [FailDownCast(‘objP1’, ‘’, ‘C’)]).

Then it requires two more iterations to know that [FailDownCast(‘objP1’, ‘’, ‘C’)] can
not be disproved (run the analysis with two abstractions ‘1, 2, 1, 1, 1, 1’ and ‘1, 2, 1, 1, 2, 1’
respectively). At the end of the second iteration, the hard constraint is A ∧ α(F) ∧ φ,

A = ([a2 = 1] ∨ [a2 = 2]) ∧ ([a5 = 1] ∨ [a5 = 2]) ∧ ...

α(F) = ¬[FailDownCast(‘objP1’, ‘’, ‘C’)]

and the soft constraint is γa ∧WF ,

γa = ([a2 = 1], 1) ∧ ([a2 = 2], 0) ∧ ([a5 = 1], 1) ∧ ([a5 = 2], 0) ∧ ...,

WF = (¬[FailDownCast(‘objP1’, ‘’, ‘C’)], 7).

Then MaxSAT (A ∧ α(F) ∧ φ, γa ∧WF) returns [a1 = 1] ∧ [a2 = 2] ∧ [a3 = 1] ∧ [a4 =
1]∧ [a5 = 1]∧ [a6 = 1] (the abstraction ‘1, 2, 1, 1, 1, 1’). However, if it returns ‘1, 2, 1, 1, 2, 1’
instead, the CEGAR-based algorithm could end faster. To overcome the above scenario,
we propose a repeated abstraction search; a choose function is defined below.

Definition 3.7.1 (choose in repeated abstraction search).

choose(φ,Di) = choosej(φ,Di)

where
Aj+1 = choosej+1(φ,Di) = Aj t choosej(φ ∧ β(Aj), Di)

for β(Aj) =
∧
p

apj 6= Aj(p) and β0 = true

and apj is a element of abstraction Aj

22

Our repeated abstraction choosing method goes forward abstractions. At first, choose0(φ,Di)
is the original MaxSAT problem. Then it assumes that the A0 does not prove any down-
cast by adding β(Aj−1, A) into the hard constraint. A new alternative abstraction is
found. Finally, the chosen abstraction is

⊔
i=1,...,j Ai. In the above example, at the end of

the second iteration with j = 1, ‘1, 2, 1, 1, 2, 1’ is returned instead of ‘1, 2, 1, 1, 1, 1’. Thus,
the CEGAR-base algorithm runs faster. Now the choosing abstraction statement in the
Algorithm 1 becomes

a := choose′(φ, F) =
⊔
{choosej(φ,Di)|i = 1, ..., n}

Theorem 3.7.1. For 0 ≤ j, if choosej(φ,Di) = Aj and choosej+1(φ,Di) = Aj+1 then
Aj+1 is not less precise than Aj (better or equal),

23

Chapter 4

Related works

4.1 Pushdown system

Our points-to analysis is an instance of the reachability problem. In which input tuples
encode initial states, analyzing rules are transition and output tuples at the end of in-
ference describe reachable states. In addition, our transition system becomes finite-state
by an abstraction in Section 2.5. Also, recursive method invocations are handled by ap-
proximating the infinite set of unbounded-length contexts using the finite set of bounded
contexts.

Another approach for handling recursive functions is the pushdown approach [8]. A
pushdown system is a state transition system with an unbound stack and the pushdown
static analysis can precisely handle recursive calls.

The pushdown static analysis is also called context-free language (CFL) reachability [8].
It starts with initial states and then the reachable states are gradually reached. In 2001,
the pushdown points-to analysis was introduced by Rehof and Fahndrich [9]. During the
analyzing time, the proposed system obtains and accumulates every function behaviors.
These behaviors are then encoded as mapping relations between sets of input states and
sets of possible output states. In the pushdown approach, the infinite states are abstracted
to a finite number of state subsets. In the points-to analysis, the maximum number of
state subsets is s = p×n where p is the number of pointers and n is the number of objects.
Furthermore, the mapping function is M = S × S where S is a set of state subsets. We
also have that the number of functions is finite. Therefore, the pushdown static analysis
is decidable.

All in all, the points-to analysis with the pushdown approach is decidable. It is hard to
compare the precision of this approach and our approach. However, from the performance
perspective, our approach has an advantage as being more scalable [13]. In addition, our
method works with antlr and chart while [13] dose not. Besides these advantages, our
approach has a key drawback that is how to pick a good abstraction. The program
should be analyzed with small enough number of states but still sufficient to prove the
goals (downcasts). This thesis focuses on solving these problems.

24

4.2 Abstraction Refinement

In the previous section, we stated that the points-to analysis can be considered as a
reachability problem which is decidable if the states are finite. Beside the pushdown
system, there is another method that map the infinite states of the program semantic to
a set of finite abstracted states by defining an abstract semantic. Our points-to analysis
is influenced by this approach.

Recall that the key problem with this approach is how to pick a good abstraction. There
is one prominent work by Zhang et. al. [2]. They try to address this issue. In 2014, they
proposed the CEGAR-based abstraction refinement [2] which models the “picking good
abstraction” as a MaxSAT problem, see Subsection 3.3.1. They also proposed the usage
of provenances as counter example knowledge to generalize the failure of abstractions.
The cheapest refined abstraction is chosen based on these provenances.

In this work, we extend [2]’s work by using a more fine-grained granularity of program
parts. Namely, our approach uses different precision levels for different method call sites,
whereas [2] does not. We also describes some problems we found while extending [2]
in Chapter 3. Therefore, we propose the use of Datalog runs instead of provenances to
gain higher precision. Finally, we suggest partition abstraction search for feasibility and
repeated search for abstraction forwarding.

25

Chapter 5

Implementation

Our analysis system is described in Figure 5.1. Doop is a points-to analysis framework
for Java programs. The Doop framework precisely handles many Java features (such as
inheritance, reflection, exception). Doop includes many context-sensitive analyses (call-
site-sensitive, object-sensitive and type-sensitive analyses) and it is easy to define a new
analysis. Doop uses the Datalog language and Logicblox (a Datalog solver).

In Doop, an input Java program is parsed into input tuples that can be used as data
in a Java program by using the Soot library [4]. Logicblox, a Datalog solver, starts the
analysis with those input tuples, abstraction tuples and points-to analysis rules. After the
analysis, counterexample knowledge is extracted in the form of predicate tuples. There is a
gap between the predicate logic (our points-to analysis) and the binary logic (MaxSAT).
I use the Redis database [14] to bind them. The MaxSAT problem in Chapter 3 is
solved by MiFuMax [5]. If the MaxSAT solver returns no solution (abstraction) then the
CEGAR-based algorithm ends. In the following, I discuss the some relevant details of the
implementation, such as optimizations that were not described in the earlier part of the
thesis.

5.1 Eliminate non-context predicates from counterex-

ample knowledge

In order to decrease the cost of the MaxSAT problem, some redundant tuples should
be removed from the counterexample knowledge. Hence, the non-context predicates are
considered.

Definition 5.1.1 (Non-context predicate). Non-context predicate is the predicate that
does not include any context variable (Context or HContext).

The analysis inference produces analyzed tuples from input tuples. There are rules that
create non-context analyzed tuples. For example,
SupertypeOf(?t, ?s)← ComponentType[?s] =?sc,

ComponentType[?t] =?tc, ReferenceType(?sc),
ReferenceType(?tc), SubtypeOf(?sc, ?tc).

26

Figure 5.1: System architecture

In fact, all input tuples are non-context predicates. Moreover, there is no rule such that
a non-context tuple is created from context tuples. Therefore, it is simple to get the
following theorem.

Theorem 5.1.1. Let FC1 and FC2 be the points-to analysis rules with different abstrac-
tions for a same program. Let Ti = lfp(FCi

, T0) for each i ∈ 1, 2 where T0 is the starting
facts for the program. Let T ′i ⊆ Ti be the set of non-context tuples of Ti (for each i ∈ 1, 2).
Then, T ′1 = T ′2.

As Theorem 5.1.1, the non-context predicates are always the same, regardless of what
the abstraction is. Therefore, the non-context predicates do not help to pick a good ab-
straction. Hence, in our implementation, the counterexample knowledge dose not include
any non-context predicates, except for the abstraction predicates.

5.2 Trace tuples from may fail downcasts

Consider the CERGAR-based algorithm in Algorithm 1, F is the remaining may-fail
downcast. This set is deceasing over time. Because of computation cost, the counterex-
ample knowledge φ ignores any downcast which does not belong to F . I manually wrote
the tracing rules to extract all inferences which lead to a FailDownCast tuple creation.
The following is an example.

FV arPointsTo(?heap, ?from)←
ApplicationClass(?class),MethodSignature : DeclaringType[?inmethod] =?class,

27

Reachable(?inmethod), Cast(?type, ?from, ?to, ?inmethod),
V arPointsTo(, ?heap, , ?from), HeapAllocation : Type[?heap] =?heaptype,
!SupertypeOf(?type, ?heaptype).

The above is the tracing rule of the rule below.

FailDownCast(?from, ?to, ?type)←
ApplicationClass(?class),MethodSignature : DeclaringType[?inmethod] =?class,
Reachable(?inmethod), Cast(?type, ?from, ?to, ?inmethod),
V arPointsTo(, ?heap, , ?from), HeapAllocation : Type[?heap] =?heaptype,
!SupertypeOf(?type, ?heaptype).

We use the tracing rules instead of recording because Logicblox does not support record-
ing.

5.3 Rewrite points-to analysis rules

In the Doop framework, there are some intermediate rules. They makes the analysis rules
easy to read and understand. For example, there are:

V arPointsTo(?hctx, ?heap, ?toCtx, ?to)←
V arPointsTo(?hctx, ?heap, ?fromCtx, ?from),
Assign(?type, ?toCtx, ?to, ?fromCtx, ?from),
HeapAllocation : Type[?heap] =?heaptype, SupertypeOf(?type, ?heaptype).

and

Assign(?type, ?ctx, ?to, ?ctx, ?from)←
AssignCast(?type, ?from, ?to, ?inmethod), ReachableContext(?ctx, ?inmethod).

They can be combined to become as follows:

V arPointsTo(?hctx, ?heap, ?ctx, ?to)←
V arPointsTo(?hctx, ?heap, ?ctx, ?from),
AssignCast(?type, ?from, ?to, ?inmethod), //replaceAssign
ReachableContext(?ctx, ?inmethod), //replaceAssign
HeapAllocation : Type[?heap] =?heaptype, SupertypeOf(?type, ?heaptype).

This is correct because Assign predicates only appears once in the rules. Rewriting rules
as showns above reduces the input size of the MaxSAT problem.

5.4 Integrate Doop and MiFuMax MaxSAT solver

I use the MiFuMax MaxSAT solver to implement the abstraction searching function.
MiFuMaX is an open-source weighted (and unweighted) MaxSAT solver. Its input is in
conjunctive normal form (CNF). An example of the weighted partial Max-SAT formula
is:
p wcnf 4 5 16
16 1 −2 4 0

28

8 −2 −4 0
4 −3 2 0
The first line is configuration parameters. Each next line starts with a weight number
and the later part is clauses (disjunction of binary literals). The minus character denotes
the negation.

As mentioned, we need to convert the counterexample knowledge from predicate logic
to binary logic. Besides, each tuple is considered as a string (a predicate-name and a
sequence of constants). We build mapping functions from string to binary variable id and
vice versa. In my implementation, I use Redis database to build these mapping functions.
Redis is an in-memory key-value data structure store [14]. I choose it because it is fast
and easy to use.

29

Chapter 6

Experiments

Our experiments are executed on Ubuntu 14.04 machine with Intel Core i5-6200U pro-
cessor (2.30 GHz × 4), 8 GB memory and 128 GB SSD hard disk. The implementation
is done in Java 1.7.0, using Logicblox version 3.10, Redis 3.2.0 and MiFuMax.

The experiments are on the DaCapo 2006 benchmark suite. The Dacapo benchmarks
are represented in Table 6.1. I analyze the benchmarks together with the Java Runtime
Environment (JRE) libraries used by the benchmarks. We use JRE 1.7, which is about
80.6 MB in size.

The DaCapo benchmark includes programs, their input data, their benchmark-specific
harness class and configuration files. The harness class invokes the analyzed program with
its input data . In addition, DaCapo uses a non-trivial class-loading mechanism and the
reflection to specify harness class and analyzed program’s main class. A static program
analysis has to:

• obtain runtime loaded classes

• access all reflective calls

• handle those refections

Fortunately, Soot includes TamiFlex [11] which provides custom class loader and col-
lects the reflective calls by a reflection log file. Moreover, the Doop framework provides
sophisticated reflection analysis.

The experiments are done in call-site-sensitive analysis. There are two kinds of com-
parison:

• The comparison between our CEGAR-based context-sensitive analysis and the anal-
ysis which have been already provided by the Doop framework

• The comparison among our CEGAR-based context-sensitive analyses with several
partitioned repeated parameters

The basic criterions are computation time, the number of reachable downcasts and the
number of remaining may-fail downcasts. In our experiment, the analysis has 4-day
timeout and there is a 5-minutes timeout for the MaxSAT solving step.

30

Table 6.1: The DaCapo 2006 bench mark programs
Benchmark Description Size (MB)

antlr
parses grammar files,
then a parser and lexical analyzer is generated for each.

0.619

chart
uses JFreeChart to plot a number of complex line graphs
and renders them as PDF.

2.1

xalan transforms XML documents into HTML 1.2

6.1 Adaptivity vs. non-adaptivity

Firstly, Table 6.2 shows the results of the non-adaptive points-to analysis. Secondly,
Table 6.3 shows the results of our adaptive points-to analysis. Here, the first column is
the program name. The second column shows the runtime of the analysis. The column
Reachble downcasts is the number of the reached downcasts. The fourth column is the
number of downcast that may fail. In Table 6.2, there is only one column for the 3-call-
site sensitive points-to analysis because this analysis is out of memory with all of the
programs.

In Table 6.3, the column Surely-fail downcasts is the number of downcasts that fail
even if we run the analysis with the highest abstraction. In addition, we can prove
whether a downcast surely fail at the highest abstraction by using the counterexample
knowledge. Recall, our analysis uses partitioned repeated abstraction search. The “5-
partitioned 1-repeated” means the remaining downcasts are divided into group of five
and the abstraction search is solved twice (one more time) in a single CEGAR iteration.
In Table 6.3, for antlr, the number of surely fail downcasts is less than the number of
may-fail downcasts because of the timeout of the MaxSAT solving step.

Table 6.2 and Table 6.3 show that the number of reachable downcasts are the same for
both the non analysis and our adaptive analysis. We remark that, in fact, the reachable
downcasts coincide in the two analyses (i.e., not just the numbers). The tables show the
followings:

• Our adaptive 3-call-site-sensitive analysis do not do worse (equal or better) than
the non-adaptive 2-call-site-sensitive analysis and of course it takes more time.

• The non-adaptive 3-call-site-sensitive analysis does not finish.

• The surely-fail downcast column shows that our method reaches the non-adaptive
3-call-site-sensitive analysis precision, except for antlr.

6.2 Partition and repetition

I compare between the 0-repeated 5-partitioned abstraction search and the 1-repeated
5-partitioned search in Figure 6.1. I also compare between the 0-repeated 5-partitioned

31

Table 6.2: The results of the non-adaptive call-site-sensitive analysis

2-call-site-sensitive analysis 3-call-site-sensitive analysis

Benchmark Time (s)
Reachable
downcasts

Reachable
may-fail

downcasts
antlr 21420 341 149 Out of memory
chart 24593 396 168 Out of memory
xalan 11994 561 313 Out of memory

Table 6.3: The results of the adaptive (5-partitioned 1-repeated) points-to analysis

Adaptive 3-call-site-sensitive analysis

Benchmark Time (s)
Reachable
downcast

Reachable
may-fail
downcast

Surely-fail
downcasts

antlr 78939 341 149 141
chart 112647 396 165 165
xalan 276417 561 309 309

method and the 0-repeated 10-partitioned search in Figure 6.2. The graphs plot the num-
ber of downcasts that remain may-fail and detected to be surely-fail over the analysis run
time. Both comparisons are on antlr. MF stands for may-fail downcasts and SF stands
for surely-fail downcasts. The postfixes 5-0 and 5-1 respectively denote the 0-repetition
and the 1-repetition with the 5-partition. Similarly, 10-0 stands for the 10-partitioned
0-repeated abstraction search. Basically, the 0-repetition is the analysis without the re-
peated abstraction search. Figure 6.1 shows that our repetition method is better than
the non-repeated abstraction search with the antlr benchmark. The number of MF are
decreased faster, while the SF are also proved quicker.

In my experiment, the non-partitioned points-to analysis ends with timeout. Hence,
our partitioned analysis is better than the non-partitioned analysis. In addition, the
partitioned parameter k of the k-partitioned analysis is chosen by trial and error. Fig-
ure 6.2 shows that on the antlr benchmark the 5-partitioned analysis is better than the
10-partitioned one in proving sure-fail downcasts.

32

0

50

100

150

200

250

300

3
0

5
9

6
4

1
6

9
7

3
7

1
2

8
3

7

1
5

8
3

3

1
8

6
1

6

2
1

5
7

9

2
4

5
7

3

2
7

5
9

8

3
0

5
0

1

3
3

3
7

5

3
6

0
8

0

3
8

7
6

7

4
1

2
9

5

4
4

1
1

4

4
6

8
3

4

4
9

4
0

8

5
1

9
4

2

5
4

4
8

0

5
6

8
9

9

5
9

3
0

2

6
2

3
3

9

6
5

4
9

5

7
1

8
7

7

7
8

9
6

9

N
o

. D
o

w
n

ca
st

s

Time(s)

0-repetition vs. 1 -repetition on the Antlr benchmark

MayFail-5-0 MayFail-5-1

SureFail-5-0 SureFail-5-1

Figure 6.1: 0-repetition vs. 1-repetition the antlr benchmark.

0

50

100

150

200

250

300

2
9

6
8

5
9

3
8

8
9

1
4

1
1

8
7

0

1
4

9
7

9

1
8

6
1

6

2
1

5
7

9

2
4

5
7

3

2
7

5
9

8

3
0

2
0

3

3
3

2
2

2

3
6

0
8

0

3
8

7
6

7

4
1

2
9

5

4
4

1
1

4

4
6

8
3

4

4
9

4
0

8

5
1

9
4

2

5
4

4
8

0

5
6

8
9

9

5
9

3
2

6

6
2

3
3

9

6
5

4
9

5

6
8

7
0

4

7
1

8
7

7

7
4

6
4

8

7
7

1
3

5

8
0

0
3

8

8
3

0
3

7

8
6

0
1

8

8
9

2
0

2

9
2

7
2

8

9
6

1
7

3

N
o

.D
o

w
n

ca
st

s

Time(s)

5-partition vs. 10-partition on the anltr benchmark

MayFail-5-0 MayFail-10-0
SureFail-5-0 SureFail-10-0

Figure 6.2: 5-partition vs. 10-partition on the antlr benchmark.

33

Chapter 7

Conclusion

We designed a CEGAR-based context-sensitive points-to analysis system for Java pro-
grams. First, I proposed a fine-grained adaptive points-to analysis, which extends [2] to
handle finer-grained adaptive analysis. Then a refinement method is proposed in order
to pick good abstractions. In our counterexample based refinement, the knowledge is
modeled by Datalog runs (with a full encoding) which is more precise than provenances.
Then the abstraction picking is feasibly solved as a partitioned problem and enhanced
with repetition. Also, for scalability, my method runs the refinement step with a lower
abstraction than the analysis step.

Finally, I have successfully implemented our analysis on the Doop framework and done
the experiment on real Java programs in the DaCapo benchmark. Our CEGAR-based
analysis obtained better results compared to non-adaptive context-sensitive analysis.

Future works

There are several issues with the current approach.

• Partitioning in the partitioned abstraction search is done arbitrarily.

• The number of repetitions in the repeated abstraction search are found by tries and
errors.

I leave as future work to solve the above issues.

34

Bibliography

[1] Smaragdakis, Yannis, Martin Bravenboer, and Ondrej Lhot ak. “Pick your contexts
well: understanding object-sensitivity.” POPL 2011.

[2] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. “On ab-
straction refinement for program analyses in Datalog.” PLDI 2014.

[3] Smaragdakis, Yannis, and Martin Bravenboer. “Using Datalog for fast and easy pro-
gram analysis.” DR 2011.

[4] Vall ee-Rai, Raja, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. “Soot - a Java bytecode optimization framework.” CASCON 1999.

[5] Manquinho, Vasco, Joao Marques-Silva, and Jordi Planes. “Algorithms for weighted
boolean optimization.” SAT 2009.

[6] Blackburn, Stephen M., et al. “The DaCapo benchmarks: Java benchmarking devel-
opment and analysis.” OOPSLA 2006.

[7] Andersen, Lars Ole. “Program analysis and specialization for the C programming lan-
guage.” PhD thesis, University of Cophenhagen, 1994.

[8] Thomas Reps, Susan Horwitz and Mooly Sagiv. “Precise interprocedural dataflow anal-
ysis via graph reachability.” POPL 1995.

[9] Jakob Rehof and Manuel Fahndrich. “Type-base flow analysis: from polymorphic sub-
typing to CFL-reachability.” POPL 2001.

[10] George Kastrinis and Yannis Smaragdakis. “Hybrid Context-Sensitivity for Points-To
Analysis.” PLDI 2013.

[11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati and Mira Mezini. “Taming
Reflection: Aiding Static Analysis in the Presence of Reflection and Custom Class
Loaders.” ICSE 2011.

[12] Yannis Smaragdakis and George Balatsouras (2015), “Pointer Analysis.” Founda-
tions and Trends in Programming Languages 2015.

[13] Li, Xin, and Mizuhito Ogawa. “Stacking-based context-sensitive points-to analysis for
Java.” Haifa Verification Conference 2009.

[14] Redis. http://redis.io/.

35

