
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Study on Acceleration of Real-Time Task

Scheduling

Author(s) Doan, Duy

Citation

Issue Date 2016-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13745

Rights

Description Supervisor:田中　清史, 情報科学研究科, 修士

Study on Acceleration of Real-Time Task Scheduling

Doan Duy

School of Information Science
Japan Advanced Institute of Science and Technology

Septemper, 2016

Master’s Thesis

Study on Acceleration of Real-Time Task Scheduling

1410221 Doan Duy

Supervisor : Associate Professor Kiyofumi Tanaka
Main Examiner : Associate Professor Kiyofumi Tanaka

Examiners : Professor Mineo Kaneko
Professor Yasushi Inoguchi

School of Information Science
Japan Advanced Institute of Science and Technology

August, 2016

Acknowledgments

As the author of this research, I would like to express my gratefulness to the following
people.

First, I would like to thank my parents. They always encourage me and are my spir-
itual pillar for everything, especially whenever I face difficulties. Being their hope and
proudness is the motivation for me to adjust with the student life far from my home.

Next, I must thank my great supervisor Associate Professor Kiyofumi Tanaka. He is
really a kindhearted, responsible, and professional instructor. During my studying period,
he was very patient to explain for me once I was lacked of related knowledge. Whenever
a difficulty arises, he timely gives me advice to solve it. Especially, under his supervising,
I learn the lessons of how to set the goals and how to approach the solutions. Besides,
Tanaka Sensei is so nice to support me to complete required official procedures related
to the life including monthly reports, scholarchip applications, and even financial issues.
I myself am very grateful for his advice and help. Without his best effort, I could never
gain such achievement of this research.

Then I also need to thank my second supervisor, my advisor, and other members in the
laboratory. They are always very nice to help me. As a foreigner, I respect their helps to
adjust with the studying life at a new education environment, JAIST.

Finally, I need to thank my friends and many staffs at JAIST. The way that my friends
share my time helps me enjoy a happy and warm life and reduces the homesick inside me.
And the faculties are always willing to support me any time I need helps. Furthermore,
I’m very thankful that they are always ready to help me, even on problems in daily life
in Japan.

Last but not least, I would like to thank JAIST, and other related agents to give me
such a chance to study at the School of Information Science and a chance to discover
nature, culture, and food in Japan.

Thank you very much!

Doan Duy

1

Contents

List of Figures 4

List of Tables 5

1 Introduction 6

2 Related works 8
2.1 TBS/EDF Server . 8
2.2 Virtual release advancing . 9

2.2.1 Algorithm of virtual release advancing 9
2.2.2 The problem of runtime overhead in virtual release advancing . . . 11

3 Enhanced virtual release advancing 12
3.1 Definitions of EVRA . 12

3.1.1 Boundary deadlines . 12
3.1.2 Check-bounding slot . 13
3.1.3 Representative slots of instances . 13

3.2 EVRA algorithm . 14
3.3 Enhanced points of the algorithm . 16

4 Implementation of the proposed algorithm 18
4.1 Introduction of basic implementation . 18

4.1.1 Runtime overhead in actual real-time system 18
4.1.2 System structures and organizations 19

4.2 Software implementation . 22
4.2.1 Task creation . 22
4.2.2 Software design . 24
4.2.3 Recapitulation for software implementation 29

4.3 Hardware implementation . 29
4.3.1 The basic processing system . 29
4.3.2 Block Diagram of Hardware Implementation 31
4.3.3 Procedures of Communication . 35

4.4 Implementation parameters on FPGA . 38

5 Evaluation 39
5.1 Methods of evaluation . 39

5.1.1 Objectives . 39
5.1.2 Steps of evaluation . 39

5.2 Evaluation on simulation . 40
5.2.1 The simulation environment . 40
5.2.2 The simulation results . 41

2

5.3 Evaluations on software and hardware implementations 42
5.3.1 The environment for software and hardware evaluations 42
5.3.2 Results of software and hardware implementations 44

6 Conclusion 50

Bibliography 51

This dissertation was prepared according to the curriculum for the Collaborative Ed-
ucation Program organized by Japan Advanced Institute of Science and Technology and
Vietnam National University - Ho Chi Minh City.

3

List of Figures

1.1 ITRON kernel structure . 7

2.1 Example of virtual release advancing . 9
2.2 The algorithm of virtual release advancing 10

3.1 Example of boundary deadlines . 12
3.2 Example of check-bounding slot (lsmax) . 13
3.3 Example of representative slot of instances 14
3.4 The enhanced virtual release advancing . 15

4.1 Tasks’ off-tick execution time in actual real-time systems 18
4.2 Structure of KERNEL TCB [10] . 19
4.3 The structure of kernel ready queue . 20
4.4 KERNEL ACT CELL structure for task’s absolute deadline 20
4.5 The flow of task insertion . 21
4.6 System initialization procedure . 21
4.7 Task creation . 23
4.8 Tasks’ cyclic creation . 23
4.9 Procedure of the proposed algorithm . 24
4.10 Source code of the software implementation 28
4.11 Design of basic processing system . 30
4.12 Block diagram of hardware implementation 31
4.13 State changing diagram . 33
4.14 Structure of a request command . 34
4.15 Storing data procedure . 35
4.16 Loading data procedure . 36
4.17 Enable scheduling procedure . 37

5.1 The maximum runtime overhead per tick 41
5.2 PMCCNTR register and cycle offset in a tick time 45

4

List of Tables

4.1 Overview of main system files . 22
4.2 Main added global variables for the algorithm’s execution 25
4.3 Main developed functions of software design 26
4.4 Port connection of processing system . 31
4.5 Global registers of the hardware . 32
4.6 List of operation codes . 34
4.7 List of response codes . 38
4.8 Summary of hardware implementation . 38

5.1 Overview of steps of evaluation . 40
5.2 Instruction estimation for simulation . 41
5.3 Simulation results for responsiveness . 42
5.4 Tasks in Scenario 1 . 43
5.5 Tasks in Scenario 2 . 43
5.6 Tasks in Scenario 3 . 43
5.7 Tasks in Scenario 4 . 44
5.8 Tasks in Scenario 5 . 44
5.9 Results on Scenario 1 . 46
5.10 Results on Scenario 2 . 46
5.11 Results on Scenario 3 . 47
5.12 Results on Scenario 4 . 47
5.13 Results on Scenario 5 . 48
5.14 A example of different response times in cycle under the effect of time

overhead . 49

5

Chapter 1

Introduction

In the era of modern technologies, real-time computing systems are quickly developed
and play a substantial role in life and science. Real-time applications are employed in
many areas such as industrial production lines, telecommunication, automotive, surgical
operations, and even aerospace controls. As a result, real-time systems become more
diverse and complicated with different types of criticalities of tasks. Therefore, these
systems must be able to handle not only periodic tasks, but also aperiodic tasks, that
is, tasks with irregular arrival times. The importance of real-time scheduling is hence
growing.

Real-time systems are computational systems that must satisfy the requirements of
value correctness and response time constraints. In applications above, time is the basic
constraint to decide the quality of services provided by the computing systems. Under the
requirement of time, the output values of the real-time systems must be not only correct
in logic, but also in time when they are released. It means that the systems are actually
meaningful only if they react to external events during their processing time. Any late
reaction may become meaningless and even dangerous to the systems. That is also what
the word real indicates.

In real-time embedded systems, there are many requirements to assess the effectiveness
of a real-time scheduling algorithm. The most important requirements always consid-
ered by researchers are performance, response time, schedulability, and implementation
complexity. It is, however, the fact that algorithms that are (semi-)optimal in terms of
schedulability or response time usually have high complexity, which prevents actual sys-
tems from adopting them. Efficient real-time scheduling algorithms and corresponding
hardware mechanisms are still aim and challenge to researchers working in the real-time
embedded system area.

To meet an incredibly increasing number of applications, the time constraints of the real-
time systems become more severe. In any cases, the overall goal of the real-time systems
is to finish tasks correctly as soon as possible in time satisfaction. Thus, task scheduling
occupies a key importance in the real-time systems. Task scheduling is now under the
rules of timelines, load limitation, predictability, fault tolerance, and maintainability. In
order to follow these rules, tasks are in fact classified into different types of hard real-time,
soft real-time, aperiodic, and periodic ones. In the scope of this research, two aspects of
task response time and runtime overhead are considered for aperiodic tasks.

Virtual release advancing [1][2] is one of the introduced techniques that can substantially
improve the response time of the real-time task scheduling. The technique is developed
based-on the original TBS (Total Bandwidth Server), which has a very good performance
and a relatively simple implementation complexity [3], and EDF (Earliest Deadline First)
algorithm. Although achieving a good response time, this technique generates not a small

6

scheduling overhead, which makes it difficult for these algorithms to be applied to future
real-time systems that operate at high precision (or fine periods).

In this study, an enhanced virtual release advancing algorithm is proposed to alleviate
the runtime overhead of the original virtual release advancing technique. The evaluations
show that the time complexity of the proposed algorithm is low enough to be applied to
precise systems. In addition, to accomplish the goal, a hardware mechanism is designed
and implemented.

The evaluations are conducted based-on the ARM Cortex A9 instruction set [4][5]
and the ITRON embedded operating system [6]. The Cortex-A9 processor is a high-
performance processor which implements the ARMv7 architecture and runs 32-bit ARM
instructions and 16-bit and 32-bit Thumb instructions [4]. Possessing highlight features,
the Cortex-A9 processor is one of the most processors widely employed in actual embedded
systems. This is the reason why the Cortex-A9 processor is chosen in the evaluation of
the research where the practical applicability is necessary.

In the evaluations of the research, the Cortex-A9 processor is implemented on the
Zynq7000 processor family on the FPGA ZedBoard, which is based on the Xilinx R© All
Programmable SoC (AP SoC) architecture [7]. This evaluation board is integrated with
a dual-core ARM Cortex-A9 MPCore processing system and Xilinx programmable logic
which are very flexible for both software and hardware evaluations of the proposed algo-
rithm.

The evaluation environments are conducted on a real-time embedded operating system
called the ITRON system. This is an industrial version of the TRON System, which is
popularly used in millions of electronic devices and embedded systems [6]. Since this
research takes place in the real-time system, an actual real-time operating system is the
most important consideration when conducting the environment. Thanks to its actual
use in many different fields and places, the ITRON System is a very suitable environment
for this study. Furthermore, the ITRON System has open limitation of scheduling policy,
illustrated in Figure 1.1, which allows users flexibly and conveniently to modify and replace
by new strategies and algorithms. This is obviously the essential condition for evaluating
the proposed algorithm of the research.

Figure 1.1: ITRON kernel structure

7

Chapter 2

Related works

As introduced in Chapter 1, this research is to mitigate the runtime overhead of the
virtual release advancing technique. And similar to the original one, the proposed algo-
rithm is also conducted based-on the TBS/EDF server. Therefore, it is necessary to first
present the TBS/EDF server and virtual release advancing technique as related works
before taking account of the proposed algorithm.

2.1 TBS/EDF Server

The TBS/EDF Server is introduced as one of the resource reservation methods and is also
a scheduling algorithm under the EDF control [8]. This is a scheduling approach for both
periodic and aperiodic tasks. In the TBS/EDF Server, the periodic tasks are assumed
to be periodically active and have the relative deadline equal to their periods, while the
aperiodic tasks are released irregularly to the system. When entering the system, aperiodic
tasks are assigned absolute deadlines which are calculated by the following formula [8]:

dk = max(rk, dk−1) +
Ck

Us

(2.1)

This is the original formula of the TBS/EDF Server, in which k means the k-th aperiodic
task, dk and rk are the absolute deadline and the release (arrival) time of the target task,
dk−1 is the absolute deadline of the k-1-th (previous) task, Ck is the worst-case execution
time of the k-th task, and Uk is the bandwidth of the server. Us indicates the total
processor utilization that the server probably occupies to execute the task. Given Up is
the total processor utilization for periodic tasks. It is proved that a task set (includes both
periodic and aperiodic tasks) is theoretically schedulable if and only if Us + Up ≤ 1 [3].
Moreover, using the term max(rk, dk−1) in Formula 2.1 assures that there is no overlapping
occurring between successive aperiodic tasks [2].

The original TBS/EDF Server is then improved to give a beneficial deadline for the
subsequent aperiodic tasks by using a so-called resource reclaiming method. This is a
kind of slack reclaiming method [9], where the absolute deadline is recalculated by using
the actually elapsed execution time when the task finishes. Under the Formula 2.1, the
recalculated deadline may lead an earlier deadline for the subsequent aperiodic task and
then an earlier scheduling.

By using resource reclaiming method, the absolute deadline for the k-th aperiodic task
is calculated as the Formula 2.2[9]:

d′k = r̄k +
Ck

Us

(2.2)

8

Where r̄k is determined by Formula 2.3 [9].

r̄k = max(rk, ¯dk−1, fk−1) (2.3)

Formula 2.3 shows that r̄k is the maximum value among the arrival time, the recalcu-
lated deadline (¯dk−1), and the originating finishing time (fk−1) of the previous aperiodic
task. When the k-1-th aperiodic task finishes, the deadline is recalculated by Formula 2.4
that includes the actual elapsed execution time (¯Ck−1) of the task [9].

¯dk−1 = ¯rk−1 +
¯Ck−1

Us

(2.4)

These basic formulas and methods will be implemented in the involved algorithms,
the original virtual release advancing and the enhanced virtual release advancing, in this
research.

2.2 Virtual release advancing

2.2.1 Algorithm of virtual release advancing

Virtual release advancing (VRA) is the original algorithm of the research. This is a
technique based-on the TBS Server and EDF algorithm. The technique is aimed to obtain
an earlier deadline by virtually and retroactively moving the release time backward to the
past while not changing the past schedule [3]. Idea of VRA originates from Formula 2.1
that allows an earlier deadline from an earlier release time. The earlier deadline then
leads to an earlier scheduling for the target task under the EDF algorithm.

Figure 2.1 shows an example of the technique with two periodic tasks. The first periodic
task τ1 has period T1 = 3 and execution time C1 = 1. Similarly, the second periodic
task τ2 has T2 = 6 and C2 = 3. The processor utilization by the periodic tasks is
Up = 1/3 + 1/2 = 5/6 and then the bandwidth of TBS server is Us = 1 − 5/6 = 1/6. It
is assumed that there is an aperiodic task entering the system at t = 8 with its execution
time of 1. According to the original TBS scheduling, the aperiodic task is assigned an
absolute deadline of t = 14, then finishes at t = 12 with response time of 4.

Figure 2.1: Example of virtual release advancing

9

In this case, by applying the virtual release advancing technique, a virtual release
time, which is drawn by a red, upward dashed arrow, for the aperiodic task is set up at
t = 6. With this new release time, the deadline calculation in TBS would give an absolute
deadline at t = 12, two ticks earlier than the original deadline. This new deadline, which is
highlighted by a red, downward dashed arrow, is the same with that of the third instance
of τ1. Since the aperiodic tasks are more preemptive than periodic tasks by assumption,
the target task has a chance to be executed ahead of the periodic instance and finishes
sooner at t = 11 with the response time of 3.

Figure 2.2: The algorithm of virtual release advancing

Figure 2.2 depicts the main algorithm of virtual release advancing. In the virtual
release advancing technique, an earlier virtual release time for the target task is probably
introduced based-on three factors: previous aperiodic task’s deadline, last empty slot, and
maximum previously-used deadline [3]. These factors are known as the limits of how long
the release time can be advanced. It is stated that moving release time backward over
any one of these limits is ineffective or leads to changing the past schedule.

The first limit is the previous aperiodic task’s deadline. Since this technique follows
the Formula 2.1 of the TBS server, the larger one between the previous aperiodic task’s
deadline and the target task’s release time is used on determining the absolute deadline
for the target task [3]. Moving release time backward over this limits, therefore, has no
effects.

The second limit is the last empty slot. An empty slot is defined as the time slot which
is not assisged to any task [3]. In the example in Figure 2.1, slot 5 is an empty slot. If the
release time is advanced over an empty slot, the slot should be spent by the task. This
action can cause the past schedule to be changed. Therefore, the advancing in this case
is not eligible.

The final limit is the maximum previously-used deadline. Used slots are time slots

10

with an associated deadline of some task that is assigned to the slots [3]. If task’s virtual
deadline calculated with the advanced release time is earlier than the associated deadline
of the slot, the slot must be spent for the task. This means the past schedule is changed.
The advanced release time in this case is not allowable.

Following the algorithm, the output values are the virtual release time and virtual
absolute deadline for the target task. The process of virtual release advancing starts with
initiating the virtual release time, vrk, at the task’s actual request time. This process
continues to an advancing loop of sequentially checking three above-mentioned factors.
The previous aperiodic task’s deadline is first dealt with from line 4 to line 9. If it is
passed the previous task’s deadline, the virtual absolute deadline is updated at line 10.
Then the virtual absolute deadline is compared with the tick time just after the last
empty slot. Continuously, the virtual absolute deadline is measured at line 19 with the
maximum previously-used deadline that has been updated from line 15 to line 17. After
all of limits are passed, the virtual release time is moved backward to the past by one
slot and the loop repeats. Since these factors are limits of advancing, an advanced release
time earlier or equal to one of factors can stop the advancing loop and then the output
values are probably obtained.

2.2.2 The problem of runtime overhead in virtual release ad-
vancing

Although solidly improving the response time of the target task, the virtual release ad-
vancing technique has problems with its high time complexity. Due to the high time
complexity, the algorithm is seemly not ready to be applied to precise systems. This re-
striction of the algorithm originates and motivates the research for an enhanced algorithm
which can effectively reduce the runtime overhead.

As mentioned above, the goal of the virtual release advancing is to obtain as earlier
virtual release time as possible than the actual one. To achieve this goal, the technique
checks limit factors slot by slot from the target task’s arrival time (rk) backward to the
past. A loop procedure is implemented for this checking.

The algorithm increases runtime overhead as follows. Firstly, the algorithm checks two
factors, the previous deadline and the last empty slot, in every iteration. However, there
are actually only one previous deadline and one last empty slot. Thus, it is desirable to
check only one time for each factor. Secondly, consecutive slots spent by the same instance
of tasks are checked one by one. It is obviously unnecessary since these slots have the
same associated deadline. Once again, it is also desirable to check only the representative
one of the slots.

Repeat of these unexpected checks is the main cause of the high time complexity of
the original algorithm. The proposed algorithm of the research coming in the following
chapter is concentratedly lessening the checking repeats so that the time complexity may
be reduced.

11

Chapter 3

Enhanced virtual release advancing

We have analyzed the original virtual release advancing on the runtime overhead problem
and then brought out the goal of the research. In order to reduce runtime overhead,
the proposed algorithm, also known as an enhanced virtual release advancing (EVRA),
introduces techniques to reject repeats while keeping the output values the same with
those of the original algorithm.

The EVRA is coming in details in this chapter. The chapter is structured of three
sections: first, introduction of definitions using in the algorithm; second, the analyses of
the EVRA algorithm; and third, the enhanced points of the proposed algorithm.

3.1 Definitions of EVRA

3.1.1 Boundary deadlines

In the EVRA algorithm, boundary deadlines are known as the limits of virtual deadline
advancing. There are three boundary deadlines first defined in this algorithm.

Figure 3.1: Example of boundary deadlines

As mentioned in Chapter 2, in the original virtual release advancing algorithm there
are three limits consisting of previous aperiodic task’s deadline, last empty slot, and
maximum previously-used deadline. The first two limits are directly compared to the
tentative virtual release time in each loop iteration. It is different from the proposed
algorithm where these two factors are converted to the corresponding deadlines to be

12

dealt with outside of the advancing loop. For example in Figure 3.1, let’s consider the
second aperiodic task arriving at t = 9 with Ck2 = 1 . The previous aperiodic task’s
deadline is at t = 7 and the last empty slot is slot 7.

Using the previous deadline (t = 7) and the tick time (t = 8) just after the empty slot,
two corresponding deadlines (vd′k2 and vd′′k2) for the target task are calculated to be at
t = 13 and t = 14, respectively. These two deadlines are considered as two boundary
deadlines of the algorithm. The last boundary deadline is related to the check-bounding
slot. It is coming in the next section. In order to satisfy the limits of the algorithm, the
expected virtual deadline for the target task hence has to be greater than or equal to all
of the boundary deadlines.

3.1.2 Check-bounding slot

Given τmax is the periodic task having the maximum period Tmax, and lsmax is the starting
time of the last instance of τmax. Under the EDF algorithm, the associated deadline of
lsmax-th slot is greater than or equal to the associated deadline of slots before it. That
is, we have:

∀x < lsmax ⇒ dl[x] ≤ dl[lsmax] (3.1)

Where dl[x] and dl[lsmax] are the associated deadlines of the x-th slot and the lsmax-th
slot, respectively.

Figure 3.2: Example of check-bounding slot (lsmax)

Figure 3.2 shows an illustration for the check-bounding slot. In this example, τ2 cor-
responds to τmax and lsmax is at t = 1. Reminding that the maximum previously-used
deadline is the maximum associated deadline of slots from the rk backward to the past.
The Equation 3.1 therefore allows an inference that the maximum previously-used dead-
line can affirmatively be determined among slots from rk backward to lsmax. Only the
slots from rk backward to lsmax are to be scanned ones when the algorithm is done un-
der the limit of the maximum previously-used deadline. lsmax is beneficially chosen as
the check-bounding slot and the associated deadline of this slot is considered as the last
boundary deadline of the proposed algorithm.

3.1.3 Representative slots of instances

As discussed in Chapter 2, checking all of slots of the same instance one by one is unnec-
essary because these slots have the same associated deadline. Instead, in the proposed

13

algorithm the first slot of each instance is selected as the representative slot. In Figure 3.3,
for instance, the original VRA algorithm checks all slots from t = 4 backward to t = 0,
that is, slot 3, 2, 1, and 0. However, the enhanced algorithm by selecting the represen-
tatives will check only slot 1 and 0 for advancing. It is obviously more effective in terms
of the check loop count and memory usage. In the context when tasks’ execution may be
separated into several portions by preemption, each portion is considered as an instance.
By combining with the definition of the check-bounding slot above (only instances from
rk (target tasks arrival time) to lsmax are involved in the algorithm’s execution) only the
slot 1 is determinately checked for the first instance of τ2 in Figure 3.3.

Figure 3.3: Example of representative slot of instances

3.2 EVRA algorithm

The whole EVRA algorithm is shown in Figure 3.4. In the algorithm, rk and vrk are
the real and virtual release times of the target aperiodic task, respectively. vdk is the
expected virtual deadline. Ck and Us are task’s execution time and the bandwidth of
the TBS server. dk−1 is the deadline of the k − 1-th (previous) aperiodic task. For
other variables, last empty is the slot number of the last empty slot; n and lsmax are the
number of released instances and the starting time of the last instance of τmax, respectively.
dl[] and S[] are the arrays saving used slots’ associated deadline and released instances’
starting time. Particularly, d[m] is the associated deadlines of the m-th slot and S[n] is
the starting time of the n-th instance.

Then, three boundary deadlines (vd′k, vd′′k, vd′′′k) defined in Section 3.1 are calculated
corresponding to the previous deadline, last empty slot, and last starting time of τmax.
When advancing to the past, max dl holds the maximum associated deadline of traced
S[n] elements. Under the mentioned condition of limits how long the release time can be
advanced, the expected virtual deadline vdk cannot be earlier than anyone among vd′k,
vd′′k, vd′′′k and max dl.

The target output of the proposed algorithm is the virtual deadline for the target task.
The proposed algorithm inherits the idea of advancing from the original algorithm. That
is, the virtual deadline is compared with the limits and then moved backward to the
past if the limits are satisfied. At the beginning of advancing, vdk is initialized to the
original deadline using the TBS’s formula 2.1. The boundary deadline vd′k corresponding
to the previous deadline is calculated and checked first from line 4 to line 9. When the

14

Figure 3.4: The enhanced virtual release advancing

virtual deadline is earlier than or equal to vd′k, the virtual deadline is set to vd′k, and the
algorithm finishes. This check is done only one time. Then, the boundary deadlines of
the last empty and lsmax-th slots (vd′′k and vd′′′k) are calculated at line 12 and line 16. All
of the boundary deadlines are combined to form a variable bound at line 17. Variable
bound plays a role as the overall check-bounding deadline of the algorithm.

Next, to satisfy the limit of previously-used maximum deadline, for each of the traced
S[n] elements, the corresponding vdk is compared to max dl from line 18 to line 33. The
expected virtual deadline is obtained after the loop execution under the condition of bound
finishes.

15

3.3 Enhanced points of the algorithm

In Chapter 2, main sources of considerable runtime overhead in the original algorithm are
repeated checking of limits. Therefore, enhanced points of the proposed algorithm are
aimed to decrease these sources.

The first improved point in the new algorithm is the way to deal with the previous
task’s deadline and the last empty slot. As shown in the algorithm in Figure 3.4, the
effect of these two factors are processed through vd′k and vd′′k outside of the loop. This
helps to reduce the influence of repeated checking.

The second main point of the algorithm is that checking is done for representative
slots. In the original algorithm, to achieve the limit of the maximum previously-used
deadline, used slots have to be involved one by one. Therefore, the associated deadlines
of used slots have to be recorded by array dl[m] sized by m. In a different way, the
new algorithm uses only the first slots of instances recorded by array S[n] sized by n.
Naturally, n (the number of released instances) is smaller than m (the number of past
slots) unless all of instances are executed in exactly one slot. Using S[n], instead of dl[m],
has two advantages. Firstly, the number of times that array S[n] is checked is significantly
less than that on array dl[m]. It means that the runtime overheads caused by the loop
execution are lowered. Secondly, since array S[n] is smaller, the time and space costs of
saving it are more efficient.

The last enhanced point is introduction of check-bounding slot or the last starting time
lsmax of the task having the maximum period. In the original algorithm, the advancing
may theoretically recur backward to the past without any limitations. However, checking
slots before lsmax is actually unmeaning since the associated deadline of lsmax-th slot is
always greater than or equal to those of past slots under EDF-based scheduling. The def-
inition of lsmax-th slot helps to determine how long past the advancing is performed. The
worst (or longest) case of advancing is Tmax where Tmax is the period of τmax, respectively.
The worst case of advancing can be determined as following.

The worst cast of advancing can be determined under the statement that it exists at
least one of the following things among Tmax consecutive slots:

(1) An empty slot
(2) An instance of τmax

Now, lets continue to prove this statement. Given Un
p is the processor utilization of

periodic tasks of n consecutive slots. Un
p is defined by following equation:

Un
p =

C1

T1
+
C2

T2
+ ...+

Ck

Tk
≤ 1 (3.2)

Where C, T , and k are the computation time, period, and the number of periodic
tasks executed during these n slots. Note that each task is involved at most one time in
Equation 3.2. Since the total processor utilization is actually less than 1, Un

p in Equation
3.2 is always apparently less than 1. Then, the processor utilization of periodic tasks of
Tmax consecutive slots may calculated as:

In case of including τmax:

UTmax
p =

C1

T1
+
C2

T2
+ ...+

Ck−1

Tk−1
+
Cmax

Tmax

≤ 1 (3.3)

In case of being without τmax:

UTmax
p =

C1

T1
+
C2

T2
+ ...+

Ck

Tk
≤ 1 (3.4)

16

The statement can be here proved by contradiction. Assuming that there exists Tmax

consecutive slots in which there is no any empty slot or instance of τmax. The processor
utilization of periodic tasks is then calculated by Equation 3.4. On one hand, since
Tmax ≥ T1, T2, ..., Tk, we have:

UTmax
p =

C1

T1
+
C2

T2
+ ...+

Ck

Tk
≥ C1

Tmax

+
C2

Tmax

+ ...+
Ck

Tmax

=
C1 + C2 + ...+ Ck

Tmax

(3.5)

On the other hand, due to no empty slot, all of Tmax consecutive slots are assigned to
periodic tasks excepting τmax. So we have:

C1 + C2 + ...+ Ck = Tmax (3.6)

By substituting Equation 3.6 into Equation 3.5, we have:

UTmax
p =

C1

T1
+
C2

T2
+ ...+

Ck

Tk
≥ 1 (3.7)

This contradict with the definition of processor utilization. Therefore, it eventually
states that there is at least one empty slot or instance of τmax among Tmax consecutive
slots.

As the boundary checking, empty slot and last instance of τmax may become the limit
of advancing. In the other word, the advancing is limited in Tmax slots from the release
time backward to the past.

17

Chapter 4

Implementation of the proposed
algorithm

4.1 Introduction of basic implementation

4.1.1 Runtime overhead in actual real-time system

There are critical problems related to the runtime overhead when the proposed algorithm
is implemented into the actual real-time system, particularly on the ITRON System. In
the algorithms presented in previous chapters, there are theoretical assumptions that are
really different from the real systems. These differences actually affect to the runtime
overhead calculation and needs to be considered.

The first problem relates to the system’s time unit. That is, tick is exactly the smallest
time unit observed in the system. In the description of the proposed algorithm, tasks is
started and then completed exactly at system ticks. This is, however, different from the
actual context of the system where tasks’ starting and finishing can occur at any time.
Figure 4.1 shows an example of tasks’ execution off a ticks. In this example, the line
labeled tick indicates the time ticks; τ1 and τ2 are two periodic tasks. These tasks can
be executed in precise ticks. The empty rooms of time from a task’s finishing time to
another’s starting time is spent for the system’s scheduling. Therefore, overheads of task
activation and task switching occur not only at a tick timing, but also at any timing.
These overheads must be considered to achieve practical real-time task scheduling.

Figure 4.1: Tasks’ off-tick execution time in actual real-time systems

The second problem is that in the theoretical explanation of the algorithms, all of the
required system parameters are usually ready before executing scheduling algorithm. On
the other words, the cost of storing and loading these parameters is temporarily ignored.

18

Nevertheless, this cost may obviously affect to the runtime overhead of the real system.
Thus, it needs to be included in the overhead calculation.

4.1.2 System structures and organizations

Before introducing the algorithm implementations, there are some important system’s
structure and organization necessary to be explained at first.

Figure 4.2: Structure of KERNEL TCB [10]

The first important structure is called KERNEL TCB (kernel task control block)
which the operating system maintains to manage each task. A KERNEL TCB, as il-
lustrated in Figure 4.2, has member variables including task’s attribute, priority, and
state. KERNEL TCBs are connected to each other by a structure of pointers: “prev”,
“next”, and “self” [10]. The first and second pointers, “prev” and “next”, always point
to the previous and next tasks. In the case that anyone of the previous task and the next
task is not available, the corresponding element of the queue structure will be refered
instead. The other pointer, “self”, is employed to make a reference to the other member
variables of KERNEL TCB when the system wants to access them. In addition, in order
to support the scheduling algorithm, added variables are used for task type, execution
time, worst-case execution time, period, and so on.

The next structure of task management is the ready queue KERNEL READY QUEUE
[10] as depicted in the Figure 4.3. KERNEL READY QUEUE is an array of double
linked lists. Each linked list is a structure of KERNEL TCBs which are connected by
above-mentioned pointers “prev” and “next”. The elements or linked lists of ready queue
are indexed correspondingly to their priorities from 0 to the maximum number of priority.
The higher the index is, the lower the priority of the list becomes. In this way, priority
0 and priority 1 are preserved for system tasks, that is, tasks serve the operating system.
The others priorities are for application tasks. As having higher priorities, the system
tasks can preempt any other application tasks. In the ready queue, each element is the
head of each list corresponding to the priorities. The elements’ “next” points to the top
address of the first KERNEL TCB task to be executed. If there is no task to be executed,
next will point to the element’s own top address. Similarly, the elements’ “prev” points
the last KERNEL TCB task to be executed. If there is no task to be executed, “prev”

19

will also point to the element’s own top address. In the implementations of algorithm in
this research, the priority 2 is assigned to all of application tasks including both periodic
and aperiodic tasks.

Figure 4.3: The structure of kernel ready queue

Another basic structure is called KERNEL ACT CELL [10]. As shown in Figure 4.4,
KERNEL ACT CELL has two main parts: a pointer to another KERNEL ACT CELL

structure, “next”, and a value of time, “a dl”. In the system, a task may be activated at
multiple times. For each time of activating, the task is assigned with an absolute deadline.
The KERNEL ACT CELL structure is used to refer to these activations on the way that
“a dl” is the absolute deadline and that “next” points the absolute deadline of the next
activation.

Figure 4.4: KERNEL ACT CELL structure for task’s absolute deadline

Since the system scheduler is under the EDF algorithm, that is, the task with the
earlier deadline will be selected to execute. Therefore, at each list of the kernel ready
queue KERNEL TCB tasks are inserted in the ascending order of deadlines so that the
first task always has the earliest deadline. The flow of new task insertion is shown in the
Figure 4.5, in which entry is the new KERNEL TCB task, tskpri is the task’s priority,
and adl is the task’s absolute deadline.

Finally, for the purpose of conveniently managing the system and tasks, ITRON System
supports groups of system function (or kernel system calls). These system calls are prob-
ably categorized into main groups of system configuration and initialization management,
task management and synchronization, time management, and other communication man-
agements. System calls are synthesized through system files. Table 4.1 shows an overview
of main system files which would be involved in this research and their short descrip-
tion. Files including savana.h, a9.c, and comp.m contains main developed functions
based-on the A9 Cortex processor in order to implement the design of the research. The
developed functions are explained closely in the next section of software implementation.
The system eventually runs follow the initialization procedure in the Figure 4.6.

20

Figure 4.5: The flow of task insertion

Figure 4.6: System initialization procedure
21

Table 4.1: Overview of main system files

Category
System call
function

Decription

System
configuration
and
initialization
management

kernel.h
Define structures and constants on ITRON
System.

kernel queue.c
Support procedure to initiate and manage
system queues such as kernel ready queue.

kernel sched.c
Support procedure to enable scheduler and
related functions.

kernel globals.c Define the global variables.

kernel init.c Initiate the global variables.

kernel timer.c
Support procedure to initiate and manage
kernel system timer.

Task
management
and
synchronization

cre tsk.c Create tasks.

iact tsk.c
Support interrupts to activate tasks.
Required calculations are done prior to
activating tasks as well.

ext tsk Support procedure of exiting a task.

Time
management

cre cyc.c
Support procedure to create and register
cyclics for tasks.

get tim.c
Support procedure to access the system
time.

Developed
functions

savana.h
Define functions and constants to
implement the design on A9 Cortex
processor.

a9.c
Support developed functions to implement
the research based-on A9 Cortex processor’s
instruction set.

comp.m4
Support Developed functions in assembly
based-on A9 Cortex processors instruction
set.

4.2 Software implementation

4.2.1 Task creation

Periodic tasks and aperiodic tasks are created to evaluate the implemented algorithms.
So in this research, files consisting of appl.c, appl.h, and system.cfg are used to create
periodic tasks and aperiodic tasks as the application tasks. With appl.c and appl.h
files, tasks’s handler are defined and implemented. Task’s handler addresses to task’s
content which is executed when task is allocated processor. The system.cfg file, partially
illustrated in Figure 4.7, includes task’s important configuration information. The figure

22

shows several creation functions with 6 periodic tasks and 1 aperiodic task.
The structure of a creation function is presented at line 9 and line 10 in which CRE TSK

is the function name and the others are the arguments. This structure is compatible with
ITRON System. First seven arguments including TID, attribute, exinfo, task pointer,
priority, stksiz, stk are task’s information for ITRON System [6]. The other arguments
are worst case execution time (wcet), relative deadline, period, and periodic index, re-
spectively. Value 1 at periodic index mean this is a periodic task. Whereas, Value 0
indicates that it is an aperiodic task.

Figure 4.7: Task creation

The period of periodic tasks are implemented easily by registering a cyclicity for each
task. An API system function called CRE CYC is employed for cyclicity registration as
seen in Figure 4.8. The function CRE CYC complies with the structure offered by the
ITRON System [6], in which the fifth argument is corresponding to task’s period. The
periodic tasks then would be activated frequently at each period.

Figure 4.8: Tasks’ cyclic creation

Since ITRON System do not support any mechanism to enable irregular tasks, it is not
so easy to implement the aperiodic tasks as the periodic ones. In fact, interrupts may
be used to satisfy noncyclical tasks. But, interrupts are seemly too complicated for this
research. A simpler alternative mechanism should be used instead in this case. A cyclicity
with the period of 1, as listed at the last line in Figure 4.8, is registered to the system.
Under the period of 1, at each system tick time this cyclics will check a prepared list of
time of which elements are corresponding to release time of aperiodic tasks. If the system

23

time and task’s release time are matching together, an aperiodic task is indirectly enable.
The list of release times is generated randomly and ascendant. It is quite efficient enough
to deal with aperiodic tasks in this research.

4.2.2 Software design

The proposed algorithm introduced in Chapter 3 is implemented in details in this section.
The section is explaining the software implementation of the proposed algorithm in the
structure of 4 parts: procedure of algorithm, added variables, developed functions, and
finally the code implementation. The code implementation is actually supported and
developed based-on the real-time operating system for Zynq7000.

Procedure of algorithm
The scheduling function starts with creating and initiating local variables. Then fol-

lowing the proposed algorithm, the limit of the previous task’s deadline is first calculated
and compared to the task’s release time, as illustrated by the condition C1 in Figure 4.9.
If the release time is equal to or less than the release time, the scheduling process will
stop. On the contrary, the process continues to calculate the boundary deadline.

Figure 4.9: Procedure of the proposed algorithm

Then, a loop of virtual deadline advancing begins under the condition (C2 in Figure 4.9)

24

Table 4.2: Main added global variables for the algorithm’s execution

Name Size (bit) Description

p util 32 x 2 Total processor utilization of periodic tasks

max period 32
The maximum period of periodic tasks. It
reflexes Tmax as introduced in Chapter III.

ins cnt 32 The number of released instances.

ins start 32 x 5000
An array storing the starting time of
released instances.

used dl 32 x 5000
An array storing the associated deadline of
the starting slot of released instances.

last empty 32 The last empty slot

ls max 32
The starting time of the last instance of
τmax as defined in Chapter III

ls max dl 32 The associate deadline of the lsmax-th slot.

di 1 32
The recalculated deadline of the previous
aperiodic task.

fi 1 32
The finishing time of the previous aperiodic
task.

that the virtual deadline is greater than the boundary deadline. In the advancing loop,
the maximum previously-used deadline is updated first and then compared to the virtual
deadline (C3 in Figure 4.9). In the case that C3 is not satisfied, the loop will break
and then the advancing process will stop. After C3 is passed, the virtual deadline is
advanced backward to the past. If the advanced virtual deadline is continuously greater
than maximum previously-used deadline, the loop is repeated for an expected earlier
deadline. It is necessary to note that the eventual virtual deadline is obviously updated
with alternative values depended on which condition led the advancing process stop.
These exact values is successively decided in the following code section.

Added variables
Added variables are created to necessarily update the system’s appropriate factors for

executing the algorithm. Table 4.2 describes in details some main added variables. These
are all in type of unsigned 32-bit integer. Since the A9 Cortex processor actually does
not directly support operations with decimal points, the periodic processor utilization is
considered as a fraction of which dividend and divisor are separately stored in p util[0] and
p util[1], respectively. In addition, the experiments for evaluating the designed system
are done for such the first 5000 instances of tasks that variables ins start and used dl are
initiatively created with size of 5000. This size is for shortening the evaluation time while
still assuring the accuracy.

Developed functions
The main scheduling function is named dl set EVAR (the first one in Table 4.3) which

directly implements the enhanced virtual release advancing algorithm. In Chapter III,
we analyzed the algorithm and determined the virtual deadline as its target output.
dl set EVAR function is designed as a system call with two arguments as pointers. One
pointer directs to the structure of the current task under scheduling. The other refers

25

to the absolute deadline for the scheduled task. Whenever an aperiodic task is released,
dl set EVAR is called to calculate the absolute deadline. After the call is done, the task is
assigned a virtual deadline as earlier as possible than the original deadline. The function’s
procedure and code implementation are respectively showed in Figure 4.9 and Figure 4.10.

Table 4.3: Main developed functions of software design

Name Syntax Description

dl set EVRA
void dl set EVRA(KERNEL TCB*,
KERNEL ACT CELL*)

The main scheduling
function

reducer void reducer(UINT *, UINT *)
Reducing two integral
numbers by their great
common divisor

get ins cnt UINT get ins cnt(void) Returning instance count

sys-
tem record

void system record(UINT) System recorder

tsk exe cal void tsk exe cal(UINT *) Task execution calculation

max UINT max(UINT, UINT)
Returning the maximum
one between two values.

max3 UINT max3(UINT, UINT, UINT)
Returning the maximum
one among three values.

get used dl UINT get used dl(UINT)

Returning the associate
deadline of the
corresponding instance of
the transferred argument.

get ins start UINT get ins start(UINT)

Returning the starting time
of the corresponding
instance of the transferred
argument.

However, before being ready for scheduling function to take place, the system needs to
calculate and update required factors and variables as described in the previous section.
It is hence needed to design further functions in Table 4.3. In the syntax of the functions,
UINT is the type of unsigned 32-bit integer. The function named reducer is functional to
reduce two integral numbers by their great common divisor. This function is targeted to
simplify the fraction of periodic processor utilization as mentioned above in the section
of added variables on way that p util[0] and p util[1] are transferred as input arguments.

Next, the function get ins cnt is designed to refer to the updated number of released
instance. Different from the original algorithm where the advancing is done upon ticks,
the enhanced algorithm works on the instances. As a result, a function accessing to the
number of released instance is always helpful.

Next, function system record works as a recorder that is in charge of record required
elements (or system factors) for executing the scheduling algorithm. System factors up-
dated by the recorder include instance count, current instance’s starting time, current
slots associate deadline, and the last instance of τmax.

26

Finally, function tsk exe cal is functional to calculate task’s associate execution time.
A task’s associate execution time, “a et”, is defined as Equation 4.1. In this equation, Ck

and Us are already known as k-th task’s execution time and the utilization of the server.
As seen in the pseudo code of the algorithm, the task’s associate execution time much
appears in the absolute deadline calculations. In addition, this factor of execution does
not change during system’s working. Therefore, it is clearly more efficient to statically
design a system call to calculate this value.

a et =
Ck

Us

(4.1)

Code implementation
For the conciseness of the presentation, this section just focuses on explaining the code

of the main scheduling function, dl set EVRA, in Table 4.3. Since the flow of scheduling
algorithm is entirely presented in the algorithm procedure section, it is not imperative
to be repeated here. The way that the virtual deadline is obtained is concentratedly
explained instead.

The code implementation of the scheduling function is wholly shown in Figure 4.10.
Reminding that the scheduling function has two arguments, a KERNEL TCB “tcb” and
a KERNEL ACT CELL “act cell”, which refer to the structure of task under scheduling
and the absolute deadline. According to the structure of “tcb”, factors including task’s
request time and associate execution time are accessed and used as rq time and a et
in related calculations. Similarly, structure of act cell allows to access to the absolute
deadline of scheduled task as a dl. In the process of absolute deadline calculation, global
variables di 1, fi 1, ls max, and last empty are available as described in Table 4.2 and
employed functions are as described in Table 4.3.

At the beginning of the execution, local variables are normally defined. Among these
variables, bound dl is the limit for the virtual deadline advancing. It is the maximum
value over all of the boundary deadlines (Chapter III). Meanwhile, bound rl is the limit
for virtual release advancing virtual release. Since it is also one of output values of
the algorithm and accompanies with the virtual deadline, virtual release time has to be
limited. The other variables (last dl, max used dl, and i) are created to refer to the last
previous task’s deadline, maximum previously-used deadline, and the number of instances,
respectively. In this part, the virtual deadline is also initiated to the original one.

As mentioned above that the final virtual deadline, as absolute deadline for the task,
is calculated differently depending on the stop condition of the advancing process. In
general, the virtual deadline is defined by Equation 4.2 as the sum of task’s virtual re-
lease time and task’s associate execution time. However, it is interesting that the varied
stop conditions characterize the varied virtual release times and then the varied virtual
deadlines.

vdk = vrk + a et (4.2)

Following the procedure of the scheduling algorithm, the previous task’s deadline is the
first limit of advancing and therefore is involved first. This limit is calculated as variable
last dl. If the limit is not passed for the previous task’s deadline, the advancing stops. In
this case, last dl is considered as virtual release time and the final virtual deadline is set
using last dl and a et.

After passing the first limit and calculating the boundary deadlines, the process continu-
ously enters the advancing loop under the condition of the boundary deadlines (bound dl).
It is actual that when a loop interaction occurs successfully (it means no break occurs),
the virtual deadline is advanced backward by the length of the current involved instance.
In the case when the advancing stop due to the condition of the boundary deadlines, that

27

Figure 4.10: Source code of the software implementation

28

is, the virtual deadline is equal to or earlier than bound dl, the starting time of the current
involved instance is considered as the virtual release time and the final virtual deadline is
set using this virtual release time and a et.

The final stop condition of the advancing is the maximum previously-used deadline.
Seeing the codes in Figure 4.10, checking this condition takes place two times in the
advancing loop. One is when the maximum previously-used deadline is updated. The
other follows the virtual deadline advancing. If the first checking is broken, no deadline
calculation occurs and the current virtual deadline is kept. And if the second checking is
broken, the virtual deadline is assigned as the current maximum previously-used deadline.

4.2.3 Recapitulation for software implementation

The software implementation of the enhanced virtual release advancing algorithm has
presented in this section. The entire procedure of the algorithm gives an overview of
processing flow following the proposed algorithm in Chapter 3. The software scheduling
algorithm is made clear through explanations in details for its procedure, variables, de-
veloped functions, and the source code. The performance of this design is evaluated in
accompaniment with the hardware implementation in the next chapter of evaluation.

4.3 Hardware implementation

In Section 4.2, a software design of the scheduling algorithm has been introduced. How-
ever, in real-time embedded system, a scheduling algorithm will be more effective in terms
of system performance if it is able to be implemented on hardware. Moreover, a hardware
implementation also confirms the applicability of the algorithm to the real system with
an acceptable complexity. Thus, a hardware mechanism is needed to be designed in this
research.

This section of hardware design is composed of two main parts. The first part is the
basic processing system which is the implementation of the ARM Cortex-A9 processing
core. The second one is the designed hardware which realizes the proposed algorithm. All
of the designs are implemented on the Zynq70000 FPGA ZedBoard.

4.3.1 The basic processing system

The basis processing system is synthesized based-on the structure of the ARM Cortex-A9
processing core. As introduced in Chapter 1 as the introduction, the Zynq70000 FPGA
Board supports to synthesize a dual-core ARM Cortex-A9 MPCore as the application
processor units [7]. Besides the processing units, other components related to the hardware
design include 2048 Mbit DDRAM and IO peripherals. UART and USB prototype as
IO peripherals are employed to connect with the computer terminal in programming
and evaluating the designs on FPGA. 32-bit GPIO Master-Slave connections is used to
communicate with the added hardware as the implementation of the algorithm. The
processing system runs at the frequency of 666MHz and the DDR RAM does at 533MHz.

In the connection with the added hardware, an AXI interconnection component in-
stanced as axi interconnect 0 is employed as shown in the Figure 4.11. In this figure,
the instanced processing system7 0 component is the implemetation of Zynq7000 core
processor. A processor system reset pro sys reset 0 is attached to the system for syn-
chronization. The red rectangle in Figure 4.11 marks the connection area to the added
hardware. Two AXI GPIO components are used for this connection area. For the con-
venience of the communication, one component axi gpio 0 serves as the IO data ports.

29

The other one does as the IO ACK port. There are here four IO ports (GPIO, GPIO2,
GPIO 1, and GPIO2 1) preserved for the communication between the processing core
(or CPU) and the added hardware as follows:

• GPIO: Serving as the ACK input signals. When CPU wants to confirm an ACK
response from the added hardware, it needs to access this port through the port’s
mapped address.

• GPIO2: Serving as the ACK output signals. When CPU requests a service on the
added hardware, it needs to send a request command to this port through the port’s
mapped address.

• GPIO 1: Serving as the data input signals. When CPUwants to load a data from
the added hardware, it needs to access this port through the port’s mapped address.

• GPIO2 1: Serving as the data output signals. When CPU wants to store a data
to the added hardware, it needs to send the data to this port through the port’s
mapped address.

Figure 4.11: Design of basic processing system

The request commands and the ACK responses in the communication description would
be designed in the following section.

These ports are described in details together with the other connections in Table 4.4.
The output clock FCLK CLK0 is intended to be the clock for the added hardware.
There are remarkable contents here in the Table 4.4, that is, the assigned address. These
are the mapped addresses to the GPIO ports.

In summary, the basic processing system including the connection ports has been im-
plemented. This hardware system is support to both the software and hardware designs
of the proposed algorithm. In the context of software implementation, the added AXI
GPIO components are not related since the software design is executed by the CPU core
only. Meanwhile, these components server as the connection between the CPU and the
hardware design. The detailed hardware design is coming in the next section.

30

Table 4.4: Port connection of processing system

Name IO Type Width
Assigned
address

Description

GPIO Input 16 41200000 Input ACK signals

GPIO2 Output 16 41200008 Output ACK signals

GPIO 1 Input 32 41300000 Input data

GPIO2 1 Output 32 41300008 Output data

FCLK CLK0 Output 1
Clock to the target
hardware

FCLK RESET0 N
Output 1 System Reset

DDR Inout 71
Connections to DDR
memory

FIXED IO Inout 61
Connections to
multiple IOs

4.3.2 Block Diagram of Hardware Implementation

A hardware design is implemented to show the actual applicability of the proposed algo-
rithm. It is known as an added component to the basic system introduced in the previous
section. The system block diagram and connections of this added component are depicted
in Figure 4.12. In this figure, the CPU is the basic processing system which connects to
the added hardware by the GPIO ports and the FCLK clock.

Figure 4.12: Block diagram of hardware implementation

31

In the block diagram of the hardware, there are four significant parts. These parts
include the IO registers, the register area as memory, the state control block, and the
main calculating and data control block.

IO registers
There are four IO registers connecting correspondingly to the above-decided GPIO

ports of the CPU. These registers temporarily store the IO data and command for com-
municating with the CPU. Particularly, they are as follows:

• ACK IN: connecting to the GPIO2 of the CPU. This stores the request command
which has been sent by the CPU.

• ACK OUT: connecting to the GPIO of the CPU. This stores the ACK response
which the hardware needs to send to the CPU.

• DATA IN: connecting to the GPIO2 1 of the CPU. This stores the input data
which has been sent by the CPU.

• DATA OUT: connecting to the GPIO 1 of the CPU. This stores the output data
which the hardware needs to send to the CPU.

Register area
Register area plays a role as a memory of the implemented hardware. This area may be

separated into two parts agreeing with local data and global data. Local part is composed
of the registers where local variables serving the algorithm execution are stored. This local
registers are accessed only by the hardware itself. The global part consists of the registers
where the global variables recording the system factors are stored. The global registers,
meanwhile, allow both internal and external accesses. For their purpose in communication
with the CPU, the global register are assigned ID indexes. Through the ID indexes, data
can be stored to or loaded from a specific global register by the CPU.

Table 4.5: Global registers of the hardware

Order
No.

Register name Size (bit)
ID
index

Description

1 last empty 32 8’h02 The last empty slot

2 ls max adl 32 8’h04 The last instance of τmax

3 di 1 32 8’h10 The previous task’s deadline

4 fi 1 32 8’h20
The previous task’s finishing
time

5 tcb request time 32 8’h40 The task’s request time

6 tcb aet 32 8’h80
The task’s associated
execution time

7 act cell dl 32 8’h00 The virtual deadline for task

8 tcb request adv 32 8’h11
The virtual release time for
task

9 ins start 32 x 5000 8’h08 Starting time of instances

10 used dl 32 x 5000 8’h01
Associated deadline of
instances

32

Table 4.5 shows the list of the global registers attached ID indexes. There are totally
eight single 32-bit registers and two arrays of 32-bit registers. The way how these registers
are accessed will be presented below in accompaniment with the structure of the request
command.

State control block
The state control block manages a state register (Figure 4.12) where the system state is

updated. Under the system state, the algorithm execution is controlled. The state control
block and the state value are decided by a state machine. Figure 4.13 is the diagram of
the state machine of the state control. The state machine is designed with 6 states of
the system consisting of STATE INI, STATE 10, STATE 20, STATE 11, STATE 21, and
STATE 31. Particularly, they are defined as:

• STATE INI: initial state of the system.

• STATE 10, STATE 20: processing states. In these states, the hardware follows
the process of virtual deadline advancing .

• STATE 11, STATE 21, STATE 31: stop states. The scheduling is stopping at
one of these states and the virtual deadline is available at corresponding registers
as described in Table 4.5. As discussed in the section of software design, according
to the different stop conditions of the advancing, the virtual deadline is set to
the different values. That is the reason why there are three different stop states
appearing here. Each stop state therefore represents for a state of a specific stop
condition.

Figure 4.13: State changing diagram

In the state changing diagram in Figure 4.13, C1, C2, C3, and C4 correspond to the
checking condition points of the algorithm at line 6, line 18, line 23, and line 27 in
Figure 3.4 on page 15. The system states would change under the control of checking
conditions. First, at the initial state, when clock enables, the state will change directly
to the STATE 10 without any condition. “nc” here means no condition. Then, when
the system is one of the processing states, it will be change to the next suitable state
under checking conditions. Together with each state change, the system completes data
calculations necessary for the next state. If anyone of checking conditions is unsatisfied,
the system will appear in one of the stop states. A stop state is remainding until the
system is reset to return the initial state with an active clock of the reset signal.

33

In the hardware implementation, there is an enhancement compared to the software
version. That is, condition checking is done in parallel. It is natural in software imple-
mentation that the conditions C1, C2, C3, and C4 are checked in sequence. However, in
hardware implementation, conditions C1 and C2 are dealt with consecutively at the same
state. It is similar to conditions C3 and C4. Consequently, it needs less cycles to check
all of conditions in the hardware design than in the software version. The performance of
the system is therefore improved.

Main calculating and data control block
This block is the main hardware mechanism of the algorithm. Calculations of the

algorithm are done at this block under the state of the system. This part actually works
as a decoder that is charge of deciding which operation would be done. When receiving a
request command from the CPU, the decoder will decode the operation code to determine
the requested operation.

Figure 4.14: Structure of a request command

There are four operations designed for this hardware: reset, scheduling, storing data,
and loading data. The request command in the communication between the CPU and the
hardware has 16 bits in length which is structured in two parts as shown in Figure 4.14.
The first part, 8 least significant bits, is the register ID. These bits are used to decode the
target register in the storing and loading requests. The target register is one of the global
registers listed in Table 4.5. The second part, 8 most significant bits, is the operation code
(hereafter called op-code). These bits will be decoded to determine exactly the operation
requested. In the structure of op-code, the 8-th bit is for loading and storing operation.
If this bit is set to 1 (and other bits of op-code are 0s), the corresponding operation is
loading data from a specific register realized by the 8-bit register ID. On the contrary,
if this bit is 0, the operation is storing data to a specific register. Similarly, the 9-th
bit and 10-th bit are preserved for reset and scheduling operations, respectively. These
operation are both active at the high level of the assigned bit. op-code corresponding to
four operations are defined in Table 4.6. It is necessary to note that for the reset and
scheduling operations the 8 least significant bits are uncared.

Table 4.6: List of operation codes

Order No. Operation type Operation code

1 Reset 8’h02

2 Scheduling 8’h04

3 Store 8’h00

4 Load 8’h01

34

The following examples illustrate for the entire request commands of 16-bit length sent
by the CPU.

• Reset hardware: 16’h0200

• Enable hardware: 16’h0400

• Store data to register ID 01: 16’h0001 (8th bit is 0 for store data)

• Load data from register ID 04: 16’h0104 (8th bit is 1 for load data)

4.3.3 Procedures of Communication

In this part, we will take account of procedures of communication between the operating
system and the added hardware. There are three main procedures consisting of storing
data, loading data, and scheduling.

Storing data procedure
The storing data procedure follows the steps in Figure 4.15. At the beginning of storing,

data needs to be put into the data bus at the GPIO2 1 port through its mapped address.
Then the related storing command is sent to the hardware through the GPIO2 port.
Next, the operating system needs to wait for the successfully-store response by reading
the ACK response at the GPIO port. A storing procedure completes when the correct
successfully-store response is released by the hardware.

Figure 4.15: Storing data procedure

For instance, the following assembly code is to store #data to a register with ID 01
(the request command is 16’h0001):

mov r1 , # 16 ’ h0001 % s t o r i n g command
mov r2 , #data
s t r r2 , GPIO2 1 % putt ing data to data bus
s t r r1 , GPIO2 % sending the s t o r i n g command

35

l d r r1 , GPIO % read ing the ack response
check : cmp r1 , #0100 % check whether s t o r i n g i s done

bne check % s u c c e s s f u l l y ?

Loading data procedure
For loading data, the procedure is stepped in Figure 4.16. To start the loading data

operation, the operating system needs first to send the loading command to the command
port at GPIO2. Then, it is waiting for the response of data validation by repeatedly
reading the ACK response on the GPIO port. After the correct loading response is released
by the hardware, the operating system can load the data which is already available at the
GPIO 1 port.

Figure 4.16: Loading data procedure

For example, the following assembly code is to load a data stored at register with ID
04 (the request command is 16’h0104):

mov r1 , #16’h0104 % load ing command
s t r r1 , GPIO2 % sending load ing command
l d r r1 , GPIO % check whether data i s a v a i l a b l e ?

check : cmp r1 , #0100
bne check
l d r r1 , GPIO 1 % load ing the a v a i l a b l e data at port

Enable scheduling procedure
To enable the scheduling, a procedure is done as described in Figure 4.17. To be ready

to execute the scheduling request from the operating system, the hardware first needs to
be reset. Then, the hardware is enabled by sending a scheduling command to the GPIO2
port. The operating is waiting until the scheduling (or the advancing) is done successfully.
During the waiting time, the ACK response is read recurrently at the GPIO port. After

36

a scheduling done response is released, the operating system can loading the related data
including virtual deadline and virtual release time.

Figure 4.17: Enable scheduling procedure

The typical procedure of enabling scheduling in assembly code is shown as follows with
the scheduling command of 16’h0400.

mov r1 ,# 16 ’ h0400 % enab l ing code
mov r2 ,#16 ’ h0200 % r e s e t code
s t r r2 , GPIO2 % f o r r e s e t hardware
s t r r1 , GPIO2 % f o r enab l ing schedu l ing
l d r r1 , GPIO

check : cmp r1 , #0400 % check whether s chedu l ing i s done?
bne check
/∗For next , l oad ing r equ i r ed data a f t e r s chedu l ing ∗/

Response codes
In every operation procedure, the operating system needs to check the response from

the hardware in order to confirm the status of the request execution. These response
codes for the hardware are defined in Table 4.7. There are five response codes:

• NO-OP: There is no operation done.

• Scheduling done: The scheduling is done successfully.

• Storing done: The storing operation is done successfully.

37

• Loading done: The loading operation is done successfully.

• ERROR: There is error occurring in the process and the data is not valid.

Table 4.7: List of response codes

Order
No.

Response type Response code

1 NO-OP 16’h0000

2 Scheduling done 16’h0400

3 Storing done 16’h0100

4 Loading done 16’h0100

5 ERROR 16’h0200

4.4 Implementation parameters on FPGA

The hardware implementation is designed in Verilog which is one of the popular hardware
description languages. The design is then synthesized by the Vivado2014 Synthesizer and
programed into the FPGA ZedBoard by the TB-7Z-020-EMC Debug Monitor Boot Pro-
gram Revision 001, 2015 [11]. Implementation parameters of the whole design including
the basic processing on FPGA are summarized in Table 4.8.

Table 4.8: Summary of hardware implementation

Order No. Parameter Value

1 Total number of cells 13949

2
Total of transformed
instances

6

3 CARRY4 instances 16’h0100

4 FDRE instances 384

5 RAM64M instances 3160

6 RAM64X1D instances 632

7 SRL16E instances 1

38

Chapter 5

Evaluation

5.1 Methods of evaluation

5.1.1 Objectives

Evaluations were done to evaluate the runtime overhead of the proposed algorithm com-
pared to that of the original algorithm while guaranteeing the response time of tasks. The
runtime overheads were calculated by the total number of instruction execution cycles per
tick for each algorithm on each task set.

Task sets used in the evaluation consist of both aperiodic and periodic tasks. The
performance in terms of runtime overhead of two algorithms is shown in many different
steps as described below.

5.1.2 Steps of evaluation

The enhancement of the proposed algorithm is evaluated through three steps: simu-
lation, software implementation, and hardware implementation. The environments are
established based-on the ARM processor structure and the ITRON System. Tables 5.1
describes the overview of steps of evaluation including the environment, involved algo-
rithms, and objective results. The evaluation consits of three steps:

• The first step, simulation, would do calculations in estimation so as to confirm the
theoritical effectiveness of the proposed algorithm compared to the original one.
Therefore, both algorithms are involved in the simulation.

• The second step, software implementation, would do calculations in an real system
so as to confirm the actual effectiveness of the proposed algorithm compared to
the original one. Therefore, both algorithms are involved in the simulation. The
real system is establised based-on the ITRON System and the ARM Cortex-A9
processor core in FPGA. In the software implementation, algorithms are processed
by software programs.

• The third step, hardware implementation, is to improve the execuating performance
by hardware which is implemented in the FPGA together with the ARM Cortex-A9
processor core. The proposed algorithm is implemented only in this step.

39

Table 5.1: Overview of steps of evaluation

Step of
evaluation

Environment
Involved
algorithms

Objective results

Simulation

Software
environment and
ARM instructions in
estimation

The original
algorithm and the
proposed algorithm

To compare
theoretically the
effectiveness of the
proposed algorithm

Software im-
plementation

ITRON System and
ARM Cortex-A9
processor.

The original
algorithm and the
proposed algorithm

To compare the
actual effectiveness of
the proposed
algorithm

Hardware im-
plementation

Hardware
implematation and
ARM Cortex-A9
processor.

The proposed
algorithm

Improve the executing
performance by
hardware

5.2 Evaluation on simulation

5.2.1 The simulation environment

The evaluation is done for the requirements of runtime overhead. The software simulation
environment based-on the instruction set of the Cortex-A9 processor [4][5] is installed. The
additional runtime overhead is estimated according to the number of instructions of the
algorithms execution. Arithmetic, logical, and control operations in the algorithm are
involved in runtime overhead calculation. To estimate the runtime overhead, instructions
are assigned the approximate number of cycles, as shown in Table 5.2, in which the
instructions can be completed.

40

Table 5.2: Instruction estimation for simulation

Order No. Instruction Assigned cycles Description

1 FADD 4 Float number addition

2 FMUL 5 Float number multiplication

3 FDIV 15 Float number division

4 IADD 1 Integer number addition

5 ILOG 1 Integer Logic

6 IMUL 2 Integer number multiplication

7 COMP 1 Comparator

8 ASSIGN 1 Assignment

9 FLOOR 1 Number Flooring

10 CEIL 1 Number Ceiling

11 MEM 1 Memory access

5.2.2 The simulation results

The simulations are intented to show the estimated results of the additional execution
runtime overheads. It is assumed that a processor’s clock frequency is 100MHz and the
tick length is 0.1ms (the tick length in simulation of the original algorithm is 1ms [3]).
The simulation environment is built according to the TBS server and preemptive EDF
algorithm similarly to that in [2]. The simulation is set to executed both periodic and
aperiodic task sets. The periodic task sets would occupy from 60% to 95% of the total
processor utilization with interval step of 5%. Meanwhile the aperiodic task sets would
take about 2% of the total processor utilization. The simulations are observed in100,000
ticks. Both orignal and enhanced algorithms are under the simulations to executed totally
80 periodic and 10 aperiodic task sets.

Figure 5.1: The maximum runtime overhead per tick

Figure 5.1 shows results of the maximum runtime overhead per tick. TBS+EVRA
denotes the overhead of EVRA algorithm. TBS and TBS+VRA are the results of the

41

original TBS and the original virtual release advancing algorithm. As shown, the maxi-
mum overhead of EVRA is lower than that of TBS+VRA and greater than original TBS.
At Up = 95%, the maximum total overhead per tick of the EVRA is around 327 whereas
that of TBS+VRA is around 747. The EVRA is effective to reduce approximately 56%
runtime overhead compared to TBS+VRA. This improved result allows to apply this
technique to actual real time system. Along with evaluating the runtime overhead, there
is another considerable requirement, that is, response time. The proposed algorithm is
considered more effective than the original one if and only if the same responsiveness
is guaranteed. Results of response time are shown in Table 5.3. The response time for
EVRA is equal to VRA and clearly better than original TBS.

Table 5.3: Simulation results for responsiveness

TBS TBS+VRA TBS+EVRA

60% 4.89 4.86 4.86

65% 5.31 5.27 5.27

70% 6.47 6.42 6.42

75% 7.51 7.25 7.25

80% 11.80 10.87 10.87

85% 18.00 15.91 15.91

90% 40.17 34.90 34.90

95% 116.40 109.23 109.23

5.3 Evaluations on software and hardware implemen-

tations

5.3.1 The environment for software and hardware evaluations

The evaluations are done on the Zynq7000 processing system integrated in the FPGA
ZedBoard as introduced in Chapter IV. The processing system for the evaluations is set
at the frequency of 666MHz. The software and hardware implementations are evaluated
separately for the same periodic and aperiodic task sets. A software design for the original
algorithm is also developed to compare with the performance of the enhanced algorithm.

There are five periodic task sets are under this evaluation. Since the aperiodic task sets
are created manually, there are only three aperiodic task sets of ten activating points are
used in this evaluation. The periodic task sets and associated aperiodic one are listed in
Table 5.4 to Table 5.8. Therefore, there are five scenarios of evaluation. Each scenario
includes six periodic tasks and one aperiodic task entering the system at ten different
points of time. In the scenarios, the total processor utilization does not include the kernel
utilization that is preserved for kernel tasks such as context switching, function calls, and
so on.

42

Table 5.4: Tasks in Scenario 1

Periodic tasks (71%) Aperiodic task

Task name Wect Period Entering times

PTSK 1 20 200

225, 410, 496, 725, 930, 1020, 1413, 1731, 1833, 2010

PTSK 2 3 30

PTSK 3 7 70

PTSK 4 5 40

PTSK 5 8 90

PTSK 6 10 50

Table 5.5: Tasks in Scenario 2

Periodic tasks (73%) Aperiodic task

Task name Wect Period Entering times

PTSK 1 3 21

90, 167, 271, 385, 497, 603, 724, 847, 965, 1116

PTSK 2 3 30

PTSK 3 4 28

PTSK 4 5 40

PTSK 5 4 44

PTSK 6 5 40

Table 5.6: Tasks in Scenario 3

Periodic tasks (67.5%) Aperiodic task

Task name Wect Period Entering times

PTSK 1 3 27

90, 167, 271, 385, 497, 603, 724, 847, 965, 1116

PTSK 2 3 30

PTSK 3 4 28

PTSK 4 5 40

PTSK 5 4 56

PTSK 6 5 40

43

Table 5.7: Tasks in Scenario 4

Periodic tasks (71%) Aperiodic task

Task name Wect Period Entering times

PTSK 1 3 24

90, 167, 237, 320, 392, 457, 541, 612, 698, 760

PTSK 2 3 30

PTSK 3 4 28

PTSK 4 5 45

PTSK 5 4 44

PTSK 6 5 35

Table 5.8: Tasks in Scenario 5

Periodic tasks (73%) Aperiodic task

Task name Wect Period Entering times

PTSK 1 3 21

225, 410, 496, 725, 930, 1020, 1413, 1731, 1833, 2010

PTSK 2 3 30

PTSK 3 4 28

PTSK 4 5 40

PTSK 5 4 44

PTSK 6 5 40

5.3.2 Results of software and hardware implementations

To evaluate the performance of algorithm implementations, there are two target factors
that should be taken into account: the maximum added overhead per tick and the total
execution overhead. These overheads are calculated as follows:

• The maximum added overhead per tick : Given Osr[i] and Oae[i] are the added over-
head by system recodes, required for the algorithm’s execution and the added over-
head of the algorithm’s execution at the i-th tick; the added overhead at i-th tick
(OVH[i]) is OVH[i] = Osr[i]+Oae[i]. If there are ticks without task’s activation, the
corresponding Oae is clearly 0. The maximum added overhead per tick (maxOV H)
is then calculated as:

maxOV H = max(OVH[i]) (5.1)

• The total execution overhead : Given Oae k is the added overhead of the algorithm’s
execution for the k-th task’s activation. Since there are ten of release times of

44

aperiodic task, the total execution overhead (totOV H) is calculated as:

totOV H =
9∑

k=0

Oae k (5.2)

The number of cycles is obtained by access the cycle count register (PMCCNTR) of
the processing system [10]. PMCCNTR, as shown in Figure 5.2, is a count-down register
with the initial value of 166400. The initial value of PMCCNTR is exactly the total cycles
per tick of the system. In other words, each tick time spends 166400 cycles. Given x is
an immediate value of PMCCNTR, the number of used cycles of the tick (or cycle offset,
Coffset) can be obtained by Formula 5.3. The cycle offset to calculate the exact value in
cycle of the evaluations.

Coffset = 166400− x (5.3)

Figure 5.2: PMCCNTR register and cycle offset in a tick time

The evaluation results are shown in Table 5.9 to Table 5.13 for five scenarios. Column
1 in tables is the original release time of aperiodic tasks. Two following columns are the
absolute deadlines. The original deadlines (D ori) are calculated based-on the original
TBS server while the virtual deadlines (D vir) are introduced by the original virtual
release time (VRA) and enhanced virtual release time (EVRA) algorithms. Two next
columns are the response time corresponding arrival times of the target task. R ori
and R vir are the response times corresponding to the original deadline and the virtual
deadline, respectively. Two target factors of the evaluation are examined for the VRA
software design, EVRA software design, and EVRA hardware design, as denoted as VRA,
soft-EVRA, and hard-EVRA, respectively.

45

Table 5.9: Results on Scenario 1

Task’s
entering
times

D ori D vir
R ori
(tick)

R vir
(tick)

Maximum
overhead per
tick (cycle)

Total execu-
tion overhead
(cycle)

VRA Soft-
EVRA

Hard-
EVRA

VRA Soft-
EVRA

Hard-
EVRA

225 289 277 1 1

178
135
(-24%)

126
(-6.7%)

593
432
(-27%)

406
(-6%)

410 474 464 5 5

496 560 560 16 16

725 789 789 6 6

930 994 994 7 7

1020 1084 1084 3 3

1413 1477 1465 14 6

1731 1795 1795 1 1

1833 1897 1890 13 13

2010 2074 2064 7 7

Table 5.10: Results on Scenario 2

Task’s
entering
times

D ori D vir
R ori
(tick)

R vir
(tick)

Maximum
overhead per
tick (cycle)

Total execu-
tion overhead
(cycle)

VRA Soft-
EVRA

Hard-
EVRA

VRA Soft-
EVRA

Hard-
EVRA

90 166 156 26 26

177
146
(-17%)

114
(-22%)

711
459
(-35%)

409
(-11%)

167 243 200 27 21

271 347 308 27 23

385 461 461 1 1

497 573 557 21 21

603 679 676 25 25

724 800 796 18 18

847 923 912 32 29

965 1041 1036 31 31

1116 1192 1192 2 2

46

Table 5.11: Results on Scenario 3

Task’s
entering
times

D ori D vir
R ori
(tick)

R vir
(tick)

Maximum
overhead per
tick (cycle)

Total execu-
tion overhead
(cycle)

VRA Soft-
EVRA

Hard-
EVRA

VRA Soft-
EVRA

Hard-
EVRA

90 133 123 14 14

183
150
(-18%)

124
(-17%)

554
420
(-23%)

389
(-7.4%)

167 210 203 13 13

271 314 313 7 7

385 428 428 1 1

497 540 524 2 2

603 646 643 16 13

724 767 763 22 22

847 890 887 17 17

965 1008 1008 18 18

1116 1159 1159 1 1

Table 5.12: Results on Scenario 4

Task’s
entering
times

D ori D vir
R ori
(tick)

R vir
(tick)

Maximum
overhead per
tick (cycle)

Total execu-
tion overhead
(cycle)

VRA Soft-
EVRA

Hard-
EVRA

VRA Soft-
EVRA

Hard-
EVRA

90 153 151 27 27

154
122
(-21%)

105
(-14%)

523
440
(-16%)

381
(-13%)

167 230 230 7 7

267 300 274 26 23

320 383 371 14 14

392 455 447 23 19

457 520 511 15 15

541 604 588 16 16

612 675 675 1 1

698 761 761 1 1

760 823 823 4 4

47

Table 5.13: Results on Scenario 5

Task’s
entering
times

D ori D vir
R ori
(tick)

R vir
(tick)

Maximum
overhead per
tick (cycle)

Total execu-
tion overhead
(cycle)

VRA Soft-
EVRA

Hard-
EVRA

VRA Soft-
EVRA

Hard-
EVRA

225 301 296 5 5

149
124
(-17%)

113
(-9%)

658
483
(-26%)

439
(-9%)

410 486 472 9 9

496 572 557 22 18

725 801 796 17 17

930 1006 996 26 26

1020 1096 1040 13 8

1413 1489 1476 23 23

1731 1807 1792 8 8

1833 1909 1909 3 3

2010 2086 2076 21 21

The evaluation results first show that there is improvement in tasks’ absolute deadline.
By the virtual release advancing, the virtual deadlines are calculated earlier than the
original ones at many points of tasks’s entering time. The earlier deadlines then may allow
some shorter response times compared with those of the original algorithm as denoted at
rows in red. The virtual response times corresponding to the virtual deadlines are the
same in tick for all VRA, soft-EVRA, and hard-EVRA examinees.

For the runtime overhead, the percentages of overhead reduction are here calculated
for the soft-EVRA compared to the original VRA and for the hard-EVRA compared to
the soft-EVRA. A negative percentage indicates the overhead reduction. Overall, all of
scenarios of evaluations show that the proposed algorithm in this research can actually
alleviate the runtime overhead compared to the original algorithm and that the runtime
overhead of the hard-EVRA is lower than that of the soft-EVRA.

In details, the results exhibits that the maximum overhead per tick of the soft-EVRA
is from 16.7% to 24% lower than that of the original VRA while the hard-EVRA is
13.7% in average lower than the soft-EVRA. Furthermore, the output of evaluations on
total execution overhead also clearly confirms the positive improvements on the EVRA
algorithm. That is, the total execution overhead averagely decreases by 25.4% compared
to the original VRA. In the same trend, the hard-EVRA reduces the total overhead by
around 9.3% compared to the soft-EVRA. Especially, although the evaluations are done
with a limited number of tasks, results somewhat show that the maximum overhead per
tick is such a very small part of a tick. In the Scenario 3 where the maximum overhead
per tick are the most, it takes about 0.1% of a tick (totally 166400 cycles). This is an
important result which allows the algorithm to be applied to precise systems.

However, it is necessary to note that these equal response times are obtained above
as a consequence of that the additional overhead takes a very small percentage of a
tick. Actually, the response times are different if calculated exactly in cycle under the
effect of runtime overhead. Because response time is not an objective requirement of the

48

evaluation, it is not displayed in full in results tables. An example, instead, is shown in
Table 5.14 as a further illustration for this concern. The table displays the difference of
response times in cycle for the 2-th entering time of aperiodic task in Scenario 3. In this
example, the target task is activated at tick 167 and finishes at tick 180 with response
time of 13 for all of the original TBS, original VRA, soft-EVRA, and dard-EVRA. The
cycle offset, defined in Figure 5.2, at row 5 presents the response time exactly in cycle at
tick 180. As shown, task finishes earliest in the original TBS with the lowest overhead.
The order of finishing time is followed by that of Hard-EVRA, soft-EVRA, and original
VRA, respectively.

Table 5.14: A example of different response times in cycle under the effect of time overhead

Original
TBS

Original
VRA

Soft-
EVRA

Hard-
EVRA

Release time 167

Finishing time 180

Response time (tick) 13

Cycle offset (cycle) at
the 180-th tick

49221 49508 49426 49358

49

Chapter 6

Conclusion

In this research, an enhanced virtual release advancing algorithm is proposed. This is
an enhancement of the virtual release advancing in terms of runtime overhead. The
runtime overhead is significantly reduced while the schedulability and responsiveness are
guaranteed. With the lower time complexity, the new technique is more adaptive to precise
real-time systems. In addition, this technique reduces the implementation complexity of
the previous algorithm by determining the bound of the advancing.

In addition, the proposed algorithm is proven its effectiveness and applicability with the
hardware implementation on FPGA. With designed mechanism for parallel processing, the
hardware design generates a higher performance than the software one. Such achievements
of this research show that this algorithm is worthy for a continuous research to become
closer to the real systems. Applying the algorithm on multiprocessor systems is also an
alternative approach.

50

Bibliography

[1] K. Tanaka, “Real-Time Scheduling for Reducing Jitters of Periodic Tasks”, Journal
of Information Processing, Vol23, No.5, pp.542552, 2015.

[2] K. Tanaka, “Virtual Release Advancing for Earlier Deadlines”, SIGBED Review,
Vol.12, No.3, June, 2015.

[3] Marco Spuri and Giorgio C. Buttazzo, “Efficient Aperiodic Service under Earliest
Deadline Scheduling”, 15th IEEE Real-time System Symposium, San Juan, Puerto
Rico, 1994.

[4] “Cortex-A9 Technical Reference Manual”, ARM.

[5] “Cortex-A9 Floating-Point Unit Technical Reference Manual”, Revision: r2p0, Copy-
right 2008-2009 ARM.

[6] ITRON Committee, TRON ASSOCIATION. ITRON4.0 Speciation Ver.4.00.00.

[7] Zynq-7000 All Programmable SoC Technical Reference Manual, v1.10, February 23,
2015, Xilinx.

[8] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment”, Journal of the Association for Computing Machinery,
Vol. 20, No. 1, pp. 4661, January 1973.

[9] M. Spuri, G. Buttazzo, and F. Sensini, “Robust Aperiodic Scheduling under Dynamic
Priority Systems”, Proc. of Real-Time Systems Sympo-sium, pp.210219 (1995).

[10] Savanna RTOS for Zynq version 0.100, Developed by Kiyofumi Tanaka, Japan Ad-
vanced Institute of Science and Technology.

[11] The TB-7Z-020-EMC Debug Monitor Boot Program Revision 001, 2015.

51

