
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Common Developments of Three Incongruent Boxes of

Area 30

Author(s)
Xu, Dawei; Horiyama, Takashi; Shirakawa,

Toshihiro; Uehara, Ryuhei

Citation Lecture Notes in Computer Science, 9076: 236-247

Issue Date 2015-05-18

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/13757

Rights

This is the author-created version of Springer,

Dawei Xu, Takashi Horiyama, Toshihiro Shirakawa

and Ryuhei Uehara, Lecture Notes in Computer

Science, 9076, 2015, 236-247. The original

publication is available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-17142-5_21

Description

Theory and Applications of Models of Computation,

12th Annual Conference, TAMC 2015, Singapore, May

18-20, 2015, Proceedings

Common Developments of
Three Incongruent Boxes of Area 30

Dawei Xu1, Takashi Horiyama2, Toshihiro Shirakawa, and Ryuhei Uehara1

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Japan

{xudawei,uehara}@jaist.ac.jp
2 Information Technology Center,

Saitama University, Japan
horiyama@al.ics.saitama-u.ac.jp

Abstract. We investigate common developments that can fold into plu-
ral incongruent orthogonal boxes. Recently, it was shown that there are
infinitely many orthogonal polygons that folds into three boxes of differ-
ent size. However, the smallest one that folds into three boxes consists
of 532 unit squares. From the necessary condition, the smallest possible
surface area that can fold into two boxes is 22, which admits to fold into
two boxes of size 1×1×5 and 1×2×3. On the other hand, the smallest
possible surface area for three different boxes is 46, which may admit to
fold into three boxes of size 1× 1× 11, 1× 2× 7, and 1× 3× 5. For the
area 22, it has been shown that there are 2,263 common developments
of two boxes by exhaustive search. However, the area 46 is too huge for
search. In this paper, we focus on the polygons of area 30, which is the
second smallest area of two boxes that admits to fold into two boxes of
size 1× 1× 7 and 1× 3× 3. Moreover, when we admit to fold along di-
agonal lines of rectangles of size 1× 2, the area may admit to fold into a
box of size

√
5×

√
5×

√
5. That is, the area 30 is the smallest candidate

area for folding three different boxes in this manner. We perform two
algorithms. The first algorithm is based on ZDDs, zero-suppressed bi-
nary decision diagrams, and it computes in 10.2 days on a usual desktop
computer. The second algorithm performs exhaustive search, however,
straightforward implementation cannot be run even on a supercomputer
since it causes memory overflow. Using a hybrid search of DFS and BFS,
it completes its computation in 3 months on a supercomputer. As results,
we obtain (1) 1,080 common developments of two boxes of size 1× 1× 7
and 1 × 3 × 3, and (2) 9 common developments of three boxes of size
1× 1× 7, 1× 3× 3, and

√
5×

√
5×

√
5.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996 [10], polygons that can fold
into a (convex) polyhedron have been investigated in the area of computational

Fig. 1. Cubigami.

Fig. 2. A polygon folding into two boxes of size
1× 1× 5 and 1× 2× 3 in [12].

geometry. In general, we can state the development/folding problem as follows:

Input : A polygon P and a polyhedra Q
Output: Determine whether P can fold into Q or not

When Q is a tetramonohedron (a tetrahedron with four congruent triangular
faces), Akiyama and Nara gave a complete characterization of P by using the
notion of tiling [2, 3]. Except that, we have quite a few results from the math-
ematical viewpoint. Hence we can tackle this problem from the viewpoint of
computational geometry and algorithms.

From the viewpoint of computation, one natural restriction is that consid-
ering the orthogonal polygons and polyhedra which consist of unit squares and
unit cubes, respectively. Such polygons have wide applications including packag-
ing and puzzles, and some related results can be found in the books on geometric
folding algorithms by Demaine and O’Rourke [6, 14]. However, this problem is
counterintuitive. For example, the puzzle “cubigami” (Fig. 1) is a common de-
velopment of all tetracubes except one (since the last one has surface area 16,
while the others have surface area 18), which is developed by Miller and Knuth.
One of the many interesting problems in this area asks whether there exists a
polygon that folds into plural incongruent orthogonal boxes. This folding prob-
lem is very natural but still counterintuitive; for a given polygon that consists
of unit squares, and the problem asks are there two or more ways to fold it into
simple convex orthogonal polyhedra (Fig. 2). Biedl et al. first gave two polygons
that fold into two incongruent orthogonal boxes [5] (see also Figure 25.53 in the
book by Demaine and O’Rourke [6]). Later, Mitani and Uehara constructed in-
finite families of orthogonal polygons that fold into two incongruent orthogonal
boxes [12]. Recently, Shirakawa and Uehara extended the result to three boxes
in a nontrivial way; that is, they showed infinite families of orthogonal polygons
that fold into three incongruent orthogonal boxes [16]. However, the smallest
polygon by their method contains 532 unit squares, and it is open if there exists
much smaller polygon of several dozens of squares that folds into three (or more)
different boxes.

2(ab+ bc+ ca) a× b× c

22 1× 1× 5, 1× 2× 3
30 1× 1× 7, 1× 3× 3
34 1× 1× 8, 1× 2× 5
38 1× 1× 9, 1× 3× 4
46 1× 1× 11, 1× 2× 7, 1× 3× 5
54 1× 1× 13, 1× 3× 6, 3× 3× 3
58 1× 1× 14, 1× 2× 9, 1× 4× 5
62 1× 1× 15, 1× 3× 7, 2× 3× 5
64 1× 2× 10, 2× 2× 7, 2× 4× 4
70 1× 1× 17, 1× 2× 11, 1× 3× 8, 1× 5× 5
88 1× 2× 14, 1× 4× 8, 2× 2× 10, 2× 4× 6

Table 1. A part of possible size a × b × c of boxes and its common surface area
2(ab+ bc+ ca).

It is easy to see that two boxes of size a×b×c and a′×b′×c′ can have a common
development only if they have the same surface area, i.e., when 2(ab+ bc+ ca) =
2(a′b′+ b′c′+ c′a′) holds. We can compute small surface areas that admit to fold
into two or more boxes by a simple exhaustive search. We show a part of the
table for 1 ≤ a ≤ b ≤ c ≤ 50 in Table 1. From the table, we can say that the
smallest surface area is at least 22 to have a common development of two boxes,
and their sizes are 1 × 1 × 5 and 1 × 2 × 3. In fact, Abel et al. have confirmed
that there exist 2,263 common developments of two boxes of size 1× 1× 5 and
1×2×3 [1]. On the other hand, the smallest surface area that may admit to fold
into three boxes is 46, which may fold into three boxes of size 1×1×11, 1×2×7,
and 1× 3× 5. However, the number of polygons of area 46 seems to be too huge
to search. This number is strongly related to the enumeration and counting
of polyominoes, namely, orthogonal polygons that consist of unit squares [7].
The number of polyominoes of area n is well investigated in the puzzle society,
but it is known up to n = 45, which is given by the third author (see the OEIS
(https://oeis.org/A000105) for the references). Since their common area consists
of 46 unit squares, it seems to be hard to enumerate all common developments
of three boxes of size 1× 1× 11, 1× 2× 7, and 1× 3× 5.

One natural step is the next one of the surface area 22 in Table 1. The
next area of 22 in the table is 30, which admits to fold into two boxes of size
1 × 1 × 7 and 1 × 3 × 3. When Abel et al. had confirmed the area 22 in 2011,
it takes around 10 hours. Thus we cannot use the straightforward way in [1] for
the area 30. We first employ a nontrivial extention of the method based on a
zero-suppressed binary decision diagram (ZDD) used in [4], which is so-called
frontier-based search algorithm for enumeration [9]. Our first algorithm based
on ZDD runs in around 10 days on an ordinary PC. To perform double-check,
we also use supercomputer (CRAY XC30). We note that we cannot use the same
way as one for area 22 shown in [1] since it takes too huge memory even on a
supercomputer. Therefore, we use a hybrid search of the breadth first search and

(a)

(b)

Fig. 3. The common
development shown
in [5]. (a) It folds into
a box of size 1× 2× 4
and (b) it also folds
into a box of size√
2×

√
2× 3

√
2.

(1) (2) (3)

(4) (5) (6)

(7) (9)(8)

Fig. 4. Nine polygons that fold into three boxes
of size 1× 1× 7, 1× 3× 3, and

√
5×

√
5×

√
5.

The last one can fold into the third box in two
different ways (Fig. 5).

the depth first search. Our first result is the number of common developments
of two boxes of size 1× 1× 7 and 1× 3× 3, which is 1,080.

Based on the obtained common developments, we next change the scheme.
In [5], they also considered folding along 45 degree lines, and showed that there
was a polygon that folded into two boxes of size 1× 2× 4 and

√
2×

√
2× 3

√
2

(Fig. 3). In this context, we can observe that the area 30 may admit to fold into
another box of size

√
5×

√
5×

√
5 by folding along the diagonal lines of rectangles

of size 1× 2. This idea leads us to the problem that asks if there exist common
developments of three boxes of size 1×1×7, 1×3×3, and

√
5×

√
5×

√
5 among

the common developments of two boxes of size 1× 1× 7 and 1× 3× 3.

We remark that this is a special case of the development/folding problem
above. In our case, P is one of the 1,080 polygons that consist of 30 unit squares,
and Q is the cube of size

√
5×

√
5×

√
5. We note that we can use a pseudopoly-

nomial time algorithm for Alexandrov’s Theorem proposed in [8], however, it
runs in O(n456.5) time, and it is not practical. Therefore, we develop the other
efficient algorithm specialized in our case that checks if a polyomino P of area
30 can fold into a cube Q of size

√
5×

√
5×

√
5. Using the algorithm, we check if

these common developments of two boxes of size 1× 1× 7 and 1× 3× 3 can also
fold into the third box of size

√
5 ×

√
5 ×

√
5, and give an affirmative answer.

We find that nine of 1,080 common developments of two boxes can fold into the
third box (Fig. 4). Moreover, one of the nine common developments of three
boxes has another way of folding. Precisely, the last one (Fig. 4(9)) admits to

(a) (b) (c) (d)

Fig. 5. The unique polygon folds into three boxes of size (a) 1 × 1× 7, (b) 1× 3× 3,
and (c)(d)

√
5×

√
5×

√
5 in four different ways.

fold into the third box of size
√
5 ×

√
5 ×

√
5 in two different ways. These four

ways of folding are depicted in Fig. 5.
We summarize the main results in this paper:

Theorem 1. (1) There are 1,080 polyominoes of area 30 that admit to fold
(along the edges of unit squares) into two boxes of size 1× 1× 7 and 1× 3× 3.
(2) Among the above 1,080, nine polyominoes can fold into the third box of size√
5×

√
5×

√
5 if we admit to fold along diagonal lines (Fig. 4). (3) Among these

nine polyominoes, one can fold into the third box in two different ways (Fig. 5).

2 Preliminaries

2.1 Problem Definitions

Demaine and O’Rourke [6, Chap. 21] give a formal definition of the development
of a polyhedron as the net1. Briefly, the development is the unfolding obtained
by slicing the surface of the polyhedron, and it forms a single connected sim-
ple polygon without self-overlap. The common development of two (or more)
polyhedra is the development that can fold into both (or all) of them. We only
consider connected orthogonal polygons that consist of unit squares, which are
called polyominoes [7], as developments. Polyominoes obtained from a develop-
ment by removing some unit squares are called partial developments of it. We
call a convex orthogonal polyhedron (folded from a polyomino) a box.

The cut edges of an edge development of a convex polyhedron form a spanning
tree of the 1-skeleton (i.e., the graph formed by the vertices and the edges) of
the polyhedron (See e.g., [6, Lemma 22.1.1]). Fig. 6(a) and (b) are the 1-skeleton
of a cube and its spanning tree, respectively. In our problem, given a box of size
a× b× c, we divide the faces into unit squares, and cut the surface along edges
of the unit squares. We call such a development a unit square development. In

1 Since the word “net” has several meaning, we use “development” instead of it to
make clear.

e
1

e
2

e
4

e
3

e
8

e
5

e
6

e
7

e
12

e
10

e
9

e
11

v
1

v
2

v
3

v
4

v
7

v
8

v
6

v
5

e
1

e
2

e
4

e
3

e
8

e
5

e
6

e
7

e
12

e
10

e
9

e
11

v
1

v
2

v
3

v
4

v
7

v
8

v
6

v
5

(a) (b) (c)

Fig. 6. 1-skeletons and spanning trees of a cube and a box of size 1× 1× 3.

Fig. 6(c), we regard the eight vertices (colored in white) as special, where the
angle sum at each corner is 270◦. We call them corners. The 1-skeleton of a box
is given as G = (Vc ∪ Vo, E), where Vc and Vo denote the sets of eight corners
and others, respectively, and E denote the set of edges of unit length. The cut
edges of a unit square development form a tree spanning to the eight corners.

Now, we go back to the common development. It is easy to see that two boxes
of size a × b × c and size a′ × b′ × c′ have a common unit square development
only if they have the same surface area, i.e., 2(ab+bc+ca) = 2(a′b′+b′c′+c′a′).
Such 3-tuples (a, b, c) can be computed by a simple enumeration for small areas
(Table 1), but it seems that we have many corresponding 3-tuples for large area.
In fact, this intuition can be proved as follows:

Theorem 2. ([13]) We say two 3-tuples (a, b, c) and (a′, b′, c′) are distinct if and
only if a ̸= a′, b ̸= b′, or c ̸= c′. For any positive integer p, there are p distinct 3-
tuples (ai, bi, ci) for i = 1, 2, . . . , p such that aibi+ bici+ ciai = ajbj + bjcj +cjaj
for any 1 ≤ i, j ≤ p.

Proof. For a given p, we let ai = 2i − 1, bi = 22p−i − 1, ci = 1 for i = 1, 2, . . . , p.
Then we have aibi+bici+ciai = (22p−2i−22p−i+1)+(22p−i−1)+(2i−1) = 22p−1
for any i. It is easy to see that all 3-tuples (ai, bi, ci) are distinct. Thus we have
the theorem. 2

By Theorem 2, we can consider any number of boxes that may share the common
developments.

2.2 Enumeration by Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [11] is directed acyclic graph
that represents a family of sets. As illustrated in Fig. 7, it has the unique source
node2, called the root node, and has two sink nodes 0 and 1, called the 0-node and
the 1-node, respectively (which are together called the constant nodes). Each of
the other nodes is labeled by one of the variables x1, x2, . . . , xn, and has exactly
two outgoing edges, called 0-edge and 1-edge, respectively. On every path from

2 We distinguish nodes of a ZDD from vertices of a graph (or a 1-skeleton).

x4

x3x3

x2x2

x1

10

0-edge

1-edge

constant node

variable node

Fig. 7. A ZDD representing {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}.

the root node to a constant node in a ZDD, each variable appears at most once
in the same order. The size of a ZDD is the number of nodes in it.

Every node v of a ZDD represents a family of sets Fv, defined by the subgraph
consisting of those edges and nodes reachable from v. If node v is the 1-node
(respectively, 0-node), Fv equals to {{}} (respectively, {}). Otherwise, Fv is
defined as F0-succ(v) ∪ {S | S = {var(v)} ∪ S′, S′ ∈ F1-succ(v)}, where 0-succ(v)
and 1-succ(v), respectively, denote the nodes pointed by the 0-edge and the 1-
edge from node v, and var(v) denotes the label of node v. The family F of sets
represented by a ZDD is the one represented by the root node. Fig. 7 is a ZDD
representing F = {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the root
node to the 1-node, called 1-path, corresponds to one of the sets in F.

Now, we focus on the enumeration of developments by ZDDs. As denoted in
Section 2.1, the cut edges of an edge development form a spanning tree of the
1-skeleton (e.g., edges {e1, e2, e4, e7, e6, e9, e10} in Fig.6(b)). This conditions can
be interpreted as follows:

Property 1. Given the 1-skeleton G = (V,E) of a polyhedron, the cut edges of
its edge development is the set of edges Ed (⊆ E) satisfying: (1) Ed has no cycle.
(2) Subgraph of G induced by Ed has only one connected component. (3) Each
vertex in V is adjacent to at least one edge in Ed.

Algorithm 1 [4] gives the frontier-based search [9] to construct a ZDD rep-
resenting a family of spanning trees. It can be considered as one of DP-like
algorithms. Each search node in the algorithm corresponds to a subgraphs of
the given graph G. The search begins with noderoot (i.e., the root node of the
resulting ZDD) corresponding to (V, {}). In the search, we check whether we can
adopt edge ei or not, in the order of i = 1, 2, . . . ,m, where m is the number of
edges in G. In Line 4 of Algorithm 1, current search node is n̂, and in case x = 1
(respectively, x = 0), we adopt (respectively, do not adopt) ei. Search node n′

corresponds to the resulting graph, and is pointed by the x-edge of n̂ in Line 13.
The key is to share nodes of the constructing ZDD (in Lines 9 and 10) by

simple “knowledge” of subgraphs, and not to traverse the same subproblems
more than once. Each search node n̂ in the algorithm has an array n̂.comp[] as
an knowledge, where n̂.comp[vj] indicates the ID of the connected component
vj belonging to. We can reduce the size of knowledge by maintaining the values

Algorithm 1: Construct ZDD

Input : Graph G = (V,E) with n vertices and m edges
Output: ZDD representing a family of spanning trees in G

1 N1 := {noderoot}. Ni := {} for i = 2, 3, . . . ,m+ 1
2 for i := 1, 2, . . .m do
3 foreach n̂ ∈ Ni do
4 foreach x ∈ {0, 1} do // 0-edge and 1-edge
5 n′ := CheckTerminal(n̂, i, x) // returns 0, 1, or nil
6 if n′ = nil then // n′ is neither 0 nor 1
7 Copy n̂ to n′

8 UpdateInfo(n′, i, x)
9 if there exists n′′ ∈ Ni+1 that is identical to n′ then

10 n′ := n′′

11 else
12 Ni+1 := Ni+1 ∪ {n′}

13 Create the x-edge of n̂ and make it point at n′

of n̂.comp[] just for vertices incident to both a processed and an unprocessed
edges. Such set of vertices are called the i-th frontier Fi (∈ V), which is formally
defined as Fi = (∪j=1,...,i ej)∩(∪j=i+1,...,m ej), F0 = Fm = {}. We check whether
the subgraph corresponding to the search node n̂ consists a spanning tree in
Procedure CheckTerminal. For more detail, see [9] and Appendix A.

3 Algorithms for the first two boxes of size 1x1x7 and
1x3x3

3.1 Algorithm based on ZDDs

We first denote how to obtain all common unit cube developments of two incon-
gruent boxes of size 1× 1× 7 and 1× 3× 3 by ZDDs. The strategy is simple: We
enumerate unit cube developments for each box, and then obtain developments
that appears in common. The important thing is to enumerate developments
efficiently. For unit cube developments, we generalize the algorithm given in
Section 2.2. Once a ZDD is obtained, its 1-paths represent sets of cut edges. By
traversing the ZDD, we can obtain sets of cut edges, and thus obtain the shapes
of developments (i.e., polyominoes). The difference between the enumeration of
developments in Section 2.2 and that in our problem can be seen in Fig. 6(b)
and (c). In our problem, faces of our boxes are divided into unit squares, and
we need to make a tree spanning to the eight corners. The cut edges of a unit
square development of our box has the following property:

Property 2. Given the 1-skeleton G = (Vc ∪ Vo, E) of a box, the cut edges of its
unit square development is the set of edges Ed (⊆ E) satisfying: (1) Ed has no

cycle. (2) Subgraph of G induced by Ed has only one connected component of
size greater than 1. (3) Each vertex in Vc is adjacent to at least one edge in Ed.
(4) No vertex in Vo is adjacent to exactly one edge in Ed.

Conditions (1) and (2) are essentially equivalent to those in Property 1.
Condition (3) is to flatten the corners of the box into a plane. Conditions (2)
and (3) guarantees that all vertices in Vc are connected. Condition (4) is to avoid
a vertex in Vo adjacent to exactly one edge in Ed. (If there exists such an edge,
we can eliminate it from Ed.) Conditions (2) and (4) guarantees that all vertices
in Vo adjacent to two or more edges are connected to the vertices in Vc. Thus,
we have a tree spanning the vertices in Vc.

To check the above conditions, we modify Procedures UpdateInfo and Check-
Terminal. For counting the number of adopted edges adjacent to vj and the size
of connected component vj belonging to, we prepare two arrays n̂.deg[] and
n̂.size[]. In Procedures UpdateInfoRevised, we initialize n̂.deg[vj] := 0 (i.e., the
number of adopted edges in Ed adjecent to vj is 0) and n̂.size[vj] := 1 (i.e.,
vertex vj is a singleton) in Line 3. If edge ei = (vi1 , vi2) is adopted to Ed (i.e.,
x = 1), we update the degrees of vi1 and vi2 , and the size of their connected
components in Lines 8, 9 and 12.

In Procedure CheckTerminalRevised, Condition (1) is checked in Lines 2–4.
If vertex vj leaves from the frontier, we have no chance to adopt its adjecent
edges, which means the degree of vj does not change. Thus, we check Conditions
(3) and (4) in Lines 8 and 9, respectively. At the same time, we have no chance
to grow the size of vj ’s connected components. Thus, we check whether we have
two or more connected components in Lines from 14 to 16, and terminate the
search if it holds. Otherwise, we have only one connected component, and hence
we cannot adopt any edges in the remaining search. Thus, we check Conditions
(3) and (4) in Lines from 17 to 22, and returns the result.

3.2 Algorithm based on exhaustive search

Here we describe the exhaustive algorithm for generating all common develop-
ments of two boxes of size 1 × 1 × 7 and 1 × 3 × 3. The basic idea is similar to
one in [1]: Let Li be the set of all common partial developments of area i of two
boxes. Then L1 consists of a unit square, and each Li with i > 1 is a subset
of polyominoes of size i that can be computed from Li−1 by the breadth first
search. Each Li is maintained by a huge hash table, which means that we use
O(maxi{i|Li|+ (i− 1)|Li−1|}) space for the computation of step i.

This simple idea works up to 22 for two boxes of size 1× 1× 5 and 1× 2× 3
in [1] since the maximum number of |Li ∪ Li−1| takes 1.01 × 107 when i = 18.
However, for the surface area 30, it does not work even on a supercomputer
(CRAY XC30) due to memory overflow when i = 22.

Thus we divide the computation into two phases. In the first phase, we com-
pute Li for each i = 2, . . . , 16. As a result, we have L16 that consists of 7,486,799
common partial developments of two boxes of size 1× 1× 7 and 1× 3× 3. In the
second phase, we partition L16 into 75 disjoint subsets Lj

16 with 1 ≤ j ≤ 75. For

Procedure CheckTerminalRevised(n̂, i, x)

1 Let (vi1 , vi2) denote ei ∈ E
2 if x = 1 then
3 if n̂.comp[vi1] = n̂.comp[vi2] then // vi1 , vi2 are in the same component
4 return 0 // we have a cycle by adding ei

5 Copy n̂ to n′

6 UpdateInfo(n′, i, x)
7 foreach vj ∈ {vi1 , vi2} satisfying vj ̸∈ Fi do // vj is leaving from the frontier
8 // Check the degree constraints for vj
9 if (vj is in Vc) and (n̂.deg[vj] = 0) then return 0

10 if (vj is in Vo) and (n̂.deg[vj] = 1) then return 0
11 if (∀vk ∈ Fi n̂.comp[vj] ̸= n̂.comp[vk]) then
12 // vj ’s connected component cannot connect to any other components
13 if (n̂.size[vj] > 1) then
14 if (∃vℓ ∈ Fi (n̂.size[vℓ] > 1)) then
15 // we have two or more connected components of size > 1
16 return 0

17 else // We cannot adopt any edges
18 foreach vj′ ∈ ∪i′=i+1,...,mei′ do
19 // Check the degree constraints for remaining vertices
20 if (vj′ is in Vc) and (n̂.deg[vj′] = 0) then return 0
21 if (vj′ is in Vo) and (n̂.deg[vj′] = 1) then return 0

22 return 1

23 Fi := Fi \ {vj}
24 return nil

Procedure UpdateInfoRevised(n̂, i, x)

1 Let (vi1 , vi2) denote ei ∈ E
2 foreach vj ∈ {vi1 , vi2} such that vj ̸∈ Fi−1 do // vj is entering the frontier
3 n̂.comp[vj] := j // The initial component ID is the index of vj
4 n̂.deg[vj] := 0, n̂.size[vj] := 1

5 if x = 1 then // Merge two components of vi1 , vi2
6 cmin := min{n̂.comp[vi1], n̂.comp[vi2]}
7 cmax := max{n̂.comp[vi1], n̂.comp[vi2]}
8 n̂.deg[vi1] := n̂.deg[vi1] + 1, n̂.deg[vi2] := n̂.deg[vi2] + 1
9 s = n̂.size[vi1] + n̂.size[vi2]

10 foreach vj ∈ Fi do
11 if n̂.comp[vj] = cmax then n̂.comp[vj] := cmin

12 if (n̂.comp[vj] = cmin) or (n̂.comp[vj] = cmax) then n̂.size[vj] := s

13 foreach vj ∈ {vi1 , vi2} such that vj ̸∈ Fi do // vj is leaving the frontier
14 Forget n̂.comp[vj], n̂.deg[vj] and n̂.size[vi2]

each Lj
16, we independently compute up to Lj

30 in parallel by the BFS algorithm

again. In the final step, we merge Lj
30 with 1 ≤ j ≤ 75, remove duplicates, and

obtain L30.

4 Algorithm for the third box

Let L30 be the set of all common developments of two boxes of size 1 × 1 × 7
and 1× 3× 3. We here note that if we can compute L30 efficiently, we can check
in the same manner; that is, we generate all developments of the cube of size√
5 ×

√
5 ×

√
5 by cutting along the line of unit squares, and check if each one

appears in L30 or not. Thus, in the first method based on ZDDs, we can use the
same way again; we construct all developments of the cube of size

√
5×

√
5×

√
5

based on the connection network on unit squares, and check if each one appears
in L30 or not. In the second method based on the exhaustive search for two
boxes, we use a completely different way. The details can be found in Appendix
B, and omitted here.

The program of the first method based on ZDDs runs on a usual desktop
computer with Intel Xeon E5-2643 and 128 GB memory. It takes 0.10 and 71.53
seconds for obtaining the sets of cut edges of two boxes of size 1 × 1 × 7 and
1× 3× 3, respectively, and 7.7 days for converting the cut edges into the shapes
of developments and for obtaining the common developments. For the third box
of size

√
5 ×

√
5 ×

√
5, It takes 354.64 seconds for obtaining cut edges, and 2.5

days for obtaining the the common developments of the three boxes. It takes 10.2
days in total. The program of the second method runs, in total, in 3 months on
the supercomputer (CRAY XC30), and we obtain 1,080 common developments
in L30 of two boxes of size 1× 1× 7 and 1× 3× 33and 9 common developments
of three boxes of size 1× 1× 7, 1× 3× 3 and

√
5×

√
5×

√
5.

5 Concluding remarks

Recently, Shirakawa and Uehara showed infinite families of orthogonal polygons
that fold into three incongruent orthogonal boxes [16]. However, the smallest
polygon contains 532 unit squares. In this paper, we show that there exist or-
thogonal polygons of 30 unit squares that fold into three incongruent orthogonal
boxes if we allow us to fold along slanted lines. In the original framework in [16],
the smallest possible surface area that may fold into three different boxes is 46,
which may produce three boxes of size 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5.
We conjecture that there exists an orthogonal polygon of 46 unit squares that
admits to fold these three boxes. Some nontrivial properties in Figures 4 and 5
may help to find it.

There are many future work in this area. For example, does there exist a
polyomino that folds into four or more boxes? Is there some upper bound of
the number of boxes which can be folded from one polyomino? We remind that

3 We note that the maximum number of partial developments is given when j = 24.

Theorem 2 says that we have no upper bound by the constraint of the surface
areas. But it is hard to imagine that one polyomino can fold into, say, 10,000
different boxes. General development/folding problems are also remained open.
For example, Shirakawa et al. found a common development of a unit cube and
an almost regular tetrahedron (with relative error < 2.89200 × 10−1796) [15],
however, a common development of two Platonic solids are still open.

References

1. Z. Abel, E. Demaine, M. Demaine, H. Matsui, G. Rote, and R. Uehara. Common
Development of Several Different Orthogonal Boxes. In 23rd Canadian Conference
on Computational Geometry (CCCG 2011), pages 77–82, 2011.

2. J. Akiyama. Tile-Makers and Semi-Tile-Makers. The Mathematical Association of
Amerika, Monthly 114:602–609, August-September 2007.

3. J. Akiyama and C. Nara. Developments of Polyhedra Using Oblique Coordinates.
J. Indonesia. Math. Soc. , 13(1):99–114, 2007.

4. Y. Araki, T. Horiyama, and R. Uehara. Common Unfolding of Regular Tetrahedron
and Johnson-Zalgaller Solid. In 9th International Workshop on Algorithms and
Computation (WALCOM 2015), to appear.

5. T. Biedl, T. Chan, E. Demaine, M. Demaine, A. Lubiw, J. I. Munro, and J. Shallit.
Notes from the University of Waterloo Algorithmic Problem Session. September 8
1999.

6. E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, 2007.

7. S. W. Golomb. Polyominoes. Princeton University Press, 1994.
8. D. Kane, G. N. Price, and E. D. Demaine. A pseudopolynomial algorithm

for Alexandrov’s Theorem. In 11th Algorithms and Data Structures Symposium
(WADS 2009), pages 435–446. Lecture Notes in Computer Science Vol. 5664,
Springer-Verlag, 2009.

9. J. Kawahara, T. Inoue, H. Iwashita, and S. Minato. Frontier-based Search for Enu-
merating All Constrained Subgraphs with Compressed Representation. Technical
Report TCS-TR-A-14-76, Division of Computer Science, Hokkaido Univ., 2014.

10. A. Lubiw and J. O’Rourke. When Can a Polygon Fold to a Polytope? Technical
Report 048, Department of Computer Science, Smith College, 1996.

11. S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems. In 30th ACM/IEEE Design Automation Conference (DAC’93), pages 272–
277, 1993.

12. J. Mitani and R. Uehara. Polygons Folding to Plural Incongruent Orthogonal
Boxes. In Canadian Conference on Computational Geometry (CCCG 2008), pages
39–42, 2008.

13. T. Okumura. Personal communication. August 2014.
14. J. O’Rourke. How to Fold It: The Mathematics of Linkage, Origami and Polyhedra.

Cambridge University Press, 2011.
15. T. Shirakawa, T. Horiyama, and R. Uehara. Construct of Common Development

of Regular Tetrahedron and Cube. In 27th European Workshop on Computational
Geometry (EuroCG 2011), pages 47–50, 2011/3/28-30.

16. T. Shirakawa and R. Uehara. Common Developments of Three Incongruent Or-
thogonal Boxes. International Journal of Computational Geometry and Applica-
tions, 23(1):65–71, 2013.

A Frontier-based Search

The key of the frontier-based search [4, 9] is to share nodes of the constructing
ZDD (in Lines 9 and 10 of Algorithm 1) by simple “knowledge” of subgraphs,
and not to traverse the same subproblems more than once. Each search node
n̂ in the algorithm has an array n̂.comp[] as an knowledge, where n̂.comp[vj]
indicates the ID of the connected component vj belonging to. The ID for vj ∈
G is set to j in the beginning (Lines 2 and 3 of Procedure UpdateInfo). If
we adopt ei = {vi1 , vi2} (i.e., in case x = 1), we merge the two connected
components of vi1 and vi2 by updating the ID’s of vj in the components (Lines 4–
8 of Procedure UpdateInfo). We maintain the values of n̂.comp[] just for vertices
incident to both a processed and an unprocessed edges. We call a set of these
vertices i-th frontier Fi (∈ V), which is formally defined as Fi = (∪j=1,...,i ej) ∩
(∪j=i+1,...,m ej), F0 = Fm = {}.

We check whether the subgraph corresponding to the search node n̂ consists
a spanning tree in Procedure CheckTerminal. A set of edges consists a spanning
tree if and only if (1) we have no cycle and (2) we have only one connected
component. In case we are adding ei = {vi1 , vi2} and vi1 and vi2 belong to the
same connected component, we have a cycle. In this case, we have no chance
to obtain a spanning, and hence we terminate the search (Lines 2–4). The later
half of Procedure CheckTerminal is devoted to check the number of connected
components. If vj is leaving from the i-th frontier Fi, and no other vertices in
Fi belong to the same connected component with vj , from the definition of the
frontier, we have no chance to connected vj with other vertices in Fi. This is why
we terminate the search in Line 14. The only one exception is the case when we
are processing the last edge em = {vm1 , vm2}. In this case, two vertices vm1 and
vm2 leave the frontier, and no vertices remain in the frontier. Therefore, if vm1

and vm2 belong to the same connected component, all vertices are connected,
and thus return 1, i.e., we have found a spanning tree (Line 12). Otherwise, we
we terminate the search.

Procedure UpdateInfo(n̂, i, x)

1 Let (vi1 , vi2) denote ei ∈ E
2 foreach vj ∈ {vi1 , vi2} such that vj ̸∈ Fi−1 do // vj is entering the frontier
3 n̂.comp[vj] := j // The initial component ID is the index of vj

4 if x = 1 then // Merge two components of vi1 , vi2
5 cmin := min{n̂.comp[vi1], n̂.comp[vi2]}
6 cmax := max{n̂.comp[vi1], n̂.comp[vi2]}
7 foreach vj ∈ Fi do
8 if n̂.comp[vj] = cmax then n̂.comp[vj] := cmin

9 foreach vj ∈ {vi1 , vi2} such that vj ̸∈ Fi do // vj is leaving the frontier
10 Forget n̂.comp[vj]

Procedure CheckTerminal(n̂, i, x)

1 Let (vi1 , vi2) denote ei ∈ E
2 if x = 1 then
3 if n̂.comp[vi1] = n̂.comp[vi2] then // vi1 , vi2 are in the same component
4 return 0 // we have a cycle by adding ei

5 Copy n̂ to n′

6 UpdateInfo(n′, i, x)
7 foreach vj ∈ {vi1 , vi2} satisfying vj ̸∈ Fi do // vj is leaving from the frontier
8 if (∀vk ∈ Fi n̂.comp[vj] ̸= n̂.comp[vk]) then
9 // vj ’s connected component cannot connect to any other components

10 if (i = m) and (n̂.comp[vi1] = n̂.comp[vi2]) then
11 // we have checked all edges in E, and all vertices are connected
12 return 1

13 else // we have two or more connected components
14 return 0

15 Fi := Fi \ {vj}
16 return nil

B Folding the third box

Let L30 be the set of all common developments of two boxes of size 1 × 1 × 7
and 1 × 3 × 3. In this section, we describe the algorithm that checks if each
development in L30 can fold into the third box of size

√
5 ×

√
5 ×

√
5 or not.

Hereafter, for short, we call the third box of size
√
5×

√
5×

√
5 the cube of size√

5
3
, and each common development in L30 a pentomino of area 30. We assume

that each pentomino consists of 30 unit squares that are placed on the xy-plane
such that the coordinates of each vertex of unit squares are positive integers.

Let P be any pentomino in L30 and Q the cube of size
√
5
3
.

We first have the following lemma:

Lemma 1. (C.f. [6, Sec. 22.1.3]) If a pentomino P can fold into the cube Q of

size
√
5
3
, all vertices of Q are on the boundary of P .

Proof. If some vertex of Q is obtained by gluing with some point p inside of P ,
the vertex already has the degree 360◦ by p, which contradicts that the vertex
has the degree 270◦ in total on Q.

Lemma 1 holds for a general convex polyhedron. We moreover can guarantee
that the vertices are on integer points on P in our case:

Theorem 3. If a pentomino P can fold into the cube Q of size
√
5
3
, the coor-

dinates of every vertex of Q on the boundary of P are integers on the xy-plane.

P

p

q

Fig. 8. An example of a development P of a cube
Q. For a polygon P , once we fix the edge pq of Q
on P , the points p and q on the boundary of P will
become the vertices on Q. Then the square grid in-
duced by pq (dotted lines) gives the crease pattern
on P . Moreover, the intersection points (white cir-
cles) of the square grid induced by pq on the bound-
ary of P give the vertices of Q.

Fig. 9. The shape of the cube

of size
√
5
3
folded from a pen-

tomino in L30.

Proof. Let p = (xp, yp) be any point on the boundary of P such that it becomes a
(part of) vertex on Q. We suppose that at least one of xp and yp is not an integer.
Let q = (xq, yq) be a point on the boundary of P such that the distance between
p and q is

√
5. Then it is easy to see that q = (xq, yq) is one of (xp + 2, yp + 1),

(xp +1, yp +2), (xp +2, yp − 1), (xp +1, yp − 2), (xp − 1, yp +2), (xp − 2, yp +1),
(xp − 1, yp − 2), and (xp − 2, yp − 1). Since we will fold P into Q, one of such
points q will become another vertex of Q. Then, Lemma 1 with this observation
implies that the line pq determines an edge of Q (or a crease line of P), and all
vertices of Q are on the intersection points on the square grid defined by pq on
P . In other words, once we fix the points pq on P and its corresponding square
grid, the folding lines are given by this square grid (one example is depicted in
Fig. 8).

Now at least one of xp and yp is not an integer. Then, all intersection points
on the square grid on the boundary of P have angle 180◦ since P consists of unit
squares. Thus we cannot fold into any vertex of Q by gluing these 180◦ materials
since the angle at the vertex is 270◦, which is a contradiction. Therefore, every
vertex on Q should be mapped to some points of integer coordinates on P .

By Theorem 3, the resulting cube Q folded from P can be depicted as in
Fig. 9 or its mirror image. Thus 30 unit squares of P are partitioned into two
groups. One consists of 6 unit squares, and each square in this group is located
at the center of one of six square faces of Q. The other group consists of 24 unit
squares, and each square is folded along the line as in the figure. When one unit
square is in the second group, the number of possible ways of folding is eight
(at each of four corners, we have two choices to fold). Once we fix the way of
folding of a unit square, we can determine the square grid defined by the folding
line, which completely gives the crease lines to fold Q. For a fixed unit square s

1

10 11 12

13 14 15

16 17 18

1 2 3

4 5 6

7 8 9

Fig. 10. There are 18
choices for letting a unit
square s with respect to
the square grid of size√
5.

Fig. 11. The graph G(Q) induced by the cube Q. White
and black circles are vertices, and black lines are edges
in G(Q). Two vertices are adjacent if and only if the
corresponding squares share an edge on the cube.

in P , carefully counting (Fig. 10), we have 18 choices of the situation of s with
respect to the square grid in total, which give us the way of folding for a given
polyomino P . The outline of our algorithm to check if P can fold into Q is in
Algorithm 2. The correctness of the algorithm follows from the above discussion,
and the implementation is straightforward except the last step.

Algorithm 2: Outline of the check

Input : Polyomino P in L30

Output: Determine if P folds into the cube Q of size
√
5
3

1 fix any unit square s in P ;
2 for i = 1, 2, . . . , 18 do
3 choose the ith square grid with respect to s;
4 put P on the square grid;
5 if P contains an intersection point of the grid inside of P then output

“No” output “Yes” if we can obtain Q by folding P along the lines given by
the square grid;

Now we suppose that P contains no intersection point for the fixed square
grid of size

√
5. Since P is connected and consists of 30 unit squares, we have

some intersection points of the square grid on the boundary of P . Then the
last step of Algorithm 2 can be considered as a kind of the graph isomorphism
problem as follows.

First, we construct a graph G(P) = (VP , EP) from P as follows; VP is the
set of unit squares in P , and EP consists of edges {u, v} if and only if two
squares u and v in VP share an edge in P . Next we construct the similar graph
G(Q) = (VQ, EQ) from the cube Q in the same manner: VQ is the set of unit
square on Q, and two unit squares are joined by an edge if and only if two unit
squares share an edge on Q. The graph G(Q) is illustrated in Fig. 11.

Once we fix the square grid of size
√
5 on P , we can partition the unit squares

in P into two groups. Now pick one square in P which is one of the six squares
located at the center of a square of the cube Q. (In Fig. 11, they are depicted
by white vertices.) From there, we stick each unit square in P one by one on
Q along the edges in G(P). Each edge in EP is matched to the corresponding
edge in EQ, and it is not difficult to check if G(P) is a subgraph of G(Q) with
keeping their geometric relationship. If two vertices in VP in G(P) come to the
same vertex in G(Q), the corresponding unit squares in P are overlapping on
Q. If every vertex in G(Q) is matched by exactly one vertex in G(P) in this
manner, we can decide P can fold into Q in this way of folding given by the
current square grid. The implementation is not hard, and the program runs in
a minute since there are only 1076 polyominoes P of area 30 in L30.

As a result, we obtain nine polyominoes that fold into three different boxes
of size 1× 1× 7, 1× 3× 3, and

√
5×

√
5×

√
5 (Fig. 4), and one of them admits

two different ways of folding into the cube of size
√
5
3
(Fig. 5).

