
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Route-Enabling Graph Orientation Problems

Author(s)
Ito, Takehiro; Miyamoto, Yuichiro; Ono, Hirotaka;

Tamaki, Hisao; Uehara, Ryuhei

Citation Algorithmica, 65(2): 317-338

Issue Date 2013-02

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/13766

Rights

This is the author-created version of Springer,

Takehiro Ito, Yuichiro Miyamoto, Hirotaka Ono,

Hisao Tamaki, and Ryuhei Uehara, Algorithmica,

65(2), 2013, 317-338. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/s00453-011-9589-z

Description

Algorithmica manuscript No.
(will be inserted by the editor)

Route-Enabling Graph Orientation Problems

Takehiro Ito · Yuichiro Miyamoto ·
Hirotaka Ono · Hisao Tamaki ·
Ryuhei Uehara

Received: date / Accepted: date

Abstract Given an undirected and edge-weighted graph G together with a set of or-

dered vertex-pairs, called st-pairs, we consider two problems of finding an orientation

of all edges in G: min-sum orientation is to minimize the sum of the shortest di-

rected distances between all st-pairs; and min-max orientation is to minimize the

maximum shortest directed distance among all st-pairs. Note that these shortest di-

rected paths for st-pairs are not necessarily edge-disjoint. In this paper, we first show

that both problems are strongly NP-hard for planar graphs even if all edge-weights are

identical, and that both problems can be solved in polynomial time for cycles. We then

consider the problems restricted to cacti, which form a graph class that contains trees

and cycles but is a subclass of planar graphs. Then, min-sum orientation is solvable

An extended abstract of this paper has been presented at the 20th International Symposium
on Algorithms and Computation (ISAAC 2009) [7].

This work is partially supported by Grant-in-Aid for Scientific Research.

T. Ito
Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan
E-mail: takehiro@ecei.tohoku.ac.jp

Y. Miyamoto
Faculty of Science and Technology, Sophia University,
Kioi-cho 7-1, Chiyoda-ku, Tokyo, 102-8554, Japan
E-mail: miyamoto@sophia.ac.jp

H. Ono
Faculty of Economics, Kyushu University,
6-19-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
E-mail: ono@csce.kyushu-u.ac.jp

H. Tamaki
School of Science and Technology, Meiji University,
Higashi-mita 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
E-mail: tamaki@cs.meiji.ac.jp

R. Uehara
School of Information Science, JAIST,
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
E-mail: uehara@jaist.ac.jp

2

in polynomial time, whereas min-max orientation remains NP-hard even for two st-

pairs. However, based on LP-relaxation, we present a polynomial-time 2-approximation

algorithm for min-max orientation. Finally, we give a fully polynomial-time approx-

imation scheme (FPTAS) for min-max orientation on cacti if the number of st-pairs

is a fixed constant.

Keywords approximation algorithm · cactus · dynamic programming · fully

polynomial-time approximation scheme · graph orientation · planar graph · reachability

1 Introduction

Consider the situation in which we wish to assign one-way restrictions to (narrow)

aisles in a limited area, such as in an industrial factory, with keeping reachability be-

tween several sites. Since traffic jams rarely occur in industrial factories, the distances

of routes between important sites directly affect transit time, productivity, etc. This

situation frequently appears in the context of the scheduling of automated guided vehi-

cles without collision [8,9]. In this paper, we model this situation as graph orientation

problems, in which we wish to find an orientation so that the distances of (directed)

routes are not so long for given multiple st-pairs.

Let G = (V, E) be an undirected graph together with an assignment of a non-

negative integer, called the weight ω(e), to each edge e in G. Assume that we are given

q ordered vertex-pairs (si, ti), 1 ≤ i ≤ q, called st-pairs. Then, an orientation of G is

an assignment of exactly one direction to each edge in G so that there exists a directed

(si, ti)-path (i.e., a directed path from si to ti) for every st-pair (si, ti), 1 ≤ i ≤ q. Note

that these directed (si, ti)-paths, 1 ≤ i ≤ q, are not necessarily edge-disjoint, that is,

some of directed (si, ti)-paths may share an edge (passing through the same direction).

We denote by G an orientation of G. For an orientation G of G and an st-pair (si, ti),

we denote by ω(G, si, ti) the total weight of a shortest directed (si, ti)-path in G, that

is,

ω(G, si, ti) = min {ω(P) | P is a directed (si, ti)-path in G}

where ω(P) is the sum of weights of all edges in a path P . We introduce two ob-

jective functions for orientations G of a graph G, and study the corresponding two

minimization problems. The first objective is of sum-type, defined as follows: g(G) =∑
1≤i≤q ω(G, si, ti). Its corresponding problem, called the min-sum orientation prob-

lem, is to find an orientation G of G such that g(G) is minimum; we denote by

g∗(G) the optimal value for G. The second objective is of max-type, defined as follows:

s2

s1 s3
=

t2

t3

t1

8

9

4

3 2

1

10

5

6

s2

s1 s3
=

t2

t3

t1

8

9

4

3 2

1

10

5

6

(a) (b)

Fig. 1 (a) Solution for min-sum orientation and (b) solution for min-max orientation.

3

Table 1 Summary of our results.

min-sum orientation min-max orientation

planar • strongly NP-hard • strongly NP-hard
graphs • no (2 − ε)-approximation
cacti O(nq2) • NP-hard even for q = 2

• polynomial-time 2-approximation
• FPTAS for a fixed constant q

cycles O(n + q2) O(n + q2)

h(G) = max{ω(G, si, ti) | 1 ≤ i ≤ q}. Its corresponding problem, called the min-max

orientation problem, is to find an orientation G of G such that h(G) is minimum; we

denote by h∗(G) the optimal value for G. Let g∗(G) = +∞ and h∗(G) = +∞ if there

is no orientation for G that contains a directed (si, ti)-path for every st-pair (si, ti),

1 ≤ i ≤ q.

Figure 1 illustrates two orientations of the same graph G for the same set of st-

pairs, where the weight ω(e) is attached to each edge e and the direction assigned to

an edge is indicated by an arrow (but the directions are not indicated for the edges

that are not used in any shortest directed (si, ti)-path, 1 ≤ i ≤ 3). The orientation G

in Fig. 1(a) is an optimal solution for min-sum orientation, where g∗(G) = g(G) =

(1 + 6 + 8) + 2 + (6 + 5) = 28. On the other hand, Fig. 1(b) illustrates an optimal

solution for min-max orientation, in which the st-pair (s1, t1) has the maximum

distance; h∗(G) = max{1 + 2 + 9, 4 + 3 + 1, 6 + 5} = 12.

Obviously, both problems can be solved in polynomial time if we are given a single

st-pair (s1, t1); in this case, we simply seek a shortest path between s1 and t1. Robbins

[12] showed that every 2-edge-connected graph can be directed so that the resulting

digraph is strongly connected. Therefore, a graph G has at least one orientation for

any set of st-pairs if G is 2-edge-connected. Chvátal and Thomassen [2] showed that

it is NP-complete to determine whether a given unweighted graph can be directed

so that the resulting digraph is strongly connected and whose (directed) diameter is

2. This implies that our min-max orientation is NP-hard in general. In contrast,

Eggemann and Noble [3] showed that, for every fixed constant l, it can be determined

in linear time whether a given planar graph has an orientation such that the resulting

graph is strongly connected with directed diameter at most l. (The hidden coefficient

of their running time is exponential in l.) Medvedovsky et al. [10] studied the problem

of directing a 1-edge-connected graph so as to maximize the number of st-pairs (si, ti)

having a directed (si, ti)-path for a given set of st-pairs. They showed that the problem

is NP-hard in general, while Hakimi et al. [6] proposed a quadratic-time algorithm for

the case where the given set of st-pairs consists of all ordered vertex-pairs V × V .

In this paper, we mainly give the following three results. (Table1 summarizes our

results, where n is the number of vertices in a graph.) The first is to show the computa-

tional hardness of our problems. Specifically, we show that both problems are strongly

NP-hard for planar graphs even if all edge-weights are identical. We remark that the

known result of [2] does not imply NP-hardness for planar graphs. The second is to

show that both problems can be solved in polynomial time for cycles. By extending

the algorithm for cycles, we then show that min-sum orientation is solvable in poly-

nomial time for cacti, whereas min-max orientation remains NP-hard even for cacti

with q = 2. (Cacti form a graph class that contains trees and cycles, but is a sub-

class of planar graphs; a formal definition of cacti will be given in Section 2.2.) The

4

third is to give a fully polynomial-time approximation scheme (FPTAS) for min-max

orientation on cacti if q is a fixed constant; the polynomial running time depends

exponentially on q.

In addition, we give several results on the way to the three main results above.

Firstly, our proof of strong NP-hardness implies that, for any constant ε > 0, min-max

orientation admits no polynomial-time (2 − ε)-approximation algorithm unless P =

NP. Secondly, in order to obtain both lower and upper bounds on h∗(G) for a cactus G,

we present a polynomial-time 2-approximation algorithm based on LP-relaxation; we

remark that q is not required to be a fixed constant for this 2-approximation algorithm.

We finally remark that our complexity analysis for min-max orientation on cacti is

tight in the following sense: the problem is in P if q = 1, but is NP-hard for q = 2;

moreover, our third result implies that the problem for cacti cannot be strongly NP-

hard if q is a fixed constant [11, p. 307].

2 Computational Hardness

In this section, we show the computational hardness of our problems. In Section 2.1,

we first show that our two problems are both strongly NP-hard for planar graphs. We

then show in Section 2.2 that min-max orientation remains NP-hard even for cacti

with q = 2.

2.1 Strongly NP-hardness for planar graphs

We first give the following theorem for min-max orientation.

Theorem 1 Min-max orientation is strongly NP-hard for planar graphs of maxi-

mum degree 4 even if all edge-weights are identical.

Proof We show that the planar 3-SAT problem, which is known to be strongly NP-

complete [4, p. 259], can be reduced in polynomial time to the min-max orientation

problem for planar graphs.

In planar 3-SAT, we are given a Boolean formula ϕ in conjunctive normal form,

say with set U of n variables u1, u2, . . . , un and set C of m clauses c1, c2, . . . , cm, such

that each clause cj ∈ C contains exactly three literals and the following bipartite graph

B = (V ′, E′) is planar: V ′ = U ∪ C and E′ contains exactly those pairs {ui, cj} such

that either ui or ūi appears in cj . The planar 3-SAT problem is to determine whether

there is a satisfying truth assignment for ϕ.

Given an instance of planar 3-SAT, we construct the corresponding instance of

min-max orientation. We first make a flower gadget Fi(M) for each variable ui ∈ U ,

and then construct the whole graph Gϕ corresponding to ϕ.

Flower gadget Fi(M)

We first define a flower gadget Fi(M) for each variable ui ∈ U . Let M be a fixed

constant (integer) such that M ≥ 3. (We here introduce the constant M , instead

of specifying M = 3, to prove Corollary 1 later.) The flower gadget Fi(M) = (Vi, Ei)

consists of 2m hexagonal elementary cycles, as illustrated in Fig. 2(a). (Remember that

m is the number of clauses in ϕ.) More precisely, Vi = {ak, bk, ck, dk | 1 ≤ k ≤ 2m}
and Ei = {{ak+1, ak}, {ak, bk}, {bk, ck}, {ck, dk}, {dk, bk+1} | 1 ≤ k ≤ 2m}, where

5

a1

a2m

a2
a3

b1

b2m

b2

b3

c1

c11

c2m

c2

c12
d1

d11

c16

d16
c13

c14

c15

d13

d15

d14F1(M) F2(M)

F4(M) F5(M)

F3(M)

d2m

c2m-1

d2m-1

d2

d12

c45

c46 d45

c44

d44c41

c42 c43

d41

d43

d42

d46
c55

c56 d55

c54

d54
c51

c52

c53

d51

d53
d52

d56

c31

c32 d31

c36

d36c33

c34

c35

d33

d35

d34

d32

c21

c23c24

c25

c26

c22

d21

d23

d24

d25

d26

d22

s1

2M 2M

t1

r1

s2

2M 2M

t2

r2

s3

2M 2M

t3

r3

(a) (b)

Fig. 2 (a) Flower gadget Fi(M), and (b) planar graph Gϕ corresponding to a Boolean formula
ϕ with three clauses c1 = (u1 ∨ ū2 ∨ u4), c2 = (u2 ∨ u5 ∨ u4) and c3 = (u2 ∨ ū3 ∨ ū5).

a2m+1 = a1 and b2m+1 = b1. The edge-weights are defined as follows: for each k,

1 ≤ k ≤ 2m, ω({ak+1, ak}) = ω({bk, ck}) = ω({dk, bk+1}) = M and ω({ak, bk}) =

ω({ck, dk}) = 1. (In Fig. 2(a), the weight-M edges are depicted by thick lines.) Finally,

we define the set STi of 12m st-pairs, as follows:

STi = {(ak, dk), (dk, ak), (bk, bk+1), (bk+1, bk), (ck, ak+1), (ak+1, ck) |1 ≤ k ≤ 2m}.

For each k, 1 ≤ k ≤ 2m, the kth hexagonal elementary cycle akbkckdkbk+1ak+1 is

called the kth petal Pk; Pk is called an odd petal if k is odd, while is called an even

petal if k is even. We call the edge {ck, dk} in each petal Pk, 1 ≤ k ≤ 2m, an external

edge of Pk. For the sake of convenience, we fix the embedding of Fi(M) such that the

outer face consists of bk, ck, dk, 1 ≤ k ≤ 2m, which are placed in a clockwise direction,

as illustrated in Fig. 2(a).

It is easy to see that Fi(M) has only two optimal orientations for STi: the one

is to direct each odd petal in a clockwise direction and to direct each even petal in

a counterclockwise direction; and the other is the reversed one. In the first optimal

orientation, the external edges {ck, dk} are directed from ck to dk in all odd petals

Pk, while directed from dk to ck in all even petals; we call this optimal orientation of

Fi(M) a true-orientation, which corresponds to assigning true to the variable ui. On

the other hand, the other optimal orientation of Fi(M) is called a false-orientation,

which corresponds to assigning false to ui. Clearly, h∗(Fi(M)) = 2M + 1.

Corresponding graph Gϕ

We now construct the planar graph Gϕ corresponding to the formula ϕ, as follows.

We fix a plane embedding of the bipartite graph B = (V ′, E′) arbitrarily. For each

variable ui, 1 ≤ i ≤ n, we replace it with the flower gadget Fi(M). For each clause

cj , 1 ≤ j ≤ m, we replace it with a path consisting of three vertices sj , rj , tj ; let

ω({sj , rj}) = ω({rj , tj}) = 2M . We then connect flower gadgets Fi(M), 1 ≤ i ≤ n,

with paths sjrjtj , 1 ≤ j ≤ m, as follows. For each clause cj , 1 ≤ j ≤ m, let lj1, lj2, lj3
be the three literals in cj whose corresponding flower gadgets Fj1(M), Fj2(M), Fj3(M)

are placed in a clockwise order around the path sjrjtj . Assume that ljk, 1 ≤ k ≤ 3, is

either ui or ūi. Then, we replace the edge of B joining variable ui and clause cj with

a pair of weight-1 edges which, together with an external edge in Fi(M), forms a path

6

between two vertices chosen from {sj , rj , tj}, according to the following rules (see Fig.

2(b) as an example):

(i) The endpoints of this path are sj and rj if k = 1; rj and tj if k = 2; and sj and

tj if k = 3.

(ii) The external edge is from an even petal if lj1 = ui, lj2 = ui, or lj3 = ūi; while it

is from an odd petal if lj1 = ūi, lj2 = ūi, or lj3 = ui.

(iii) From the viewpoint of variable ui, we choose a distinct external edge for each

clause containing ui, honoring the order of those clauses around ui and thereby

preserving the planarity of the embedding.

Finally, we replace each edge e in Gϕ with a path of length ω(e) in which all edges are

of weight 1. (Remember that M is a fixed constant.) Clearly, the resulting graph Gϕ

is a planar graph of maximum degree 4, and can be constructed in polynomial time.

The set of all st-pairs in this instance is defined as follows:(
n∪

i=1

STi

)
∪ {(sj , tj) | 1 ≤ j ≤ m}.

Therefore, there are (12mn + m) st-pairs in total. This completes the construction of

the corresponding instance of min-max orientation.

We now show that h∗(Gϕ) ≤ 2M + 3 if and only if there exists a satisfying truth

assignment for ϕ, and hence min-max orientation is strongly NP-hard for planar

graphs of maximum degree 4 even if all edge-weights are identical.

Consider any satisfying truth assignment for ϕ. Then, according to the truth as-

signment, we assign either the true-orientation or the false-orientation to each flower

gadget in Gϕ. Since each clause cj contains at least one true-literal, Gϕ has an ori-

entation Gϕ such that there exists a directed (sj , tj)-path of distance at most 2M + 3

via the external edge in the flower gadget corresponding to the true-literal. Therefore,

h∗(Gϕ) ≤ 2M + 3 if there exists a satisfying truth assignment for ϕ.

Conversely, consider any orientation Gϕ of Gϕ such that h(Gϕ) ≤ 2M + 3. Then,

each flower gadget Fi(M) must be directed as either the true-orientation or the false-

orientation; otherwise h(Gϕ) > 2M + 3. Moreover, since the distance of a shortest

directed (sj , tj)-path in Gϕ is at most 2M + 3 for each j, 1 ≤ j ≤ m, it must pass

through at least one external edge. This means that each clause cj , 1 ≤ j ≤ m, contains

at least one true-literal, and hence there exists a satisfying truth assignment for ϕ. ⊓⊔

From the proof of Theorem 1, we obtain the following corollary.

Corollary 1 For any constant ε > 0, min-max orientation admits no polynomial-

time (2 − ε)-approximation algorithm for planar graphs of maximum degree 4 unless

P = NP.

Proof Notice that, if there is no satisfying truth assignment for a given instance ϕ of

planar 3-SAT, then h∗(Gϕ) ≥ 4M for the corresponding instance Gϕ of min-max

orientation. Suppose for a contradiction that the problem admits a polynomial-time

(2 − ε)-approximation algorithm for some constant ε > 0. Let M = 3 ·
⌈

1
ε

⌉
. Then,

(2 − ε)(2M + 3) < 4M , and hence one can distinguish either h∗(G) ≤ 2M + 3 or

h∗(G) ≥ 4M in polynomial time using the algorithm. This is a contradiction unless

P = NP. ⊓⊔

7

We then give the following theorem for min-sum orientation.

Theorem 2 Min-sum orientation is strongly NP-hard for planar graphs of maxi-

mum degree 3 even if all edge-weights are identical.

Proof The proof is analogous to that for Theorem 1, but we give a reduction from the

planar max 2-SAT problem which is known to be strongly NP-complete [5].

In planar max 2-SAT, we are given a Boolean formula ϕ in conjunctive normal

form, say with set U of n variables u1, u2, . . . , un and set C of m clauses c1, c2, . . . , cm,

such that each clause cj ∈ C contains exactly two literals and the bipartite graph B =

(U ∪ C, E′) is planar. The planar max 2-SAT problem is to find a truth assignment

for ϕ which satisfies at least ℓ clauses, for a given integer ℓ.

Given an instance of planar max 2-SAT, we construct the corresponding instance

of min-sum orientation. We construct the same flower gadget Fi(M) for each variable

ui ∈ U . Then, each flower gadget Fi(M) has only two optimal orientations for STi, that

is, the true-orientation and the false-orientation, and hence g∗(Fi(M)) = 18m(M +1).

On the other hand, we simply introduce an edge {sj , tj} for each clause cj ∈ C,

instead of the path consisting of three vertices sj , rj , tj ; let ω({sj , tj}) = 3M + 2.

We analogously connect the gadgets, but let the weight of the edge joining sj , 1 ≤
j ≤ m, and the endpoint of external edge be M . Note that the resulting graph Gϕ

corresponding to ϕ is a planar graph of maximum degree 3 since each clause contains

two literals.

We now show that g∗(Gϕ) ≤ 18mn(M + 1) + (M + 2)ℓ + (3M + 2)(m − ℓ) if and

only if there exists a truth assignment for ϕ which satisfies at least ℓ clauses.

Consider any truth assignment for ϕ which satisfies at least ℓ clauses. Then, ac-

cording to the truth assignment, we assign either the true-orientation or the false-

orientation to each flower gadget in Gϕ. If a clause cj ∈ C is satisfied by the truth

assignment, then cj contains at least one true-literal and hence we can direct edges so

that there exists a directed (sj , tj)-path of distance M + 2 via the external edge in the

flower gadget corresponding to the true-literal. On the other hand, if a clause cj ∈ C

is not satisfied by the truth assignment, then cj contains no true-literal; we direct

the edge {sj , tj} from sj to tj , and hence there is a directed (sj , tj)-path of distance

ω({sj , tj}) = 3M + 2. Since at least ℓ clauses are satisfied by the truth assignment, we

have g∗(Gϕ) ≤ 18mn(M + 1) + (M + 2)ℓ + (3M + 2)(m − ℓ).

Conversely, consider any orientation Gϕ of Gϕ such that g(Gϕ) ≤ 18mn(M +1)+

(M + 2)ℓ + (3M + 2)(m − ℓ). Suppose for a contradiction that any truth assignment

for ϕ satisfies at most ℓ − 1 clauses. Remember that each flower gadget Fi(M) has

only two optimal orientations for STi, and g∗(Fi(M)) = 18m(M + 1). Then, since at

most ℓ− 1 clauses can be satisfied, some of the flower gadgets must be directed in Gϕ

as neither the true-orientation nor the false-orientation so as to increase the number

of st-pairs (sj , tj) having directed (sj , tj)-paths of distance M + 2 via external edges.

However, reversing the direction of one external edge would detour some st-pair in STi

of additional distance at least 2M + 1; moreover, the additional distance would be at

least 2M+3 if the detour goes through outside the flower gadget. Therefore, each flower

gadget must be directed in Gϕ as either the true-orientation or the false-orientation,

and hence g(Gϕ) > 18mn(M + 1) + (M + 2)ℓ + (3M + 2)(m− ℓ), a contradiction. ⊓⊔

8

2.2 NP-hardness for cacti

We then show that min-max orientation remains NP-hard even for cacti with q = 2.

A graph G is a cactus if every edge is part of at most one cycle in G [1, p. 169][13].

(See Figs. 3 and 4(a) as examples of cacti.) Cacti form a subclass of planar graphs.

However, we have the following theorem.

Theorem 3 Min-max orientation is NP-hard for cacti of maximum degree 4 even

if q = 2.

Proof We show that the partition problem, which is known to be NP-complete [4,

p. 223], can be reduced in polynomial time to the min-max orientation problem for

cacti with q = 2.

In partition, we are given a finite set A = {a1, a2, . . . , an} in which each ele-

ment ai ∈ A has a positive integer size s(ai). Then, the partition problem is to

decide whether there is a subset A′ ⊂ A such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a) =
1
2

∑
a∈A s(a).

From a given instance A of partition, we construct a graph G = (V, E) as the

corresponding instance of min-max orientation, as follows. The vertex set V consists

of 2n + 1 vertices v0, v1, . . . , vn, u1, u2 . . . , un. The edge set E consists of 3n edges

{ui, vi−1}, {vi−1, vi} and {vi, ui}, 1 ≤ i ≤ n; each elementary cycle Ci, 1 ≤ i ≤
n, consisting of the three edges {ui, vi−1}, {vi−1, vi} and {vi, ui} is called the i-th

cycle of G. (See Fig. 3.) The weights of edges are defined as follows: ω({ui, vi−1}) =

ω({vi−1, vi}) = 1 and ω({vi, ui}) = s(ai) for each i, 1 ≤ i ≤ n. Clearly, G is a cactus.

Let (s1, t1) = (v0, vn) and (s2, t2) = (vn, v0), and hence q = 2. This completes the

construction of the corresponding instance of min-max orientation.

We now show that h∗(G) = n + 1
2

∑
a∈A s(a) if and only if there exists a desired

subset A′ for A. Since every orientation of G must have both a directed (v0, vn)-path

P1 and a directed (vn, v0)-path P2, any orientation of G satisfies the following two

properties: for each i, 1 ≤ i ≤ n,

(i) if the edge {vi−1, vi} is directed from vi−1 to vi, then the edge {vi, ui} is directed

from vi to ui and the edge {ui, vi−1} is directed from ui to vi−1; and

(ii) conversely, if {vi−1, vi} is directed from vi to vi−1, then {ui, vi−1} is directed

from vi−1 to ui and {vi, ui} is directed from ui to vi.

Therefore, we clearly have E(P1) ∪ E(P2) = E, where E(P1) and E(P2) are the sets

of edges in P1 and P2, respectively. Since q = 2 and ω(P1) + ω(P2) =
∑

e∈E ω(e) =

2n +
∑

a∈A s(a), we have

h(G) ≥ n +
1

2

∑
a∈A

s(a) (1)

= t2

= s1v0

= s2

= t1v1 v2 vn-2 vn-1 vn

u1 u2 un-1 un

1 1 11

1 1 1 1
s(a1) s(a2) s(an-1) s(an)

...

Fig. 3 Cactus with two st-pairs corresponding to instance A of partition.

9

for any orientation G of G.

Suppose that G has an orientation G such that h(G) = n + 1
2

∑
a∈A s(a). Note

that by Eq. (1) we have h∗(G) = h(G). Then, the following subset A′ of A is clearly a

desired subset for partition:

A′ = {ai ∈ A | the i-th cycle Ci of G is directed as (i) above in G}.

Conversely, suppose that there exists a desired subset A′ of A. Then,
∑

a∈A′ s(a) =∑
a∈A\A′ s(a) = 1

2

∑
a∈A s(a). We define the corresponding orientation G of G, as

follows: if ai ∈ A is in A′, then the i-th cycle Ci of G is directed as (i) above; otherwise

Ci is directed as (ii) above. Then

h(G) = ω(P1) = ω(P2) = n +
1

2

∑
a∈A

s(a),

and hence by Eq. (1) this orientation G is optimal for the corresponding instance of

min-max orientation. ⊓⊔

3 Polynomial-Time Algorithms

In this section, we first show that both min-sum orientation and min-max ori-

entation can be solved in polynomial time for cycles. We then show that min-sum

orientation is solvable in polynomial time for cacti by extending the algorithm for

cycles.

3.1 Min-sum orientation and min-max orientation for cycles

The main result of this section is the following theorem.

Theorem 4 Both min-sum orientation and min-max orientation can be solved in

time O(n + q2) for a cycle C, where n is the number of vertices in C.

In the remainder of this subsection, we give a proof of Theorem 4. Suppose that we

are given an edge-weighted cycle C = (V, E) and q st-pairs (si, ti), 1 ≤ i ≤ q. Note that

C has at least one orientation for any set of st-pairs: simply directing C in a clockwise

direction. Therefore, g∗(C) ̸= +∞ and h∗(C) ̸= +∞.

For each st-pair (si, ti), 1 ≤ i ≤ q, let cw(i) be the set of all edges in the di-

rected (si, ti)-path when all edges in C are directed in a clockwise direction, and let

acw(i) be the set of all edges in the directed (si, ti)-path when all edges in C are di-

rected in a counterclockwise (anticlockwise) direction. Clearly, for each i, 1 ≤ i ≤ q,

{cw(i), acw(i)} is a partition of E, that is, cw(i)∩ acw(i) = ∅ and cw(i)∪ acw(i) = E.

We introduce a {0, 1}-variable xi for each st-pair (si, ti), 1 ≤ i ≤ q: if xi = 0, then the

edges in cw(i) are directed in a clockwise direction; if xi = 1, then the edges in acw(i)

are directed in a counterclockwise direction. For two st-pairs (si, ti) and (sj , tj), the

two corresponding variables xi and xj have the following constraints (a)–(c):

(a) if cw(i) ∩ acw(j) ̸= ∅ and acw(i) ∩ cw(j) ̸= ∅, then xi = xj ;

(b) if cw(i) ∩ acw(j) = ∅ and acw(i) ∩ cw(j) ̸= ∅, then xi ≤ xj ; and

(c) if cw(i) ∩ acw(j) ̸= ∅ and acw(i) ∩ cw(j) = ∅, then xi ≥ xj .

10

Since {cw(k), acw(k)} is a partition of E for each k, 1 ≤ k ≤ q, it is easy to see that no

pair of st-pairs (si, ti) and (sj , tj), 1 ≤ i, j ≤ q, with i ̸= j, satisfies cw(i)∩ acw(j) = ∅
and acw(i)∩ cw(j) = ∅, and hence any two variables xi and xj have exactly one of the

constraints (a)–(c) above.

We now construct a constraint graph C in which each vertex vi corresponds to an

st-pair (si, ti) and there is an edge between two vertices vi and vj if and only if the

corresponding variables xi and xj have the constraint xi = xj , that is, cw(i)∩acw(j) ̸=
∅ and acw(i) ∩ cw(j) ̸= ∅. From an orientation of C, we can obtain an assignment of

{0, 1} to each variable xk, 1 ≤ k ≤ q; clearly, any two variables satisfy their constraint,

and hence two variables xi and xj receive the same value if their corresponding vertices

vi and vj are contained in the same connected component of C.

Let V = {V1, V2, . . . , Vm} be the partition of the vertex set of C such that each Vi,

1 ≤ i ≤ m, forms a connected component of C. Then, we define a relation “≤” on V,

as follows: Vi ≤ Vj if and only if there exist two vertices vi ∈ Vi and vj ∈ Vj such that

their corresponding variables xi and xj have the constraint xi ≤ xj . We show that V
is totally ordered under the relation ≤, as in the following lemma.

Lemma 1 V is totally ordered under the relation ≤.

Proof Consider any two subsets Vi and Vj in V such that Vi ̸= Vj . We will show that

exactly one of Vi ≤ Vj and Vi ≥ Vj holds. It suffices to show that, for any two vertices

vi1 and vi2 in Vi and a vertex vj in Vj , their corresponding variables xi1 , xi2 and xj

have exactly one of the following constraints (i) and (ii): (i) xi1 ≤ xj and xi2 ≤ xj ;

and (ii) xi1 ≥ xj and xi2 ≥ xj .

Suppose for a contradiction that the variables have the constraints xi1 ≤ xj and

xi2 ≥ xj ; it is similar for the case xi1 ≥ xj and xi2 ≤ xj . Since vi1 , vi2 ∈ Vi, there is

a path between vi1 and vi2 via only vertices in Vi. Then, since xi1 ≤ xj and xi2 ≥ xj ,

the path contains at least one edge joining vik
and vik′ whose corresponding variables

satisfy the two constraints xik
≤ xj and xik′ ≥ xj . Since vik

and vik′ are adjacent

in C, the constraint xik
= xik′ holds. Therefore, we have cw(ik) ∩ acw(ik′) ̸= ∅ and

acw(ik) ∩ cw(ik′) ̸= ∅. Let

e ∈ cw(ik) ∩ acw(ik′). (2)

Since the constraint xik
≤ xj holds, we have

cw(ik) ∩ acw(j) = ∅ (3)

and acw(ik) ∩ cw(j) ̸= ∅. Similarly, since the constraint xik′ ≥ xj holds, we have

cw(ik′) ∩ acw(j) ̸= ∅ (4)

and acw(ik′) ∩ cw(j) = ∅. Then by Eqs. (2) and (3) we have e /∈ acw(j). Since

{cw(j), acw(j)} is a partition of E, we thus have e ∈ cw(j). Then, by Eq. (2) we

have e ∈ acw(ik′)∩ cw(j) ̸= ∅. Together with Eq. (4), there is the constraint xik′ = xj .

Therefore, C has an edge between vik′ and vj , and hence vj ∈ Vi. This contradicts the

fact that Vi ̸= Vj . ⊓⊔

Lemma 1 implies that, for some index k, 1 ≤ k ≤ m, we have xi = 0 for all

variables xi whose corresponding vertices are contained in Vj with Vj ≤ Vk; otherwise

xi = 1. Therefore, both min-sum orientation and min-max orientation can be

reduced simply to finding such an appropriate index k on V = {V1, V2, . . . , Vm}. Then,

11

both problems can be solved in time O(n + q2), as follows. We first label the vertices

in a clockwise order starting from any vertex, say s1. We can now easily determine,

from the labels of vertices, which of the constraints (a)–(c) above holds in time O(1)

for each pair of st-pairs, and hence the constraint graph C can be constructed in time

O(n+ q2). As a preprocessing, we compute each of the total edge-weights of cw(i) and

acw(i); this can be done in time O(n + q) for all i, 1 ≤ i ≤ q. Then, the appropriate

index k on V can be found in time O(q2). Therefore, both problems can be solved in

time O(n + q2) in total.

3.2 Min-sum orientation for cacti

By extending Theorem 4, min-sum orientation can be solved in polynomial time also

for cacti, as in the following theorem.

Theorem 5 Min-sum orientation can be solved in time O(nq2) for a cactus G,

where n is the number of vertices in G.

Proof It can be easily determined in time O(nq) whether a given cactus G = (V, E) has

at least one (feasible) orientation for the given set of st-pairs; we simply check the st-

pairs that pass through bridges in G; if there exists a pair of st-pairs that pass through

the same bridge in different directions, then G has no orientation. Therefore, we assume

without loss of generality that G has an orientation, and hence g∗(G) ̸= +∞.

Let B be the set of all bridges in G. Then, E \ B induces the set of all elementary

cycles in G; let C be the set of all elementary cycles in G. For each bridge e ∈ B, we

denote by b(e) the number of st-pairs that pass through the bridge e; the values b(e)

for all bridges e ∈ B can be computed in time O(nq). Consider any orientation G of

G. Then, each directed (si, ti)-path, 1 ≤ i ≤ q, can be decomposed into bridges and

subpaths in elementary cycles of G. We thus have

g(G) =
∑
e∈B

b(e) · ω(e) +
∑
c∈C

q∑
i=1

ω(G, c, i), (5)

where ω(G, c, i) is the sum of the weights of all edges that are contained in both a cycle

c ∈ C and the shortest directed (si, ti)-path in G. Equation (5) implies that computing

g∗(G) for a cactus G can be reduced to solving min-sum orientation for each cycle

c ∈ C independently. Using Theorem 4, min-sum orientation for a cycle c can be

solved in time O(|c|+q2), where |c| denotes the number of vertices in c. Therefore, min-

sum orientation for a cactus G can be solved in time O
(
nq +

∑
c∈C(|c| + q2)

)
=

O(nq2). ⊓⊔

4 FPTAS for Min-Max Orientation on Cacti

In contrast to min-sum orientation, as we have shown in Theorem 3, min-max ori-

entation remains NP-hard even for cacti with q = 2. However, in this section, we give

an FPTAS for min-max orientation on cacti if q is a fixed constant.

In Section 4.1 we first present a polynomial-time 2-approximation algorithm based

on LP-relaxation, which gives us both lower and upper bounds on h∗(G) for a given

12

c1
b1

b2

b4b3

c2 c4

c7

c8c5c3
c6

b1

b2

c2 c4

c5c3
c6

c1 = r

b1 = v

b2

b4b3

c2 c4

c7

c8

c5 c6c3

(a) (b) (c)

Fig. 4 (a) A cactus G, (b) an underlay tree T of G, and (c) the subgraph Gv of G.

cactus G. We then show in Section 4.2 that the problem can be solved in pseudo-

polynomial time for cacti. In Section 4.3, we finally give our FPTAS based on the

algorithm in Section 4.2 and using the lower and upper bounds on h∗(G) obtained in

Section 4.1. As in the proof of Theorem 5, we may assume without loss of generality

that G has at least one orientation, and hence h∗(G) ̸= +∞.

[Cactus and its underlay tree]

A cactus G can be represented by an underlay tree T , which is a rooted tree and

can be easily obtained from G in a straightforward way. (See Fig. 4(a) and (b) as an

example). In the underlay tree T of G, each node represents either a bridge of G or an

elementary cycle of G; and if there is an edge between nodes u and v of T , then bridges

or cycles of G represented by u and v share exactly one vertex in G. (A similar idea

can be found in [13, Theorem 11].) Each node v of T corresponds to a subgraph Gv of

G induced by all bridges and cycles represented by the nodes that are descendants of v

in T . Figure 4(c) depicts the subgraph Gv for the left child v of the root r of T in Fig.

4(b). Clearly, Gv is a cactus for each node v of T , and G = Gr for the root r of T . It

is easy to see that an underlay tree T of a given cactus G can be found in linear time,

and hence we may assume that a cactus G and its underlay tree T are both given.

In Section 4.2, we solve min-max orientation by a dynamic programming approach

based on the underlay tree T of G.

4.1 2-approximation algorithm based on LP-relaxation

In this subsection, we give the following theorem. It should be noted that the number

q of st-pairs is not required to be a fixed constant in the theorem.

Theorem 6 There is a polynomial-time 2-approximation algorithm for min-max ori-

entation on cacti.

For each st-pair (si, ti), 1 ≤ i ≤ q, let Ci be the set of elementary cycles represented

by the nodes which are on the path between nodes vsi and vti in the underlay tree

T of a given cactus G, where vsi and vti are the nodes in T containing si and ti,

respectively. Let di be the sum of weights of all bridges represented by the nodes which

are on the path from vsi to vti in T . Clearly, both Ci and di can be computed in time

O(nq) for all st-pairs (si, ti), 1 ≤ i ≤ q.

Consider the following two orientations of G: the one, denoted by Ga, directs all

elementary cycles in G in a clockwise direction; the other, denoted by Gb, directs all

elementary cycles in G in a counterclockwise direction. Clearly, both Ga and Gb are

13

(feasible) orientations of G. For each elementary cycle c in G, we call an ordered index-

pair (i, j), 1 ≤ i, j ≤ q, a conflicting pair on c if the directed (si, ti)-path in Ga and

the directed (sj , tj)-path in Gb share at least one edge of c. Then, for a conflicting pair

(i, j) on c, any orientation G of G satisfies the followings:

(i) if G has a directed (si, ti)-path which passes through c in a clockwise direction,

then any directed (sj , tj)-path in G passes through c in a clockwise direction,

too; and

(ii) if G has a directed (sj , tj)-path which passes through c in a counterclockwise di-

rection, then any directed (si, ti)-path in G passes through c in a counterclockwise

direction, too.

For an st-pair (si, ti), 1 ≤ i ≤ q, and each elementary cycle c ∈ Ci, we denote by ac
i

and bc
i the sums of weights of the edges which are contained in both c and the directed

(si, ti)-paths in Ga and Gb, respectively.

For an st-pair (si, ti), 1 ≤ i ≤ q, and each elementary cycle c ∈ Ci, we introduce

two kinds of {0, 1}-variables xc
i and yc

i : if xc
i = 1, then we direct edges of c so that there

is a directed (si, ti)-path which passes through c in a clockwise direction; if yc
i = 1,

then we direct edges of c so that there is a directed (si, ti)-path which passes through

c in a counterclockwise direction.

We are now ready to formulate min-max orientation for a cactus G.

minimize z (6)

subject to xc
i + yc

i = 1 for all c ∈ Ci, i = 1, . . . , q, (7)

xc
i + yc

j ≤ 1 for all conflicting pairs (i, j) on each cycle c in G, (8)

di +
∑
c∈Ci

(ac
ix

c
i + bc

iy
c
i) ≤ z for each i = 1, . . . , q, (9)

xc
i , yc

i ∈ {0, 1} for all c ∈ Ci, i = 1, . . . , q. (10)

Equations (7) and (8) ensure that there are directed (si, ti)-paths for all st-pairs (si, ti),

1 ≤ i ≤ q. Therefore, according to the values of xc
i and yc

i , we can find an orientation

G of G such that

h(G) = max

{
di +

∑
c∈Ci

(ac
ix

c
i + bc

iy
c
i) | 1 ≤ i ≤ q

}
= z.

Thus, minimizing z in Eq. (6) is equivalent to computing h∗(G) for G. Since the size

of the above integer programming formulation is polynomial in n, its linear relaxation

problem can be solved in polynomial time.

[2-approximation algorithm]

We now propose a polynomial-time 2-approximation algorithm for cacti. We first

solve the linear relaxation problem, and obtain a fractional solution x̄c
i and ȳc

i , whose

objective value is z̄. Clearly, h∗(G) ≥ z̄, because h∗(G) is the optimal value for the IP

above. We then obtain an integer solution xc
i and yc

i by rounding the values of x̄c
i and

ȳc
i , as follows:

xc
i =

{
1 if x̄c

i ≥ 0.5;

0 if x̄c
i < 0.5,

and

yc
i =

{
1 if ȳc

i > 0.5;

0 if ȳc
i ≤ 0.5.

14

Clearly, xc
i and yc

i satisfy Eqs. (7), (8) and (10), and hence xc
i and yc

i form a feasi-

ble solution for the IP above; we can thus obtain an orientation of G. Moreover, this

algorithm clearly takes polynomial time. Therefore, it suffices to show that the approx-

imation ratio of this algorithm is 2. Let zA be the objective value for the solution xc
i

and yc
i . Since x̄c

i ≥ 1
2xc

i and ȳc
i ≥ 1

2yc
i , by Eq. (9) we have

h∗(G) ≥ z̄

= max

{
di +

∑
c∈Ci

(ac
i x̄

c
i + bc

i ȳ
c
i) | 1 ≤ i ≤ q

}

≥ 1

2
max

{
di +

∑
c∈Ci

(ac
ix

c
i + bc

iy
c
i) | 1 ≤ i ≤ q

}
=

1

2
zA. (11)

This completes the proof of Theorem 6. ⊓⊔

4.2 Pseudo-polynomial-time algorithm

The main result of this subsection is the following theorem.

Theorem 7 Min-max orientation can be solved in time O(q2qU2qn) for a cactus

G, where U is an arbitrary upper bound on h∗(G) and n is the number of vertices in

G.

As the upper bound U on h∗(G), we will employ the approximation value zA

obtained by the 2-approximation algorithm in Section 4.1; zA can be computed in

polynomial time.

[Main idea]

Let G = (V, E) be a given cactus, let v be a node of an underlay tree T of G, and let

Gv be the subgraph of G for the node v. Then, Gv and G\Gv share exactly one vertex

u; in other words, u is the cut-vertex which separates G into Gv \ {u} and G \ Gv.

Consider an optimal orientation G of G. (Remember that G has at least one orientation

for the given set of st-pairs.) Then, G naturally induces the “edge-direction” Gv of

Gv, which is not always an orientation for the given set of st-pairs but satisfies the

following four conditions: for each st-pair (si, ti), 1 ≤ i ≤ q,

(a) if both si and ti are in Gv, then a shortest directed (si, ti)-path in G is contained

in Gv (remember that all edge-weights are non-negative);

(b) if si is in Gv but ti is in G \ Gv, then there is a directed (si, u)-path in Gv;

(c) conversely, if si is in G \ Gv but ti is in Gv, then there is a directed (u, ti)-path

in Gv; and

(d) if neither si nor ti are in Gv, then G has a shortest directed (si, ti)-path which

contains no edge of Gv.

For a q-tuple (x1, x2, . . . , xq) of integers 0 ≤ xi ≤ U , 1 ≤ i ≤ q, an edge-direction

Gv of Gv is called an (x1, x2, . . . , xq)-orientation of Gv if the following three conditions

(a)–(c) are satisfied: for each st-pair (si, ti), 1 ≤ i ≤ q,

(a) if both si and ti are in Gv, then ω(Gv, si, ti) = xi;

(b) if si is in Gv but ti is in G \ Gv, then ω(Gv, si, u) = xi; and

15

(c) if si is in G \ Gv but ti is in Gv, then ω(Gv, u, ti) = xi.

Remember that ω(Gv, x, y) denotes the total weight of a shortest directed (x, y)-path

in Gv for two vertices x and y in Gv. We then define a set F (Gv) of q-tuples, as follows:

F (Gv) = {(x1, x2, . . . , xq) | Gv has an (x1, x2, . . . , xq)-orientation}.

Our algorithm computes F (Gv) for each node v of T from the leaves to the root r of

T by means of dynamic programming. Since G = Gr, we clearly have

h∗(G) = min

{
max

1≤i≤q
xi | (x1, x2, . . . , xq) ∈ F (Gr)

}
. (12)

Note that F (Gr) ̸= ∅ since we have assumed that G has at least one orientation for

the given set of st-pairs. Therefore, we can always compute h∗(G) by Eq. (12).

[Definitions]

Let v be a node of the underlay tree T for a cactus G, and let Gv be the subgraph of

G for the node v. We simply call either a bridge or an elementary cycle of G represented

by v the component of v. We say that an st-pair (si, ti) passes through the component

c of v if the node v is on the path between nodes vsi and vti in T , where vsi and

vti are the nodes in T whose components contain si and ti, respectively. Note that

(si, ti) passes through the components represented by vsi and vti themselves. For each

component c of v and each st-pair (si, ti) passing through c, we can easily define the

“dummy” st-pair (sc
i , t

c
i), as follows: if si (or ti) is in c, then sc

i = si (respectively,

tci = ti); if si (or ti) is not in c, then sc
i (respectively, tci) is the cut-vertex in c which

separates c from si (respectively, ti).

We have defined an (x1, x2, . . . , xq)-orientation of a subgraph Gv in order to know

the distances of directed (si, ti)-subpaths, 1 ≤ i ≤ q, in Gv. Our dynamic programming

algorithm needs more information when updating DP tables: we wish to fix the orienta-

tion of the component of v. For an elementary cycle c of G and a q-tuple (j1, j2, . . . , jq)

with ji ∈ {0, 1}, 1 ≤ i ≤ q, we define a (j1, j2, . . . , jq)-orientation c of c, as follows:

• if ji = 0 and the st-pair (si, ti) passes through c, then c must contain a directed

(sc
i , t

c
i)-path which is directed in a clockwise direction;

• if ji = 1 and (si, ti) passes through c, then c must contain a directed (sc
i , t

c
i)-path

which is directed in a counterclockwise direction.

Note that we do not care the st-pairs which do not pass through c. Clearly, we can

determine in time O(|c|q) whether c has a (j1, j2, . . . , jq)-orientation for a given q-tuple

(j1, j2, . . . , jq), where |c| is the number of vertices in c. For the sake of convenience, we

extend the notation of (j1, j2, . . . , jq)-orientations to a bridge {u, w} of G: if ji = 0 for

all i, 1 ≤ i ≤ q, then {u, w} is directed from u to w; if ji = 1 for all i, 1 ≤ i ≤ q, then

{u, w} is directed from w to u; for the other q-tuples (j1, j2, . . . , jq), the bridge {u, w}
has no feasible (j1, j2, . . . , jq)-orientation.

For a q-tuple (j1, j2, . . . , jq), let k be the integer whose binary representation is

j1j2 . . . jq; and hence 0 ≤ k < 2q. For the graph Gv corresponding to a node v of T ,

we define a set F k of q-tuples (x1, x2, . . . , xq), as follows:

F k(Gv) = {(x1, x2, . . . , xq) | Gv has an (x1, x2, . . . , xq)-orientation such that

the component c of v is directed as the (j1, j2, . . . , jq)-orientation}.

16

Clearly, we have

F (Gv) =

2q−1∪
k=0

F k(Gv). (13)

Therefore, computing F (Gv) is equivalent to computing F k(Gv) for all k, 0 ≤ k < 2q.

We now explain how to compute F (Gv) for each node v of the underlay tree T of

a cactus G. Let v1, v2, . . . , vp be the children of v in T ordered arbitrarily. For each

index l, 1 ≤ l ≤ p, we denote by Gl
v the graph obtained by the union of the subgraphs

c, Gv1 , Gv2 , . . . , Gvl , where c is the component of v. (See Fig. 5 in which the graph

Gl−1
v is indicated by a thick dotted line.) Then, Gp

v = Gv. For the sake of convenience,

the component c of v is sometimes denoted by G0
v.

[Initialization]

We first compute F k(G0
v) for each index k, 0 ≤ k < 2q. Since G0

v consists of a

single component c of the node v, G0
v is either a single edge or a cycle. For the q-tuple

(j1, j2, . . . , jq) corresponding to k, if c has no (j1, j2, . . . , jq)-orientation, then let

F k(G0
v) = ∅; (14)

and if c has a (j1, j2, . . . , jq)-orientation c, then let F k(G0
v) = {(x1, x2, . . . , xq)} where

xi =

{
ω(c, sc

i , t
c
i) if the st-pair (si, ti) passes through c;

0 otherwise,
(15)

for each i, 1 ≤ i ≤ q. By Eq. (13) we can thus compute the set F (G0
v) for each node v

of T .

[Merge Operation]

We then compute F k(Gv) for each index k, 0 ≤ k < 2q. It should be noted that,

since Gv = G0
v if v is a leaf of T , we have already computed the sets F (Gv) for all

leaves v of T . We may thus assume that v is an internal node of T , and that the sets

F (Gvl) have been computed for all children vl, 1 ≤ l ≤ p, of v in T .

Let c be the component of the node v. For the q-tuple (j1, j2, . . . , jq) corresponding

to the index k, if c has no (j1, j2, . . . , jq)-orientation, then let

F k(Gv) = ∅.

Assume now that c has a (j1, j2, . . . , jq)-orientation c. For each graph Gl
v, 1 ≤ l ≤ p,

we recursively compute the set F k(Gl
v) from the two sets F k(Gl−1

v) and F (Gvl); since

Gp
v = Gv, we then have the set F k(Gv). Remember that by Eq. (15) we have already

computed the set F k(G0
v). From a pair of q-tuples (y1, y2, . . . , yq) ∈ F k(Gl−1

v) and

(z1, z2, . . . , zq) ∈ F (Gvl), a q-tuple (x1, x2, . . . , xq) in F k(Gl
v) can be obtained, as

follows:

(i) xi = zi for all st-pairs (si, ti), 1 ≤ i ≤ q, such that both si and ti are contained

in Gvl , as illustrated in Fig. 5(i);

(ii) xi = yi + zi + ω(c, sc
i , t

c
i) for all st-pairs (si, ti), 1 ≤ i ≤ q, such that either si

or ti is contained in Gvl and the other is contained in Gl−1
v (in Fig. 5(ii), ti is

contained in Gvl and si is contained in Gl−1
v);

17

si

xi
= zi

ti

c = Gv
0

(i) (ii)

(iii) (iv)

Gv1

Gvl
Gvl-1

Gv
l-1

ti

...

ti
c

si
c

ti

si

zi

ji = 0

ji = 1

c = Gv
0

Gv1

Gvl
Gvl-1

Gv
l-1

...

ti
c

si
c

si

zi

c = Gv
0

Gv1

Gvl

Gvt

Gvl-1

Gv
l-1

...

ji = 0

ji = 1

si

zi

yi
ti

c = Gv
0

Gv1

Gvl

Gvl-1

Gv
l-1

...

ti
c

si
c

Fig. 5 The merge operation (i)–(iv).

(iii) xi = zi + ω(c, sc
i , t

c
i) for all st-pairs (si, ti), 1 ≤ i ≤ q, such that either si or

ti is contained in Gvl and the other is contained in G \ Gv (in Fig. 5(iii), si is

contained in Gvl and ti is contained in G \ Gv);

(iv) xi = zi for all st-pairs (si, ti), 1 ≤ i ≤ q, such that either si or ti is contained in

Gvl and the other is contained in Gv \ Gl
v (in Fig. 5(iv), si is contained in Gvl

and ti is contained in Gvt for some index t, l < t ≤ p); and

(v) xi = yi for all the other elements xi which are not defined yet by (i)–(iv) above.

If the q-tuple (x1, x2, . . . , xq) obtained by (i)–(v) above contains an element xi, 1 ≤
i ≤ q, with xi > U , then we delete the q-tuple from F k(Gl

v). It is obvious that the set

F k(Gl
v) can be computed from all pairs of q-tuples (y1, y2, . . . , yq) ∈ F k(Gl−1

v) and

(z1, z2, . . . , zq) ∈ F (Gvl) by (i)–(v) above.

[Proof of Theorem 7]

We finally show that our algorithm takes time O(q2qU2qn).

The initialization can be done in time O(q2qn) for all nodes v of T and all indices

k, 0 ≤ k < 2q, as follows:

(a) As a preprocessing, for the component c of each node v of T , we first determine

(sc
i , t

c
i), 1 ≤ i ≤ q. This can be done in time O(nq) for all i, 1 ≤ i ≤ q, and all

components c of v in T . We then compute the distances of directed (sc
i , t

c
i)-paths

18

for ji = 0, 1 and for all st-pairs (sc
i , t

c
i), 1 ≤ i ≤ q. This can be done in time

O(|c|q) for each node v, and hence in time O(nq) for all nodes v of T .

(b) Given a q-tuple (j1, j2, . . . , jq), it can be determined in time O(|c|q) whether the

component c has a (j1, j2, . . . , jq)-orientation. If c does not have one, then by Eq.

(14) we can compute F k(G0
v) in time O(1) for the index k. On the other hand, if c

has a (j1, j2, . . . , jq)-orientation, then by Eq. (15) and using the preprocessing (a)

above, we can compute F k(G0
v) in time O(q) for the index k. Therefore, F k(G0

v)

can be computed in time O(|c|q) for an index k and a node v of T . Since k is

taken over all 0 ≤ k < 2q and |c| is taken over all nodes v of T , we can compute

F k(G0
v) in total time

2q−1∑
k=0

∑
v∈T

O(|c|q) = O(q2qn).

We then estimate the running time of the merge operation. For a node v of T and

an index k, 0 ≤ k < 2q, clearly |F k(Gv)| ≤ (U + 1)q = O(Uq). From a pair of q-tuples

(y1, y2, . . . , yq) ∈ F k(Gl−1
v) and (z1, z2, . . . , zq) ∈ F (Gvl), we can compute a q-tuple

(x1, x2, . . . , xq) in F k(Gl
v) in time O(q) by (i)–(v) above. Since |F k(Gl−1

v)| = O(Uq)

and |F (Gvl)| = O(Uq), there are O(U2q) pairs and hence we can compute the set

F k(Gl
v) in time O(qU2q). Therefore, F k(Gv) = F k(Gp

v) can be computed in time

O(qU2qp) for each index k, 0 ≤ k < 2q. By Eq. (13) we can compute the set F (Gv)

in time O(q2qU2qp) for a node v of T . Since p is the number of children of v, we can

thus compute the set F (Gr) for the root r of T in total time∑
v∈T

O(q2qU2qp) = O(q2qU2qn).

Then, by Eq. (12) we can compute h∗(G) in time O(qUq) from F (Gr).

In this way, our algorithm solves min-max orientation for a cactus in time

O(q2qU2qn). ⊓⊔

4.3 FPTAS

From now on, we assume that the number q of st-pairs is a fixed constant. We finally

give the main result of this section, as in the following theorem.

Theorem 8 Min-max orientation admits a fully polynomial-time approximation

scheme for cacti if q is a fixed constant.

As a proof of Theorem 8, we give an algorithm to find an orientation G of a cactus

G with h(G) < (1+ε)h∗(G) in time polynomial in both n and 1/ε for any real number

ε > 0, where n is the number of vertices in G. Thus, our approximation value hA(G)

for G is h(G), and hence the error is bounded by εh∗(G), that is,

hA(G) − h∗(G) = h(G) − h∗(G) < εh∗(G). (16)

We now give our algorithm. We extend the ordinary “scaling and rounding” tech-

nique [14, Chap. 8], and apply it to min-max orientation for a cactus G = (V, E).

For some scaling factor τ > 0 (which will be defined later), let Gτ be the graph with

the same vertex set V and edge set E as G, but the weight ω̄(e) of each edge e ∈ E

is defined as follows: ω̄(e) = ⌈ω(e)/τ⌉. Then, since both instances have the same set

19

of st-pairs, any orientation of Gτ is an orientation of G. We optimally solve min-max

orientation for Gτ by using the pseudo-polynomial-time algorithm in Section 4.2.

We take the optimal orientation Gτ for Gτ as our approximation solution for G.

We remark in passing that our polynomial-time 2-approximation algorithm in Sec-

tion 4.1 will be employed to bound both the error and the running time of our FPTAS.

Indeed, this constant-factor approximation helps us to obtain a faster FPTAS, com-

pared with employing a non-constant, say O(n), factor approximation.

[Error]

We first show that our approximation value hA(G) satisfies Eq. (16). Let G∗ be

any optimal orientation of G. For each st-pair (si, ti), 1 ≤ i ≤ q, we denote by Oi the

set of edges in a shortest directed (si, ti)-path in G∗. Then, we have

h∗(G) = max
1≤i≤q

ω(G∗, si, ti) = max
1≤i≤q

∑
e∈Oi

ω(e). (17)

Similarly, for each st-pair (si, ti), 1 ≤ i ≤ q, we denote by Ai the set of edges in a short-

est directed (si, ti)-path in Gτ . Since we take the orientation Gτ as our approximation

solution for G, we have

hA(G) = max
1≤i≤q

∑
e∈Ai

ω(e). (18)

Since ω̄(e) = ⌈ω(e)/τ⌉ for each edge e ∈ E, we have

τω̄(e) ≥ ω(e) > τ
(
ω̄(e) − 1

)
. (19)

Therefore, by Eq. (17) we have

h∗(G) > max
1≤i≤q

∑
e∈Oi

τ
(
ω̄(e) − 1

)
= max

1≤i≤q

{
−τ |Oi| +

∑
e∈Oi

τω̄(e)

}
,

where |Oi| denotes the number of edges in Oi. Since |Oi| ≤ |E| for all i, 1 ≤ i ≤ q, we

have

h∗(G) > −τ |E| + max
1≤i≤q

∑
e∈Oi

τω̄(e). (20)

Since Gτ is an optimal orientation for Gτ (with respect to the weight ω̄), we clearly

have

max
1≤i≤q

∑
e∈Oi

ω̄(e) ≥ max
1≤i≤q

∑
e∈Ai

ω̄(e). (21)

By Eqs. (19)–(21) we have

h∗(G) > −τ |E| + max
1≤i≤q

∑
e∈Ai

τω̄(e)

≥ −τ |E| + max
1≤i≤q

∑
e∈Ai

ω(e). (22)

Therefore, by Eqs. (18) and (22) we have

h∗(G) > −τ |E| + hA(G). (23)

Let

τ =
εzA

2|E| . (24)

20

Then, by Eqs. (11), (23) and (24) we have

hA(G) − h∗(G) < τ |E| =
εzA

2
≤ εh∗(G).

We have thus verified Eq. (16).

[Computation time]

We then show that our algorithm finds the optimal orientation Gτ for Gτ in time

polynomial in both n and 1/ε for any real number ε > 0.

Since Gτ is optimal for Gτ , by Eq. (21) we have

h∗(Gτ) = h(Gτ) = max
1≤i≤q

∑
e∈Ai

ω̄(e) ≤ max
1≤i≤q

∑
e∈Oi

ω̄(e). (25)

We employ the approximation value zA of Section 4.1 as the upper bound on h∗(G).

Then, by Eqs. (17), (19) and (25) we have

h∗(Gτ) < max
1≤i≤q

∑
e∈Oi

(
1 +

ω(e)

τ

)
≤ |E| + h∗(G)

τ
≤ |E| + zA

τ
.

By Eq. (24) we thus have h∗(Gτ) ≤ (1 + 2/ε)|E|, and hence we let U = (1 + 2/ε)|E|.
Theorem 7 implies that we can find the optimal orientation Gτ for Gτ in time O(U2qn)

if q is a fixed constant. Therefore, Gτ can be found in time

O

((
|E| + 2|E|

ε

)2q
n

)
= O

(
n2q+1

ε2q

)
.

Note that |E| = O(n) since G is a cactus.

This completes the proof of Theorem 8. ⊓⊔

5 Conclusions

In this paper, we gave several results for min-sum orientation and min-max orien-

tation, mainly the following three results. We first showed that both problems are

strongly NP-hard for planar graphs of maximum degree 4 even if all edge-weights are

identical. We then showed that both problems can be solved in polynomial time for

cycles. Finally, we gave an FPTAS for min-max orientation on cacti if q is a fixed

constant.

As we have shown in Theorem 6, there is a polynomial-time 2-approximation algo-

rithm for min-max orientation on cacti even if q is not a fixed constant. It remains

open to obtain a polynomial-time constant-factor approximation algorithm for both

problems (for a class of graphs larger than cacti) when q is not a fixed constant.

Acknowledgements

We thank the referees for their fruitful comments, one of which leads us to improve-

ments of the hardness analyses for min-sum orientation.

21

References

1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial
and Applied Mathematics, Philadelphia (1999)

2. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Combinatorial
Theory, Series B 24, 61–75 (1978)

3. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph. Elec-
tronic Notes in Discrete Mathematics 34, 267–271 (2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1979)

5. Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B., Snoeyink, J.S.: Approximating poly-
gons and subdivisions with minimum-link paths. International Journal of Computational
Geometry and Applications 3, 383–415 (1993)

6. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reachability.
Information Processing Letters 63, 229–235 (1997)

7. Ito, T., Miyamoto, Y., Ono, H., Tamaki, H., Uehara, R.: Route-enabling graph orienta-
tion problems. Proc. of the 20th Annual International Symposium on Algorithms and
Computation (ISAAC 2009), LNCS 5878, 403–412 (2009)

8. Le-Anh, T., de Koster, M.B.M.: A review of design and control of automated guided
vehicle systems. European Journal of Operational Research 171, 1–23 (2006)

9. Lee, C.-Y., Lei, L., Pinedo, M.: Current trends in deterministic scheduling. Annals of
Operations Research 70, 1–41 (1997)

10. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting graphs
based on cause-effect pairs and its applications to orienting protein networks. Proc. of
the 8th Workshop on Algorithms in Bioinformatics (WABI 2008), LNBI 5251, 222–232
(2008)

11. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
12. Robbins, H.E.: A theorem on graphs with an application to a problem of traffic control.

American Mathematical Monthly 46, 281–283 (1939)
13. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. International

Journal of Foundations of Computer Science 18, 911–930 (2007)
14. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

