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Abstract. We study a combinatorial game named “sankaku-tori” in
Japanese, which means “triangle-taking” in English. It is an old pencil-
and-paper game for two players played in Western Japan. The game is
played on points on the plane in general position. In each turn, a player
adds a line segment to join two points, and the game ends when a trian-
gulation of the point set is completed. The player who completes more
triangles than the other wins. In this paper, we consider two restricted
variants of this game. In the first variant, the first player always wins in
a nontrivial way, and the second variant is NP-complete in general.

1 Introduction

“Sankaku-tori” is a classic pencil-and-paper game for two players, traditionally
played in Western Japan. Sankaku-tori literally means “triangle taking” in En-
glish. The rule is as follows. First, two players put a number of points on a sheet
of paper. Then, they join the points alternately by a line segment. Line seg-
ments cannot cross each other. When an empty triangle is completed by a move,
it scores +1 to the player who draws the line segment (if two empty triangles
are completed, it scores +2). When no more line segments can be drawn, the
game ends, and the player who scores more wins (see Fig. 1; in the figure, solid
lines and dotted lines are played by the first player R and the second player
B, respectively. Finally, R wins since she obtains four triangles, while B obtains
two triangles).

We study the algorithmic aspects of the sankaku-tori game. First, we prove
that if the points are in convex position, then the first player always has a



Fig. 1. Sample play.

winning strategy. Second, we consider a solitaire version of the sankaku-tori
game. Namely, we are given a point set and some line segments connecting pairs
of those points, and we want to maximize the number of triangles that can be
constructed by drawing k& more line segments. We prove that this problem is
NP-complete.

The game has a similar flavor to those studied by Aichholzer et al. [1] un-
der the name of “Games on Triangulations.” Among variations they studied,
the most significant resemblance can be seen in the monochromatic complete
triangulation game. The only difference between the sankaku-tori game and the
monochromatic complete triangulation game is the following. In the monochro-
matic complete triangulation game, if a player completes a triangle, then she can
continue to draw a line segment. This rule is similarly seen in Dots and Bozxes,
where two players construct a grid instead of a triangulation. Dots and Boxes
has been investigated in the literature (see [4,2]), and especially, one book is
devoted to the game [3], revealing a rich mathematical structure. Aichholzer et
al. [1] proved that the monochromatic complete triangulation game is a first-
player win if the number of points is odd, and a tie if it is even. We note that a
few problems left by Aichholzer et al. [1] have recently been resolved by Manié
et al. [5].

On the other hand, in the sankaku-tori game, even though a player completes
a triangle, she should leave the token to the next player. Hence, we cannot
directly use the previously known results, and we need to develop new techniques
for our game.

2 Preliminaries

In this paper, a finite planar point set S is always assumed to be in general
position, i.e., no three points in S are collinear. A triangulation of a finite planar
point set S is a decomposition of its convex hull by triangles in such a way that
their vertices are precisely the points in S. Two players R(ed) and B(lue) play
in turns, and we assume that R is the first player. That is, the players construct
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a triangulation on a given point set S.8 Starting from no edges, players R and
B play in turn by drawing one edge in each move. We note that each player
draws precisely one edge. This is the difference from the dots-and-boxes-like
games. The game ends when a triangulation is completed. Each triangle belongs
to the player who draws the last edge of the triangle.® The player who has more
triangles than the other wins.

We first note that, for any point set, the number of edges of a triangulation
is determined by the position of the points. That is, the number of turns of the
sankaku-tori game is determined when the position of the points are given.

3 The first player wins on convex position

In this section, the main theorem is the following.

Theorem 1. When S is a point set in convex position, the first player R always
wWins.

To prove the theorem, we describe a winning strategy for R in Lemma 1.
Once the first player R draws a line p;p; in the first move, we have two intervals
Iy = [pi, pit1s- -+, pj-1,p5] and Ia = [p;,pj+1, ..., pi—i, pi]. Then any point p in
I, can be joined to the other point ¢ if and only if ¢ is in /; when the points are
in convex position. That is, each line segment separates an interval of the points
into two independent intervals. The winning strategy is an inductive one that
consists of three substrategies. We note that the strategy in Lemma 1 is applied
simultaneously in each interval. For example, suppose that R has two strategies
S1 and Sy on intervals Iy = [p;, pit1, .-, Pj—1,p;] and Is = [pj, Djs1, .., Di—i; Di)s
respectively. If B joins two points in I;, R uses S; on the interval I, and then,
if B joins two points in I, R now uses Sy on the interval Iy, and so on. Since
the points are in convex position, they can apply their strategies independently
in each interval.

8 In a real game, two players arbitrarily draw the point set by themselves simultane-
ously until both agree with.

9 In a real game, when a player draws the last edge, she writes her initials in the
triangle.



Lemma 1. Suppose that, at a certain point of the game, B has to move and there
are some intervals resembling Cases 1, 2, and 3 in Fig.s 2, 3, and 4, respectively.
Then, after two moves, R can replicate the same configuration without losing
points. Moreover, if the number of vertices in an interval is odd, at the end it is
possible for R to get one more points.

Proof. We show an induction for the number of turns of the game. As mentioned
in the last paragraph in Preliminaries, if we have n points in convex position,
the number of turns is exactly 2n — 3. In the figures, dotted lines illustrate the
isolated points. In base cases, dotted lines mean that no points are there. We
can check the claims in Lemma 1 in base cases by simple case analysis. Now we
turn to general cases.

(Case 1) Player B has two choices. If B joins p; and p; with 1 <i < j <n, R
joins p1 and p; and obtain (Case 2). Therefore, without loss of generality, we
assume that B joins p; and p; with 1 < ¢ < n. In this case, R can join p; and
Dn, and obtain the triangle p;p;p,. Moreover, (Case 1) applies to both intervals
P1,---,p; and p;, . .., pn. Therefore, by induction, R wins in this case because R
already obtains +1 by the triangle p1p;py,.

(Case 2) The same analysis of (Case 1) can be applied in the interval [p;..p;].
Therefore, by inductive hypothesis, B cannot take an advantage in this inter-
val. Without loss of generality, we can assume that B plays in interval [p;..p;].
Essentially, B has four choices.

(Subcase 2-1) If B joins p; and p;, R joins p; and p,, and they have three
intervals in (Case 1). Then it is easy to check that the claim holds.

(Subcase 2-2) If B picks p; with 1 < ¢/ < ¢ and joins it to either p; or p;, R
again joins p; and p,. Then we have two intervals [p;..p;] and [p;..p,] in (Case
1). If B joins p; and p;/, we have an interval [p;..p] in (Case 1), and the other
interval [p;s..p;] in (Case 3). The other case (B joins p; and p;) is symmetric. In
any case, by inductive hypothesis, the claim holds.

(Subcase 2-3) If B joins p; and p;s for some 1 < ¢ < i, R joins p;s to p;. Then
R obtains the triangle p;p;p;/, and two intervals [p;s..p;] and [p;..p;] are in (Case
1), and two intervals [p1..p] and [p;..p,] together essentially in the same case
as (Case 2). Therefore, R wins in this case.

(Subcase 2-4) The last case is that B picks up two points p; and p;» with
1 < i <i” < i and join them by an edge. Then R joins p; to p;, and obtain
two intervals [p1..p] and [p;..p,] together in (Case 2), an interval [p;~..p;] with
an edge (p;, pir) in (Case 3), and two intervals [pys..p;»| and [p;..p;] in (Case 1).
Therefore, we have the claim in this case again.

(Case 3) Now we have three subcases.

(Subcase 3-1) B joins two points in {p1, p2, pn—1,Pn}. If B joins ps and p,_1,
R joins p; and p,_1, and obtain two triangles (p1pspn—1 and pi1pn_1p,), and
they end up in Case 1. On the other hand, if B joins p; and p,_1, R joins ps
and p,_; and obtains (Case 1). The other cases are symmetric. Thus we have
the claim.

(Subcase 3-2) B joins one point in {p1, p2, pn—1, Pn} and another one p; with
2 <i<n-—1.1If B joins p; and p;, R joins p; and ps and obtain the triangle



p1p2p;. Then they also have an interval [ps..p;] in (Case 1) and [p;..p,] with p;
in (Case 3) again. Thus we have the claim. If B joins ps and p;, R now joins p;
and p; and get the same situation. The other two cases are symmetric.
(Subcase 3-3) B joins two points p; and p; with 2 < ¢ < j < n—1. In the case,
R joins p; and p,. Then both of the interval [p;..p;] with p,, and the interval
[pi--pn] are independently in (Case 3). Therefore, we again use the induction.
By the induction for the number of points, we have the lemma. ad

Now we prove Theorem 1:

Proof (of Theorem 1). When n = 2k+1 for some k > 1, R joins p; and pg. Then
two intervals [p;..pg] and [pg..pn] are both in (Case 1) in Lemma 1. Moreover,
one of two intervals consists of odd number of points. Thus R obtains at least
one more triangle than B5.

When n = 2k for some k > 1, R joins p; and ps. Then two intervals [p;..ps)
and [ps..p,] are both in (Case 1), and they are of odd length. Thus R obtains
at least two more triangles than B.

In any case, R always wins. a

4 NP-completeness

In this section, we consider the solitaire variant by modifying the rule of the
game. We start halfway through the game. That is, we are given a set of n
points and O(n) lines joining them. We are also given two integers k = O(n)
and t. The decision problem asks whether we can obtain ¢ triangles after k moves
for the set of points and lines.

Theorem 2. The solitaire variant of Sankaku-Tori is NP-complete.

The problem is in NP since we can guess k new edges and easily check
whether we can obtain ¢ triangles. Later in this section, we reduce the POSITIVE
PLANAR 1-IN-3-SAT problem [6] to our problem. In POSITIVE PLANAR 1-
IN-3-SAT, we are given a 3-CNF formula ¢ with n variables and m clauses,
together with a planar embedding of its incidence graph G(y). Each clause of ¢
consists of three positive literals (i.e., variable itself). The incidence graph G(¢p)
of ¢ consists of n vertices v,, corresponding to the variables x; and m vertices
ve, corresponding to the clauses Cj. There is an edge (vs,,vc,) if and only if
x; appears in C;. The problem is to decide whether there exists a satisfying
assignment to the variables of ¢ such that each clause in ¢ has exactly one
literal assigned true. POSITIVE PLANAR 1-IN-3-SAT is NP-complete [6].

Basic idea. Suppose that we are given a set of points and lines illustrated in
Fig. 5(a), which consists of two components called crescents and eight lines,
calles barriers, that surround the crescents. A crescent consists of ¢ points and
2¢ — 3 lines (we have ¢ = 5 in the figure), and is triangulated by the lines. The
barriers define a barrier region that prevent us from drawing a line between the
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Fig. 5. Basic idea: two crescents and their enclosing line segments.
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Fig. 6. Line gadget.

points inside and outside of the region. (Although there exist no points in the
outside of the barrier in Fig. 5(a), such points will appear later.)

If we are given two integers k = 2c¢ — 1 and ¢t = 2¢ — 2, a unique solution
for obtaining ¢ triangles is illustrated in Fig. 5(b). We can deduce this observa-
tion by introducing a loss which is defined as ¢ — j if we obtain j triangles by
drawing ¢ lines. In Fig. 5(a), we can obtain triangles by drawing lines between
two connected components (crescents and/or barriers), which requires at least
one loss. (We are required to draw at least two lines for obtaining one triangle.)
Here, k = 2¢— 1 and t = 2¢ — 2 means the loss should be at most one. Thus, we
are required to draw k lines so as not to connect three or more connected com-
ponents. Here, we cannot obtain ¢ or more triangles if we connect two barriers,
or if we connect a crescent and a barrier. A unique solution is to connect two
crescents by drawing k lines, which results in Fig. 5(b).

Line gadgets. A line gadget of length ¢, illustrated in Fig. 6(a), consists of
£+ 1 crescents and 4(¢ 4 1) barriers surrounding them. By drawing 2¢ — 1 lines
between two adjacent crescents, we can obtain 2c — 2 triangles. Note that the
barriers prevent us from drawing a line between nonadjacent crescents.



Suppose that we are required to obtain i(2¢—2) triangles by drawing i(2¢—1)
lines (0 < ¢ < [£/2]). By an argument similar to one in the basic idea, loss should
be at most i. We cannot obtain i(2c — 2) triangles, if we connect two barriers, if
we connect a crescent and a barrier, or if we connect three or more crescents. A
unique solution for obtaining i(2¢ — 2) triangles is to connect ¢ pairs of crescents.
For example, Fig. 6(a) is a line gadget of length 4, and we can obtain Fig. 6(b)
and (c) by connecting two pairs of crescents by 2(2¢ — 1) lines.

For convenience, we abbreviate Fig. 6(a) as in Fig. 6(d). The points in the
figure denote crescents, and the (solid) edges denote the adjacency among the
crescents. The dotted rectilinear polygon in Fig. 6(d) denotes the barriers. Each
line segment of the dotted polygon has one barrier. At each corner of the dotted
polygon, we have an additional barrier. Since any crescent can be connected with
at most one adjacent crescent, we can associate the connecting pairs of crescents
in Fig. 6(a) with a matching of the graph in Fig. 6(d).

Line gadgets have flexibility on their shapes: We can extend or shorten the
distance between any two adjacent crescents. We can select a direction at each
bend of the gadget. We can also set any angles at the bends within 90 degrees.

Fig. 7. Variable gadget.

Variable gadgets. As illustrated in Fig. 7(a), we arrange ¢; line gadgets of
length 2¢ 4+ 1 (¢; = 3 and 2¢ + 1 = 9 in the figure). As in Fig. 6(d), the dotted
polygons denote barriers. The uppermost line gadget crosses the remaining c¢; —1
line gadgets. We have 8(¢; — 1) crossing points, each of which requires eight
additional lines as barriers. Since a non-crossing line gadget requires 4(2¢ + 2)



barriers, a variable gadget with ¢; line gadgets requires 4(20+2)c¢; +8-8(¢; —1) =
O(fc;) barriers.

A unique non-crossing maximum matching of Fig. 7(a) is, as illustrated in
the bold lines in Fig. 7(b), achieved by taking ¢ + 1 matching edges in each
line gadget. In case we are not allowed to use crescents at both ends of the line
gadgets, a unique non-crossing maximum matching for the remaining crescents
is, as illustrated in the bold lines in Fig. 7(c), achieved by taking ¢ matching
edges in each line gadget. As the rule of the Sankaku-tori prohibits crossing lines,
matching edges for Fig. 7(a) cannot cross each other. Thanks to this property,
as in Fig. 7(b) and (c), we can synchronize the selection of vertical or horizontal
matching edges among all line gadgets in a variable gadget.

Fig. 8. Clause gadget.

Clause gadgets. As illustrated in Fig. 8(a), we share the crescents at the ends
of three line gadgets of length 2¢ + 1. Since each clause has three literals, we use
the line gadgets corresponding to them. A clause gadget has 6¢ + 2 crescents.



The crucial part is on the top of the clause gadget, whose details are illustrated
in Fig. 8(b). We note here that the number of barriers in a clause gadget is the
same as that of (non-sharing) three line gadgets.

In case one of the three line gadgets takes both of the top two crescents
to realize the matching in Fig. 7(b), the other two line gadgets cannot use the
top crescents. This means that the maximum matching for the other two is the
matching in Fig. 7(c). In this case, the number of matching edges is 3¢+ 1, which
is a perfect matching on 6¢ + 2 crescents.

If no line gadgets take either of the top two crescents, we cannot obtain
a perfect matching. If two line gadgets take one of the top two respectively,
each of them has unmatched crescents, which means we cannot obtain a perfect
matching. Thus, we can obtain a perfect matching if and only if one of the three
line gadgets takes the top two crescents, and the other two do not take any.

Reduction. Let ¢; denote the number of occurrences of literal z; in ¢ (i =
1,2,...,n). Asillustrated in Fig. 7(a), a variable gadget for x; has ¢; line gadgets
of length 2¢ 4 1. Since we have 3m literals in ¢, n variable gadgets have 3m line
gadgets in total. Since line gadgets have flexibility on their shape, line gadgets
are arranged along the planar embedding of G(yp).

Each clause has variable gadgets as illustrated in Fig. 8(a), which consists of
three line gadgets corresponding to the three literals in the clause. Since ¢ has m
clauses, we have m clause gadgets with (6¢+ 2)m crescents and O(¢m) barriers.
Two magic numbers are set to k = (3¢ 4+ 1)m(2¢—1) and t = (3¢ + 1)m(2c — 2).

If ¢ is 1-in-3 satisfiable, by the following strategy, we can obtain ¢ triangles.
For literals assigned true, the corresponding line gadgets take the two crescents
at both ends of the gadgets and achieve the maximum matching as illustrated in
Fig. 7(b). For literals assigned false, as illustrated in Fig. 7(c), the corresponding
line gadgets do not take the two crescents at both ends of the gadgets and achieve
the maximum matching for other crescents. The formula ¢ has m literals assigned
true, and they satisfy all clauses with 1-in-3 property. This means that, for every
clause gadget, exactly one line gadget takes the top two crescents, and no two
line gadgets take the same crescents at the same time. From the argument above,
each clause gadget has one line gadget with ¢ 4+ 1 matching edges and two line
gadgets with ¢ matching edges. Thus, we have (3¢ + 1)m matching edges in
total, which means we can obtain ¢ = (3¢ + 1)m(2c — 2) triangles by drawing
k = (3¢ 4+ 1)m(2c — 1) lines. The opposite direction is clear from the above
discussion.

As mentioned before, line gadgets have flexibility on their shapes. Using this
fact, it is easy to see that all gadgets can be joined appropriately by polynomial
number of line gadgets. Thus this is a polynomial time reduction.

Therefore, we complete the proof of Theorem 2.

5 Conclusion

In this paper, we formalized a combinatorial game that is an old pencil-and-
paper game for two players played in Western Japan. This game has a similar



flavor to “Games on Triangulations” investigated by Aichholzer et al. [1]. We
have only showed the computational complexity in a few restricted cases of the
game. Along the line in [1], we have a lot of unsolved variants in our game. For
example, the hardness of a two-player variant of this game in general position,
the strategies for the points in convex position with (fixed) k points inside of
the points in convex position, and so on. At a glance at Theorem 1, the first
player seems to have an advantage. It is interesting to investigate the positions
of points where this intuition is false. For example, if the four points are placed
as three points in convex position and one center point, the second player can
win by simple case analysis.
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