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PAPER Special Section on Discrete Mathematics and Its Applications

The Convex Configurations of “Sei Shonagon Chie no Ita,”
Tangram, and Other Silhouette Puzzles with Seven Pieces

Eli FOX-EPSTEIN†, Kazuho KATSUMATA††, Nonmembers, and Ryuhei UEHARA††a), Member

SUMMARY The most famous silhouette puzzle is the tangram, which
originated in China more than two centuries ago. From around the same
time, there is a similar Japanese puzzle called Sei Shonagon Chie no Ita.
Both are derived by cutting a square of material with straight incisions into
seven pieces of varying shapes, and each can be decomposed into sixteen
non-overlapping identical right isosceles triangles. It is known that the
pieces of the tangram can form thirteen distinct convex polygons. We first
show that the Sei Shonagon Chie no Ita can form sixteen. Therefore, in a
sense, the Sei Shonagon Chie no Ita is more expressive than the tangram.
We also propose more expressive patterns built from the same 16 identical
right isosceles triangles that can form nineteen convex polygons. There exist
exactly four sets of seven pieces that can form nineteen convex polygons.
We show no set of seven pieces can form at least 20 convex polygons,
and demonstrate that eleven pieces made from sixteen identical isosceles
right triangles are necessary and sufficient to form 20 convex polygons.
Moreover, no set of six pieces can form nineteen convex polygons.
key words: dissection puzzle, enumeration, Sei Shonagon Chie no Ita,
silhouette puzzle, tangram

1. Introduction

A silhouette puzzle is a game where, given a set of polygons,
one must decide whether they can be placed in the plane in
such a way that their union is a target polygon. Rotation and
reflection are allowed but scaling is not, and all polygons
must be internally disjoint∗. Formally, a set of polygons S
can form a polygon P if there is an isomorphism up to rotation
and reflection between a partition of P and the polygons of
S (i.e. a bijection f (·) from a partition of P to S such that x
and f (x) are congruent for all x).

The tangram is the set of polygons illustrated in Fig. 1
(left side). Of anonymous origin, their first known reference
in literature is from 1813 in China [2]. The tangram has
grown to be extremely popular throughout the world; now,
over 2000 silhouette and related puzzles exist for it [2], [3].

Much less famous is a quite similar Japanese puzzle
called Sei Shonagon Chie no Ita. Sei Shonagon was a
courtier and famous novelist in Japan, but there is no ev-
idence that the puzzle existed a millennium ago when she
was living (966?-1025?). Chie no ita means wisdom plates,
which refers to this type of physical puzzle. It is said that the
puzzle is named after Sei Shonagon’s wisdom. Historically,
the Sei Shonagon Chie no Ita first appeared in literature in
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Fig. 1 Left: the tangram in square configuration. Right: Sei Shonagon
Chie no Ita pieces in square configuration.

Fig. 2 A set of plates in the form of Sei Shonagon Chie no Ita pieces,
crafted by Tomomi Takeda in Kanazawa, Japan.

1742 [2]. Even in Japan, the tangram is more popular than
Sei Shonagon Chie no Ita, though Sei Shonagon Chie no Ita
is common enough to have been made into ceramic dinner
plates (see e.g. Fig. 2, [4]), and in puzzle communities, it is
admired for being able to form some more interesting shapes
that the tangram cannot, such as a square configuration with
a hole missing (Fig. 3).

Wang and Hsiung considered the number of possible
convex (filled) polygons formed by the tangram [5]. They
first noted that, given sixteen identical isosceles right trian-
gles, one can create the tangram pieces by gluing some edges
together. So, clearly, the set of convex polygons one can cre-
∗Sometimes this puzzle is also called “dissection puzzle.” How-

ever, dissection puzzle usually indicates the puzzles that focus on
finding the cutting line itself. The most famous one is known as
the Haberdasher’s Puzzle by Henry Dudeney that asks to find cut
lines of a regular triangle such that the resulting four pieces can be
rearranged to form a square [1].

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers
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ate from the tangram is a subset of those that sixteen identical
isosceles right triangles can form. Embedded in the proof of
their main theorem, Wang and Hsiung [5] demonstrate that
sixteen identical isosceles right triangles can form exactly
20 convex polygons. These 20 are illustrated in Fig. 4. The
tangram can realize thirteen of those 20.

It is quite natural to ask how many of these twenty
convex polygons the Sei Shonagon Chie no Ita pieces can
form. We first show that Sei Shonagon Chie no Ita achieves
sixteen convex polygons out of twenty†. Therefore, in a
sense, we can conclude Sei Shonagon Chie no Ita is more
expressive than the tangram: while both the tangram and
Sei Shonagon Chie no Ita contain seven pieces made from
sixteen identical isosceles right triangles, Sei Shonagon Chie
no Ita can form more convex polygons than the tangram.

One might next wonder if this can be improved with dif-
ferent shapes. We demonstrate a set of seven pieces that can
form nineteen convex polygons among twenty candidates,
and that to realize all twenty convex polygons, it is neces-
sary and sufficient to have eleven pieces. We investigate all

Fig. 3 A typical Sei Shonagon Chie no Ita layout as a square configuration
with a hole missing.

Fig. 4 All 20 potential convex polygons that can be formed from 16 identical isosceles right triangles.

†Later, we discovered this fact is folklore in the puzzle society
in Japan [6].

possible cases and conclude that there are four sets of seven
pieces that allow to form nineteen convex polygons as shown
in Fig. 5. Based on this result, we also show that no set of
six pieces can form nineteen convex polygons. That is, our
results for general silhouette puzzles can be summarized as
the following theorem:

Theorem 1: (1) There are only four patterns of seven pieces
(Fig. 5) that can form nineteen convex polygons among
twenty candidates in Fig. 4. (2) To form all twenty poly-
gons in Fig. 4, eleven pieces are necessary and sufficient. (3)

Fig. 5 Four patterns that can form nineteen convex polygons.
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Fig. 6 All convex polygons that can be formed by Sei Shonagon Chie no Ita as well as the ones that
can’t be formed.

Any six pieces in the same manner cannot form nineteen
convex polygons among twenty candidates.

Throughout, all triangles mentioned are identical isosceles
right triangles with side lengths 1, 1, and

√
2. For simplicity,

we refer to these triangles as tiles.

2. The Sei Shonagon Chie no Ita puzzle

Theorem 2: The Sei Shonagon Chie no Ita puzzle pieces
can be rearranged into exactly sixteen distinct convex poly-
gons up to reflection and rotation.

Proof. We first notice that the pieces of the puzzle can be
decomposed into sixteen tiles, just like the tangram.

We make use of two important results from Wang and
Hsiung [5]. First, there are only 20 candidate convex poly-
gons in Fig. 4 that we need to consider, and second, in any
convex polygon they can form, the bases of the sixteen tri-
angles can be pairwise colinear, parallel, or perpendicular
([5, Lemma 1]). This means we only need to consider con-
figurations that could be embedded with triangle and target
polygon vertices on integer coordinates.

Sixteen convex polygons are filled as illustrated in
Fig. 6. The remaining four polygons cannot be solved since
they are too thin. More precisely, the largest trapezoid of
area 2 has a base of length 3, and this length cannot be inside
of the polygons. □

3. Optimal Seven Piece Puzzles

Although Sei Shonagon Chie no Ita is more expressive than
the tangram, Sei Shonagon Chie no Ita is not the optimal
set of seven pieces if one wishes to form as many convex
polygons as possible. We will prove Theorem 1(1); that is,
we show that there exist four sets of seven pieces that allow
us to form nineteen convex polygons. Our first lemma states
that we can fix the nineteen convex polygons out of twenty

Fig. 7 Two skinny shapes and piece of three tiles.

Fig. 8 Extensions of piece of size three.

that can be filled by our puzzle.

Lemma 3: Any set of seven pieces composed from sixteen
tiles that can form nineteen of twenty convex polygons cannot
form the convex shape 10 in Fig. 4.

Proof. We first observe that the average number of tiles in a
piece is 16/7 = 2.285 · · · . Therefore, any dissection pattern
contains at least one piece containing at least three tiles.
Then, there are three possible pieces that consists of three
tiles (a), (b), and (c) as shown in Fig. 7. If we choose (a), we
cannot fill the polygon 10. On the other hand, if we choose
(b), we cannot fill the polygon 1. However, when we omit
the polygon 1, we also have to omit the polygons 2 and 3 in
Fig. 4. It is easy to see that (c) cannot fill these polygons.
Therefore, to fill nineteen of them, we have to omit 10. □

In the proof of Lemma 3, we choose polygons 1, 2, and 3
and omit the polygon 10. Then we can also say that any piece
containing at least three tiles should be extended from the tile
(a) in Fig. 7, and we cannot use the tile (b) and its extensions.
To fill the shape 1, the possible tiles of size at least three are
given in Fig. 8. However, if the number of tiles is greater
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Fig. 9 Pieces of four/five tiles that cannot fill the polygon 12.

Fig. 10 Possible pieces to make nineteen convex polygons by seven
pieces.

than 4, it cannot fill the polygon 12 (Fig. 9(a)). Moreover,
even if the number of tiles is 4, two of three possible pieces
cannot fill the polygon 12, either (Fig. 9(b)(c)). Therefore,
the only possible piece of four tiles is one in Fig. 9(d). We
summarize the above discussion:

Lemma 4: Any set of seven pieces that can form nineteen
convex polygons contains only the copies of the pieces de-
picted in Fig. 10.

We name each tile as t4, t3, t2-1, t2-2, t2-3, and t1 as in
the figure. We also call any of t2-1, t2-2, and t2-3 simply
t2 if we do not need to distinguish between the choices.

Let v, w, x, y be the number of tiles t4, t3, t2, and
t1, respectively. Then they are integers, and we have
v +w+ x+ y = 7 and 4v +3w+2x+ y = 16. The conditions
are satisfied only when (v, w, x, y) = (3, 0, 0, 4), (2, 1, 1, 3),
(2, 0, 3, 2), (1, 3, 0, 3), (1, 2, 2, 2), (1, 1, 4, 1), (1, 0, 6, 0),
(0, 4, 1, 2), (0, 3, 3, 1), (0, 2, 5, 0) by enumeration. For each
of (v, w, x, y) with x > 0, we have three kinds of t2 tiles.
Considering the combinations, we obtain 98 candidates of
the sets. We now proceed by case analysis.

We observe that the convex polygon 14 (or square) is
a difficult polygon in this context. It contains four small
squares made by two right isosceles triangle units at its cen-
tral part as shown in Fig. 11. Big tiles like t4, t3, and t2-1
should cover one of them, and this reduces the number of
filling ways to be considered drastically.

Cases (3,0,0,4), (1,3,0,3)

We have one set in each case, and it cannot fill the convex
polygon 14 (or square).

Fig. 11 Four small square in the square.

Case (2,1,1,3)

We have three sets. When we choose t2-3, we have the set
(a) in Fig. 5. Using the other two, we cannot fill the square.

Case (2,0,3,2)

We have ten combinations for t2 tiles. Among them, we
can find the set (b) in Fig. 5. Two sets cannot fill the convex
polygon 17, and the other sets cannot fill the square.

Case (1,2,2,2)

We have six sets, and one is the set (c) in Fig. 5. The other
sets cannot fill the square.

Case (1,1,4,1)

We have 15 sets, and one of them is the set (d) in Fig. 5. The
other sets cannot fill convex polygons 17 or 19, or the square.

Case (1,0,6,0)

We have 28 sets, but none of them can fill the polygon 1.

Cases (0,4,1,2), (0,3,3,1), (0,2,5,0)

We have 34 sets in total, but none of them can fill the polygon
19 or the square.

Therefore, we conclude that there are four possible sets
that can fill nineteen out of twenty convex polygons shown
in Fig. 4.

4. Beyond Seven Pieces

The next natural question is how many pieces might one
need to form from sixteen tiles in order to form all 20 convex
polygons. We turn to Theorem 1(2). That is, we prove that
ten or fewer pieces formed from sixteen tiles cannot form 20
convex polygons, and eleven pieces can.
Proof of Theorem 1(2). In the negative direction, observe
that to form the 1× 8

√
2 parallelogram in Fig. 12(a) with ten

pieces, there must be at least six t2-2 pieces (larger pieces
all contain it and do not fit within the shape of Fig. 12(b)).

Consider the square or polygon 14. The perimeter has 8
incident triangles, so the six t2-2 pieces would have to cover
at least four of those. Exhaustive case analysis, as seen in
Fig. 14, shows that all arrangements that cover enough of the
exterior triangles leave a square in the middle which cannot
fit a single t2-2 piece.

We observe that five t2-2 pieces can fit inside each of
the 20 shapes: see Fig. 13. So these with six single triangles
can realize all 20 convex polygons. □
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5. Six Pieces are not Enough

We next turn to Theorem 1(3). Based on the result in Sect. 3,
it is quite natural to ask if we can form 19 convex polygons
with 6 pieces or less. In this section, we show that the answer
is “no.”

Intitively, this is proved by the following simple idea:
Suppose that we have a six piece set. Then, by splitting each
piece into two pieces, we obtain seven piece sets. However,
we have already have all patterns in Fig. 5, which is too few.

To be precise, we fix some set of six pieces that form 19
convex polygons. Then, this set can be obtained by merging
two pieces in one of four patterns in Fig. 5. If only one piece
is built from more than one tile, a single tile can be cut off
the large piece, resulting in a set of seven with a piece too
large. If any piece contains at least 5 tiles, some other piece
can be cut, giving a set of seven with a piece too large. If the
set contains at least two t4 pieces, a piece can be cut so that
at least two intact t4 pieces are in the set of seven. If the set

Fig. 12 Any set of 7 pieces covering shape (a) must have a piece that
consists of at least 3 triangles, which cannot be covered by shape (b).

Fig. 13 11 pieces forming all 20 convex polygons (the 6 individual isosceles right triangles not shown).

contains just one t4, that piece can be cut; all valid sets of
seven pieces have at least one t4.

6. Concluding Remarks

Sixteen identical right isosceles triangles can form twenty
convex polygons. We compare the power of expression of
some classic silhouette puzzles constructed from these tri-
angles. The “difficulty” of a silhouette puzzle for people to
solve can be estimated by the number of ways in which one
can solve it. Computing these numbers efficiently remains a
compelling task for future work.

Another interesting direction of study is the number of
convex polygons formed by different numbers of triangles.
Let f (n) be the number of convex polygons formed by n
tiles. To analyze the tangram and Sei Shonagon Chie no
Ita puzzles, the value f (16) = 20 plays an important role.
If we design larger puzzles, it is natural to consider the
number of composable polygons among them. The function
f (n) itself is also interesting to investigate. Although it is
not monotone ( f (1) = 1, f (2) = 3, and f (3) = 2), it is
a generally increasing function (Fig. 16). Trivially, for all
x ≥ 0, we have f (x) < f (2x) as one can subdivide every
triangle into two to form all of the previous convex polygons,
as well as a parallelogram with side lengths 1 and x

√
2.

Fig. 14 Six parallelograms do not fit in a square.
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Fig. 15 Possible construction of six-piece puzzle.

Fig. 16 The number f (n) of convex polygons formed by n tiles.

Some puzzles with fewer pieces are also another topic.
We need seven pieces to form 19 convex polygons, and eleven
pieces to form 20 convex polygons. That is, letting g(n) be
the number of possible convex polygons with n pieces in
this manner, we have g(1) = 1, g(6) < 19, g(7) = g(8) =
g(9) = g(10) = 19, and g(n) = 20 for 11 ≤ n ≤ 16. We
also have 17 ≤ g(6) by the pattern in Fig. 15, which can
form all but polygons 10, 11, and 17 in Fig. 4. Thus we have
g(6) is either 17 or 18. Determining the values of g(n) for
n = 2, 3, 4, 5, 6 are future work†.
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