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Executive Summary

Compared to the intermediate deliverable D1.2.1, this deliverable presents some additional theoretical results re-
garding the achievable rate regions and performance limits on the links-on-the-fly concept introduced in “Links-on-
the-fly Technology for Robust, Efficient, and Smart Communication in Unpredictable Environments” (RESCUE)
project. As in D1.2.1, all the theoretical results are obtained based on the simplified four toy scenarios (TSs),
where the relays always forward their decoded information sequence to the destination ignoring whether it con-
tains error or not. The advantages of the links-on-the-fly concept over its baseline schemes have been extensively
studied and investigated in D1.2.1. Therefore, in this deliverable we mainly focus on the theoretical results of the
links-on-the-fly concept by making some scenario extensions and generalizations.

Toy Scenario 1 (TS1) is a typical three-node one-way relay network. The achievable rate region of TS1 was studied
in D1.2.1 based on the theorem of source coding with a helper and approximated by the Slepian-Wolf theorem.
All the links are supposed to be independent and identically distributed (i.i.d) Rayleigh block fading without
considering line-of-sight component. We further extend the wireless channels to i.i.d Rician and Nakagami-m
fading and calculate the theoretical outage probability of TS1. In addition, the Kullback-Leibler distance between
the Rician and Nakagami-m fading distributions is studied, which in turn provides the guideline for the analysis of
diversity and coding gains shown in the theoretical outage probability. A more advanced lossy forwarding1 scheme
with least square based symbol level filtering is investigated over TS1, which guarantees better bit error rate (BER)
performance compared to the baselines.

Toy scenario 2 (TS2) is a single-source multiple-relays and single-destination system without direct link between
the source and the destination. As in D1.2.1, we mainly focus on the chief executive officer (CEO) problem, which
results from the special case where all the source-to-relay links are lossy. We first reduce the binary CEO problem
to a binary multiterminal source coding problem. Then, we derive the tighter outer bound on the rate distortion
region for the binary multiterminal source coding problem based on the converse proof of the bound. Furthermore,
a lower bound on the Hamming distortion for the CEO problem is obtained by minimizing the distortion function
subject to the inequalities between the derived outer bound and the channel capacities. Finally, an extension of
the binary CEO problem to an arbitrary number of terminals is investigated. The correctness/accuracy of the
derivations is also verified through practical simulations using accumulator (ACC) aided turbo codes.

Toy scenario 3 (TS3) is an extension of TS2 with direct link between the source and the destination. In the D1.2.1,
the selective DF was intensively investigated. Here, we analyze the upper bound of the outage probability by
reducing and relaxing the rate constraints based on Slepian-Wolf theorem. Closed form expression for the outage
probability is derived for the high signal to noise ratio (SNR) regime with up to four relays. Comparison between
the cases with different number of relays is carried out to show the improved diversity order when the number of
relays increases.

Toy scenario 4 (TS4) is a multiple access relay channel (MARC) with two sources, single relay and a common
destination. The achievable rate region and outage probability was intensively studied in D1.2.1 under the con-
straint of perfect or imperfect source-to-relay links and orthogonal transmission. We relax the restriction on the
assumption of orthogonal transmission and apply the non-orthogonal transmission to MARC. A virtual channel
between the source-to-relay links is established for the purpose of simplifying the analysis. The achievable rate
region is further obtained by the theorem of multiple access channel with a helper, which determines the outage
probability. The outage probability of non-orthogonal MARC is slightly worse than orthogonal MARC, but the
time slot consumption for the data transmission between sources and destination is reduced considerably.

1This term is exchangeable with lossy decode-and-forward (DF) throughout the deliverable.
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S-D Source-to-destination
SDF Selective decode-and-forward
SNCC Separate network-and-channel coding
SNR Signal-to-noise ratio
SNRCC Systematic non-recursive convolution code
S-R Source-to-relay
SRCC Systematic recursive convolutional code
TDMA Time division multiple access
TS Toy scenario
V2V Vehicle-to-vehicle
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1. Introduction

The RESCUE project mainly focuses on two use cases. One is related to public safety, and the other to vehicle-to-
vehicle (V2V) communications. We apply the links-on-the-fly concept to the situation for the former use case when
the infrastructure is not available due to some natural disasters. For the V2V communications, safety related infor-
mation is exchanged among vehicles with the help of roadside units or the other vehicles. The key technique lies
in the links-on-the-fly concept is lossy decode-and-forward (DF) relaying strategy. Unlike conventional selective
DF (SDF), the relay nodes always forward their decoded data to the destination, where it is ignored that whether
it contains error or not. Even though the decoded data contains some errors, it is correlated with the original data
sent from the sources. It is a waste of resource (e.g., time slot, energy and etc.) if we discard the erroneous data at
the relay, since it could help to recover the original data at the destination. As shown in our previous deliverable
[ICT15], significant performance gain regarding outage probability can be achieved compared to the conventional
SDF scheme.

The deliverable focuses on the theoretical results update of assessment on feasibility, achievability, and limits. It
is extremely challenging to analyze the theoretical performance limits from the perspective of the whole large net-
work, especially when we take into account the dynamic topology change. Therefore, we divide the complicated
network into four independent simplified toy scenarios (TSs). TS1 is a three-node one-way relay network consist-
ing of one source, one relay, and one destination. TS2 is so called diamond network, composed of one source,
two or multiple relays, and one destination, without direct link between the source and the destination. TS3 can
be considered as an extension of TS1 and/or TS2. It adds more relays between the source and the destination
compared to TS1 while direct link is included which differentiates the scenario from TS2. TS4 is multiple access
relay channel (MARC). Unlike previous three TSs, multiple sources are introduced in TS4.

In the intermediate deliverable [ICT15], some preliminary results were obtained. We calculated the outage proba-
bility of TS1 over Rayleigh block fading channels based on source coding with a helper. The approximated outage
probability was obtained using Slepian-Wolf theorem [Zho+14]. Optimal relay position was found to be the exact
midpoint between the source and the destination. Regarding TS2, we investigated the special case when all the
source-to-relay links are lossy, which results in the chief executive officer (CEO) problem [Xin13CL; XinISITA].
Berger-Tung outer bound based bit error rate (BER) was calculated. For TS3, we could not analyze the achievable
rate region and its corresponding outage probability. However, we proposed a SDF based relaying strategy and
studied the BER performance over Rayleigh fading channel. In TS4, the outage probabilities of orthogonal MARC
were studied for both the perfect intra links and imperfect intra links [Xiaobo2014; Lu+14].

Main Contribution of D1.2.2

In reality, wireless channels may contain line-of-sight (LoS) component, especially when the transmitter and re-
ceiver are geometrically closely located. We extend the wireless Rayleigh fading channel assumption to Rician
and Nakagami-m fading and calculate the theoretical outage probability of TS1. The Kullback-Leibler distance
between the Rician and Nakagami-m fading distributions is studied to provide the guideline for the analysis of
diversity and coding gains, shown in the theoretical outage probability. A more advanced lossy forwarding tech-
nique with least square based symbol level filtering is investigated for TS1, which presents better BER performance
compared to the baselines.

We reduce the binary CEO problem to a binary multiterminal source coding problem and derive the tighter outer
bound on the rate distortion region for the binary multiterminal source coding problem. We obtain a lower bound
on the Hamming distortion for the CEO problem by solving a convex optimization problem. Finally, an extension
of the binary CEO problem to an arbitrary number of terminals is also investigated. Practical simulations using an
accumulator (ACC) aided turbo code for each link are provided to verify the accuracy of the derived lower bound
of Hamming distortion.

The upper bound of the outage probability of TS3 is achieved by reducing and relaxing the rate constraints based
on Slepian-Wolf theorem. We derived the closed form expressions for the outage probabilities for the high signal to
noise ratio (SNR) regime with up to four relays. Theoretical analyses are verified by both Monte-Carlo simulation
results and practical results using ACC aided turbo codes. Comparison between the cases with different numbers
of relays is also conducted to show the improved diversity order when the number of relays increases.
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We relax the restriction on the assumption of orthogonal transmission and apply the non-orthogonal transmission
to MARC. A virtual channel between the source-to-relay links is established in a heuristic manner for the purpose
of simplifying the outage analysis. The achievable rate region is further obtained based on the theorem of multiple
access channel with a helper. It is found that the outage probability of non-orthogonal MARC is slightly worse
than orthogonal MARC, but the network throughput can be significantly improved instead.
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2. Performance Analysis of TS1

2.1 System Model

We consider a simple relaying system with three nodes as shown in Fig. 2.1. A source S communicates with a
destination D with help of one relay R. In the first time slot, the original binary information sequences bS broadcast
from S. R attempts to recover bS. However, because of the fading of the S-R link, bR is obtained as the decoding
result at R may contain errors. Nevertheless, R re-interleaves, re-encodes and forwards bR to D during the second
time slot. At D, the S-R link error probabilities are estimated from log-likelihood ratios (LLRs), and used as the
correlation knowledge between the information sent from S and R. The LLRs of the information bits are exchanged
between two decoders during an iterative decoding process.

Specifically, the S-R link is modeled by a binary symmetric channel (BSC) [GFZ05] with a crossover probability
p f , where p f represents the bit flipping probability of bR. Hence, bR = bS⊕ e, where ⊕ denotes the modulo-2
addition and e is a binary error variable with Pr(e = 1) = p f fixed within each block. The error probability p f
changes block-by-block assuming block fading of the S-R link.

The S-D link is assumed to experience frequency non-selective block Rayleigh fading which only has non LOS
(NLOS) components. The probability density function (PDF) of the instantaneous signal-to-noise ratio (SNR) of
the S-D link (i.e., γSD) is given by

p(γSD) =
1

γSD
exp(− γSD

γSD
), (2.1)

where γSD represents the average SNR of the S-D link.

Both S-R and R-D links are assumed to suffer from block fading variation having LOS component, following
either Rician or Nakagami-m distributions. The PDF of the instantaneous SNR γi j (i j = SR,RD) following Rician
distribution is

pRici (γi j) =

(
(1+Ki j)e−Ki j

γ i j

)
exp

(
− (1+Ki j)γi j

γ i j

)
· I0

(
2

√
Ki j (1+Ki j)γi j

γ i j

)
, (2.2)

where I0(·) is the zero-th order modified Bessel function of the first kind. Average SNR of the corresponding link
is denoted as γ i j, and the ratio of the LOS component power-to-NLOS component average power is denoted as
Ki j.

The PDF of the instantaneous SNR γi j (i j = SR,RD) following the Nakagami-m distribution is given by

pNaka (γi j) =
m

mi j
i j (γi j)

mi j−1

(
γ i j

)mi j
Γ(mi j)

exp

(
−mi jγi j

γ i j

)
,mi j > 0.5, (2.3)

where Γ(·) is the complete Gamma function, and shape factor mi j represents the severity of the fading variation
of the corresponding link. The Nakagami-m fading with factor m is approximated by Rician fading with factor K
[Gol05], [SA05], as

m =
(K +1)2

2K +1
. (2.4)

2.2 Outage Probability Derivation

According to the theorem of source coding with side information [GK11], bS can be reconstructed losslessly at D
if the source coding rates of bS and bR, RS and RR respectively, satisfy the following inequalities:

{
RS ≥ H(bS|b̂R),

RR ≥ I(bR; b̂R),
(2.5)
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Figure 2.2: Rate region for S and R when p f = 0. The red solid lines separate the admissible and inadmissible
regions.

where b̂R is the estimate of bR at D, and H(·|·) and I(·; ·) denote the conditional entropy and the mutual information
between the arguments, respectively.

When p f = 0, which indicates perfect decoding at R, we have H(bS|bR) = H(bR|bS) = 0. Hence, the inadmissible
rate region becomes the triangle area A as shown in Fig. 2.2. When 0 < p f ≤ 0.5, the inadmissible region is shown
in Fig. 2.3 which can be divided into two areas, B and C.

The rate region defined in (2.5) indicates that, even bR containing errors, with 0≤ RR ≤ H(bR), it can serve as the
side information for losslessly recovering bS. In the case RR > H(bR), the condition becomes to RS ≥ H(p f ).

If the rate pair (RS, RR) falls into the inadmissible region, the outage event occurs, and D cannot reconstruct bS
with an arbitrarily small error probability. Since p f = 0 and 0 < p f ≤ 0.5 are distinctive, the outage probability of
the LF relaying can be expressed as

Pout = PA +PB +PC, (2.6)

where PA, PB, and PC denote the probabilities that (RS, RR) falls into the inadmissible areas A, B, and C, respec-
tively. Taking into account the impact of p f , PA, PB, and PC can further be expressed as
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PA = Pr[p f = 0,0≤ RS < 1,0≤ RR < H(p f ∗ p′f )], (2.7)

PB = Pr[0 < p f ≤ 0.5,0≤ RS < H(p f ),RR ≥ 0], (2.8)
PC = Pr[0 < p f ≤ 0.5,H(p f )≤ RS < 1,0≤ RR < H(p f ∗ p′f )], (2.9)

where a BSC model is also used to represent the R-D link (helper channel) with flipping probability p′f , with
p f ∗ p′f = (1− p f )p′f +(1− p′f )p f .

Based on the Shannon’s lossless source channel separation theorem, the relationship between the instantaneous
channel SNR γi j (i j = SD,RD) and its corresponding rate Rk is given by1

Rk ≤Θ(γi j) = log2 (1+ γi j) , (2.10)

with its inverse function
γi j ≥Θ

−1(Rk) =
(
2Rk −1

)
,(k = S,R). (2.11)

Based on the Shannon’s lossy source channel separation theorem, the relationship between p f and the instanta-
neous channel SNR γSR is given as

p f = Λ(γSR) = H−1
2 (1− log2 (1+ γSR)) , (2.12)

with H−1
2 (·) denoting the inverse function of the binary entropy. The minimum distortion is equivalent to p f

[GK11].

Solving (2.7), (2.8) and (2.9) based on the PDFs of the instantaneous SNR of the corresponding channels, the
outage probabilities of the LF relaying with the fading variations of the S-R and R-D links following the Rician
distribution can be expressed as

PRici
A =

∫
Θ−1(∞)

γSR=Θ−1(1)

∫
Θ−1(1)

γSD=Θ−1(0)

∫
Θ−1(1−Θ(γSD))

γRD=Θ−1(0)
pRici(γSR)p(γSD)pRici(γRD)dγSRdγSDdγRD

=
1

γSD
Q1

(
√

2KSR,

√
2(1+KSR)

γSR

)
·
∫

Θ−1(1)

γSD=Θ−1(0)
exp
(
− γSD

γSD

)[
1−Q1

(
√

2KRD,

√
2(1+KRD)

Θ−1(1−Θ(γSD))

γRD

)]
dγSD,

(2.13)

1The spectrum efficiency of the transmission chain, including the channel coding scheme and modulation multiplicity in all of the links are
set to the unity.
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PRici
B =

∫
Θ−1(1)

γSR=Θ−1(0)

∫
Θ−1(1−Λ(γSR))

γSD=Θ−1(0)

∫
Θ−1(∞)

γRD=Θ−1(0)
pRici(γSR)p(γSD)pRici(γRD)dγSRdγSDdγRD

=
∫

Θ−1(1)

γSR=Θ−1(0)
exp
(
− (1+KSR)γSR

γSR

)
·
(
(1+KSR)e−KSR

γSR

)
I0

(
2

√
KSR (1+KSR)γSR

γSR

)
·
[

1− exp
(
−Θ−1(1−Λ(γSR))

γSD

)]
dγSR

(2.14)

and

PRici
C =

∫
Θ−1(1)

γSR=Θ−1(0)

∫
Θ−1(1)

γSD=Θ−1(1−Λ(γSR))

∫
Θ−1[ξ (γSD,γSR)]

γRD=Θ−1(0)
pRici(γSR)p(γSD)pRici(γRD)dγSRdγSDdγRD

=
1

γSD

(
(1+KSR)e−KSR

γSR

)∫
Θ−1(1)

γSD=Θ−1(1−Λ(γSR))
·
∫

Θ−1(1)

γSR=Θ−1(0)
exp
(−γSD

γSD

)
exp
(
− (1+KSR)γSR

γSR

)

· I0

(
2

√
KSR (1+KSR)γSR

γSR

)
1−Q1



√

2KRD,

√
2(1+KRD)

Θ−1[ξ (γSD,γSR)]

γRD

)]
dγSDdγSR, (2.15)

where ξ (γSD,γSR) = H{H−1[1−Θ(γSD)]∗H−1[1−Λ(γSR)]} and Q1(·, ·) is the Marcum Q-Function.

The outage probability of the LF relaying with S-R and R-D links following Nakagami-m fading can be derived in
the same way as for the Rician case, as

PNaka
A =

1
γSD


1−




γ

(
mSR,mSR

1
γSR

)

Γ(mSR)




 ·

∫
Θ−1(1)

γSD=Θ−1(0)
exp
(
− γSD

γSD

)
·




γ

(
mRD,mRD

Θ−1(1−Θ(γSD))
γRD

)

Γ(mRD)


dγSD,

(2.16)

PNaka
B =

∫
Θ−1(1)

γSR=Θ−1(0)

mmSR
SR (γSR)

mSR−1

(γSR)
mSR Γ(mSR)

exp
(
−mSRγSR

γSR

)
·
[

1− exp
(
−Θ−1(1−Λ(γSR))

γSD

)]
dγSR, (2.17)

and

PNaka
C =

1
γSD

∫
Θ−1(1)

γSR=Θ−1(0)

∫
Θ−1(1)

γSD=Θ−1(1−Λ(γSR))
exp
(−γSD

γSD

)
mmSR

SR (γSR)
mSR−1

(γSR)
mSR Γ(mSR)

exp
(
−mSRγSR

γSR

)

·




γ

(
mRD,mRD

ξ (γSD,γSR)
γRD

)

Γ(mRD)


dγSDdγSR, (2.18)

where γ(·, ·) is the lower incomplete gamma function. Note that the factor K of Rician fading is connected to the
factor m of Nakagami-m fading by (2.4), the impact of the difference in the statistical characteristics between the
Rician and Nakagami-m fading on the outage performance can be evaluated by adjusting the factor K in Rician
fading and the factor m in Nakagami-m fading.

2.2.1 Kullback-Leibler Distance (KLD)

The Kullback-Leibler distance (KLD) is used to measure the difference between probability distributions. Based
on (2.2) and (2.3), the KLD of Rician relative to Nakagami-m distribution is given as [CT06]

DKL(pRici (γ) ||pNaka (γ)) =
∫

γ

pRici (γ) ln
pRici (γ)

pNaka (γ)
dγ. (2.19)

Relatively, the KLD of Nakagami-m relative to Rician distribution is defined as

DKL(pNaka (γ) ||pRici (γ)) =
∫

γ

pNaka (γ) ln
pNaka (γ)

pRici (γ)
dγ. (2.20)
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Figure 2.4: KLD between Rician and Nakagami-m distributions

When K = 0 and m = 1, DKL(pRici (γ) ||pNaka (γ)) = 0,DKL(pNaka (γ) ||pRici (γ)) = 0, which indicates that the
Rician and Nakagami-m distributions converge to the identical Rayleigh distribution. Fig. 2.4 shows the KLD
curves, DKL

(
pRici (γ) ||pNaka (γ)

)
, as well as the DKL(pNaka (γ) ||pRici (γ)), as a function of the factor K (its corre-

sponding m value follows (2.4)). We can easily find that DKL
(

pRici (γ) ||pNaka (γ)
)

and DKL(pNaka (γ) ||pRici (γ))
are not identical to each other, because of the asymmetricity of KLD. We can also see from Fig. 2.4 that
DKL

(
pRici (γ) ||pNaka (γ)

)
and DKL(pNaka (γ) ||pRici (γ)) increase as K (m) increase until a point between 2 and

3 for K (between 1.8 and 2.3 for m). After that, the KLDs gradually reduce as K ( and hence m) further increases.

2.2.2 Diversity and Coding Gains

The derivation of the explicit expression of (2.16), (2.17), and (2.18) may be excessively complex. However, the
diversity and coding gains can be obtained by approximating (2.16), (2.17), and (2.18) at high SNR region.

Invoking the series representation of incomplete gamma function γ(a,x) = ∑
∞
n=0

(−1)nxa+n

n!(a+n) [GR07, equation
8.354.1] and together with the approximation [WG03]

pNaka (γi j)≈
m

mi j
i j (γi j)

mi j−1

(
γ i j

)mi j
Γ(mi j)

, (2.21)

the outage probability of the LF relaying over Nakagami-m fading channel can be approximated as

PNaka
A ≈A ·A′ ·

(
Es

N0

)−(mSD+mRD)

, (2.22)

PNaka
B ≈B ·

(
Es

N0

)−(mSD+mSR)

, (2.23)

PNaka
C ≈C ·

(
Es

N0

)−(mSD+mRD+mSR)

, (2.24)
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Figure 2.5: Comparison of outage curves obtained by using the numerical calculation (2.16), (2.17), and
(2.18) and approximation method (2.22), (2.23), and (2.24), mSD = 1.

where

A =
mmSD

SD mmRD−1
RD

GmSD
SD GmRD

RD Γ(mSD)Γ(mRD)

∫
Θ−1(1)

γSD=Θ−1(0)

(
2

1+γSD
−1
)mRD

γ
1−mSD
SD

dγSD, (2.25)

B =
mmSR

SR mmSD−1
SD

GmSD
SD GmSR

SR Γ(mSD)Γ(mSR)

∫
Θ−1(1)

γSR=Θ−1(0)

(
2

1+γSR
−1
)mSD

γ
mSR−1
SR

dγSR, (2.26)

C =
mmSR

SR mmSD
SD mmRD−1

RD
GmSD

SD GmRD
RD GmSR

SR Γ(mSD)Γ(mRD)Γ(mSR)

∫
Θ−1(1)

γSR=Θ−1(0)

·
∫

Θ−1(1)

γSD=Θ−1(1−Λ(γSR))
γ

mSD−1
SD γ

mSR−1
SR ξ

mSD(γSD,γSR)dγSRdγSD. (2.27)

GmSD
SD , GmRD

RD , and GmSR
SR are the geometric gains of S-D, R-D, and S-R links, respectively. A′ = 1−

γ

(
mSR,mSR

1
ΓSR

)

Γ(mSR)

indicates the probability of p f = 0 (i.e., decoding error can be arbitrarily small at R). One can easily see that the
value of A′ asymptotically equal to one at high SNR regime.

Fig. 2.5 shows that, at high SNR region the approximated outage curves obtained from (2.22), (2.23), and (2.24)
well match the numerically calculated curves from (2.16), (2.17), and (2.18), which indicates that the approxima-
tion is accurate.

Furthermore, it can be observed from (2.22), (2.23), and (2.24) that,
(

Es
N0

)−(mSD+mRD+mSR)
is higher-order infinites-

imal of
(

Es
N0

)−(mSD+mRD)
and

(
Es
N0

)−(mSD+mSR)
when Es

N0
goes to infinity. Therefore, the overall outage probability

of the LF relaying with Nakagami-m fading can be formulated as

PNaka
out =

(
Gc ·

Es

N0

)(−Gd)

, (2.28)

where
Gd = mSD +min(mSR,mRD) (2.29)
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Figure 2.6: Outage probability with Rician and Nakagami-m fading in the R-D link. The S-R link is Rayleigh
fading: KSR = 0 (mSR = 1).

and

Gc =





1
(Gd )
√

B
, mSR < mRD

1
(Gd )
√

A+B
, mSR = mRD

1
(Gd )
√

A
, mSR > mRD

(2.30)

are the diversity and coding gains [WG03] of the LF relaying. We can see from (2.30) that, the system diversity
order of the LF relaying is restricted by the less reliable channel among the S-R and R-D links. The outage curves
shown in Fig. 2.5 also illustrate that the diversity gain cannot be obtained by only increase m of either the S-R or
the R-D link. As the values of mSR or mRD increase, the lower outage probability can be achieved. However, the
decay of outage curves always remains the same. The outage curves can achieve sharper decay (higher diversity
order) only when m of both the S-R and R-D links increase simultaneously, which confirms the conclusion shown
in (2.29) regarding diversity order.

2.2.3 Theoretical Results

The theoretical outage probabilities of the LF relaying system with R-D link suffering from Rician fading are
presented in Fig. 2.6, where the outage probability is denoted as PRici

out . Also, the theoretical outage probabilities
with the R-D link undergoing Nakagami-m fading, denoted as PNaka

out , are shown in Fig. 2.6. Both the S-D and
S-R links suffer from Rayleigh fading (KSR = 0 for PRici

out , mSR = 1 for PNaka
out ). We can see that the PRici

out and
PNaka

out curves have similar tendency: the larger the KRD (mRD) values are, the smaller the outage probability is, for
a given average SNR value. This indicates that as the channel variation of the R-D link becomes milder, lower
outage probability can be achieved. This is due to the contribution of the increased LOS component power in the
R-D link. However, as shown in Fig. 2.6, the diversity order remains with a higher ratio of the R-D link LOS
component. This is because the S-R and S-D link variations follow Rayleigh distribution and can only achieve
1st order diversity. Even though higher order diversity can be achieved over the R-D link with the increased LOS
component power, it is obvious that the whole relaying system cannot 2nd order diversity according to max-flow
min-cut theorem, which is widely used for network performance evaluation.

Fig. 2.7 shows the theoretical outage probability PRici
out and PNaka

out versus the average SNR, where KSR = KRD
(mSR = mRD). It is found that the outage curves can achieve sharper decay than that with 2nd order diversity, when
the LOS component ratio of the both the S-R and R-D links increases simultaneously. It is reasonable since the
bottleneck of S-R and R-D links magnifies as the LOS component getting stronger, according to the max-flow
min-cut theorem.

From Fig. 2.6 and 2.7 we found that, when KRD = 0 (mRD = 1), PRici
out and PNaka

out show the same performance. This
is because obviously, with KRD = 0 (mRD = 1), Rician (Nakagami-m) fading with R-D link reduces to Rayleigh
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Figure 2.7: Outage probability with Rician and Nakagami-m fading in both S-R and R-D links. KSR = KRD,
mSR = mRD.

fading. However, when the KRD (mRD) values increase, e.g., KRD = 2 (mRD ≈ 1.8), the outage curves exhibit
different tendencies. Again, the difference diminishes when KRD (mRD) becomes larger, e.g., KRD = 10 (mRD ≈
5.76). This observation can be verified by the KLD analysis given in section 2.2.1.

2.3 Lossy Decode and Forward with Symbol-Level Filtering

In this section, a lossy decode and forward with symbol-level filtering technique will be considered in TS1.

Cooperative relaying has been intensively investigated in the last decade with various aspects. Recently, it has
been reconsidered as one of the solutions to explore the nature of densely deployed wireless networks. As one of
the widely accepted relay protocols, DF relaying faces the problem of decoding errors propagation particularly in
the case of relatively weak source-relay (SR) link. Forwarding erroneous symbols to destination has effect to the
overall system and can cause error floor in bit error rate as discussed in [Li+06].

To solve this problem, selective DF (SDF) relaying has been proposed and approached the goal through the cost
of increasing system complexity [YMT08]-[Nos06]. For example, cyclic redundancy code (CRC) based SDF has
been proposed in [Nos06]. Authors proposed to use CRC check at relay and prevent it from forwarding if CRC fails.
However, a single error in a coded frame will trigger a CRC failure at the relay and hinder a significant number
of correctly decoded symbols to be forwarded to destination. This results the diversity gain loss. To improve
the performance, threshold-based SDF approaches have been proposed, which allows relay node to calculate a
reliability measure of the receive symbols and forward it to destination in the case the measure passes a pre-set
value. For example, authors use the receive SNR as the measure at relay in [MYT08] and log-likelihood ratio
(LLR) has also been proposed to be used as the measure in [PAR08]. The authors in [Voj06] proposed that the
relay can operate in the DF mode when the SNR exceeds a pre-set value and in the amplify-and-forward (AF)
mode when below such a value. Consequently, having a properly designed threshold is very important to the
performance of the threshold based SDF. The optimum threshold is normally difficult to find and especially with
multiple relay nodes. It also worth to notice, these threshold-SDF schemes are still frame level based selection.

To compensate the diversity gain loss through discarding whole frame, symbol-level selection approach has been
proposed. A LLR-based selection approach has been investigated for demodulation-forward relaying in [Kwo+10].
The magnitude of the LLR for each symbol is calculated at relay and compared with a pre-defined threshold. If
the LLR magnitude is equal to or larger than the threshold, the symbols are included in the frame to retransmit.
Otherwise, the reserved slot for this symbol remains empty in the frame. A similar approach is also proposed in
[AHGAD11], where authors proposed only the bits with associated LLR that exceed the pre-set threshold will be
forwarded in coded cooperation. The relay then keeps silent (transmit zero energy) in the places of the blocked
bits. It is noticed here, both approaches need to have the knowledge of noise variance of source-relay (SR) link to
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calculate LLR, and all three links to calculate the pre-defined threshold. However, it is not practical to have noise
variance, especially for the forward link. These limit the application of symbol-level selection in SDF.

This motivated us to propose an improved SDF, which relay can forward the reliable symbols to destination to
compensate the spatial-domain channel diversity. Meanwhile, no pre-set threshold and noise variance is needed at
relay. To approach this goal, we propose a novel approach named lease-square (LS) based symbol level filtering,
which employs absolute value to filter out the unreliable symbols after signal regeneration at relay.

Consider a classical three-node relaying model accommodating one source (S), one destination (D), and a half-
duplex relay (R). The relaying protocol is orthogonal DF to prevent interference from transmitting concurrently.
Hence, each transmission is divided into two phases. In phase I, source broadcasts signals to relay and destination,
the discrete-time equivalent form of mth receive symbol at relay as well at the destination are described by

SD Link : ysd
m =

√
Ps

mhsdxs
m + vsd

m , (2.31)

SR Link : ysr
m =

√
Ps

mhsrxs
m + vsr

m, (2.32)

where ysd
m , ysr

m denotes the m th receive symbol through the SD channel, hsd and SR channel, hsr respectively, which
is considered here as block fading; Ps

m the source transmit power; xs
m the coded m th symbol sent by source; vm

denotes the noise of corresponding links with the variance No. Then relay node demodulates and decodes the
receive coded symbols into uncoded ones for all symbols in the frame. If CRC does not report error for this frame,
then relay will re-encode and modulate the information bits and send whole frame to destination through relay-
destination (RD) channel, hrd, for diversity combining. In this case, there is no difference between our proposed
one and the CRC-based SDF. The discrete-time equivalent form of received mth symbol at destination is expressed
as

RD Link : yrd
m =

√
Pr

mhrdxr
m + vrd

m , (2.33)

where Pr
m denotes the relay transmit power for m th symbol. Linear combining is employed at destination to enjoy

the diversity gain.

Once CRC reports frame error, if the relay discards the receive frame and sends signalling to source node, a frame
will be re-sent through SD link. Then, receive SNR at destination for such repetition-coded DF can be expressed
as

γ
baseline =

2Ps

No
|hsd|2δ

2, (2.34)

where Ps denotes the frame transmit power per frame and δ 2 the signal variance.

In our proposed approach, relay does not simply discard the whole frame although CRC reports decoding error.
To help to select trust-able symbols, we define the decoding error for mth symbol at relay node as εm. The error
probability per frame is given as Pε , which varies in each frame due to the channel fading. Ideally, only correctly
decoded symbols should be selected and forwarded, and relay should transmit zero energy in the places for the rest
symbols. An utility function is defined here as

Θm =

{
1, mth symbol is selected
0, mth symbol is not selected (2.35)

Therefore, the mth transmit symbol at relay is given as

xr
m = Θmx̂r

m, (2.36)

where x̂r
m denotes the mth coded symbol after reconstruction at relay. For every frame, a selection mask is given as

= [Θ1, . . . ,ΘM].

At destination, a linear combining is employed to enjoy the diversity gain. Then, the destination can perform the
combination of ysd

m with yrd
m or ysd

m as
y(r)m = w(sd)y(sd)

m +w(rd)y(rd)m , (2.37)

where w(sd), w(rd) are the weighting coefficient. Single-tap equalizers, e.g., zero-forcing, can be employed for the
channel equalization. These equalizers do not affect the SNR of the receive symbols. In the case, relay forwards
the frame to destination, the receive SNR at destination is given as

γ
(r) =

Ps

No
|hsd|2δ

2 +(1−Pε)
Pr

No
|hrd|2δ

2, (2.38)
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where Pε = 1−∑
M
m=1 Θm/M.

It is observed, when wrongly decoded bits are null out at relay, diversity gain will be reduced as the second term
in (2.38) will be null out. Therefore, relay node should only still forward the selected symbols to destination after
CRC reported error when γ(r) > γbaseline. This is equivalent to

(1−Pε)
Pr

No
|hrd|2δ

2 >
Ps

No
|hsd|2δ

2. (2.39)

From the condition in (2.39), we have the following condition for frame error probability as

Pε 6 1− Ps|hsd|2
Pr|hrd|2 . (2.40)

As error probability is always non-negative, therefore, the maximum decoding error probability at relay for for-
warding to offer the same performance as source retransmission is given as

Pmax
ε = 1− Ps|hsd|2

Pr|hrd|2 . (2.41)

As indicated in (2.40), Pε needs to fulfil the forward condition. To filter out the trust-able symbol at relay, a
selection strategy is needed. In the following section, the proposed LS based symbol-level filtering strategy will
be discussed.

It is noticed here, the stopping forward criterion in (2.41) needs the channel knowledge of RD link, which is
possible available at relay through signalling.

2.3.1 Proposed Symbol Filtering Strategy

In this section, our proposed symbol filtering strategy will be discussed, which will be employed at relay to conduct
the selection mask . After broadcasting in phase I, relay performs demodulation and decoding to the receive
signals. Then the decoded symbols are fed into encoder and modulator to produce re-constructed mth symbol as
x̂s

m. The LS of the mth received symbol at relay and the re-constructed symbol can be expressed as

∆m = |hsrxs
m + vsr

m−hsrx̂s
m|2 . (2.42)

To determine whether mth symbol is correctly decoded or not, the ∆m is compared with the norm of mth receive
symbol as

ξm = ∆m−|hsrxs
m + vsr

m|2. (2.43)

If x̂s
m is correctly decoded (i.e. x̂s

m = xs
m), the LS value (i.e. ∆m) should be smaller than the mth receive symbol (i.e.,

ξm < 0). Otherwise, it will be larger than it, which indicates x̂s
m is wrongly decoded. The utility function defined

in (2.35) can be calculated as

Θm =

{
1, ξm < 0
0, ξm > 0. (2.44)

Θm is calculated for all M symbols and then a selection mask is produced per frame to select the trust-able
symbols to be forwarded to destination. As indicated in Section 2.3 the symbol error rate per frame should be less
than maximum symbol error rate per frame to maintain the diversity gain. Therefore, we have the following

1−
M

∑
m=1

Θm/M 6 Pmax
ε , (2.45)

M

∑
m=1

Θm > M · P
s|hsd|2

Pr|hrd|2 . (2.46)

With the definition of Θm in (2.35) and the inequality in(2.46), we can immediately conclude the following result.

Theorem 1 (Relay Forwarding Criterion). To let relay to forward an erroneous frame to destination, a sufficient
and necessary condition for the total selected trust-able symbols per frame to be fulfilled is

M

∑
m=1

Θm > M · P
s|hsd|2

Pr|hrd|2 (2.47)
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Theorem 1 defines a criterion that relay can forward the message although CRC report error.

It is noticed here, when relay forwards frame through RD link, the null-out symbols will introduce noise at desti-
nation. The selection mask, i.e., , can be forwarded to destination to de-noise, but this will significantly increase
the signalling overhead as the frame length increasing. Without at destination, the performance will be degraded.
However, it is observed that the the degradation is negligible throughout the whole SNR range. In our simulation
results section, the proposed approach will be demonstrated with and without selection mask to be forwarded to
destination node.

2.3.2 Performance Analysis

In this section, the bit error probability (BEP) is employed to analyse performance. With the law of total probability,
the BEP of the proposed scheme is

Pr(ε) = Pr(S C)Pr(ε|S C)+(1−Pr(S C))Pr(ε|S ). (2.48)

Here, the condition probability is defined as Pr(A|B) = Pr(AB)/Pr(B). The first term of (2.48) is the error proba-
bility at destination when the symbol is not selected to be forwarded. The second term is the error probability at
destination when the symbol is selected.

Symbols is selected based on the LS decision in (2.44). Therefore, the probability that a symbol is not selected for
retransmission Pr(S C) can be expressed as follows,

Pr(S C)= Pr(ξm > 0) = Pr(|ysr
m|6

√
∆m) (2.49)

=
∫ √

∆m

−√∆m

gysr
m(y

sr
m)dysr

m, (2.50)

where gysr
m(y

sr
m) = α exp(βysr

m)exp(χ|ysr
m|) denotes the PDF function of the low-pass equivalent received signal after

channel compensation at relay (see Appendix A in[Kwo+10] for details). When mth symbol is not selected for
retransmission, Pr(ε|S C) is the error probability of the SD link as

Pr(ε|S C) = PB(γ
sd
m ). (2.51)

When the symbol is selected, the error probability at destination after linear combining can be expressed as fol-
lows,

Pr(ε|S ) =(1−Pr(εsr|S ))Pr(εcom|(εsr)C,S )+Pr(εsr|S ) ·Pr(εep|εsr,S ). (2.52)

Consequently, the BEP after combining at destination is derived by substituting (2.50), (2.51) and (2.52) into
(2.48).

2.3.3 Simulation Results

Computer based Monte Carlo simulations are used to demonstrate pros/cons of the proposed SDF approach with LS
based symbols level filtering. All the communication channels are generated independently according to Rayleigh
distribution with unity variance. BPSK modulation scheme is used in our simulations. All transmitters use the
equal transmission power. The main metric of interest is the bit error rate (BER). This is because, the proposed
symbol-level filtering cannot improve the frame error rate, but the BER. The SNR is defined by average total
transmit bit power (i.e. consumed at both source and relay) to noise ratio.

The first baseline is the CRC-based SDF, which will stop forward as long as CRC reporting error in frame level. The
second baseline approach employed here for performance comparison is the SNR threshold based SDF investigated
in [MYT08]. The pre-agreed SNR threshold is set as 2 dB. As uncoordinated wireless networks considered here,
i.e., no signalling is considered, hence HARQ approach cannot be employed to improve the performance.

The simulation results were produced by employing carefully designed experiments with each have 15,000 Monte
Carlo trials. The channel gain (denoted by G) for each links was considered in two different cases as, in Case
1, Gsd : Gsr : Grd = 1 : 1 : 100, and in Case 2, Gsd : Gsr : G:Grd = 1 : 4 : 4. Case 1 and 2 are corresponding
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Figure 2.8: BER versus the total transmit power per bit versus noise variance for proposed approach and
baselines. Uncoded frame length setup is 2048. Channel gain setup is as shown in Section V.

to the scenarios: the relay is close to the destination, and in the middle between the source and the destination,
respectively. The employed coding scheme in our simulation is half Turbo Code and the uncoded frame length is
2048.

As it is shown in Fig. 2.8, BER performance is plotted versus the total transmit power per bit versus noise variance
(e.g., Eb/No) for our proposed approach and baselines. The total transmit power per bit versus noise variance
is defined as the total transmit power cost per bit at both source and relay versus the noise variance. The dot
lines demonstrate the performance in Case 1. The lines with solid circle marks are the proposed approach, which
symbol selection mask is not forwarded to destination to significantly reduced the signalling overhead. Therefore,
the noise variance is coloured when linear combining is performed as destination. The lines with square marks are
the baseline of CRC based SDF, and the line with star mark is the baseline of SNR threshold based SDF. The line
without mark demonstrates the ideal case which all correct symbols have been selected at relay node and forwarded
to destination.

It is observed that the proposed approach outperforms both baselines along the total transmit power per bit versus
noise variance. Up to 2 dB gain can be observed when comparing the proposed approach with CRC based SDF. It
is also observed, that in Case 1, CRC based SDF approaches proposed approach as long as Eb/No increased. This
is because more frames will pass the CRC checking at relay node when Eb/No increased. Hence, more frames
will be forwarded to destination for diversity combining. It is also noticed, the SNR threshold based SDF does
not approach proposed approach as long as Eb/No increased. This is due to the threshold is fixed as a pre-setup
value. It is also interesting to see what the performance can achieve, when the symbol selection mask is forwarded
to destination to denoise and white the noise variance. So we also plot it as the dot curve with empty circle mark.
It is observed, that the performance is almost identical with when the mask is not forwarded. It is also worth to
notice, the ideal symbol selection at relay (i.e., denotes by the dot curve) offer much better performance to all the
rest. This is because, in Case 1, SD link is weak, hence, many errors will happen at relay. Although LS selection
is proposed to be employed at relay, the performance is limited by noise.

We also plotted the performance of the proposed approach and base-line over Case 2 in Fig. 2.8. It is observed,
the performances of all approaches are significantly improved compare to over Case 1. This is because that relay
node is placed in the middle between source and destination. Hence, SD link is relative strong compare with Case
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Figure 2.9: Relay forward percent versus the total transmit power per bit versus noise variance.

1. The proposed approach outperforms the CRC based SDF around 3 dB in Case 2. This is because, LS selection
performance is improved as SD link channel gain is increased.

To further explain the gain of the proposed approach, we plot the relay node forward percent versus the total
transmit power per bit versus noise variance in Fig. 2.9. Dashed curves demonstrate the performance in Case 1,
and the solid curves demonstrate the performance in Case 2. It is observed, relay forwards least symbols with
CRC based SDF, which explains why it offers worse performance. Proposed approach let relay forward more
symbols compare with CRC-based SDF, hence the performance is improved. However, the curve is still away to
the ideal symbol selection, therefore, there is a performance gap between the curves of these two in Fig.2.8. It is
also interesting to see SNR threshold based SDF enables relay forward the most symbols to destination especially
when the value of the total transmit power per bit versus noise variance is low. This is due to the threshold is
pre-setup, and more errors have been forward to destination and cause the performance loss.

2.4 Conclusion

The impact of the LOS component on outage probability for the LF relaying has been investigated. The S-D link
has been assumed to suffer from block Rayleigh fading whereas the S-R and R-D links undergo block Rician or
Nakagami-m fading. The exact outage probability bound has been derived. The impact difference of Rician and
Nakagami-m fading on outage performance has been evaluated, based on KLD analysis between the Rician and
Nakagami-m distributions.

The majority of factor m values estimated in typical urban areas vary from 0.5 to 3.5 [RRC07]. The relatively
large KLD between Rician and Nakagami-m distributions can be observed in this range. Therefore, the outage
difference between the LF relaying with Rician and Nakagami-m model is correspondingly large. This observation
indicates the flaw that Nakagami-m fading model cannot be represented by Rician fading model for designing
and/or evaluating the theoretical limit approaching techniques with the LF relaying.

Moreover, an improved SDF with least-square based symbol level filtering has been investigated over TS1. Trusted
symbols will be filtered out after CRC reporting frame error. If the Relay Forwarding Criterion is fulfilled, relay
will forward a frame with selected symbols and reserve places for the unselected symbols at the destination. The
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selection mask at relay can be forwarded to destination to reduce the extra noise introduced by the reserved places.
However, it is also demonstrated in our simulation results that the performance degradation at destination due to
these can be negligible. Simulation demonstrated the proposed relaying protocol offers up to 3 dB performance
improvement than the selected baselines in terms of BER.
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RESCUE D1.2.2, Version 1.0

3. Performance Analysis of TS2

3.1 Hamming Distortion Bounds of Binary Information Sensing

We analyze the theoretical limits in AWGN channels using the Slepian-Wolf theorem for the binary information
sensing network, which can be considered as a real application case of TS2. However, the limits are obtained with
a strong assumption that the observations are recovered losslessly in usual Shannon sense, which is not always
true. Instead, we analyze a problem that how small a Hamming distortion level the fusion center can achieve from
the rate-distortion perspective by taking into account distortions of reconstructed observations. To this end, we
formulate a minimization problem to obtain the lower bounds on Hamming distortion using the JSC setup with
orthogonal multiple access channel (MAC) components.

In order to solve the minimization problem, we first model the source coding of the binary information sensing
network by the binary CEO problem. We then reduce the binary CEO problem to a binary multiterminal source
coding problem, which plays the core role in solving the main problem. An outer bound for the rate-distortion
region of the binary multiterminal source coding problem is then derived by providing the converse coding proof.
We establish the connection with respect to the Hamming distortion level between the binary CEO problem and the
binary multiterminal source coding problem. Finally, the minimization problem is formulated in the framework of
convex optimization. It should be emphasized here that our purpose is not intended to derive a tight rate-distortion
bound for the binary CEO problem. Instead, we focus on the derivation of a lower bound on the Hamming
distortion that can be used as a reference of the BER performance curves of the encoding/decoding algorithms.

3.2 Problem Statement

The system model of estimating a single source through two sensors/terminals is depicted in Fig. 3.1. A common
i.i.d. source X produces a sequence x = [x(t)]nt=1 by taking values from a binary set X = {0,1} with equal prob-
ability. Source X is observed by two nodes and forwarded to a single destination. Due to the inaccuracy of the
estimation and/or limited received signal power at nodes, such as in WSN and WMN, the sequences received by the
nodes may contain errors1, and the nodes still forward the erroneous sequences to the destination, which is referred
as LF [Zho+14; Lu+14]. The error probabilities Pr(x1(t) 6= x(t)) and Pr(x2(t) 6= x(t)) are denoted as p1 and p2,
respectively, i.e., Pr(bi(t) = 1) = pi for the binary noise sequence bi = [bi(t)]nt=1, i = 1,2. At the nodes, the noisy
versions x1 = [x1(t)]nt=1 and x2 = [x2(t)]nt=1 of xn are independently encoded by two joint source channel (JSC)
encoders to generate symbol sequences s1 = [s1(t)]

k1
t=1 and s2 = [s2(t)]

k2
t=1 with coding rates ri = n/ki, i = 1,2. The

symbol sequences s1 and s2 are then transmitted to the destination over two orthogonal AWGN channels, as

yi = hi · si + zi, i = 1,2, (3.1)

where hi and zi = [z(t)]ki
t=1 represent the channel gain and the AWGN sequence at the destination, respectively.

The orthogonality can be achieved by any scheduled multiple access scheme, like time division multiple access
(TDMA), i.e., s1 and s2 can be transmitted at different time intervals. The destination performs JSC decod-
ing to form estimates x̂i of the sequences xi, i = 1,2. We define the expected Hamming distortion measures
E[ 1

n ∑
n
t=1 d(xi(t), x̂i(t))]≤ Di + ε to evaluate the error probability Pr(xi(t) 6= x̂i(t)) with

d(xi(t), x̂i(t)) =
{

1, if xi(t) 6= x̂i(t),
0, if xi(t) = x̂i(t),

(3.2)

and ε representing an arbitrarily small positive number.

Finally, the destination reconstructs the source information xn of which the estimate is denoted as x̂n based on a
decision rule from x̂n

1 and x̂n
2. Therefore, the distortion measure E[ 1

n ∑
n
t=1 d(x(t), x̂(t))]≤ D+ ε can be formulated

as a function of Di, i = 1,2, as D = Fd(D1,D2), where function Fd(·) is detailed in Section 3.4. It should be
emphasized here that function D = Fd(D1,D2) limits the decoding scheme to which first reconstructs xn

1 and xn
2

and then makes the decision on xn from those reconstructions (it is referred to as sequential decoding), as shown

1In WMN applications, the nodes correspond to the transceivers in the multiple routes. In a WMN, a source communicates with a destination
through multiple intermediate nodes if they are not within the communication coverage. If errors are allowed in the messages forwarded by
the intermediate nodes, the WMN can be also modeled as the model shown in Fig. 3.1 [XinISITA].
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Figure 3.1: The abstract system model of estimating a single source through two independent nodes with
joint source-channel coding.

Figure 3.2: The abstract model of the binary CEO problem with two independent nodes.

in Fig. 3.1. The optimality of such a decoding scheme is an open problem, but it is definitely of interest for
practical systems. Furthermore, Fd(D1,D2) largely depends on the decision rule, i.e., there exists different function
Fd(D1,D2) for different decision rules2.

According to the source-channel separation theorem for lossy source coding [Xiao2007], distortion D1 and D2 can
be achieved if the following inequalities hold:

{
R1(D1) · r1 ≤C(γ1),
R2(D2) · r2 ≤C(γ2),

(3.3)

where Ri(Di) is the rate-distortion function for the source coding and C(γ) is the Shannon capacity using Gaussian
codebook3 with the argument γ denoting the SNR of the channel. As stated above, r1 and r2 represent end-to-end
coding rates of two links. Our goal is to derive the theoretical lower bound on the Hamming distortion for the
system shown in Fig. 3.1. It is equivalent to minimizing the expected Hamming distortion D through a function
Fd(D1,D2) under constraints shown in (3.3), as

min
D1,D2

D = Fd(D1,D2) (3.4)

s.t. (3.5)
R1(D1) · r1 ≤C(γ1),

R2(D2) · r2 ≤C(γ2),

The minimization being performed in (3.4) is for a specific system which maps the average distortions D1 and D2
to D, since function Fd(D1,D2) is defined for designated decision rules. To achieve this goal by solving (3.4), we
turn to derive the rate-distortion function Ri(Di) for the problem shown in Fig. 3.1 and to establish the function
D = Fd(D1,D2) for the decision rule used at the destination.

2It has been assumed in this setup that 1) each encoder uses joint typicality encoding and binning based on random coding arguments,
and the decoder performs joint typicality decoding with a sufficiently large n to achieve the average distortion Di as in the Berger-Tung
source coding problem [GK11]; 2) the errors occurring in each sequence xn

i are i.i.d. In the practical system, we use random interleavers
to asymptotically make this assumption practical. As shown in Section 3.5, the simulation results are consistent with the lower bound
calculation based on soft combining decision.

3For one-dimensional signal, C(γ) = 1
2 log2(1+2γ), and for two-dimensional signal, C(γ) = log2(1+ γ) [CT06].
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Figure 3.3: The binary multiterminal source coding problem for two correlated binary sources.

3.3 Rate-Distortion Region Analysis

3.3.1 Outer Bound on the Rate-Distortion Region

3.3.1.1 Source Coding

In network information theory, the source coding of the communication system shown in Fig. 3.1 is modeled by
the binary CEO problem. The abstract model of the binary CEO problem is illustrated in Fig. 3.2. In order to
derive the rate-distortion function Ri(Di), we first reduce the binary CEO problem to a binary multiterminal source
coding problem. An outer bound for the rate-distortion region which is determined by the rate-distortion function
Ri(Di) is then derived for the binary multiterminal source coding problem through the converse proof, as in the
Gaussian case [Ooh97].

The binary multiterminal source coding problem which we consider is depicted in Fig. 3.3. Since random
sources Xn

1 and Xn
2 originate from the common source Xn, the random variable pair (X1,X2) follows a joint PMF

pX1X2(x1,x2) = Pr{X1 = x1,X2 = x2} given by

pX1X2(x1,x2) =

{
1
2 ρ, if x1 6= x2,
1
2 (1−ρ), otherwise ,

(3.6)

where ρ = Pr(x1 6= x2) is the correlation parameter between the sources X1 and X2, i.e., X2 can be seen as the output
of a BSC with the crossover probability ρ where X1 is the input. Two encoders independently encode Xn

1 and Xn
2

at rates R1 and R2 as

ϕ1 :X n→M1 = {1,2, · · · ,2nR1},
ϕ2 :X n→M2 = {1,2, · · · ,2nR2}.

The encoder output sequences U1 = ϕ1(Xn
1 ) and U2 = ϕ2(Xn

2 ) are transmitted to a common receiver. It jointly
decodes the received samples to construct the estimates (X̂n

1 , X̂
n
2 ) of the source pair (Xn

1 ,X
n
2 ) denoted as (X̂n

1 , X̂
n
2 ) =

ψ(ϕ1(Xn
1 ),ϕ2(Xn

2 )).

For given distortion values D1 ∈ [0, 1
2 ] and D2 ∈ [0, 1

2 ], the rate-distortion region R(D1,D2) is defined as

R(D1,D2) =
{
(R1,R2) : (R1,R2) is admissible such that

E
1
n

n

∑
t=1

d(xi(t), x̂i(t))≤ Di + ε, i = 1,2
}
.

It should be emphasized here that the admissible rate-distortion region may not be applied to the binary CEO
problem directly, since the strategy at the CEO is specified to two-step decoding. The admissible rate-distortion
region defined above limits the problem which has the specific setup.
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Figure 3.4: The comparison of Wyner-Ziv rate-distortion bound and derived outer bound. The correlation
ρ between two sources is set at 0.3.

3.3.1.2 Main Results

In summary, the outer bound on the rate-distortion function Ri(Di) is given by




R1(D1)≥ H2[ρ ∗H−1
2 (1−R2(D2))]−H2(D1),

R2(D2)≥ H2[ρ ∗H−1
2 (1−R1(D1))]−H2(D2),

2
∑

i=1
Ri(Di)≥ 1+H2(ρ)−

2
∑

i=1
H2(Di).

(3.7)

3.3.2 Inner Bound

As it is known that the exact rate-distortion bound for lossy multiterminal source coding problem lies between the
Berger-Tung inner and outer bounds [GK11]. We also derived the rate-distortion region R i(D1,D2) based on the
Berger-Tung inner bound [ICT15] as

R i(D1,D2) = R i
1(D1)

⋂
R i

2(D2)
⋂

R i
12(D1,D2) (3.8)

with 



R i
1(D1) = {(R1,R2)|R1 ≥ H2(ρ ∗D1 ∗D2)−H2(D1)},

R i
2(D2) = {(R1,R2)|R2 ≥ H2(ρ ∗D1 ∗D2)−H2(D2)},

R i
12(D1,D2) = {(R1,R2)|

R1 +R2 ≥ 1+H2(ρ ∗D1 ∗D2)−∑
2
i=1 H2(Di)},

for every 0≤ D1,D2 ≤ 1
2 . The detailed proof is given in Appendix D.

3.3.3 Remarks

We now show that the derived outer and inner bounds on the rate-distortion region are connected to the classical
results.

Remark. If either R1 = 0 or R2 = 0, i.e., one of two encoders is breakdown in the network, Ro(D1,D2) is then
consistent with the classical rate-distortion function 1−H2(Di) for the binary source.
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(a) ρ = 0.15, D1 = D2 = 0.005.
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(b) ρ = 0.15, D1 = D2 = 0.05.
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(c) ρ = 0.3, D1 = D2 = 0.005.
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(d) ρ = 0.3, D1 = D2 = 0.05.

Figure 3.5: The comparison of Ro(D1,D2), Berger-Tung inner bound and Slepian-Wolf admissible rate re-
gion.
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Figure 3.6: The comparison of two-step outer bound and Berger-Tung inner bound with optimal decision,
and the direct outer bound of the binary CEO problem. We assume that p= p1 = p2 and R1 =R2.

Remark. If the distortions D1 and D2 are required to be arbitrarily small, then Ro(D1,D2) reduces to the Slepian-
Wolf rate region [SW73] for correlated binary sources if we set D1→ 0 and D2→ 0. The Slepian-Wolf rate region
and Ro(D1,D2) are shown in Fig. 3.5. Obviously, it is found that by allowing nonzero distortion, the sources can
be further compressed compared to the Slepian-Wolf lossless case.

Remark. If we are interested in reconstructing only one of the two sources, say X1, and there is no rate limit on
describing Xn

2 , i.e., R2 ≥ 1
n H(Xn

2 ), then it is equivalent to the Wyner-Ziv compression problem [GK11]. Fig. 3.4
plots the rate-distortion bound RWZ

1 (D1) of the Wyner-Ziv source coding [WZ76] and our derived outer bound. In
this case, Ro

1(D1) is not tight, since it can be found from Fig. 3.4 that the rate-distortion region of the Wyner-Ziv
problem lies inside of Ro

1(D1).

Remark. In Fig. 3.5, the Berger-Tung inner bound for binary case R i(D1,D2) is also presented as a reference
to verify how close the bounds Ro(D1,D2) and R i(D1,D2) are. It can be seen from the figure that they are very
close to each other for small values of D1 and D2, i.e., the outer bound can be considered as a useful reference
in the evaluation of the BER performance, even though there exists a small gap. The gap between the Berger-
Tung inner bound and the derived outer bound is sensitive to both ρ and Di. If ρ goes large and/or Di small, the
gap becomes relatively small. However, to resolve this gap, further insightful discussions are still needed as in
Gaussian multiterminal source coding [Ooh97].

Remark. In Fig. 3.6, we compare three rate-distortion bounds for the binary CEO problem. As a reference, we
directly derived the outer bound on the rate-distortion region for the two-node binary CEO problem, which is
summarized in Appendix B. This outer bound is referred as direct outer bound. Our derived outer bound with
optimal decision, which is stated in the next section, is not tight for the binary CEO problem. However, if the
observation accuracy is low, let say, p1 = p2 = 0.25, the gap between the derived two-step outer bound and the
direct outer bound is negligible. Furthermore, for large rate Ri, two bounds exactly match with each other. Hence,
the derived outer bound is tight for relatively large p and/or Ri based on the results shown in Fig. 3.6, which is
consistent with the above Remark. Also, it is interesting to find that the Berger-Tung inner bound with optimal
decision coincides with the direct outer bound for any pi. As a result, it is concluded that the binary CEO problem
with two nodes is solved.
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3.4 Problem Formulation: Hamming Distortion Lower Bounds

3.4.1 Distortion Function

As stated in Section 3.2, distortion D is a function of distortions Di, i = 1,2. Function Fd(D1,D2) is obtained by
evaluating the relationship between the binary CEO and the binary multiterminal source coding problems in terms
of distortions, where the model of the relationship is shown in Fig. 3.7. The estimate X̂ is obtained based on the
decision rule from the outputs of two parallel BSCs with crossover probabilities p1 ∗D1, p2 ∗D2 and input X . The
distortion D largely depends on the decision rule used by the destination. Here we only consider two decision
rules. One is the soft combining decision and the other is the optimal decision.

Figure 3.7: The relationship between the binary CEO and multiterminal source coding problems. BMTSC:
binary multiterminal source coding.

3.4.1.1 Soft combining decision

Distortion D is obtained by evaluating the probability of an error event. Let θ1 = p1 ∗D1 and θ2 = p2 ∗D2. Without
loss of generality, we assume that θ1 ≤ θ2. Hence, the error event is composed of two independent events: node 1
makes a wrong decision and node 2 makes correct decision or both node 1 and node 2 make erroneous decisions.
Therefore, the distortion D in this case is approximated by D ∼= θ1(1−θ2)+θ1θ2 = θ1. It can be found that the
corner point θ1 or θ2 in the rate-distortion region is achieved. Hence, the soft combining decision rule can be seen
as being equivalent to that derived from the time sharing method.

3.4.1.2 Optimal decision

According to the rate-distortion theory for a binary source [CT06], the theoretical lower bound of the BEP floor is
given in the following proposition.

Proposition 1 (Lower bound on BEP floor). Assume that a random variable X ∼ Bern(0.5), and Xi is the output
variable of a BSC with crossover probability pi, where 0 ≤ pi ≤ 1

2 . The minimum error probability of estimating
X from Xi is given by

plb = H−1
2 [1+

L

∑
i=1

H2(pi)−H(XL )]. (3.9)

Proof. According to the rate-distortion function for binary source [CT06], we have (3.10)

1−H2(d̃)≤ I(X ; X̂) (3.10)
≤ I(X ;XL ) (3.11)
= H(X)−H(X |XL ) (3.12)
= 1−H(X ,XL )+H(XL ) (3.13)
= 1−{H(X)+H(X1|X)+ · · ·+H(XL|X)}+H(XL ) (3.14)
= 1−{1+H2(p1)+ · · ·+H2(pL)}+H(XL ), (3.15)
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where d̃ is a dummy variable, and the steps are justified as:
(3.11) there exists information loss in the process of obtaining X̂ from XL ,
(3.14) assume Xi → X → (X1, · · · ,Xi−1,Xi+1, · · · ,XL) forms Markov chains, i.e., given X , Xi are independent to
each other [GP79].

Thus, it is obvious from (3.15) that d̃ ≥H−1
2 [1+H2(p1)+ · · ·+H2(pL)−H(XL )]. Therefore, the lower bound on

the BEP floor plb in (3.9) is obtained by setting to the minimal value of d̃.

Since the block length is assumed to be infinite and the code is random, an optimal lower bound on the distortion
D is determined by applying Proposition 1, as

D = H−1
2 [H2(θ1)+H2(θ2)−H2(θ1 ∗θ2)]. (3.16)

It should be emphasized here that the optimal decision acts as a universal lower bound on the Hamming distortion
for specific schemes which assume sequential decoding. However, in the design of practical encoding/decoding
algorithms, we do not consider this decision rule.

In summary, the distortion level D of the two decision rules described above is given as

D = Fd(D1,D2) =

{
min{θ1,θ2}, soft combining,
H−1

2 [H2(θ1)+H2(θ2)−H2(θ1 ∗θ2)], optimal.
(3.17)

3.4.2 Convex Optimization: Minimizing Distortion

By substituting the rate-distortion function (3.7) and (3.17) into the minimization problem (3.4), we have

min
D1,D2

D (3.18)

s.t.

H2[ρ ∗H−1
2 (1− C(γ2)

r2
)]−H2(D1) ≤ C(γ1)

r1
,

H2[ρ ∗H−1
2 (1− C(γ1)

r1
)]−H2(D2) ≤ C(γ2)

r2
,

1+H2(ρ)−H2(D1)−H2(D2) ≤ C(γ1)

r1
+

C(γ2)

r2
,

Di ≤ 1
2
, i = 1,2,

Di ≥ 0, i = 1,2.

The reason of using the derived outer bound, not the Berger-Tung inner bound is that, the outer bound can be
easily formulated as a convex optimization. The Berger-Tung inner bound includes term D1 ∗D2 in the binary
entropy function which cannot be easily handled in the minimization. It is found that distortion D = Fd(D1,D2)
is monotonically increasing function on the intervals Di ∈ [0, 1

2 ], i = 1,2 for both the soft combining decision and
optimal decision rules, and the proof is detailed in Appendix C. Furthermore, since the sequential decoding (first
reconstructs x1 and x2, then makes decision on x) is applied, we first minimize the `2-norm of a vector [D1,D2]
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+

Figure 3.8: Block diagram of the encoding/decoding algorithm.

instead of directly minimizing D, as

min
D1,D2

‖[D1,D2]‖2 (3.19)

s.t.

−H2(D1)−H2(D2) ≤ C(γ1)

r1
+

C(γ2)

r2
−1−H2(ρ),

−H2(D1) ≤ C(γ1)

r1
−H2[ρ ∗H−1

2 (1− C(γ2)

r2
)],

−H2(D2) ≤ C(γ2)

r2
−H2[ρ ∗H−1

2 (1− C(γ1)

r1
)],

Di ≤ 1
2
, i = 1,2,

−Di ≤−0, i = 1,2,

to obtain the minimal values of D1 and D2, and then map them to D by using function Fd(D1,D2).

It is easily found that the problem (3.19) is convex since the objective function is convex and function −H2(·) is
also convex. Therefore, it can be efficiently solved using convex optimization tools. Assume that the minimum
values of D1 and D2 obtained through the convex optimization are denoted as D?

1 and D?
2, respectively. Substituting

D?
1 and D?

2 into (3.17), the minimum distortion value D? is then obtained through

D? =

{
min{θ ?

1 ,θ
?
2 }, soft combining,

H−1
2 [H2(θ

?
1 )+H2(θ

?
2 )−H2(θ

?
1 ∗θ ?

2 )], optimal,
(3.20)

where θ ?
1 and θ ?

2 are p1 ∗D?
1 and p2 ∗D?

2, respectively. It should be emphasized here that the distortion D1 or D2

should be set to 0 in the optimization problem (3.18) if C(γ1)
r1

or C(γ2)
r2

is larger than or equal to 1, which is the binary
entropy of the source X1 and X2. The reason is that a source can be reconstructed under an arbitrary small error
probability if the source coding rate is larger than its entropy even in the case the helper does not exist [CT06].

3.5 Verification of Hamming Distortion Lower Bounds

3.5.1 Simulation Settings

We briefly explain the practical encoding/decoding algorithm [Zhou2012; Xin13CL] which is illustrated in Fig. 3.8.
This algorithm is used to verify the theoretical Hamming distortion lower bounds. As illustrated in Fig. 3.8, each
node encodes its erroneous sequence by using a serially concatenated memory-1 convolutional code and ACC.
The encoder output sequences are then modulated and transmitted to the destination over statistically independent
AWGN and block Rayleigh fading channels, where the channel gain hi is static within each block but varies
independently block-by-block. At the destination, iterative decoding process is carried out between the decoders
of the convolutional code and the ACC, as well as between the two decoders of the convolutional codes through
the LLR updating function fc to modify the extrinsic LLR, according to the error probabilities p1 and p2.
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Table 3.1: The settings of simulation parameters.
Parameter Value
Block length n 10000 bits for AWGN and 2048 bits for fading
Block 1000 for AWGN and 10000 for fading
Interleavers random

Encoder CCi
Rate 1/2, G = (3,2)8, memory-1 nonrecursive
systematic convolutional code

Doping ratio Pd 1
Modulation BPSK and QPSK with natural mapping
Decoding Algorithm log-maximum a posteriori
The number of iterations: 30
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Lower bound (soft combining)
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Figure 3.9: Symmetric P and SNR. BPSK is used for both nodes.

The lower bounds4 on the Hamming distortion for different SNR values γ1,γ2 are obtained through solving the
convex optimization problem which we presented in Section 3.4. The results are shown in Figs. 3.9–3.12 for
AWGN channels and Fig. 3.13 for block Rayleigh fading channels. The common parameters used in conducting
the simulations are shown in 3.1.

3.5.2 Numerical Results

Figure 3.9 shows the error probability lower bounds and the BER versus SNR when p1, p2 and SNRs of the two
nodes are set identically; this is referred as the symmetric case. It can be found that, the BER curves obtained
by simulations and the theoretical lower bounds on the Hamming distortion exhibit a similar tendency. The gap
between the simulated BER and theoretical lower bound on Hamming distortion is caused by: (i) the derived outer
bound is not tight, and thus smaller Hamming distortion is obtained for fixed rates; (ii) the Hamming distortion
lower bound is obtained by assuming the optimal source coding rate is adopted based on separability, however,
fixed coding rate is used in simulations.

Furthermore, it is clearly found that the error floor of the BER obtained by the simulation and the lower bound
on the Hamming distortion based on soft combining match exactly. The reason is that if the SNRs of two nodes
are large enough, the distortion levels D1 and D2 are almost 0, which results in the error floor being determined
completely by the error probabilities p1 and p2. A gap clearly appears between the Hamming distortion lower
bounds using the soft combining and optimal decision rules. The reason is twofold: 1) the optimality of the

4The terminology ”lower bound” used here is due to the Hamming distortion is calculated based on the derived outer bound, even though the
approximation of the objective functions is used.
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Figure 3.10: Asymmetric P and symmetric SNR. BPSK is used for both nodes.

soft combining cannot be guaranteed; 2) optimal decision is derived based on the assumption of the binary rate-
distortion function without any loss during processing the information. To find a better decision rule than soft
combining rule is left as a future study. However, it is clear that the Hamming distortion lower bound deriving
from the optimal decision cannot be exceeded.

The impact of the variation of the error probabilities p1, p2 and the coding rates ri are evaluated in AWGN channels.
Fig. 3.10 shows the results for asymmetric p1 and p2 but symmetric SNRs. When the coding rates5 r1 and r2 are
set as 1

4 and 1
2 , respectively, the BER performance shown in Fig. 3.11 is obtained. We further consider using

different modulation schemes for the nodes to achieve different rates of the channel code in Fig. 3.12, where
quadrature Phase Shift Keying (QPSK) is used for node 1 and BPSK for node 2. Even in these asymmetric cases,
the theoretical lower bounds on the Hamming distortion can still provide us with a useful reference when we
evaluate the BER performance of practical systems. Furthermore, the theoretical lower bounds on the Hamming
distortion obtained based on our derived outer bound exhibit similar behaviors to those of the BER curves found
by simulations.

In both the symmetric and asymmetric cases, the threshold SNR value at which turbo cliff in the BER obtained by
the simulation is around 1.5 dB larger than that observed in the theoretical lower bounds in static AWGN channels.
In addition, since the lower bounds on the Hamming distortion plateaus at a certain level even if the power is
increased at high SNR regime, increasing the number of nodes is a proper way to improve performance in the
practical deployment.

In Fig. 3.13, the channels between two nodes and the destination experience independent block Rayleigh fading.
Therefore, the instantaneous SNRs of two nodes are different while the average SNRs of the two channels are the
same. The lower bounds on the Hamming distortion shown in Fig. 3.13 are calculated as

D?
fading =

∫ +∞

0

∫ +∞

0
D?(γ1,γ2) ·Pr(γ1) ·Pr(γ2)dγ1dγ2, (3.21)

where D?(γ1,γ2) is the result of (3.20), obtained for static AWGN channels. Pr(γi) is the probability density
function of the SNR γi, which follows the Rayleigh distribution. We use Monte Carlo method to obtain the lower
bounds on the average Hamming distortion D?

fading instead of theoretically calculating (3.21). In the Rayleigh
fading case, the shape of the BER curves and the lower bounds on the Hamming distortion are almost the same.
Two points need to be emphasized here. The analytical solution of (3.21) is difficult to find, because D?(γ1,γ2)
is obtained by solving the formulated convex optimization using cvx tool. The other point is that, the outage
probability approaches 1 using the definition that the outage event happens when the package cannot losslessly

5We simply transmit the output of ACC without doping to achieve rate 1
4 . No optimized design of the channel code is considered.
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Figure 3.11: Asymmetric r1 and r2. The coding rates r1 and r2 are set at 1
4 and 1

2 , respectively. The transmit
power of two nodes is the same. BPSK is used for both nodes.
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Figure 3.12: Asymmetric r1 and r2. The coding rates r1 and r2 are set at 1 and 1
2 , respectively. The transmit

power of two nodes is the same. QPSK is used for node 1 and BPSK for node 2.
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Figure 3.13: BER performances over Rayleigh fading channels. Both nodes use BPSK modulation.

recovered. Hence, the definition of outage should be changed in this case. We follow the method of using Slepian-
Wolf theorem and separability to calculate the outage probability pout for the situation that bit error floor is reached
[ICT15, Section 4.2], where the definition of outage event is

{
Outage, D > min{p1, p2}
Success, otherwise

(3.22)

The detail of deriving pout for two-node case is shown in Appendix E. We compare the theoretical outage prob-
ability pout and the FER6, where the results is shown in Fig. 3.14. The FER performance obtained by practical
encoding/decoding algorithm are around 1∼ 2 dB in average SNR to the theoretical outage pout.

3.6 Extension to Multiple Terminals

The outer bound on the rate-distortion region for L = 2 terminals is proved and discussed in detail. However,
it is worth to show the possibility of extending the proposed solutions to the general binary CEO problem with
an arbitrary number of terminals. In this section, the same approach where the rate-distortion region of the binary
CEO problem is solved through establishing the relationship with the binary multiterminal source coding is applied
to the general binary CEO problem.

3.6.1 Problem Statement

The binary multiterminal source coding which we consider is depicted in Fig. 3.15. Let the information sequence
of source Xn

i = {xi(t)}n
t=1, i = 1,2, · · · ,L, be binary i.i.d. It should emphasized here that Xn

i is generated from Xn

through a BSC with crossover probability pi in order to make connection with the binary CEO problem. Each
encoder independently encodes the data sequences Xn

i with the coding rate Ri as

ϕi : X n→Mi = {1,2, · · · ,2n·Ri}, (3.23)

where ϕi is the i-th encoder function. The encoder outputs ϕi(Xn
i ) are transmitted to a common receiver over

noiseless channels. The common receiver jointly produces estimates X̂n
i of the sources based on the received

sequences from the agents as X̂n
i = ψ[ϕ1(Xn

1 ), · · · ,ϕL(Xn
L )], where ψ is the decoder function.

Let di(xi(t), x̂i(t)) be the average Hamming distortion measure. For given positive numbers Di ∈ [0,1/2], we define

6The frame is error if and only if D > min{p1, p2}.
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Figure 3.14: Comparison between FER and theoretical pout.

the rate-distortion region R(DL ) as

R(DL ) = {(RL ) : (RL ) is admissible such that

E
1
n

n

∑
t=1

di(xi(t), X̂i(t))≤ Di + ε},

where L = {1, · · · ,L}, RL = {Ri|i ∈L } and DL = {Di|i ∈L }. We provide an outer bound Ro(DL ) for the
rate-distortion region R(DL ) with the converse proof in the next section.

3.6.2 Rate-Distortion Region Analysis

Definition 1. Ro(DL ) =
⋂

S {Ro
S (DS )}, ∀S ⊆L and S 6= /0, with

Ro
S (DS ) =

{
(RS ) : ∀R j, j ∈S c = L \S ,

∑
i∈S

Ri ≥ h({pS ,αS c})−h({αS c})− ∑
i∈S

H2(Di)

}
, (3.24)

where

pS = {pi|i ∈S }, (3.25)
αS c = {α j| j ∈S c}, (3.26)

α j = p j ∗H−1
2 (1− [R j]

−), (3.27)

set S c is the complementary set of S and [a]− = min{1,a}.

Theorem 2. R(DL )⊆Ro(DL ).

3.6.2.1 Proof

Converse proof of 2. In order to easily present the proof of the outer bound, we take L = 3 as a basic example. Let
Ui = ϕ(Xn

i ).

37



...

Figure 3.15: The binary multiterminal source coding problem for L correlated binary sources.

Figure 3.16: The test BSC model for proving the outer bound.

Case 1. S = {1} and S c = {2,3}. In this case, sources Xn
2 and Xn

3 operate as helpers for recovering Xn
1 . The case

belongs to the category of many-help-one problems in the network information theory. A specific two-help-one
problem where the primary source, which the decoder wants to reproduce is the XOR version of two helpers was
studied by Körner and Marton [KM79]. Furthermore, the many-help-one problem for correlated Gaussian sources
was studied by Oohama [Ooh05] and Pandya et al. [Pan+04], respectively. Assume that D1 is achieved by a rate
triple (R1,R2,R3), then the following equations hold:

n(R1 + ε) ≥ H(U1)

≥ H(U1|U2,U3) (3.28)
= I(Xn

1 ;U1|U2,U3) (3.29)
= I(Xn

1 ;U1,U2,U3)− I(Xn
1 ;U2,U3) (3.30)

≥ I(Xn
1 ; X̂n

1 )− I(Xn
1 ;U2,U3) (3.31)

where the steps are justified since
(3.28) conditioning reduces the entropy,
(3.29) U1 is a function of Xn

1 ,
(3.30) the chain rule of mutual information,
(3.31) data processing inequality,

n(R2 + ε)≥ H(U2) = I(Xn
2 ;U2), (3.32)

n(R3 + ε)≥ H(U3) = I(Xn
3 ;U3). (3.33)

Now, we need to find the lower bound on the term I(Xn
1 ; X̂n

1 ) and the upper bound on I(Xn
1 ;U2,U3). As same as in

L = 2 case, the lower bound on I(Xn
1 ; X̂n

1 ) is obtained by applying Fano’s inequality

I(Xn
1 ; X̂n

1 )≥ n−nH2(D1). (3.34)
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The upper bound on I(Xn
1 ;U2,U3) is derived based on the test BSC model shown in Fig. 3.16 and inequalities

(3.32), (3.33), as7

I(Xn
1 ;U2,U3) = nH(X1)+H(U2,U3)−H(Xn

1 ,U2,U3)

≤ n+nh({α2,α3})−nh({p1,α2,α3}), (3.35)

where (3.35) is obtained based on the fact that Xn
1 , U2 and U3 are the outputs from a BSC or a cascade BSC channels

when Xn is the input. By substituting (3.34) and (3.35) into (3.31) and letting ε go to 0, we conclude that

R1 ≥ h({p1,α2,α3})−h({α2,α3})−H2(D1). (3.36)

For the cases S = {2} and S = {3}, the bounds can be obtained in the same way.

Case 2. S = {1,2} and S c = {3}. The source Xn
3 acts as the helper to recover Xn

1 and Xn
2 . Gastpar derived

the inner and outer bounds for the rate-distortion region of independently compressing two or more correlated
sources with side information available at the decoder [Gas04]. In this case, except that (3.33) holds, the following
inequalities also hold.

n(R1 + R2 + ε)≥ H(U1)+H(U2)

≥ H(U1,U2|U3)

= I(Xn
1 ,X

n
2 ;U1,U2|U3)

= I(Xn
1 ,X

n
2 ;U1,U2,U3)− I(Xn

1 ,X
n
2 ;U3)

= I(Xn
1 ;U1,U2,U3)+ I(Xn

2 ;U1,U2,U3|Xn
1 )− I(Xn

1 ,X
n
2 ;U3)

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ;U1,U2,U3,Xn

1 )

− I(Xn
1 ;Xn

2 )− I(Xn
1 ;U3)− I(Xn

2 ;U3|Xn
1 ) (3.37)

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ; X̂n

2 )

− I(Xn
1 ;Xn

2 )− I(Xn
1 ;U3)− I(Xn

2 ;U3,Xn
1 )+ I(Xn

1 ;Xn
2 )

≥ H(Xn
1 ,X

n
2 ,U3)−H(U3)−n[H2(D1)+H2(D2)] (3.38)

≥ n[h({p1, p2,α3})−h({α3})−H2(D1)−H2(D2)] (3.39)

where (3.37) holds because the chain rule of mutual information and data processing inequality, (3.38) follows
from several steps of elementary calculation, and (3.39) is obtained based on the same test BSC model which is
shown in Fig. 3.16.

By letting ε go to 0, it is concluded that R1 +R2 ≥ h({p1, p2,α3})−h({α3})−H2(D1)−H2(D2). The other two
similar cases with S = {1,3} and S = {2,3} can be followed the same derivation which is shown above.

Case 3. S = {1,2,3} and S c = /0. Assume that a rate triple (R1,R2,R3) achieves the required distortions D1, D2
and D3, we have the following inequalities.

n(R1 +R2 + R3 + ε)≥ H(U1)+H(U2)+H(U3)

≥ H(U1,U2,U3)

= I(Xn
1 ,X

n
2 ,X

n
3 ;U1,U2,U3)

= I(Xn
1 ;U1,U2,U3)+ I(Xn

2 ,X
n
3 ;U1,U2,U3|Xn

1 )

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ,X

n
3 ;U1,U2,U3,Xn

1 )− I(Xn
2 ,X

n
3 ;Xn

1 )

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ;U1,U2,U3,Xn

1 )+ I(Xn
3 ;U1,U2,U3,Xn

1 |Xn
2 )− I(Xn

2 ,X
n
3 ;Xn

1 )

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ; X̂n

2 )+ I(Xn
3 ; X̂n

3 )− I(Xn
3 ;Xn

2 )− I(Xn
2 ,X

n
3 ;Xn

1 )

= nh({p1, p2, p3})−n
3

∑
i=1

H2(Di). (3.40)

7Inspired by the MGL, we establish the test BSC model to bound the mutual information. However, this bound may exist a gap to the global
optimal bound. The validation of the global optimality is left as a future study. Indeed, the bound derived from the current setup can
still serve as a useful reference in the power allocation and scheduling of WSNs. Some further discussions on this issue are provided in
subsection 3.6.4.
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Figure 3.17: Sum rate versus distortion. The rate is equally allocated to each link. The observation error
probabilities are set to 0.01.

The derivation of above inequalities can be straightforwardly extended to the general case having an arbitrary
number of sources. In summary, we conclude that

∑
i∈S

Ri ≥ h({pS ,αS c})−h({αS c})− ∑
i∈S

H2(Di). (3.41)

Hence, we can conclude that R(DL )⊆Ro(DL ).

Remark. The outer bound Ro(DL ) for the rate-distortion region is a convex hull of a set of rate tuples.

Remark. If all the distortion levels DL approach to 0, the outer bound Ro(DL ) coincides with the Slepian-Wolf
theorem with multiple correlated sources [Cov75; GK11].

Remark. Consider the case two agents observe the same source X, i.e., L = 2. In this case, since h(·) has a very
simple form, we can obtain the following rate-distortion inequalities by substituting pi and Di into the outer bound
expression 




R1(D1)≥ H2(p1 ∗α2)−H2(D1),

R2(D2)≥ H2(p2 ∗α1)−H2(D2),
2
∑

i=1
Ri(Di)≥ 1+H2(p1 ∗ p2)−

2
∑

i=1
H2(Di),

(3.42)

which is consistent with the results shown in L = 2 case.

3.6.3 Sum Rate versus Distortion

The distortion level D is examined with respect to the sum rate R, giving fixed values of L and the observation error
probabilities pi. The results of D versus R are shown in Fig. 3.17 with different L. The distortion D is the result of

D = PB(pL ∗D?
L ), (3.43)

where pL ∗D?
L = {p1 ∗D?

1, · · · , pL ∗D?
L} and D?

L = {D?
i |i ∈L } is given by

D?
i = argmin ‖[D1, · · · ,DL]‖2 (3.44)

s.t.

{
∑

i∈S
H2(Di)≥ h({pS ,αS c})−h({αS c})− ∑

i∈S
R
L ,

0≤ Di ≤ 0.5, i ∈L
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Figure 3.18: Simulation results verify the lower bounds on Hamming distortion using 16QAM and identical
pi.

and PB(·) calculated the error probability based on the Poisson binomial process.

It should be emphasized here that the sum rate R is equally allocated to each link without considering any optimal
rate allocation scheme. It can be seen from the figure that, D becomes small, if the number of links L increased
and/or the sum rate R is large. However, D converges to a certain level (not equal to 0) even we increase R which is
very clear in the enlarged view. The certain level is given by PB(pL ) by assuming the distortions Di asymptotically
approach 0. Furthermore, this level also decreased when the number of agents increases.

3.6.4 Brief Discussions of using test BSC

In the proof of the outer bound, there is an important step of bounding the mutual information term
I(Xn

1 ;U2, · · · ,UL) using the test BSCs. In other words, the cardinality bound on Ui is assumed to be 2. In [Jan09],
Soumya gave a proof of reducing the cardinality bound of auxiliary RV Ui in multiterminal source coding problem.
It is found that the cardinality bound can be reduced as |Ui| ≤ |Xi|. Applying the result in our specified binary
Hamming case, it is reasonable to set the cardinality bound |Ui| to 2.

Besides this, the further discussion is needed for whether it is optimal to use BSC to lower bound the conditional
entropy terms, such as H(Xn

1 |U2,U3). Inspired by the proof of MGL, we use the BSC as the test channel in the
derivation. However, the extension of MGL to this general setup still needs some efforts. Hence, the outer bound
on the rate-distortion region is only an approximation.

3.6.5 Numerical Results

A series of simulations are performed to verify the Hamming distortion lower bound that obtained by solving the
following convex optimization problem

min ‖[D1, · · · ,DL]‖2 (3.45)

s.t.

{
− ∑

i∈S
H2(Di)≤ ∑

i∈S
C(γi)

ri
−h({pS ,αS c})+h({αS c}),

0≤ Di ≤ 0.5, i ∈L

and mapping the minimal values to D using Poisson binomial process.

Figure 3.18 shows the simulation results and their corresponding Hamming distortion lower bounds for identical
pi. As we can see from the figure that, the Hamming distortion lower bounds and the simulation results have
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Figure 3.19: Simulation results verify the lower bounds on Hamming distortion using BPSK and logarithmic
distributed pi.

very similar tendency. However, if L goes large, the difference between the simulation results and the theoretical
bounds also becomes significant. The reason is that the theoretical bounds are obtained by assuming the capacity-
achieving code is used at each sensor node. To further analyze the impact of pi variation, Fig. 3.19 shows the
BER performance using the obtained pi from logarithmic distribution. Their Hamming distortion lower bounds
also presents as references. Note that in these cases, the Hamming distortion bound on D is obtained using soft
combining (Appendix F) after the minimal distortions Di of each link are available. From the simulations results,
it concludes that the impact of pi variation to the bound analysis is not significant.

Furthermore, the superiority of performing global iteration in decoding process is proved through the theoretical
analysis. It is found that from Fig. 3.20, the performance gain in AWGN channels is around 5 dB for L = 4 and
8.5 dB for L = 12, respectively. Simulation results using the proposed encoding/decoding algorithm also confirm
the gain. The Hamming distortion lower bound for the case global iteration is not performed is given by

DnoGI = PB({p1 ∗H−1
2 (1− [C(γ1)]

−), · · · , pL ∗H−1
2 (1− [C(γL)]

−)}). (3.46)

In other words, DnoGI is the result of solving the following convex optimization problem.

DnoGI = PB(pL ∗DnoGI?
L ), (3.47)

where pL ∗DnoGI?
L = {p1 ∗DnoGI?

1 , · · · , pL ∗DnoGI?
L } and DnoGI?

L = {DnoGI?
i |i ∈L } is given by

min ‖[D1, · · · ,DL]‖2 (3.48)

s.t.

{
− ∑

i∈S
H2(Di)≤ ∑

i∈S
C(γi)

ri
−|S |,

0≤ Di ≤ 0.5, i ∈L

Comparing the constraints of (3.45) and (3.48), it is obviously found that |S | ≥ h({pS ,
αS c})− h({αS c}) with equality holding if and only if pi = 0.5. Hence, the Hamming distortion lower bound
DnoGI is greater than D.

3.7 Conclusion

We examined theoretically the lower bound on the Hamming distortion for the binary information sensing network
modelled by the binary CEO problem, where several independent terminals forward the erroneous versions of a
common binary source to the destination over static AWGN and block Rayleigh fading channels.
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Figure 3.20: Comparison on theoretical Hamming distortion lower bounds by assuming whether correlation
is utilized through global iteration.
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We first considered a simple case that the number of terminals is 2. The binary CEO problem was first formulated
as the binary multiterminal source coding problem, which is the core part of the binary CEO problem. The outer
bound on the rate-distortion region for the binary multiterminal source coding problem was then derived based on
the converse proof of the bound. The relationship between the binary CEO problem and the binary multiterminal
source coding problem in terms of the distortion function has been established. According to the lossy source-
channel separation theorem, the lower bound on the Hamming distortion was formulated by minimizing the distor-
tion function subject to the inequalities between the derived outer bound and the channel capacities. The problem
of obtaining the lower bound on the Hamming distortion was solved in the framework of convex optimization, and
the results of Hamming distortion lower bounds only apply to schemes which use sequential decoding. Through a
series of simulations, it has been shown that the BER curves obtained with a practical encoding/decoding algorithm
is consistent with the result of the theoretical lower bounds on the Hamming distortion.

We further extended discussions to the binary CEO problem having arbitrary number of terminals. An approxi-
mated outer bound was derived through the converse coding proof. The outer bound on the rate-distortion region
was used to obtain the theoretical lower bound on the Hamming distortion for the general binary information sens-
ing network as the case of two terminals. Finally, we simply discussed the superiority of our proposed decoding
algorithm from the rate-distortion perspective.
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RESCUE D1.2.2, Version 1.0

4. Performance Analysis of TS3

4.1 System Model

4.1.1 DF-IE System

We consider a half-duplex relay system, where one source (S) and multiple relays (Fi) cooperate to transmit to one
destination (D) as shown in Fig. 4.1. To ensure orthogonal transmission,TDMA is assumed. An i.i.d binary infor-
mation sequence1 B0 is originated by S with uniform probabilities Pr [B0 = 0] =Pr [B0 = 1] = 0.5. The source infor-
mation sequence is encoded, modulated and broadcasted to Fi and D. Each Fi decodes the received source informa-
tion sequence. The decoded information sequences Bi can differ from the source information sequence depending
on the channel states between S and Fi, associated with the intra-link error probability pi = Pr [Bi 6= B0], [Zho+14].
The information sequences at the relays are interleaved, re-encoded and forwarded to D. All received information
sequences B0 and Bi are jointly decoded at D to retrieve B0. The joint decoder can exploit the correlation of the
information sequences and achieves tremendous performance gain in terms of the estimated source information
sequence B̂0, [AM12b]. In literature, the decode-and-forward relaying allowing intra-link errors (DF-IE) system is
also referred to as source coding with side information, [XLC04].

4.1.2 Channel Model

All channels are affected by flat Rayleigh fading (RF) and additive white Gaussian noise with mean power N0. The
PDF of the instantaneous received SNR Γi is exponentially distributed, thus given by

fΓi(γi) =
1
Γ̄i

exp(− γi

Γ̄i
), (4.1)

where Γ̄i is the average SNR between S and D or Fi

Γ̄i =
P0

N0
·d−η

i , i ∈ {0,1,2, ...N}, (4.2)

and average SNR Γ̄2·i between Fi and D

Γ̄2·i =
Pi

N0
·d−η

2·i , i ∈ {1,2, ...N}, (4.3)

with transmit power P0 and Pi at S and Fi, respectively, distance di between S and Fi, D or Fi and D, and path loss
exponent η .

4.2 Preliminaries

In this section, we define the relation between intra-link error probability and instantaneous received SNR.

4.2.1 Intra-Link Error Probability

With the RF assumption, the intra-link error probability pi is constant over one frame, but varies transmission-by-
transmission. As shown in [Zho+14] the intra-link error probability can be related to the instantaneous received
SNR by

pi(γi) =

{
H−1 (1−Φ(Γi)) , for Φ

−1(0)≤ Γi ≤Φ
−1(1)

0, for Γi ≥Φ
−1(1)

(4.4)

based on Shannon’s lossy source-channel separation theorem [CT06]. With Φ(Γi) =
1

Rc
log2(1+Γi), and Φ−1(·)

is the inverse function of Φ(·). The inverse function values of interest are Φ−1(0) = 0 and Φ−1(1) = 2Rc − 1.
The spectrum efficiency Rc = Rcod ·RM includes channel coding rate and modulation multiplicity. To simplify
calculations, Rc is assumed to be the same for all channels. H−1(·) is the inverse function of the binary entropy
function H(x) =−x log2(x)− (1− x) log2(1− x).

1In order to alleviate the notation, we shall drop the time index when denoting information and error sequences.
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Figure 4.1: System model.

4.2.2 Slepian-Wolf Theorem

Slepian-Wolf’s correlated source coding theorem states that correlation among information sequences can be ex-
ploit at the destination with distributed source coding. Iff all transmission rates Ri, measured in bits per channel
use, satisfy the inequality constraints [SW73]

∑
i∈S

Ri ≥H ({Bi|i ∈S }|{B j| j ∈S c}) , (4.5)

then all relay information sequences B0,B1, . . . ,BN can be recovered error-free. With set S =̂{X | X ⊆N0} with
N0 = {0,1, . . . ,N} and S c denoting the complement of S . In literature, all sets of N+1-tuples {(R0,R1, ...,RN)}
that satisfy all constraints in (4.5) are also known as Slepian-Wolf’s admissible rate region RSW.

4.3 Outage Probability

In this section, we define the DF-IE admissible rate region and establish the outage probability with N Relays.
Furthermore, we carry out the mathematical calculation deploying one and two relays.

4.3.1 DF-IE Admissible Rate Region

The Slepian-Wolf theorem is well known for lossless transmission of correlated sources. Unlike the theorem for
source coding with side information, the Slepian-Wolf theorem provides the admissible rate region required to
recover all correlated sources. As shown in [Zho+14] the DF-IE admissible rate region with one relay can be
approximated by a modified Slepian-Wolf admissible rate region. In this study, the DF-IE admissible rate region
is extended to a DF-IE system with N relays. Iff all transmission rates Ri satisfy the inequality constraints

∑
i∈S0

Ri ≥H ({Bi|i ∈S0}|{B j| j ∈S c
0 }) (4.6)

or

R0 ≥H(B0) = 1, (4.7)

than the source information sequence B0 can be recovered error-free. With set S0=̂{0∪X | X ⊆N } with N =
{1, . . . ,N} and complement set S c

0 of S0. All sets of N +1-tuples {(R0,R1, ...,RN)} that satisfy all constraints in
(4.6) or (4.7) are the DF-IE’s admissible rate region denoted with RDF-IE.

4.3.2 Outage Probability Based on RDF-IE with N Relays

If the set of N + 1-tuples {R0,R1, ...,RN} fall outside the DF-IE admissible rate region RDF-IE a system outage
occurs. All RF channels are assumed to be i.i.d., i.e. fΓ1,Γ2,...,ΓN (γ1,γ2, ...,γN) = ∏

N
i=1 fΓi(γi) and with the defined
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limits in (4.6) and (4.7) the outage probability can be established with

Pout,N =Pr [{Ri | i ∈S0} /∈RDF-IE,{0≤ p j ≤ 0.5 | j ∈S0̄}] , (4.8)

with set S0̄=̂{X | X ⊆N }. The intra-link error probability exhibits two functional domanions (4.4), consequently
a case distinction is required. Hence, the outage probability is calculated by

= ∑
{p j}∈P |S0̄ |

Pr [{Ri | i ∈S0} /∈RDF-IE,{p j}] , (4.9)

including all case distictions

P |S0̄| =

{
×
i∈S0̄

Pi
∣∣Pi ∈ {{0},(0,0.5]}

}
. (4.10)

4.4 Outage Probability Upper Bound

In the section we derive the outage probability upper bound in four steps: (i) we reduce the set of rate constrains
with the assumption of high-SNR, i.e. asymptotic analysis of outage probability, (ii) we relax the rate constraint
with an upper bound for the conditional entropy, (iii) we transform these relaxed rate constraints into SNR con-
straints, and (iv) we calculate the outage probability upper bound for DF-IE system deploying up to four relays2.

4.4.1 Reduction of rate constraints

We begin by decomposing the outage probability into two probability terms, for convenience, as shall become ap-
parent soon. The first term, Pout,a,N , is the probability for the violation of the loosens constrain3 in (4.6), depending
on case distinction P |S0̄| in (4.10) by

Pout,a,N = ∑
{p j}∈P |S0̄ |

Pr
[
{Ri | i ∈S sub

0 } /∈Rsub
DF-IE,{p j}

]
, (4.11)

where S sub
0 represent the subset of rates included in the loosens constraint and Rsub

DF-IE defines the subset of DF-IE
admissible rate region respectively. All other rates do not have constraints. Because a subset of the rate constraints
in (4.6) have being ignored in (4.11), the latter does not include all possible outage events, so that

Pout,N = Pout,a,N + ε (4.12)

where the term ε accounts for those additional outage events. Interestingly, it turns out that, as the SNR increases,
ε goes faster to zero than Pout,a,N , playing no role at high-SNR. Indeed, as shown in [WG03] under a different
context, the asymptotic outage behavior of a transmission link depends exclusively on the SNR distribution in the
vicinity of the origin. In our case, we have an N + 1-variate rate (or SNR, equivalently) distribution, so that it
suffices to cover the probability masses in the vicinity of the N +1 coordinate axes. Notice that this is fulfilled in
(4.11). Therefore, Pout,a,N is the asymptotic outage probability.

4.4.2 Relaxed rate constraint

The loosens constraints in (4.6) entail conditional entropies. Consequently, the conditional entropies are included
in the integral bound of the asymptotic outage probability in (4.11). The conditional entropies is a non-linear

2Note, that the upper bound outage probability is presented in [Wol+15] deploying up to two relays, but only for a concrete realisation of the
code rate and modulation scheme, Rc = 1.

3The loosens constrain defines the largest rate region among all constraints in (4.6).
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function of the received SNR and contains binary convolution, entropy function and inverse entropy function.

H ({Bi|i ∈S0}|{B j| j ∈S c
0 }) = ∑

j1∈S c
0

H(p j1)− ∑
{ j1, j2}∈S c

0

H(p j1 ∗ p j2)

+ ∑
{ j1, j2, j3}∈S c

0

H(p j1 ∗ p j2 ∗ p j3)− ...± ∑
{ j1,..., j|S c

0 |
}∈S c

0

H(p j1 ∗ ...∗ p j j|S c
0 |
)

(4.13)

Unfortunately, (4.11) cannot be solved analytically. However, a upper bound for the conditional entropies exist
by

∑
j1∈S c

0

H(p j1)− ∑
{ j1, j2}∈S c

0

H(p j1 ∗ p j2)+ ∑
{ j1, j2, j3}∈S c

0

H(p j1 ∗ p j2 ∗ p j3)+ ...

± ∑
{ j1, j|S c

0 |
}∈S c

0

H(p j1 ∗ ...∗ p j j|S c
0 |
)≤min

[
H(p j1), ...,H(p j|S c

0 |
)
]
. (4.14)

Substituting the conditional entropy upper bound in (4.11), the outage probability upper bound Pout,UB,N can be
calculated. The tightness of the bound is discussed in (4.6).

4.4.3 Transformation of rate constrains into SNR constraints

The maximum achievable value of rate Ri is related to the received SNR Γi by means of [Zho+14]

Ri = Φ(Γi). (4.15)

Rearranging (4.15), we obtain

Γi = 2Rci·Ri −1, (4.16)

which can be readily used to rewrite (4.11) in terms of corresponding SNR constraints.

4.4.4 Calculation of outage probability upper bound

To achieve the analytical solution of the outage probability upper bound, MacLaurin series for the exponential
functions exp(−x)≈ 1− x are used.

4.4.4.1 DF-IE System with One Relay

The looses constraints for DF-IE system with one relay are

R0 +R1 ≥ 1, for p1 = 0 (4.17)
R0 ≥ H(p1), for 0 < p1 ≤ 0.5. (4.18)

The calculation of the outage probabilities are presented in I.1. Finally, the outage probability upper bound is

Pout,UB,1 =
2

∑
i=1

J1,i

=
C1,1

Γ̄0Γ̄1
+

C1,1

Γ̄0Γ̄2
(4.19)

with constant

C1,1 = 2Rc [Rc ln(2)−1]+1

=+1−2Rc
1

∑
n=0

(−1)n 1
n!

Rn
c lnn(2). (4.20)
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Case Intra-link error probability 0 < pi ≤ 0.5
1 {�}
2-4 {(1),(2),(3)}
5-7 {(1,2),(1,3),(2,3)}
8 {(1,2,3)}

Table 4.1: Case distinction for DF-IE system with three relay. The elements in the set define the index for the
intra-link error probabilities in the range of 0 < pi ≤ 0.5. All other intra-link error probabilities
are p j = 0.

Case 1 2 5 8
R0 ≥ 0 0 0 min [H(p1),H(p2),H(p3)]
R0 +R1 ≥ 0 0 min [H(p2),H(p3)] ·
R0 +R1 +R2 ≥ 0 H(p3) · ·
R0 +R1 +R2 +R3 ≥ 1 · · ·

Table 4.2: Looses constraints for DF-IE system with three relay.

4.4.4.2 DF-IE System with Two Relays

The looses constraints for DF-IE system with one relay are

R0 +R1 +R2 ≥ 1, for p1 = 0, p2 = 0, (4.21)
R0 +R1 ≥ H(p1), for p1 = 0,0 < p2 ≤ 0.5, (4.22)

R0 ≥ H(p1)+H(p2)−H(p1 ∗ p2), for 0 < p1 ≤ 0.5,0 < p2 ≤ 0.5. (4.23)

The calculation of the outage probabilities are presented in I.2. The outage probability upper bound is

Pout,UB,2 =
4

∑
i=1

J2,i

=
C2,1

Γ̄0Γ̄3Γ̄4
+

C2,1

Γ̄0Γ̄2Γ̄3
+

C2,1

Γ̄0Γ̄1Γ̄4
+

C2,2

Γ̄0Γ̄1Γ̄2
(4.24)

with constants

C2,1 = 2Rc
[

1/2R2
c ln2(2)−Rc ln(2)+1

]
−1

=−1+2Rc
2

∑
n=0

(−1)n 1
n!

Rn
c lnn(2) (4.25)

C2,2 = 2Rc
[
2Rc −2Rc ln(2)

]
−1. (4.26)

4.4.4.3 DF-IE System with Three Relays

The looses constraints for DF-IE system with three relay are presented in Tab. 4.2 with case distinction presented
in Tab. 4.1.

The calculation of the outage probabilities are presented in I.3. The outage probability upper bound is

Pout,UB,3 =
8

∑
i=1

J3,i

=
C3,1

Γ̄0Γ̄4Γ̄5Γ̄6
+

C3,1

Γ̄0Γ̄3Γ̄4Γ̄5
+

C3,1

Γ̄0Γ̄2Γ̄4Γ̄6
+

C3,1

Γ̄0Γ̄1Γ̄5Γ̄6

+
C3,2

Γ̄0Γ̄2Γ̄3Γ̄6
+

C3,2

Γ̄0Γ̄1Γ̄3Γ̄5
+

C3,2

Γ̄0Γ̄1Γ̄2Γ̄6
+

C3,3

Γ̄0Γ̄1Γ̄2Γ̄3
(4.27)
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Case Intra-link error probability 0 < pi ≤ 0.5
1 {�}
2-5 {(1),(2),(3),(4)}
6-11 {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}
12-15 {(1,2,3),(1,2,4),(1,3,4),(2,3,4)}
16 {(1,2,3,4)}

Table 4.3: Case distinction for DF-IE system with four relay. The elements in the set define the index for the
intra-link error probabilities in the range of 0 < pi ≤ 0.5. All other intra-link error probabilities
are p j = 0.

Case 1 2 6 12 16
R0 ≥ 0 0 0 0 min [H(p1),H(p2),H(p3),H(p4)]
R0 +R1 ≥ 0 0 0 min [H(p2),H(p3),H(p4)] ·
R0 +R1 +R2 ≥ 0 0 min [H(p3),H(p4)] ·
R0 +R1 +R2 +R3 ≥ 0 H(p4) · ·
R0 +R1 +R2 +R3 +R4 ≥ 1 · · ·

Table 4.4: Looses constraints for DF-IE system with four relay.

with constants

C3,1 = 2Rc
[

1/6R3
c ln3(2)− 1/2R2

c ln2(2)+Rc ln(2)−1
]
+1

=+1−2Rc
3

∑
n=0

(−1)n 1
n!

Rn
c lnn(2) (4.28)

C3,2 = 2Rc
[
2Rc −R2

c ln2(2)−2
]
+1 (4.29)

C3,3 = 2
(
2Rc −1

)[
22Rc −2 ·2Rc Rc ln(2)−1

]
. (4.30)

4.4.4.4 DF-IE System with Four Relays

The looses constraints for DF-IE system with four relay are presented in Tab. 4.4 with case distinction presented
in Tab. 4.3.

The calculation of the outage probabilities are presented in I.4. The outage probability upper bound is

Pout,UB,4 =
16

∑
i=1

J4,i

=
C4,1

Γ̄0Γ̄5Γ̄6Γ̄7Γ̄8

+
C4,1

Γ̄0Γ̄4Γ̄5Γ̄6Γ̄7
+

C4,1

Γ̄0Γ̄3Γ̄5Γ̄6Γ̄8
+

C4,1

Γ̄0Γ̄2Γ̄5Γ̄7Γ̄8
+

C4,1

Γ̄0Γ̄1Γ̄6Γ̄7Γ̄8

+
C4,2

Γ̄0Γ̄3Γ̄4Γ̄5Γ̄6
+

C4,2

Γ̄0Γ̄2Γ̄4Γ̄5Γ̄7
+

C4,2

Γ̄0Γ̄2Γ̄3Γ̄5Γ̄8
+

C4,2

Γ̄0Γ̄1Γ̄4Γ̄6Γ̄7

+
C4,2

Γ̄0Γ̄1Γ̄3Γ̄6Γ̄8
+

C4,2

Γ̄0Γ̄1Γ̄2Γ̄7Γ̄8

+
C4,3

Γ̄0Γ̄2Γ̄3Γ̄4Γ̄5
+

C4,3

Γ̄0Γ̄1Γ̄3Γ̄4Γ̄6
+

C4,3

Γ̄0Γ̄1Γ̄2Γ̄4Γ̄7
+

C4,3

Γ̄0Γ̄1Γ̄2Γ̄3Γ̄8

+
C4,4

Γ̄0Γ̄1Γ̄2Γ̄3Γ̄4
(4.31)
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Figure 4.2: (a) Encoder, (b) decoder, and (c) joint decoder.

with constants

C4,1 = 2Rc
[

1/24R4
c ln4(2)− 1/6R3

c ln3(2)+ 1/2R2
c ln2(2)−Rc ln(2)+1

]
−1

=−1+2Rc
4

∑
n=0

(−1)n 1
n!

Rn
c lnn(2), (4.32)

C4,2 = 2Rc
[
2Rc − 1/3R3

c ln3(2)−2Rc ln(2)
]
−1, (4.33)

C4,3 = 2
(
2Rc −1

)[
22Rc −2 ·2Rc −2RcR2

c ln2(2)+1
]
, (4.34)

C4,4 = 6(2Rc −1)2 [22Rc −2 ·2RcRc ln(2)−1
]
. (4.35)

4.4.4.5 DF-IE system with N Relays

The outage probability upper bound for the DF-IE with an arbitrary N of relays can be calculated as presented.
However, to derive a general expression is NP-hard do to case distinction and left for further studies.

4.4.4.6 DF-IE system with Zero Relays

We define a baseline, where no relay is included in the transmission.

H(B0)≤ R0 =
1
Rc

log2 (1+Γ0) (4.36)

P0,out =Pr [0≤ R0 < 1]

=Pr
[
0≤ γ0 < 2Rc −1

]

=
∫

γ0

1
Γ̄0

exp
(
− γ0

Γ̄0

)
dγ0

≈2Rc −1
Γ̄0

(4.37)

4.5 Distributed Source Coding Scheme

In this section, we briefly review the distributed source coding scheme proposed in [AM12b] and apply it to the
DF-IE system in Fig. 4.1. With the distributed source coding scheme we verify the outage probability upper bound
as a lower bound for the Frame-Error-Rate, i.e. Pout,a(Γ)≤ FER(Γ), [NFR07].
Each information sequence B0,B1, ...,BN is interleaved denoted by Π and encoded by a twofold serially concate-
nated code in EncS and EncFi , illustrated in Fig. 4.2a. First, a systematic non-recursive convolution code (SNRCC)
and second, a doped ACC, i.e., memory-1 systematic recursive convolutional code (SRCC) are deployed. The ACC
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is used to prevent an error floor at the relay decoder [PS06]. At DecS and DecFi , soft demapping is applied by cal-
culating the LLR LXi with the received sequence Yi and known channel state information. Each source and relay
decoder in Fig. 4.2b has two matching Bahl-Cocke-Jelinek-Raviv (BCJR) algorithms [Bah+74]. However, to avoid
heavy decoding complexity, information sequence B0 is decoded without iteration at Fi. Hard decision is then per-
formed to obtain information sequence Bi. At D, the joint decoder, illustrated in Fig. 4.2c, is structured in two main
parts: first the local iteration (LI), where the information sequences are decoded with DecS and DecFi , and second
the global iteration (GI), where the information exchange among all relay information sequences is performed. In
GI the LLR update function [AM12b], based on the knowledge of pi, updates the LLRs Le

Bk
accordingly4. If the

LLRs Le
Bk

are not improving anymore, the final estimation of B0 is determined by hard decision of the sum of all
Le

Bk
. For a detailed explanation of the joint decoder, the authors refer to [AM12b].

4.6 Numerical Results

In this section, we carry out three investigations: (i) comparison of Monte Carlo simulated outage probability,
outage probability upper bound and FER of distributed source coding scheme, (ii) impact of proposed power
allocation scheme, and (iii) opportunistic relay selection is illustrated by means of a heat map. The common
parameters used in the simulations are

• Frame length: 500 bits,

• Number of frames: 1.000.000,

• Interleavers: random,

• Generator polynomial of SNRCC: G = ([3,1])8,

• Generator polynomial of SRCC: G = ([3,1]2)8,

• Modulation: binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK),

• Doping ratio of ACC: 1 for BPSK and QPSK,

• Path loss exponent: η = 3.52, [YA11],

• Number of iterations: 30 times.

In Fig. 4.4a and Fig. 4.4c we illustrate the Monte-Carlo simulated outage probability (OP-MC) and outage prob-
ability upper bound (OP-UB) for BPSK (Rc = 0.5) and QPSK (Rc = 1.0), respectively. The distence between S
and D is normalized to x0 = 1.0 and all relays are placed at xi = 0.5 and yi = 0.0, the topology is presented in Fig.
4.3. We can conclude, that the OP-UB is rather tight for the system model with few relays, i.e. the gap for DF-IE
with one relay is almost zero and with two relays 0.27 dB. However, the gab increases with more relays, i.e. for
DF-IE with three relays 1.23 dB and with four relays 2.5 dB. As expected, including more relays, the diversity
gain increases. Additionally, with a higher order modulation scheme the outage probability increases, however the
throughput increases.
In Fig. 4.4b and Fig. 4.4d we illustrate the OP-UB and FER of the joint decoder for BPSK and QPSK, respectively.
The OP-UB is a good predictor of the FER. However, the FER cannot reach the OP-UP. The FER benefits from
the diversity gain and with a higher order modulation scheme, the FER increase.

4.7 Conclusion

In this chapter, we analysed the outage probability of TS3. An exact analytical description of the outage probability
can not be found. Therefore we introduced relaxation and reduction to the rate constraints given by the Slepian-
Wolf theorem. As a result we can describe the outage probability upper bound for TS3 in general and present

4The intra-link error probability is assumed to be known at D.
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Figure 4.3: Simulation setting with up to four relay.

the analytical result for asymptotic high SNR range with up to four relays. Practical results using Monte-Carlo
simulation and ACC aided turbo codes confirm the analytical result.
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Figure 4.4: (a) Simulated outage probability (Monte-Carlo) and outage probability upper bound, (b) frame-
error-rate and outage probability upper bound with BPSK, (c) simulated outage probability
(Monte-Carlo) and outage probability upper bound, and (d) frame-error-rate and outage prob-
ability upper bound with QPSK.

54



RESCUE D1.2.2, Version 1.0

5. Performance Analysis of TS4

5.1 System Model

The block diagram of the non-orthogonal MARC is shown in Fig 5.1. It consists of two sources, one relay, and
one destination. Each node is assumed to be equipped with a single antenna and operated in a half-duplex mode.
We also assume that there is no cooperation between the sources. The transmission round is divided into two time
slots as compared to three time slots consumption in the conventional orthogonal MARC. During the first time slot,
the uniform information sequences generated from sources A and B are encoded, modulated, and simultaneously
transmitted to the relay and the destination. Let the modulated symbol sequences of sources A and B be denoted
by xA and xB, respectively. For convenience, we assume that each symbol has unit power. The received signal at
the relay and destination during the first time-slot transmission can be expressed as

yR,1 =
√

PAhARxA +
√

PBhBRxB +nR,1, (5.1)

yD,1 =
√

PAhADxA +
√

PBhBDxB +nD,1, (5.2)

where all the wireless links, i.e., hAR, hBR, hAD, and hBD, suffer from independent and identically distributed (i.i.d.)
Rayleigh block fading distributed as CN(0,1), Pi is the transmit power at source i, for i ∈ {A,B}, and each entry of
additive white Gaussian noise (AWGN) vector n j,1 also follows CN(0,1), for j ∈ {R,D}. The average individual
received SNRs can be written by

γi j = Pi|hi j|2, for i ∈ {A,B} and j ∈ {R,D}, (5.3)

where |hi j|2 follows exponential distribution with unit mean and unit variance. The pdf of γi j can be expressed as

p(γi j) =
1
Pi

exp(−γi j

Pi
), for i ∈ {A,B} and j ∈ {R,D}. (5.4)

Because the relay is not interested in the original information of the sources, the relay directly estimates the bit-
wise XOR of the data sequences transmitted by sources A and B. Regardless of the correctness of the estimation,
the relay re-encodes and modulates the estimated XOR version to xR and forwards it to the destination during the
second time slot. The received signal at the destination during the second time-slot transmission is given by

yD,2 =
√

PRhRDxR +nD,2, (5.5)

where PR denotes the transmit power at the relay, hRD is the i.i.d. Rayleigh block fading distributed as CN(0,1),
and each entry of nD,2 also follows CN(0,1).

5.2 Source-to-Relay Transmission

We assume that source A (UA) and source B (UB) are correlated, which can be modeled by bit-flipping model,

UA =UB⊕U, (5.6)

where Pr(U = 1) = pu. In this sense, the bit-wise XOR version of UA and UB, i.e., UA⊕B = UA⊕UB, has the
following probability mass function (PMF) Pr(UA⊕B = 1) = pu and Pr(UA⊕B = 0) = 1− pu.

For the transmission from the sources to the relay, we introduce the concept of PNC at the relay. The estimated
bit-wise XOR is treated as a helper for the MAC transmission from the sources to the destination. For the purpose
of tractability, the XMAC, shown in (5.1), is approximated by a virtual P2P channel with transmission of non-
uniform/uniform binary i.i.d sources (i.e., 0≤ pu ≤ 0.5). The virtual channel is in the form of

h =

{
hAR, if |hAR|< |hBR|,
hBR, if |hAR| ≥ |hBR|.

(5.7)

Assuming that PA = PB = P, the received signal for this virtual channel can be written by

yV =
√

Phx+n, (5.8)
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Figure 5.1: The block diagram of the non-orthogonal MARC.

where x is the modulated symbol sequence of the XOR version of xA and xB, and each entry of additive noise
vector n follows CN(0,1). Further details of the virtual channel aregiven in Appendix J.

The pdf of the average SNR of the virtual channel has been changed into

p(γV) =
2
P

exp(−2γV

P
). (5.9)

Referring to the lossy source channel separation theorem [Xiaobo2014; LZM15], we obtain

RD(pe)Rc ≤C(γV ), (5.10)

where RD(·) represents the rate distortion function, C(a) = log2(1+a) is the capacity function under the assump-
tion of Gaussian signaling, and Rc is the multiplication of channel coding rate and modulation order, i.e., transmis-
sion rate, for the virtual P2P channel. Setting Φ(γV) = C(γV )/Rc, the calculation of the Hamming distortion for
the virtual channel, i.e., pe, in (5.10) can be computed by

pe =

{
H−1

b [Hb(pu)−Φ(γV)], for Φ
−1(0)≤ γV ≤Φ

−1[Hb(pu)],

0, for γV ≥Φ
−1[Hb(pu)],

(5.11)

where Hb(p) = −p log2(p)− (1− p) log2(1− p) denotes the binary entropy function, H−1
b (·) denotes its inverse

function, and Φ−1(a) = 2aRc − 1 is the inverse function of Φ(·). The approximated closed from expression of
H−1

b (·) is given in [Zho+14]. The relationship between the decoded version of UA⊕B (denoted by ÛA⊕B) and the
original one can also be modeled by bit-flipping model with correlation pe,

ÛA⊕B =UA⊕B⊕E, (5.12)

where Pr(E = 1) = pe.

5.3 MAC with a Helper

The source-to-destination transmission combined with relay-to-destination transmission can be regarded as MAC
with a helper, as shown in Fig. 5.2. The capacity region is unknown. Instead, we take the intersection of the
Slepian-Wolf compression rate region and the MAC capacity region into consideration to obtain an achievable rate
region [CT06]. This derivation is based on the sufficient conditions for lossless communication.

The Slepian-Wolf compression rate region without the helper can be represented by

Rs,A ≥ H(UA|UB) = Hb(pu), (5.13)
Rs,B ≥ H(UB|UA) = Hb(pu), (5.14)
Rs,A +Rs,B ≥ H(UA,UB) = 1+Hb(pu), (5.15)

where Rs,A and Rs,B are the compression rates of sources A and B, respectively. With the aid of the helper, the
Slepian-Wolf compression rate region [He16] will be enlarged to
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Rs,A ≥ H(UA|UB,ŨA⊕B) = Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd), (5.16)
Rs,B ≥ H(UB|UA,ŨA⊕B) = Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd), (5.17)

Rs,A +Rs,B ≥ H(UA,UB|ŨA⊕B) = 1+Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd), (5.18)

where ŨA⊕B is the estimated error version of ÛA⊕B with correlation pd at the destination and a ∗ b = a(1− b)+
(1−a)b. The relationship between ŨA⊕B and ÛA⊕B can be modeled by

ŨA⊕B = ÛA⊕B⊕D, (5.19)

where Pr(D = 1) = pd . Similar to (5.11), pd can be calculated as

pd =

{
H−1

b [Hb(pu ∗ pe)−Φ(γR,D)], for Φ
−1(0)≤ γR,D ≤Φ

−1[Hb(pu ∗ pe)],

0, for γR,D ≥Φ
−1(Hb(pu ∗ pe)).

(5.20)

More details on derivation of (5.16)–(5.18) can be found in [Xiaobo2014; LZM15].

According to the lossless source channel separation theorem, the MAC capacity region is determined by

Rs,ARc,A ≤C(γA,D), (5.21)
Rs,BRc,B ≤C(γB,D), (5.22)
Rs,ARc,A +Rs,BRc,B ≤C(γA,D + γB,D), (5.23)

where Rc,A and Rc,B are the transmission rates of sources A and B, respectively. The achievable rate region is the
intersection part determined by (5.16)–(5.18) and (5.21)–(5.23).

5.3.1 An Example

Let’s show a detailed example to illustrate the achievable rate region. We set Rc,A =Rc,B = 1/2, pu = pe = pd = 0.1,
and γA,D = γB,D = 0 dB. The achievable rate region is shown in Fig. 5.3. The achievable rate region is affected by
many factors such as the values of Rc,A, Rc,B, P, pu, pe, and pd . We mainly focus on the factors pe and pd , which
are determined by the XMAC channel and the relay-to-destination link.

5.3.2 Outage Probability

For simplicity, we assume the same transmission rate for the two sources, i.e., Rc,A = Rc,B = Rc. Consequently, we
define the event of successful transmission as

S= {Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd)≤C(γA,D)/Rc

∧Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd)≤C(γB,D)/Rc∧
1+Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd)≤C(γA,D+γB,D)/Rc}, (5.24)

57



R
s,A

0 0.5 1 1.5 2 2.5

R
s,

B

0

0.5

1

1.5

2

2.5

Achievable Rate Region
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where ∧ denotes logical “and” operation. Therefore, the outage probability can be expressed as

Pout = 1−Pr{S}. (5.25)

Because the derived achievable rate region for the MAC with a helper is smaller than its actual capacity region, the
outage probability is correspondingly an upper bound.

Depending on the success or failure of source-to-relay XMAC and relay-to-destination channel, we can rewrite the
Pr{S} in (5.25) as

Pr{S}=
4

∑
i=1

Pr{S|Ci}Pr{Ci}, (5.26)

where

C1 = {pe = 0∧ pd = 0},
C2 = {pe = 0∧ pd 6= 0},
C3 = {pe 6= 0∧ pd = 0},
C4 = {pe 6= 0∧ pd 6= 0}. (5.27)

All of the above four events will be transferred into different intervals of a two-dimensional vector consisting of
γV, γR,D. In addition to the effect of direct links from sources to destination, i.e., γA,D and γB,D, the probability of
successful transmission Pr{S} can be calculated by four-fold integrals, i.e.,

Pr{S|Ci}Pr{Ci}=
∫∫∫∫

Vi

p(γV)p(γR,D)p(γA,D)p(γB,D)dγVdγR,DdγA,DdγB,D, (5.28)

where

V1 = {γA,D ≥Φ
−1(0)∧ γB,D ≥Φ

−1(0)∧ γA,D + γB,D ≥Φ
−1(1),∧γV ≥Φ

−1[Hb(pu)]∧ γR,D ≥Φ
−1[Hb(pu)]},

(5.29)

V2 = {γA,D ≥Φ
−1[Hb(pu)+Hb(pd)−Hb(pu ∗ pd)]∧ γB,D ≥Φ

−1[Hb(pu)+Hb(pd)−Hb(pu ∗ pd)]∧
γA,D + γB,D ≥Φ

−1[1+Hb(pu)+Hb(pd)−Hb(pu ∗ pd)]∧ γV ≥Φ
−1[Hb(pu)]∧Φ

−1(0)≤ γR,D ≤Φ
−1[Hb(pu)]},

(5.30)

V3 = {γA,D ≥Φ
−1[Hb(pu)+Hb(pe)−Hb(pu ∗ pe)]∧ γB,D ≥Φ

−1[Hb(pu)+Hb(pe)−Hb(pu ∗ pe)]∧
γA,D + γB,D ≥Φ

−1[1+Hb(pu)+Hb(pe)−Hb(pu ∗ pe)]∧Φ
−1(0)≤ γV ≤Φ

−1[Hb(pu)]∧ γR,D ≥Φ
−1[Hb(pu ∗ pe)]},

(5.31)

V4 = {γA,D ≥Φ
−1[Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd)]∧ γB,D ≥Φ

−1[Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd)]∧
γA,D+γB,D ≥Φ

−1[1+Hb(pu)+Hb(pe∗pd)−Hb(pu∗pe∗pd)]∧Φ
−1(0)≤ γV ≤Φ

−1[Hb(pu)]

∧Φ
−1(0)≤ γR,D ≤Φ

−1[Hb(pu ∗ pe)]}. (5.32)
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Figure 5.4: Outage probability vs SNR for Scenario One.

5.4 Simulation Results

In this section, we draw the theoretical results in terms of the outage probability over the non-orthogonal MARC
and compare them to the corresponding Monte Carlo computer simulations. Practical simulations using turbo
codes are left for future investigation. The case of perfect intra links from [Xiaobo2014] is considered as a bench-
mark scheme. All the transmission rates are set to be 0.5. The correlation of the sources ranges from 0 to 0.5,
which includes transmission of independent sources as well. We assume that the transmit power has the follow-
ing relationship: PA = PB = PR. The simulation results are provided in Fig. 5.4, where “Theo” represents the
theoretical results of the outage probability for the non-orthogonal MARC given by (5.25), “MC” represents the
Monte Carlo simulation results of the outage probability for the non-orthogonal MARC given by (5.16)–(5.18) and
(5.21)–(5.23), and “Theo [1]” represents the theoretical results of the outage probability for the orthogonal MARC
from [Xiaobo2014] with error-free intra links. Compared to the case in [Xiaobo2014], the performance loss is very
limited for the non-orthogonal MARC with imperfect intra links, especially when the correlation of the sources
is high. Second order diversity can be achieved for all the levels of correlation. As shown in Fig. 5.4, the Monte
Carlo simulations closely approximate the theoretical analysis.

5.4.1 Scenario One

In this scenario, we assume that dRD = dAR = dBR = dAD = dBD. In other words, the average SNRs have the
following relationship: γRD = γAR = γBR = γAD = γBD. The simulation results are provided in Fig. 5.4 Compared
to the case in [Xiaobo2014], the performance loss is very limited for the non-orthogonal MARCs, especially when
the correlation of the sources is high. Second order diversity can be achieved for all the levels of correlation.
However, there exists minor mismatch between the theoretical analysis and Monte-Carlo simulations.

5.4.2 Scenario Two

In this scenario, we assume dRD = dAR = dBR = 0.6× dAD = 0.6× dBD. In other words, the average SNRs
have the following relationship: γRD = γAR = γBR = γAD + 7.81dB = γBD + 7.81dB. The simulation results are
shown in Fig. 5.5. Similar to Scenario One, the same tendency and diversity order are obtained in Scenario
Two. However, the performance gap between different levels of correlation is not obvious. Therefore, we don’t
provide the theoretical analysis of the perfect intra-link case here. It is not difficult to observe that the Monte-Carlo
simulations closely follow the theoretical analysis in this scenario.
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Figure 5.5: Outage probability vs SNR for Scenario Two.

5.4.3 Scenario Three

In this scenario, we assume dAR = dBR = 0.4× dAD = 0.4× dBD and dRD = 0.8× dAD = 0.8× dBD. In other
words, the average SNRs have the following relationship: γAR = γBR = γAD + 14.01dB = γBD + 14.01dB and
γRD = γAD +3.40dB = γBD +3.40dB. The simulation results are presented in Fig. 5.6.

5.4.4 Scenario Four

In this scenario, we assume dAR = dBR = 0.8× dAD = 0.8× dBD and dRD = 0.8× dAD = 0.8× dBD. In other
words, the average SNRs have the following relationship: γAR = γBR = γAD +3.40dB = γBD +3.40dB and γRD =
γAD +14.01dB = γBD +14.01dB. The simulation results are shown in Fig. 5.7.

5.5 Conclusion

We have calculated the outage probability for the transmission of correlated sources over non-orthogonal fading
MARC, which is based on the sufficient conditions of lossless communication over MAC with the aid of a helper.
For the purpose of tractability, first hop transmission from sources to the relay has been represented by an ap-
proximated virtual P2P channel validated through intensive numerical simulations. Subsequently, the closed form
expression of the capacity for the considered XMAC has been derived using the approximated virtual channel.
Finally, it has been shown that the performance results of the non-orthogonal MARC approach its orthogonal
counterpart with perfect intra links.
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Figure 5.6: Outage probability vs SNR for Scenario Three.
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Figure 5.7: Outage probability vs SNR for Scenario Four.
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6. Conclusion

In this deliverable, based on the input from [ICT15], we have presented theoretical results for reasonable exten-
sions/generalizations of the four toy scenarios (i.e., TS1, TS2, TS3 and TS4) defined in [ICT15] along with the
links-on-the-fly concept. Since the benefits of exploiting the links-on-the-fly concept over other baseline schemes
were intensively studied in [ICT15], we mainly focus on this concept in this deliverable while adding the new exten-
sion scenarios and/or generalization to the performance limit analysis. Like [ICT15], the distributed lossless/lossy
source coding theorems, Shannon’s lossy source/channel separation theorem, source coding with a helper, Slepian-
Wolf theorem and their extensions or combinations are the key tools for the performance limit analysis of the four
toy scenarios. For some of the TSs, approximated closed form expression for the outage probability and validation
via practical simulations are provided.

We exploit the theorem of source coding with a helper to determine the achievable rate region of TS1, which
decides the outage probability of the whole system through three-fold integrals by taking into account the instanta-
neous SNR of the wireless links. As we all know that, second order diversity can be achieved if all the wireless links
suffer from i.i.d Rayleigh block fading without LOS component. However, higher order diversity can be achieved
if the LOS component is introduced. We analyze the outage probability of TS1 over Rician and Nakagami-m block
fading. KLD distance between the two distributions is analyzed to provide guidelines for the diversity and cod-
ing gain analysis. A more practical SDF scheme without knowing the noise variance at the receiver side, named
least square based symbol level filtering, has been proposed to improve the BER performance compared to SNR
threshold based SDF scheme.

The main problem originated from TS2 is the CEO problem when all the source-to-relay links are lossy. We
derive even tighter outer bound on the rate distortion region for the binary CEO problem based on the converse
proof of the bound when the number of terminals is two. In practice, the KPI is the BER performance, which is a
measurement of the system reliability. Therefore, we further derive the Hamming distortion for the CEO problem
by saving a convex optimization problem, which could be regarded as the lower bound of the BER performance
obtained via practical simulations. An extension to arbitrary number of terminal is also studied regarding the outer
bound of the rate distortion region and lower bound of Hamming distortion. Practical simulation results for both
AWGN and Rayleigh fading channels are provided to verify the tightness of the derived lower bound of Hamming
distortion.

As an extension of TS1 or TS2, there exist multiple relays in TS3 to assist the source to forward the information
sequences to the destination. The exact achievable rate region for TS3 is extremely challenging to obtain since it
falls into the category of source coding with multiple helpers. Therefore, for the purpose of tractability, we relax
and reduce the rate constraints based on Slepian-Wolf theorem. Approximated closed form expression for the
upper bound of outage probability is obtained for the asymptotic high SNR range and up to four relays. Practical
results using Monte Carlo simulations and ACC aided turbo codes illustrate that the derived upper bound of the
outage probability is tight when the number of relays is small compared to the Monte Carlo simulation results.

TS4 is extended from an orthogonal multiple access relay channel (MARC) to a non-orthogonal MARC, and the
outage probability of non-orthogonal MARC is derived by using the theorem of MAC with a helper. The first hop
transmission from sources to the relay is represented by an approximated virtual P2P channel validated through
intensive numerical simulation results. In this sense, we get the closed form expression for the capacity of the
considered XMAC. It is shown that the performance results of the non-orthogonal MARC approach its orthogonal
counterpart with perfect intra link while the throughput of the non-orthogonal MARC system could be significantly
improved.
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Appendix A Calculation of the Inner Bound

The Berger-Tung inner bound on the rate-distortion region for the binary case with Hamming distortion is calcu-
lated based on the test BSCs. By using the Markov property and the chain rules of entropy and mutual information,
R i(D1,D2) shown in (3.9) is obtained in the following way

R1 ≥ I(X1;V1|V2)

= H(V1|V2)−H(V1|X1,V2) (A.1)
= H(V1|V2)−H(V1|X1) (A.2)
= H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)

R2 ≥ H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D2) (A.3)

R1 +R2 ≥ I(X1,X2;V1,V2)

= H(V1,V2)−H(V1,V2|X1,X2)

= H(V1)+H(V1|V2)−H(V1|X1,X2)−H(V2|X1,X2,V1) (A.4)
= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H(V1|X1)−H(V2|X1,X2) (A.5)
= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H(V1|X1)−H(V2|X2) (A.6)
= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)−H2(D2)

where the steps are justified, with:
(D.1) the chain rule for mutual information,
(D.2) given X1, V1 and V2 are conditionally independent,
(D.3) symmetric to the calculation of R1,
(D.4) the chain rule for entropy,
(D.5) given X1, X2 and V1 are conditionally independent, also, V1 and V2 are conditionally independent given X1
and X2,
(D.6) given X2, X1 and V2 are conditionally independent.

It should be emphasized here that the timing sharing variable Q is not involved in the above calculation, while the
equations are based on [Ber n]. In order to visually present the Berger-Tung inner bound, the rate-distortion region
is divided into three parts, as

(a) for some 0≤ d̃ ≤ D2

{
R1 ≥ H2(D1 ∗ p1 ∗ p2 ∗ d̃)−H2(D1),
R2 ≥ 1−H2(d̃),

(A.7)

(b) for some 0≤ d̃ ≤ D1

{
R2 ≥ H2(D2 ∗ p1 ∗ p2 ∗ d̃)−H2(D2)
R1 ≥ 1−H2(d̃);

(A.8)

(c)
R1 +R2 ≥ 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)−H2(D2), (A.9)

where d̃ is a dummy variable. We calculate the rates R1, R2 as well as R1 +R2 with given D1 and D2, respectively,
and then plot the rate-distortion region by combining the three parts shown above, which is similar to the time
sharing concept.
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Appendix B Direct Outer Bound for the Two-node Binary CEO
Problem

Let

RL(D) =
{
(R1, · · · ,RL,D) : there exists ϕ1, · · · ,ϕL,ψ) such that

1
n

log |ϕi| ≤ Ri (B.1)

1
n

Ed(Xn, X̂n) =
1
n

n

∑
t=1

Ed(X(t), X̂(t))≤ D
}
. (B.2)

be the rate-distortion region of the binary CEO problem with d(,) being the Hamming distortion measure and
|ϕi| = 2nRi denoting the range of cardinality of ϕi. Our aim is to derive a good outer bound on RL(D). Assume
that (R1,R2,D) ∈RL(D) and define





Ui = ϕi(Xn
i )

X̃t = [X(1), · · · ,X(t−1),X(t +1), · · · ,X(n)]
εt = Pr{xi 6= x̂i}.

(B.3)

Then we can obtain the inequality as
1
n

H(Xn|X̂n)≤ H2(D). (B.4)

A proof of (B.4) is shown as follows.

1
n

H(Xn|X̂n) =
1
n

n

∑
t=1

H(X(t)|X t−1X̂n) (B.5)

≤ 1
n

n

∑
t=1

H(X(t)|X̂(t)) (B.6)

≤ 1
n

n

∑
t=1

(εt(log(|X |−1))+H2(εt)) (B.7)

=
1
n

n

∑
t=1

H2(εt) (B.8)

≤ H2(
1
n

n

∑
t=1

εt) (B.9)

≤ H2(D) (B.10)

with the steps being justified by
(B.5) chain rule of entropy,
(B.6) conditioning reduces entropy,
(B.7) Fano’s inequality,
(B.9) Jensen’s inequality and H2 is concave,
(B.10) definition.

Based on the assumption (R1,R2,D) ∈RL(D) and several steps of basic calculation, we have




Ri ≥ 1
n

n
∑

t=1
I(Ui;Xi(t)|UL \i, X̃t)

Rsum ≥ 1
n

n
∑

t=1
I(UL ;XL (t)|X̃t)

H2(D) ≥ 1
n H(X |UL )

, (B.11)
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and the outer bound on RL(D) as

Ro
L(D) =

{
(RL ) :Ri ≥ I(Ui;Xi|UL \i)

Rsum ≥ I(UL ;XL )

H2(D)≥ H(X |UL )

for some Ui with independent Markov chains
Ui→ Xi→ X → XL \i→UL \i
X → (X1, · · · ,XL)→ (U1, · · · ,UL)

|Ui| ≤ |Xi|+7
}
. (B.12)

The proof of RL(D) ⊆Ro
L(D) is based on the lossless CEO problem originated by Gel’fand and Pinsker [GP79]

and is omitted here.

The outer bound Ro
L(D) needs to be computed using a good parametrization method. Similar to the quadratic

Gaussian CEO problem, we introduce following terms

ηi = I(Xi;Ui|X) for all i ∈L (B.13)

to parameterize the outer bound. Then Ro
L(D) is represented by

{
Ri ≥ ηi +H(X |UL \i)−H2(D)

Rsum ≥ 1−H2(D)+∑
L
i=1 ηi

(B.14)

The term ηi can be easily obtained by MGL. Then the questions remain for future study are a series of minimization
problems, denoted as min H(X |US ) with S ⊆ L . So far, in this dissertation, we use test BSC to obtain the
minimal value on H(X |U1,U2) for the two-node case. It is found that the results of using test BSC consistent with
that of using a brute-force search over a fine mesh of conditional distributions pUi|Xi(ui|xi) [Cou12].
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Appendix C Monotonicity of Distortion D

Majority decision. D = min{θ1,θ2}. Since θi, i = 1,2 is the result of the binary convolution of pi and Di, θi is
obviously increasing as Di is increasing, when pi is fixed.

Optimal decision. D = H−1
2 [H2(θ1)+H2(θ2)−H2(θ1 ∗θ2)].

In this case, D is a composite function of H−1
2 (·) and H2(θ1)+H2(θ2)−H2(θ1 ∗θ2). Since the function H−1

2 (·)
is monotonically increasing, we only need to prove that g(θ1,θ2) = H2(θ1) +H2(θ2)−H2(θ1 ∗ θ2) is also an
increasing function of θ1 and θ2.

Assume θ2 is fixed. The partial derivative ∂g(θ1,θ2)
∂θ1

on θ1 is

∂g(θ1,θ2)

∂θ1
= log

1−θ1

θ1
− (1−2θ2) · log

1−θ1 ∗θ2

θ1 ∗θ2
. (C.1)

In order to prove that (C.1) is nonnegative, we should prove

1−θ1

θ1
≥ (

1−θ1 ∗θ2

θ1 ∗θ2
)(1−2θ2). (C.2)

The above always holds according to the monotonically increasing property of function log(·). As 0 ≤ θi ≤ 1
2 ,

i = 1,2 and 0 ≤ θ1 ∗θ2 ≤ 1
2 is assumed, the following inequalities are obtained after several steps of elementary

calculation
1−θ1

θ1
≥ (

1−θ1

θ1
)(1−2θ2) ≥ (

1−θ1 ∗θ2

θ1 ∗θ2
)(1−2θ2). (C.3)

Therefore, it is found that (C.1) can not take negative values according to (C.3). Symmetrically, we can assume
θ1 is fixed, and show that the partial derivative ∂g(θ1,θ2)

∂θ2
on θ2 is also nonnegative. Hence, g(θ1,θ2) is increasing

in the dimension of θ1 and θ2, respectively. Based on the above two cases, it is concluded that the distortion D is
increasing with respect to D1 and D2.
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Appendix D Calculation of the Inner Bound

The Berger-Tung inner bound on the rate-distortion region for the binary case with Hamming distortion is calcu-
lated based on the test BSCs. By using the Markov property and the chain rules of entropy and mutual information,
R i(D1,D2) shown in (3.9) is obtained in the following way

R1 ≥ I(X1;V1|V2)

= H(V1|V2)−H(V1|X1,V2) (D.1)
= H(V1|V2)−H(V1|X1) (D.2)
= H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)

R2 ≥ H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D2) (D.3)

R1 +R2 ≥ I(X1,X2;V1,V2)

= H(V1,V2)−H(V1,V2|X1,X2)

= H(V1)+H(V1|V2)−H(V1|X1,X2)−H(V2|X1,X2,V1) (D.4)
= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H(V1|X1)−H(V2|X1,X2) (D.5)
= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H(V1|X1)−H(V2|X2) (D.6)
= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)−H2(D2)

where the steps are justified, with:
(D.1) the chain rule for mutual information,
(D.2) given X1, V1 and V2 are conditionally independent,
(D.3) symmetric to the calculation of R1,
(D.4) the chain rule for entropy,
(D.5) given X1, X2 and V1 are conditionally independent, also, V1 and V2 are conditionally independent given X1
and X2,
(D.6) given X2, X1 and V2 are conditionally independent.

It should be emphasized here that the timing sharing variable Q is not involved in the above calculation, while the
equations are based on [Ber n]. In order to visually present the Berger-Tung inner bound, the rate-distortion region
is divided into three parts, as

(a) for some 0≤ d̃ ≤ D2

{
R1 ≥ H2(D1 ∗ p1 ∗ p2 ∗ d̃)−H2(D1),
R2 ≥ 1−H2(d̃),

(D.7)

(b) for some 0≤ d̃ ≤ D1

{
R2 ≥ H2(D2 ∗ p1 ∗ p2 ∗ d̃)−H2(D2)
R1 ≥ 1−H2(d̃);

(D.8)

(c)
R1 +R2 ≥ 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)−H2(D2), (D.9)

where d̃ is a dummy variable. We calculate the rates R1, R2 as well as R1 +R2 with given D1 and D2, respectively,
and then plot the rate-distortion region by combining the three parts shown above, which is similar to the time
sharing concept.
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Appendix E Outage Probability Derivation

Following the method of deriving the outage probability for one-way relaying network [CAM12], the outage
probability pout of binary information sensing over Rayleigh fading channels is obtained. Based on the Slepian-
Wolf theorem, if the rate pair (R1,R2) falls into parts 1 and 2, as shown in Fig. E.1, both the correlated sources
can be recovers in arbitrarily small error probability. Furthermore, if (R1,R2) is in part 3 or 4, source 2 or 1 can
be losslessly recovered. Define Pi, i = 1,2,3,4 as the probabilities that (R1,R2) falls into part i, respectively, then
based on the definition of the outage event, pout is expresses as

pout =





1− (P1 +P2 +P4), p1 < p2

1− (P1 +P2 +P3), p1 > p2

1− (P1 +P2 +P3 +P4), p1 = p2

. (E.1)

Note that outage happens if and only if the final distortion D is larger than min{p1, p2}, and thus, the sensor with
smaller pi or both sensors if p1 = p2 dominate the performance. In the calculation of outage probability, P3 and/or
P4 should be subtracted accordingly. Now, we need to compute P1, P2, P3 and P4.

Assume the instantaneous SNR γi, i = 1,2 follows Rayleigh fading, as

pΓi(γi) =
1
Γi

exp(− γi

Γi
). (E.2)

Figure E.1: Slepian-Wolf rate region for analyzing outage probability.
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Based on the Slepain-Wolf theorem and separability of source and channel, we have

P1 = Pr{H2(ρ)< R1 < 1,R1 +R2 > 1+H2(ρ)}

= Pr{2r1H2(ρ)−1 < γ1 < 2r1 −1,2[r2(1+H2(ρ))− r2
r1

log(1+γ1)]−1 < γ2}

=
∫ 2r1−1

2r1H2(ρ)−1

∫ +∞

2
[r2(1+H2(ρ))−

r2
r1

log(1+γ1)]−1
pΓ1(γ1)pΓ2(γ2)dγ1dγ2

=
1

Γ1

∫ 2r1−1

2r1H2(ρ)−1
exp(− γ1

Γ1
)

[
exp(− γ1

Γ1
)

]+∞

2
[r2(1+H2(ρ))−

r2
r1

log(1+γ1)]−1
dγ1

=
1

Γ1

∫ 2r1−1

2r1H2(ρ)−1
exp(

1
Γ2
− γ1

Γ1
− 2r2(1+H2(ρ))

Γ2(1+ γ1)
r2
r1

)dγ1, (E.3)

P2 = Pr{R1 > 1,R2 > H2(ρ)}
= Pr{2r1 −1 < γ1 < ∞,2r2H2(ρ)−1 < γ2 < ∞}

=
∫ +∞

2r1−1

∫ +∞

2r2H2(ρ)−1
pΓ1(γ1)pΓ2(γ2)dγ1dγ2

=
∫ +∞

2r1−1
pΓ1(γ1)dγ1

∫ +∞

2r2H2(ρ)−1
pΓ2(γ2)dγ2

= exp[−(2r1 −1
Γ1

+
2r2H2(ρ)−1

Γ2
)], (E.4)

P3 = Pr{0 < R1 < H2(ρ),R2 > 1}
= Pr{0 < γ1 < 2r1H2(ρ)−1,2r2 −1 < γ2 < ∞}

=
∫ 2r1H2(ρ)−1

0

∫ +∞

2r2−1
pΓ1(γ1)pΓ2(γ2)dγ1dγ2

=
∫ 2r1H2(ρ)−1

0
pΓ1(γ1)dγ1

∫ +∞

2r2−1
pΓ2(γ2)dγ2

= [1− exp(−2r1H2(ρ)−1
Γ1

)]exp(−2r2 −1
Γ2

). (E.5)

Similarly,

P4 = [1− exp(−2r2H2(ρ)−1
Γ2

)]exp(−2r1 −1
Γ1

). (E.6)

The outage is then obtained by (E.1) depending on the values of p1 and p2. Note that the derivation is using
the capacity function with two-dimensional signal. The outage probability can be similarly calculated for the
one-dimensional signal.
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Appendix F BEP Floor of Soft Combining Decision

For the case pi are various over links, the BEP floor obtained by Poisson-binomial process is not accurate. Thus,
the BEP floor needs to be analyzed by taking soft combining into account. In soft combining decision, the LLR
sequence is weighted by pi using function fc. It is equivalent to a weighted majority voting, for which the hard
decision of x̂ follows

x̂ =

{
1, wvT > 0
0, otherwise

(F.1)

where w = [log 1−p1
p1

, · · · , log 1−pL
pL

] and v = sign([lp
1 , · · · , l

p
L]), with sign(·) taking the sign of its argument, i.e., 1

for positive numbers, −1 for negative numbers. Similar to the Poisson binomial process by assuming that 0 is
transmitted, the BEP floor is given by

pe = Pr{ ∑
k∈V+

wk > ∑
j∈V−

w j}+
1
2

Pr{ ∑
k∈V+

wk = ∑
j∈V−

w j}, (F.2)

where V+ = {i|vi = +1} and V− = {i|vi = −1}. Note that the difference between the BEP floor using Poisson
binomial process and (F.2) is that, the error is determined by the number of 1’s and 0’s in Poisson binomial, and
the weights of positive and negative signs in soft combining, respectively. To compute (F.2), it needs to carry out
the search of the possible combinations of wi over the power set of {1, · · · ,L}.
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Appendix G Rate-distortion Region Visualization

Similar to the time sharing concept, the rate-distortion region is divided into three parts, as

(a) for some 0≤ d̃ ≤ d2

{
R1 ≥ Hb(d1 ∗ p1 ∗ p2 ∗ d̃)−Hb(d1),
R2 ≥ 1−Hb(d̃),

(G.1)

(b) for some 0≤ d̃ ≤ d1

{
R2 ≥ Hb(d2 ∗ p1 ∗ p2 ∗ d̃)−Hb(d2)
R1 ≥ 1−Hb(d̃);

(G.2)

(c)
Rsum ≥ 1+Hb(d1 ∗ p1 ∗ p2 ∗d2)−Hb(d1)−Hb(d2), (G.3)

where d̃ is a dummy variable. We calculate the rates R1, R2 as well as Rsum with given d1 and d2, respectively, and
then plot the rate-distortion region by combining the three parts shown above.
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Appendix H Sum Rate of Multiple Users Case

In general, the sum rate requirement Rsum in the Berger-Tung inner bound is given as

Rsum ≥ I(u1,u2, · · · ,uK ;v1,v2, · · · ,vK), (H.1)

however, deriving this mutual information is not easy, instead, we assume d1,d2, · · · ,dK are relatively small. Thus,
we only need to calculate the joint entropy H(U) to obtain the sum rate.

Given the fact that uk, k = 1, · · · ,K is the result of passing u through a BSC with crossover probability pk, where
uk and u represent the realizations of uk and u, respectively, the joint probability Pr(u1,u2, · · · ,uK) is formulated
as

Pr(u1,u2, · · · ,uK) = Pr(u = 0)∏
i∈A

(1− pi) ∏
j∈AC

p j +Pr(u = 1)∏
i∈A

pi ∏
j∈AC

(1− p j), (H.2)

where A is the set of the index k if uk = 0, k = 1, · · · ,K and AC is the complementary set of the set A. For example,
setting K = 3 with u1 = 0, u2 = 1 and u3 = 0, the set A is equal to {1,3} and AC = {2}.

Therefore, the joint entropy H(U) which is equivalent to the information rate Rsum is calculated as

H(U) =− ∑
uk∈{0,1}

Pr(u1,u2, · · · ,uK) log2(Pr(u1,u2, · · · ,uK)). (H.3)
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Appendix I Exact and High-SNR Expressions of Outage Probability

I.1 Exact and High-SNR Expressions for J1,1,J1,2

Substituting (4.16) into the rate inequalities in (4.6), J1,1 and J1,2 can be expressed in terms of SNR constraints.
These expressions can be evaluated by integrating the joint pdf f (γ1, ...,γN) = f (γ1) · ... · f (γN) over the corre-
sponding ranges. In the last step we approximate the exponential function with the high SNR assumption.

J1,1 =Pr [0≤ R0 < 1,0≤ R1 < 1−R0, p1 = 0]

=Pr
[
0≤ γ0 < 2Rc −1,0≤ γ2 < 2Rc−Ψ(γ0)−1,2Rc −1≤ γ1

]

=exp
(
−2Rc −1

Γ̄1

)∫

γ0

1
Γ̄0

exp
(
− γ0

Γ̄0

)[
1− exp

(
−2Rc−Ψ(γ0)−1

Γ̄2

)]
dγ0

≈ 1
Γ̄0Γ̄2

2Rc−1∫

γ0=0

[
2Rc

1+ γ0
−1
]

dγ0 (I.1)

J1,2 =Pr [0≤ R0 < H(p1),0≤ R1,0 < p1 ≤ 0.5]

=Pr
[
0≤ γ0 < 2Rc−Ψ(γ1)−1,0≤ γ2,0≤ γ1 < 2Rc −1

]

=
∫

γ1

1
Γ̄1

exp
(
− γ1

Γ̄1

)[
1− exp

(
−2Rc−Ψ(γ1)−1

Γ̄0

)]
dγ1

≈ 1
Γ̄0Γ̄1

2Rc−1∫

γ1=0

[
2Rc

1+ γ1
−1
]

dγ1 (I.2)

I.2 Exact and High-SNR Expressions for J2,1,J2,2,J2,4

Substituting (4.16) into the rate inequalities in (4.6), J2,1,J2,2 and J2,4 can be expressed in terms of SNR con-
straints. These expressions can be evaluated by integrating the joint pdf f (γ1, ...,γN) = f (γ1) · ... · f (γN) over the
corresponding ranges. In the last step we approximate the exponential function with the high SNR assumption.

J2,1 =Pr [0≤ R0 < 1,0≤ R1 < 1−R0,0≤ R2 < 1−R0−R1, p1 = 0, p2 = 0]

=Pr
[
0≤ γ0 < 2Rc −1,0≤ γ3 < 2Rc−Ψ(γ0)−1,0≤ γ4 < 2Rc−Ψ(γ0)−Ψ(γ3)−1,

2Rc −1≤ γ1,2Rc −1≤ γ2
]
.

=exp
(
−2Rc −1

Γ̄1

)
exp
(
−2Rc −1

Γ̄2

)∫

γ0

∫

γ3

1
Γ̄0

exp
(
− γ0

Γ̄0

)

× 1
Γ̄3

exp
(
− γ3

Γ̄3

)[
1− exp

(
−2Rc−Ψ(γ0)−Ψ(γ3)−1

Γ̄4

)]
dγ0dγ3

≈ 1
Γ̄0

1
Γ̄3

1
Γ̄4

2Rc−1∫

γ0=0

2Rc−Ψ(γ0)−1∫

γ3=0

[
2Rc

(1+ γ0)(1+ γ3)
−1
]

dγ0dγ3 (I.3)
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J2,2 =Pr [0≤ R0 < H(p2),0≤ R1 < H(p2)−R0,0≤ R2, p1 = 0,0 < p2 ≤ 0.5]

=Pr
[
0≤ γ0 < 2Rc−Ψ(γ2)−1,0≤ γ3 < 2Rc−Ψ(γ0)−Ψ(γ2)−1,

0≤ γ4,2Rc −1≤ γ1,0≤ γ2 < 2Rc −1
]

=exp
(
−2Rc −1

Γ̄1

)∫

γ0

∫

γ2

1
Γ̄0

exp
(
− γ0

Γ̄0

)

× 1
Γ̄2

exp
(
− γ2

Γ̄2

)[
1− exp

(
−2Rc−Ψ(γ0)−Ψ(γ2)−1

Γ̄3

)]
dγ0dγ2

≈ 1
Γ̄0

1
Γ̄2

1
Γ̄3

2Rc−Ψ(γ2)−1∫

γ0=0

2Rc−1∫

γ2=0

[
2Rc

(1+ γ0)(1+ γ2)
−1
]

dγ0dγ2 (I.4)

J2,4 =Pr [0≤ R0 < H(p1)+H(p2)−H(p1 ∗ p2),0≤ R1,0≤ R2,0≤ p1 ≤ 0.5,0 < p2 ≤ 0.5]

=Pr
[
0≤ γ0 < 22Rc−Ψ(γ1)−Ψ(γ2)−Rcϒ(γ1,γ2)−1,0≤ γ3,0≤ γ4,0≤ γ1 < 2Rc −1,0≤ γ2 < 2Rc −1

]

=
∫

γ1

∫

γ2

1
Γ̄1

exp
(
− γ1

Γ̄1

)
1

Γ̄2
exp
(
− γ2

Γ̄2

)[
1− exp

(
−22Rc−Ψ(γ1)−Ψ(γ2)−Rcϒ(γ1,γ2)−1

Γ̄0

)]
dγ1dγ2

≈ 1
Γ̄0Γ̄1Γ̄2

2Rc−1∫

γ1=0

2Rc−1∫

γ2=0

[
2Rc

1+max [Ψ(γ1),Ψ(γ2)]
−1
]

dγ1dγ2 (I.5)

with ϒ(γ1,γ2) = H
(

H−1(1− 1
Rc

Ψ(γ1))∗H−1(1− 1
Rc

Ψ(γ2))
)

, with binary convolution x1 ∗ x2, defined in

I.3 Exact and High-SNR Expressions for J3,1,J3,2,J3,5,J3,8

Substituting (4.16) into the rate inequalities in (4.6), J3,1,J3,2,J3,5 and J3,8 can be expressed in terms of SNR
constraints. These expressions can be evaluated by integrating the joint pdf f (γ1, ...,γN) = f (γ1) · ... · f (γN) over the
corresponding ranges. In the last step we approximate the exponential function with the high SNR assumption.

J3,1 =Pr[0≤ R0 < 1,0≤ R1 < 1−R0,0≤ R2 < 1−R0−R1,0≤ R3 < 1−R0−R1−R2, p1 = 0, p2 = 0, p3 = 0]

=Pr[0≤ γ0 < 2Rc −1,0≤ γ4 < 2Rc−Φ(γ0)−1,0≤ γ5 < 2Rc−Φ(γ0)−Φ(γ4)−1,0≤ γ6 < 2Rc−Φ(γ0)−Φ(γ4)−Φ(γ5)−1,

2Rc −1≤ γ1,2Rc −1≤ γ2,2Rc −1≤ γ3].

≈ 1
Γ̄0Γ̄4Γ̄5

∫

γ0

∫

γ4

∫

γ5

(
2Rc−Φ(γ0)−Φ(γ4)−Φ(γ5)−1

Γ̄6

)
dγ0dγ4dγ5

(I.6)

J3,2 =Pr[0≤ R0 < H(p3),0≤ R1 < H(p3)−R0,0≤ R2 < H(p3)−R0−R1,0≤ R3, p1 = 0, p2 = 0,0 < p3 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−Φ(γ3)−1,0≤ γ4 < 2Rc−Φ(γ0)−Φ(γ3)−1,0≤ γ5 < 2Rc−Φ(γ0)−Φ(γ3)−Φ(γ4)−1,0≤ γ6,

2Rc −1≤ γ1,2Rc −1≤ γ2,0≤ γ3 < 2Rc −1].

≈ 1
Γ̄0Γ̄3Γ̄4Γ̄5

∫

γ0

∫

γ3

∫

γ4

[
2Rc

(1+ γ0)(1+ γ3)(1+ γ4)
−1
]

dγ0dγ3dγ4

(I.7)
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J3,5 =Pr[0≤ R0 < min [H(p2),H(p3)] ,0≤ R1 < min [H(p2),H(p3)]−R0,0≤< R2,0≤ R3,

p1 = 0,0 < p2 ≤ 0.5,0 < p3 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−max[Φ(γ2),Φ(γ3)]−1,0≤ γ4 < 2Rc−Φ(γ0)−max[Φ(γ2),Φ(γ3)]−1,0≤ γ5,0≤ γ6,

2Rc −1≤ γ1,0≤ γ2 < 2Rc −1,0≤ γ3 < 2Rc −1].

≈ 1
Γ̄0Γ̄2Γ̄3Γ̄4

∫

γ0

∫

γ2

∫

γ3

[
2Rc

(1+ γ0)(1+max(γ2,γ3))
−1
]

dγ0dγ2γ3

(I.8)

J3,8 =Pr[0≤ R0 < min [H(p1),H(p2),H(p3)] ,0≤ R1,0≤ R2,0≤ R3,

0 < p1 ≤ 0.5,0 < p2 ≤ 0.5,0 < p3 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−max[Φ(γ1),Φ(γ2),Φ(γ3)]−1,0≤ γ4,0≤ γ5,0≤ γ6,

0≤ γ1 < 2Rc −1,0≤ γ2 < 2Rc −1,0≤ γ3 < 2Rc −1].

≈ 1
Γ̄0Γ̄1Γ̄2Γ̄3

∫

γ1

∫

γ2

∫

γ3

[
2Rc

(1+max(γ1,γ2,γ3))
−1
]

dγ1dγ2dγ3

(I.9)

I.4 Exact and High-SNR Expressions for J4,1,J4,2,J4,6,J4,12,J4,16

Substituting (4.16) into the rate inequalities in (4.6), J4,1,J4,2,J4,6,J4,12 and J4,16 can be expressed in terms of SNR
constraints. These expressions can be evaluated by integrating the joint pdf f (γ1, ...,γN) = f (γ1) · ... · f (γN) over the
corresponding ranges. In the last step we approximate the exponential function with the high SNR assumption.

J4,1 =Pr[0≤ R0 < 1,0≤ R1 < 1−R0,0≤ R2 < 1−R0−R1,0≤ R3 < 1−R0−R1−R2,

0≤ R4 < 1−R0−R1−R2−R3, p1 = 0, p2 = 0, p3 = 0, p4 = 0]

=Pr[0≤ γ0 < 2Rc −1,0≤ γ5 < 2Rc−Φ(γ0)−1,0≤ γ6 < 2Rc−Φ(γ0)−Φ(γ5)−1,0≤ γ7 < 2Rc−Φ(γ0)−Φ(γ5)−Φ(γ6)−1,

0≤ γ8 < 2Rc−Φ(γ0)−Φ(γ5)−Φ(γ6)−Φ(γ7)−1,2Rc −1≤ γ1,2Rc −1≤ γ2,2Rc −1≤ γ3,2Rc −1≤ γ4].

≈ 1
Γ̄0Γ̄5Γ̄6Γ̄7Γ̄8

∫

γ0

∫

γ5

∫

γ6

∫

γ7

[
2Rc

(1+ γ0)(1+ γ5)(1+ γ6)(1+ γ7)
−1
]

dγ0dγ5dγ6dγ7

(I.10)

J4,2 =Pr[0≤ R0 < H(p4),0≤ R1 < H(p4)−R0,0≤ R2 < H(p4)−R0−R1,0≤ R3 < H(p4)−R0−R1−R2,

0≤ R4, p1 = 0, p2 = 0, p3 = 0,0 < p4 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−Φ(γ4)−1,0≤ γ5 < 2Rc−Φ(γ0)−Φ(γ4)−1,0≤ γ6 < 2Rc−Φ(γ0)−Φ(γ4)−Φ(γ5)−1,

0≤ γ7 < 2Rc−Φ(γ0)−Φ(γ4)−Φ(γ5)−Φ(γ6)−1,0≤ γ8,2Rc −1≤ γ1,

2Rc −1≤ γ2,2Rc −1≤ γ3,0≤ γ4 < 2Rc −1].

≈ 1
Γ̄0Γ̄4Γ̄5Γ̄6Γ̄7

∫

γ0

∫

γ4

∫

γ5

∫

γ6

[
2Rc

(1+ γ0)(1+ γ4)(1+ γ5)(1+ γ6)
−1
]

dγ0dγ4dγ5dγ6

(I.11)
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J4,6 =Pr[0≤ R0 < min [H(p3),H(p4)] ,0≤ R1 < min [H(p3),H(p4)]−R0,0≤ R2 < min [H(p3),H(p4)]−R0−R1,

0≤ R3 < ∞,0≤ R4, p1 = 0, p2 = 0,0 < p3 ≤ 0.5,0 < p4 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−max[Φ(γ3),Φ(γ4)]−1,0≤ γ5 < 2Rc−Φ(γ0)−max[Φ(γ3),Φ(γ4)]−1,

0≤ γ6 < 2Rc−Φ(γ0)−max[Φ(γ3),Φ(γ4)]−Φ(γ5)−1,0≤ γ7,0≤ γ8,2Rc −1≤ γ1,

2Rc −1≤ γ2,0≤ γ3 < 2Rc −1,0≤ γ4 < 2Rc −1].

≈ 1
Γ̄0Γ̄3Γ̄4Γ̄5Γ̄6

∫

γ0

∫

γ3

∫

γ4

∫

γ5

[
2Rc

(1+ γ0)(1+max [γ3,γ4])(1+ γ5)
−1
]

dγ0dγ3dγ4dγ5

(I.12)

J4,12 =Pr[0≤ R0 < min [H(p2),H(p3),H(p4)] ,0≤ R1 < min [H(p2),H(p3),H(p4)]−R0,0≤ R2,

0≤ R3 < ∞,0 < R4, p1 = 0,0 < p2 ≤ 0.5,0 < p3 ≤ 0.5,0 < p4 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−max[Φ(γ2),Φ(γ3),Φ(γ4)]−1,0≤ γ5 < 2Rc−Φ(γ0)−max[Φ(γ2),Φ(γ3),Φ(γ4)]−1,

0≤ γ6,0≤ γ7,0≤ γ8,2Rc −1≤ γ1,

0≤ γ2 < 2Rc −1,0≤ γ3 < 2Rc −1,0≤ γ4 < 2Rc −1].

≈ 1
Γ̄0Γ̄2Γ̄3Γ̄4Γ̄5

∫

γ0

∫

γ2

∫

γ3

∫

γ4

[
2Rc

(1+ γ0)(1+max [γ2,γ3,γ4])
−1
]

dγ0dγ2dγ3dγ4

(I.13)

J4,16 =Pr[0≤ R0 < min [H(p1),H(p2),H(p3),H(p4)] ,0≤ R1,0≤ R2,

0≤ R3 < ∞,0≤ R4,0 < p2 ≤ 0.5,0 < p2 ≤ 0.5,0 < p3 ≤ 0.5,0 < p4 ≤ 0.5]

=Pr[0≤ γ0 < 2Rc−max[Φ(γ2),Φ(γ3),Φ(γ4)]−1,
0≤ γ5,0≤ γ6,0≤ γ7,0≤ γ8,

0≤ γ1 < 2Rc −1,0≤ γ2 < 2Rc −1,0≤ γ3 < 2Rc −1,0≤ γ4 < 2Rc −1].

≈ 1
Γ̄0Γ̄1Γ̄2Γ̄3Γ̄4

∫

γ1

∫

γ2

∫

γ3

∫

γ4

[
2Rc

(1+max [γ1,γ2,γ3,γ4])
−1
]

dγ0dγ2dγ3dγ4

(I.14)
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Appendix J Virtual Channel Representation
The received signal from the XMAC channel is shown in (5.1). Assuming that BPSK modulation is applied for the
XMAC channel. Then, the LLR information of the XMAC channel can be expressed as

LX = ln
(exp(−|yR,1−

√
P(hAR +hBR)|2)+ exp(−|yR,1 +

√
P(hAR +hBR)|2)

exp(−|yR,1−
√

P(hAR−hBR)|2)+ exp(−|yR,1 +
√

P(hAR−hBR)|2)
)
, (J.1)

where | · | denotes the absolute value. Similarly, the LLR information for the virtual channel can be expressed as

LV = ln
(

exp(−|yV−
√

Ph|2)/exp(−|yV +
√

Ph|2)
)
. (J.2)

The performance of the relay is mainly determined by the iterative decoder. From decoding perspective, the only
difference between the XMAC and the virtual channel is the input from channel to the decoder. Therefore, we
investigate the output LLRs of both channels. As observed from Fig. J.1, the pdfs of LX and LV are quite similar,
especially in medium and high SNR regimes.

The constellation-constrained capacities of the XMAC and the virtual channel under the constraint of BPSK mod-
ulation are shown in Fig. J.2. The constellation-constrained capacity of the P2P fading channel (e.g., h = hAR
in (5.8)) is given as a benchmark scheme. As shown in the figure, the constellation-constrained capacities of the
XMAC and the virtual channel are also very close to each other, especially in medium and high SNR regimes.

To further confirm the accuracy of the approximation of the two channels, we run practical simulations using rate-
1/2 ACC aided turbo code [AM12a] for the XMAC channel and evaluate the frame error rate (FER) performance.
Moreover, we calculate the theoretical outage probability based on the virtual channel. The simulation results are
provided in Fig. J.3. The performance gap is within 4 dB for all the levels of correlation.

Therefore, we can conclude that the XMAC channel and the virtual channel are closely approximated. Conse-
quently, the capacity of the virtual channel under the constraint of Gaussian signaling can be simplified by

CV = log2(1+P|h|2), (J.3)

where |h|2 also follows exponential distribution, i.e., p(|h|2) = 2exp(−2|h|2). It is straightforward to show that the
corresponding average SNR of the virtual channel follows (5.9).
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Figure J.1: (a) SNR = 0dB, (b) SNR =5dB, (c) SNR = 10dB and (d) SNR =15dB.
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Appendix K Derivation of (5.16) - (5.18)

According to the chain rule for entropy, the joint entropy of UA, UB, ÛA⊕B, and ŨA⊕B can be written by

H(UA,UB,ÛA⊕B,ŨA⊕B) = H(UA)+H(UB|UA)+H(ÛA⊕B|UA,UB)+H(ŨA⊕B|UA,UB,ÛA⊕B), (K.1)

where H(UA) = 1, H(UB|UA) = Hb(pu), H(ÛA⊕B|UA,UB) = Hb(pe), and H(ŨA⊕B|UA,UB,ÛA⊕B) = Hb(pd).

Moreover, we can also express H(UA,UB,ÛA⊕B,ŨA⊕B) in the form of

H(UA,UB,ÛA⊕B,ŨA⊕B) = H(ŨA⊕B)+H(UA,UB|ŨA⊕B)+H(ÛA⊕B|UA,UB,ŨA⊕B), (K.2)

where H(ŨA⊕B) = Hb(pu ∗ pe ∗ pd).

We have the following expression for the conditional mutual information,

I(ÛA⊕B;ŨA⊕B|UA,UB) = H(ÛA⊕B|UA,UB)−H(ÛA⊕B|UA,UB,ŨA⊕B)

= H(ŨA⊕B|UA,UB)−H(ŨA⊕B|UA,UB,ÛA⊕B). (K.3)

Referring to (K.3), we can get

H(ÛA⊕B|UA,UB,ŨA⊕B) = Hb(pe)+Hb(pd)−Hb(pe ∗ pd). (K.4)

By combing (K.1), (K.2), and (K.4), we can obtain

H(UA,UB|ŨA⊕B) = 1+Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd). (K.5)

For the term H(UA|UB,ŨA⊕B) in (5.16), we can refer to the following derivation

H(UA|UB,ŨA⊕B) = H(UA,UB|ŨA⊕B)−H(UB|ŨA⊕B), (K.6)

where H(UB|ŨA⊕B) = 1. Then, we get

H(UA|UB,ŨA⊕B) = Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd). (K.7)

Due to the symmetry property of UA and UB, it is easy to get

H(UB|UA,ŨA⊕B) = Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd). (K.8)
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Appendix L Derivation of (5.28)

For the purpose of better illustration, we set Θ(pu,γR,D) = Hb(pu)+Hb(pd)−Hb(pu ∗ pd), Γ(pu,γV) = Hb(pu)+
Hb(pe)−Hb(pu ∗ pe), Λ(pu,γV,γR,D) = Hb(pu)+Hb(pe ∗ pd)−Hb(pu ∗ pe ∗ pd), and ϒ(pu,γV) = Hb(pu ∗ pe). The
details of each components included in (5.28) are shown in (L.1)-(L.4).

Pr{S|C1}Pr{C1}=
∫∫∫∫

V1

p(γV)p(γR,D)p(γA,D)p(γB,D)dγVdγR,DdγA,DdγB,D

=
∫

∞

Φ−1[Hb(pu)]
p(γV)dγV

∫
∞

Φ−1[Hb(pu)]
p(γR,D)dγR,D

∫
Φ−1(1)

Φ−1(0)
p(γA,D)dγA,D

∫
∞

Φ−1(1)−γA,D

p(γB,D)dγB,D

+
∫

∞

Φ−1[Hb(pu)]
p(γV)dγV

∫
∞

Φ−1[Hb(pu)]
p(γR,D)dγR,D

∫
∞

Φ−1(1)
p(γA,D)dγA,D

∫
∞

0
p(γB,D)dγB,D, (L.1)

Pr{S|C2}Pr{C2}=
∫∫∫∫

V2

p(γV)p(γR,D)p(γA,D)p(γB,D)dγVdγR,DdγA,DdγB,D

=
∫

∞

Φ−1[Hb(pu)]
p(γV)dγV

∫
Φ−1[Hb(pu)]

Φ−1(0)
p(γR,D)dγR,D

∫
Φ−1(1)

Φ−1[Θ(pu,γR,D)]
p(γA,D)dγA,D

∫
∞

Φ−1[1+Θ(pu,γR,D)]−γA,D

p(γB,D)dγB,D

+
∫

∞

Φ−1[Hb(pu)]
p(γV)dγV

∫
Φ−1[Hb(pu)]

Φ−1(0)
p(γR,D)dγR,D

∫
∞

Φ−1(1)
p(γA,D)dγA,D

∫
∞

Φ−1[Θ(pu,γR,D)]
p(γB,D)dγB,D, (L.2)

Pr{S|C3}Pr{C3}=
∫∫∫∫

V3

p(γV)p(γR,D)p(γA,D)p(γB,D)dγVdγR,DdγA,DdγB,D

=
∫

Φ−1[Hb(pu)]

Φ−1(0)
p(γV)dγV

∫
∞

Φ−1[ϒ(pu,γV)]
p(γR,D)dγR,D

∫
Φ−1(1)

Φ−1[Γ(pu,γV)]
p(γA,D)dγA,D

∫
∞

Φ−1[1+Γ(pu,γV)]−γA,D

p(γB,D)dγB,D

+
∫

Φ−1[Hb(pu)]

Φ−1(0)
p(γV)dγV

∫
∞

Φ−1[ϒ(pu,γV)]
p(γR,D)dγR,D

∫
∞

Φ−1(1)
p(γA,D)dγA,D

∫
∞

Φ−1[Γ(pu,γV)]
p(γB,D)dγB,D, (L.3)

Pr{S|C4}Pr{C4}=
∫∫∫∫

V4

p(γV)p(γR,D)p(γA,D)p(γB,D)dγVdγR,DdγA,DdγB,D

=
∫

Φ−1[Hb(pu)]

Φ−1(0)
p(γV)dγV

∫
Φ−1[ϒ(pu,γV)]

Φ−1(0)
p(γR,D)dγR,D

∫
Φ−1(1)

Φ−1[Λ(pu,γV,γR,D)]
p(γA,D)dγA,D

∫
∞

Φ−1[1+Λ(pu,γV,γR,D)]−γA,D

p(γB,D)dγB,D

+
∫

Φ−1[Hb(pu)]

Φ−1(0)
p(γV)dγV

∫
Φ−1[ϒ(pu,γV)]

Φ−1(0)
p(γR,D)dγR,D

∫
∞

Φ−1(1)
p(γA,D)dγA,D

∫
∞

Φ−1[Λ(pu,γV,γR,D)]
p(γB,D)dγB,D. (L.4)
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