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Abstract18

We give an improved approximation algorithm for the unique unit-disk coverage
problem: Given a set of points and a set of unit disks, both in the plane, we
wish to find a subset of disks that maximizes the number of points contained
in exactly one disk in the subset. Erlebach and van Leeuwen (2008) introduced
this problem as the geometric version of the unique coverage problem, and gave
a polynomial-time 18-approximation algorithm. In this paper, we improve this
approximation ratio 18 to 2 + 4/

√
3 + ε (< 4.3095 + ε) for any fixed constant

ε > 0. Our algorithm runs in polynomial time which depends exponentially
on 1/ε. The algorithm can be generalized to the budgeted unique unit-disk
coverage problem in which each point has a profit, each disk has a cost, and
we wish to maximize the total profit of the uniquely covered points under the
condition that the total cost is at most a given bound.

Keywords: approximation algorithm, computational geometry, unique19

coverage problem, unit disk20

1. Introduction21

Motivated by applications from wireless networks, Erlebach and van22

Leeuwen [4] study the following problem. Let P be a set of points and D a23

set of unit disks, both in the plane R2. For a subset C ⊆ D of unit disks, we24

say that a point p ∈ P is uniquely covered by C if there is exactly one disk25

D ∈ C containing p. In the (maximum) unique unit-disk coverage problem, we26
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(a) (b)

Figure 1: (a) An instance ⟨P,D⟩ of the unique unit-disk coverage problem, and (b) an optimal
solution C∗ to ⟨P,D⟩, where each disk in C∗ is hatched and each uniquely covered point is
drawn as a small white circle.

are given a pair ⟨P,D⟩ of a set P of points and a set D of unit disks as input,1

and we are asked to find a subset C ⊆ D such that the number of points in P2

uniquely covered by C is maximized. An instance is shown in Figure 1(a), and3

an optimal solution C∗ to this instance is illustrated in Figure 1(b).4

In the context of wireless networks, as described by Erlebach and van5

Leeuwen [4], each point corresponds to a customer location, and the center6

of each disk corresponds to a place where the provider can build a base station.7

If several base stations cover a certain customer location, then the resulting8

interference might cause this customer to receive no service at all. Ideally, each9

customer should be serviced by exactly one base station, and service should be10

provided to as many customers as possible. This situation corresponds to the11

unique unit-disk coverage problem.12

1.1. Past work and motivation13

Demaine et al. [3] formulated the non-geometric unique coverage problem in14

a more general setting. They gave a polynomial-time O(log n)-approximation al-15

gorithm1 for the non-geometric unique coverage problem, where n is the number16

of elements (in the geometric version, n corresponds to the number of points).17

Guruswami and Trevisan [5] studied the same problem and its generalization,18

which they called 1-in-k SAT. The appearance of the unique coverage problem is19

not restricted to wireless networks. The previous papers [3, 5] provide a connec-20

tion with unlimited-supply single-minded envy-free pricing and the maximum21

cut problem. We refer the reader to their papers for details.22

The parameterized complexity of the unique coverage problem has also been23

studied by Misra et al. [10].24

Erlebach and van Leeuwen [4] studied geometric versions of the unique cov-25

erage problem. They showed that the unique unit-disk coverage problem is26

1For the sake of notational convenience, throughout the paper, we say that an algorithm
for a maximization problem is α-approximation if it returns a solution with the objective
value APX such that OPT ≤ αAPX, where OPT is the optimal objective value, and hence
α ≥ 1.

2



strongly NP-hard, and gave a polynomial-time 18-approximation algorithm.1

They also consider the problem on unit squares, and gave a polynomial-time2

(4 + ε)-approximation algorithm for any fixed constant ε > 0. Later, van3

Leeuwen [11] gave a proof that the unit-square version is strongly NP-hard,4

and improved the approximation ratio for the unit squares to 2 + ε. In a sis-5

ter paper, we exhibit a polynomial-time approximation scheme (PTAS) for the6

unique unit-square coverage problem [8].7

1.2. Contribution of this paper8

In this paper, we improve the approximation ratio 18 for the unique unit-9

disk coverage problem to 2 + 4/
√
3 + ε (< 4.3095 + ε) for any fixed constant10

ε > 0. Our algorithm runs in polynomial time, but the dependency on 1/ε is11

exponential. The algorithm can be generalized to the budgeted unique unit-disk12

coverage problem, in which we are given a budget B, each point in P has a13

profit, each disk in D has a cost, and we wish to find C ⊆ D that maximizes14

the total profit of the uniquely covered points by C under the condition that the15

total cost of C is at most B.16

An extended abstract of this paper has been presented at ISAAC 2012 [7].17

2. Preliminaries18

An instance is denoted by ⟨P,D⟩, where P is a set of points in the plane,19

and D is a set of unit disks in the plane. A unit disk in this paper means a20

closed disk with radius 1/2, and hence contains the boundary. Without loss21

of generality, we assume that any two points in P (resp., any two centers of22

disks in D) have distinct x-coordinates and distinct y-coordinates. If not, we23

rotate the plane in polynomial time so that this condition is satisfied [11]. We24

also assume that no two disks in D touch, that is, there is no pair of two disks25

having exactly one point in common, and no point in P lies on the boundary of26

any disk in D. If not, we increase the radii of the disks by a sufficiently small27

amount in polynomial time so that the number of uniquely covered points by28

any disk subset does not change [11]. For brevity, the x-coordinate of the center29

of a disk D is referred to as the x-coordinate of the disk, and denoted by x(D).30

Similarly, the y-coordinate of a disk D means the y-coordinate of the center of31

D, and is denoted by y(D).32

3. Technique highlight33

3.1. Comparison with the previous algorithm34

We describe here how our approach differs from that of [4].35

We use the following two techniques in common. (1) The shifting technique,36

first developed by Baker [1] for planar graphs, and later adapted to geometric37

settings by Hochbaum and Maass [6]: This subdivides the whole plane into some38

smaller pieces, and ignores some points so that the combination of approximate39

solutions to smaller pieces will yield an approximation solution to the whole40
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plane. (2) A classification of disks: Namely, for each instance on a smaller1

piece, we partition the set of disks into a few classes so that the instance on2

a restricted set of disks can be handled in polynomial time. Taking the best3

solution in those classes yields a constant-factor approximation.4

Erlebach and van Leeuwen [4] employed the techniques above in the following5

way. (1) Their smaller pieces are unit squares S with side length 1/2. They6

look at instances on the points in S and the disks that intersect S. (2) For7

each unit square S, the disks intersecting S are classified into two classes: A8

disk is classified “vertical” if its overlap with vertical sides is larger than the9

overlap with horizontal sides; Otherwise, it is classified “horizontal.” They give10

a polynomial-time exact algorithm for the instance with the points inside S and11

the disks in each of the two classes, with dynamic programming. At Step 1, they12

lose the approximation ratio of 9, and at Step 2, they lose the approximation13

ratio of 2. Thus, the overall approximation ratio of their algorithm is 9×2 = 18.14

The reader can refer to their paper for more details [4].15

On the other hand, our algorithm in this work exploits the techniques above16

in the following way. (1) Our smaller pieces are stripes, which consists of some17

number of horizontal ribbons such that each ribbon is of height h =
√
3/4 and18

the gap between ribbons is b = 1/2, as illustrated in Figure 2. At this step, we19

lose the approximation ratio of 1+b/h = 1+2/
√
3, as shown later in Lemma 4.2.20

(2) We classify the disks intersecting a stripe into two classes. The first class21

consists of the disks whose centers lie outside the ribbons in the stripe, and22

the second class consists of the disks whose centers lie inside the ribbons. It is23

important to notice that we will not solve the classified instances exactly, but24

rather we design a PTAS for each of them. Namely, we provide a polynomial-25

time algorithm for each of the classified instances with approximation ratio26

1 + ε′, where ε′ > 0 is a fixed constant. Note that the polynomial running time27

depends exponentially on 1/ε′. Then, since we have two classes, we only lose28

the approximation ratio of 2(1 + ε′) at this step (Lemma 4.3). Thus, choosing29

ε′ appropriately, we can achieve the overall approximation ratio of (1+2/
√
3)×30

2(1 + ε′) = 2 + 4/
√
3 + ε.31

3.2. Comparison with the unit-square case32

The PTAS in this paper for each of the classified instances uses an idea33

similar to our PTAS for unit squares [8]. However, there is a big difference, as34

explained below, that makes us unable to give a PTAS for the original instance35

on unit disks. Look at a horizontal ribbon. For the unit-square case, the36

intersection of the ribbon and a unit square is a rectangle. Then, its boundary37

is an x-monotone curve. The monotonicity enables us to provide a PTAS.38

However, for the unit-disk case, if we look at the intersection of the ribbon39

and a unit disk, then its boundary is not necessarily x-monotone. To make it40

x-monotone, we need to give a gap between ribbons and throw away the disks41

that have centers inside the ribbons; This is why we classified the disks into two42

classes, as mentioned above. It should be noted that, by this disk classification,43

we can get the x-monotonicity only for the disks whose centers lie outside the44

ribbons. To obtain the approximation ratio of 2+4/
√
3+ε, we need to construct45
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Figure 2: Stripe RW (q, h, b) consisting of ribbons with height h.

a PTAS for the classified instance in which the centers of disks lie inside the1

ribbons. We thus develop several new techniques to deal with such disks.2

4. Main result and outline3

The following is the main result of the paper.4

Theorem 4.1. For any fixed constant ε > 0, there is a polynomial-time (2 +5

4/
√
3 + ε)-approximation algorithm for the unique unit-disk coverage problem.6

In the remainder of the paper, we give a polynomial-time 2(1+ε′)(1+2/
√
3)-7

approximation algorithm for the unique unit-disk coverage problem, where ε′ is8

a fixed positive constant such that 2ε′(1 + 2/
√
3) = ε.9

4.1. Restricting the problem to a stripe10

A rectangle is axis-parallel if its boundary consists of horizontal and vertical11

line segments. Let RW be an (unbounded) axis-parallel rectangle of width W12

and height ∞ which properly contains all points in P and all unit disks in D.13

We fix the origin of the coordinate system on the left vertical boundary of RW .14

For two positive real numbers h, b and a non-negative real number q ∈ [0, h+b),15

we define a stripe RW (q, h, b) as follows (see also Figure 2):16

RW (q, h, b) = {[0,W ]× [q + i(h+ b), q + (i+ 1)h+ ib) | i ∈ Z},

that is, RW (q, h, b) is a set of rectangles with width W and height h; Each17

rectangle in RW (q, h, b) is called a ribbon. It should be noted that the upper18

boundary of each ribbon is not contained in the ribbon, while the lower boundary19
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is contained. We denote by P∩RW (q, h, b) the set of all points in P contained in1

RW (q, h, b). We have the following lemma, by applying the well-known shifting2

technique [4, 6].3

Lemma 4.2. Suppose that there is a polynomial-time α-approximation algo-4

rithm for the unique unit-disk coverage problem on ⟨P ∩RW (q, h, b),D⟩ for ar-5

bitrary constant q and fixed constants h, b. Then, there is a polynomial-time6

α(1 + b/h)-approximation algorithm for the unique unit-disk coverage problem7

on ⟨P,D⟩.8

Proof. For a point set P and a subset C of a disk set D, we denote by9

profit(P, C) the number of points in P that are uniquely covered by C.10

Consider an arbitrary optimal solution C∗ ⊆ D for the problem on ⟨P,D⟩.11

Then, the optimal objective value for ⟨P,D⟩ is equal to profit(P, C∗). Pick a real12

number q uniformly at random from [0, h + b), and fix the stripe RW (q, h, b).13

Let Pq = P ∩RW (q, h, b). The probability that a point of P is contained in the14

stripe RW (q, h, b) is h/(h+ b). Therefore, we have15

E
[
profit(Pq, C∗)

]
=

h

h+ b
· profit(P, C∗). (1)

Let C∗
q ⊆ D be an arbitrary optimal solution to ⟨Pq,D⟩ = ⟨P ∩RW (q, h, b),D⟩.16

Then, we have profit(Pq, C∗) ≤ profit(Pq, C∗
q ) because C∗ ⊆ D and C∗

q is an17

optimal solution to ⟨Pq,D⟩. By the assumption, we can find a subset Cq ⊆ D in18

polynomial time such that profit(Pq, C∗
q ) ≤ α · profit(Pq, Cq). Therefore, we have19

profit(Pq, C∗) ≤ α · profit(Pq, Cq). By Eq. (1), we thus have20

profit(P, C∗) =
h+ b

h
·E

[
profit(Pq, C∗)

]
≤ α ·

(
1 +

b

h

)
·E

[
profit(Pq, Cq)

]
.

This approach can be derandomized. The choices of q for which the same21

set of points is in the stripe RW (q, h, b) give an approximation of the same22

quality. Therefore, it suffices to look at the O(|P|) values of q for which a23

ribbon boundary hits a point in P, and thus we can consider all values of q in24

polynomial time. As our approximate solution for the problem on ⟨P,D⟩, we25

output the solution with the highest profit(Pq, Cq) among the O(|P|) values of26

q. Then, the solution is an α(1 + b/h)-approximation, as required. □27

For the sake of further simplification, we assume without loss of generality28

that no ribbon has a point of P or the center of a disk of D on its boundary (of29

the closure).30

4.2. Approximating the problem on a stripe31

Using Lemma 4.2, one can obtain a polynomial-time α(1 + 2/
√
3)-32

approximation algorithm by setting h =
√
3/4 and b = 1/2. To complete the33

proof of Theorem 4.1, for any fixed constant ε′ > 0, we thus give a polynomial-34

time 2(1 + ε′)-approximation algorithm for the unique unit-disk coverage prob-35

lem on ⟨P ∩RW (q, h, b),D⟩.36
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We first partition the disk set D into two subsets DO and DI under a fixed1

stripe RW (q, h, b). Let DO ⊆ D be the set of unit disks whose centers are not2

contained in the stripe RW (q, h, b). Let DI = D \ DO, that is, DI is the set of3

unit disks whose centers are contained in RW (q, h, b). Let Pq = P ∩RW (q, h, b).4

In Sections 5 and 8, we will show that each of the problems on ⟨Pq,DO⟩ and5

⟨Pq,DI⟩ admits a polynomial-time (1 + ε′)-approximation algorithm for any6

fixed constant ε′ > 0, respectively. (Sections 6 and 7 will be devoted to prove7

the key lemmas of our algorithm for ⟨Pq,DO⟩.) We choose a better solution8

from ⟨Pq,DO⟩ and ⟨Pq,DI⟩ as our approximate solution. The following lemma9

shows that this choice gives rise to a 2(1 + ε′)-approximation for the problem10

on ⟨Pq,D⟩.11

Lemma 4.3. Let ⟨P,D⟩ be an instance of the unique unit-disk coverage prob-12

lem, and let D1 and D2 partition D (i.e., D1 ∪ D2 = D and D1 ∩ D2 = ∅).13

Let C1 ⊆ D1 and C2 ⊆ D2 be β-approximate solutions to the instances14

⟨P,D1⟩ and ⟨P,D2⟩, respectively. Then, the set among C1 and C2 having15

max{profit(P, C1), profit(P, C2)} is a 2β-approximate solution to ⟨P,D⟩.16

Proof. Let C∗ ⊆ D, C∗
1 ⊆ D1 and C∗

2 ⊆ D2 be optimal solutions to the in-17

stances ⟨P,D⟩, ⟨P,D1⟩ and ⟨P,D2⟩, respectively. Then, the optimal values18

for ⟨P,D⟩, ⟨P,D1⟩ and ⟨P,D2⟩ are profit(P, C∗), profit(P, C∗
1 ) and profit(P, C∗

2 ),19

respectively. We have the following series of inequalities.20

profit(P, C∗) ≤ profit(P, C∗ ∩ D1) + profit(P, C∗ ∩ D2)

≤ profit(P, C∗
1 ) + profit(P, C∗

2 )

≤ β · profit(P, C1) + β · profit(P, C2)
≤ 2β ·max{profit(P, C1), profit(P, C2)}.

The first inequality follows since U(P, C∗) ⊆ U(P, C∗ ∩ D1) ∪ U(P, C∗ ∩ D2),21

where U(P, C) is the set of all points in P that are uniquely covered by C for22

a point set P and a subset C ⊆ D. To see this, let p ∈ U(P, C∗). Then, p is23

contained in exactly one disk D in C∗. If D ∈ D1, then p is contained in exactly24

one disk in C∗∩D1; Otherwise, D ∈ D2, and so p is contained in exactly one disk25

in C∗∩D2. The second inequality follows since C∗∩D1 ⊆ D1 and C∗
1 is an optimal26

solution to ⟨P,D1⟩ (and the same applies to the second term). Thus, choosing27

the better of profit(P, C1) and profit(P, C2) gives a 2β-approximate solution. □28

In the rest of the paper, we fix a stripe RW (q, h, b) for h =
√
3/4, b = 1/229

and some real number q ∈ [0, h+ b). We may assume without loss of generality30

that each ribbon in RW (q, h, b) contains at least one point in P. (We can simply31

ignore the ribbons containing no points.) We thus deal with only a polynomial32

number of ribbons. Let R1, R2, . . . , Rt be the ribbons in RW (q, h, b) ordered33

from bottom to top.34

5. PTAS for the problem on ⟨Pq,DO⟩35

In this section, we give a PTAS for the problem on ⟨Pq,DO⟩.36

7
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Figure 3: Sub-stripe Rj
W of a stripe RW (q, h, b).

Lemma 5.1. For any fixed constant ε′ > 0, there is a polynomial-time (1+ε′)-1

approximation algorithm for the unique unit-disk coverage problem on ⟨Pq,DO⟩.2

3

Let k = ⌈1/ε′⌉. Lemma 5.1 is a direct consequence of the following two4

lemmas.5

Lemma 5.2. Suppose that we can obtain an optimal solution to ⟨Pq ∩G,DO⟩6

in polynomial time for every set G consisting of at most k ribbons. Then, we7

can obtain a (1 + ε′)-approximate solution to ⟨Pq,DO⟩ in polynomial time.8

Proof. This is again done by the shifting technique.9

Remember that the stripe RW (q, h, b) consists of t ribbons R1, R2, . . . , Rt10

ordered from bottom to top. For an index j, 0 ≤ j ≤ k, let Rj
W be the sub-11

stripe obtained from RW (q, h, b) by deleting the ribbons Ri, 1 ≤ i ≤ t, if and12

only if i ≡ j mod k + 1. (See Figure 3.) We optimally solve the problem on13

⟨Pq ∩ Rj
W ,DO⟩ for each j, 0 ≤ j ≤ k, as follows. We regard the remaining (at14

most) k consecutive ribbons in Rj
W as forming one group. Then, those groups15

have pairwise distance 2b+ h = 1 +
√
3/4 > 1, and hence no disk (with radius16

1/2) can cover points in two distinct groups. Therefore, we can independently17

solve the problem on ⟨Pq∩G,DO⟩, where G is a group in Rj
W . (Indeed, it suffices18

to consider the disks in DO which overlap the group G.) Combining the optimal19

solutions for all groups in Rj
W , we obtain an optimal solution CO(j) ⊆ DO to20

⟨Pq ∩Rj
W ,DO⟩.21

8



As our approximate solution CO ⊆ DO to ⟨Pq,DO⟩, we choose the best one1

from CO(j), 0 ≤ j ≤ k, and hence we have2

profit(Pq, CO) ≥ max
0≤j≤k

profit(Pq ∩Rj
W , CO(j)). (2)

Clearly, we can obtain the approximate solution CO in polynomial time if the3

problem on ⟨Pq∩G,DO⟩ for each group G can be optimally solved in polynomial4

time.5

We now show that the above algorithm is (1+ε′)-approximation. Consider an6

arbitrary optimal solution C∗
O ⊆ DO for the problem on ⟨Pq,DO⟩. By applying7

the well-known shifting technique [6] with respect to the index j, it is easy to8

show that there exists an index j∗ in 0, 1, . . . , k such that9

k

k + 1
· profit(Pq, C∗

O) ≤ profit(Pq ∩Rj∗

W , C∗
O).

Remember that C∗
O ⊆ DO and CO(j∗) is an optimal solution to ⟨Pq ∩Rj∗

W ,DO⟩.10

Therefore, we have profit(Pq ∩ Rj∗

W , C∗
O) ≤ profit(Pq ∩ Rj∗

W , CO(j∗)). Since k =11

⌈1/ε′⌉, we thus have12

profit(Pq, C∗
O) ≤

(
1 +

1

k

)
· profit(Pq ∩Rj∗

W , C∗
O)

≤ (1 + ε′) · profit(Pq ∩Rj∗

W , CO(j∗)).

By Inequality (2) we thus have profit(Pq, C∗
O) ≤ (1+ε′)profit(Pq, CO), as required.13

□14

Lemma 5.3. We can obtain an optimal solution to ⟨Pq ∩G,DO⟩ in polynomial15

time for every set G consisting of at most k ribbons.16

The proof of Lemma 5.3 is one of the cruxes in this paper, to which the rest of17

this section will be devoted. We give a constructive proof, namely, we give such18

an algorithm.19

5.1. Basic ideas20

Our algorithm employs a dynamic-programming approach based on the line-21

sweep paradigm. Namely, we look at points and disks from left to right, and22

extend the uniquely covered region sequentially. However, adding one disk D at23

the rightmost position can influence a lot of disks that were already chosen, and24

can change the situation drastically (we say that D influences a disk D′ if the25

region uniquely covered by D′ changes after the addition of D). We therefore26

need to keep track of the disks that are possibly influenced by a newly added27

disk. Unless the number of those disks is bounded by some constant (or the28

logarithm of the input size), this approach cannot lead to a polynomial-time29

algorithm. Unfortunately, new disks may influence a super-constant (or super-30

logarithmic) number of disks.31

9



Instead of adding a disk at the rightmost position, we add a disk D such1

that the number of disks that were already chosen and influenced by D can2

be bounded by a constant. Lemmas 5.5 and 5.6 state that we can do this for3

any set of disks, as long as a trivial condition for the disk set to be an optimal4

solution is satisfied. Furthermore, such a disk can be found in polynomial time.5

5.2. Basic definitions6

We may assume without loss of generality that the set G consists of consec-7

utive ribbons forming a group; otherwise we can simply solve the problem for8

each group, because those groups have pairwise distance more than 1. (See Fig-9

ure 3.) Suppose that G consists of k consecutive ribbons Rj+1, Rj+2, . . . , Rj+k10

in RW (q, h, b), ordered from bottom to top, for some integer j. If a disk can11

cover points in Pq ∩ G, then its center lies between Rj+i and Rj+i+1 for some12

i ∈ {0, . . . , k}. For notational convenience, we assume j = 0 without loss of13

generality. Note that the two ribbons R0 and Rk+1 are not in G.14

For each i ∈ {0, . . . , k}, we denote by Di,i+1 the set of all disks in DO with15

their centers lying between Ri and Ri+1, that is, each disk in Di,i+1 intersects16

Ri and Ri+1. Note that D0,1,D1,2, . . . ,Dk,k+1 form a partition of the disks in17

DO intersecting G. Since h+ b > 1/2, we clearly have the following lemma.18

Lemma 5.4. If a disk D in Di,i+1 has a non-empty intersection in Ri (resp.,19

in Ri+1) with another disk D′, then D′ ∈ Di−1,i ∪ Di,i+1 (resp., D′ ∈ Di,i+1 ∪20

Di+1,i+2). □21

For a disk set C ⊆ D, let A0(C), A1(C), A2(C) and A≥3(C) be the areas22

covered by no disk, exactly one disk, exactly two disks, and three or more disks23

in C, respectively. Then, each point contained in A1(C) is uniquely covered by24

C.25

5.3. Properties on disk subsets of Di,i+126

We first deal with the special case where disks are contained only in a set27

C ⊆ Di,i+1, and consider the region uniquely covered by them. Of course, disks28

in Di−1,i ∪Di+1,i+2 may influence disks in C; This issue will be discussed later.29

We sometimes denote by Ri,i+1 the set of two consecutive ribbons Ri and Ri+1,30

namely Ri,i+1 = Ri ∪Ri+1.31

5.3.1. Upper and lower envelopes32

Let C ⊆ Di,i+1 be a disk set. Since any two unit disks have distinct x-33

coordinates and distinct y-coordinates, we can partition the boundary of the34

closure of A1(C) into two types: The boundary between A0(C) and A1(C), and35

that between A1(C) and A2(C). The upper envelope of C is defined to be the36

boundaries between A0(C) and A1(C) that appear above the lower boundary of37

Ri+1, while the lower envelope of C is defined to be the ones that appear below38

the upper boundary of Ri. (See Figure 4.) We say that a disk D forms the39

boundary of an area A if a part of the boundary of D is a part of that of A.40

Let UE(C) and LE(C) be the sequences of disks that form the upper and lower41
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Ri

Ri+1

Figure 4: A set C of disks in Di,i+1, together with A1(C)∩Ri,i+1 (gray), the upper envelope
(red), the lower envelope (blue) and the other part of the outer boundary (green). The dotted
lines show the boundaries of Ri and Ri+1.

D

Figure 5: The gray region shows A1(C \ {D}) \A1(C) for the (blue) thick disk D.

envelopes of C, from right to left, respectively. Note that a disk D ∈ C may1

appear in both UE(C) and LE(C).2

Consider an arbitrary optimal solution C∗ ⊆ Di,i+1 to ⟨Pq ∩ Ri,i+1,Di,i+1⟩.3

If there is a disk D ∈ C∗ that is not part of A1(C∗), we can simply remove it4

from C∗ without losing the optimality. Thus, hereafter we deal with a disk set5

C ⊆ Di,i+1 such that every disk D in C forms the upper or lower envelopes of6

C, that is, D ∈ UE(C) or D ∈ LE(C) holds. This property enables us to sweep7

the ribbons Ri,i+1, roughly speaking from left to right, and to extend the upper8

and lower envelopes sequentially.9

5.3.2. Top disks and the key lemma10

When we add a “new” disk D to the current disk set C \ {D}, we need11

to know the symmetric difference between A1(C) and A1(C \ {D}): The area12

A1(C) \ A1(C \ {D}) ⊆ A1(C) is the uniquely covered area obtained newly by13

adding the disk D, and the area A1(C\{D})\A1(C) ⊆ A2(C) is the non-uniquely14

covered area due to D. However, it suffices to know the area A1(C\{D})\A1(C)15

and its boundary, because the boundary of A1(C) \A1(C \ {D}) is formed only16

by D and disks forming the boundary of A1(C \ {D}) \A1(C).17

For a disk D in a set C ⊆ D, let ∆(C, D) be the set of all disks in C that18

form the boundary of A1(C \ {D}) \ A1(C). (See Figure 5.) Clearly, every disk19

in ∆(C, D) has non-empty intersection with D. As we mentioned, ∆(C, D) may20

contain a super-constant (or super-logarithmic) number of disks if we simply21

choose the rightmost disk D in C. We will show that, for any disk set C ⊆ Di,i+1,22

11



(i) (ii)

(iii) (iv)

Figure 6: An example of top disks. The (blue) thick disks are top disks, and the numbers
correspond to the conditions in the definition.

there always exists a disk D ∈ C such that ∆(C, D) contains at most 16 disks,1

called top disks, and D itself is a top disk.2

For a disk set C ⊆ Di,i+1, a disk D ∈ C is called a top disk of C if one of the3

following conditions (i)–(iv) holds:4

(i) D is one of the six rightmost disks of UE(C);5

(ii) D is one of the six rightmost disks of LE(C);6

(iii) D is one of the two rightmost disks of UE(LE(C) \ UE(C));7

(iv) D is one of the two rightmost disks of LE(UE(C) \ LE(C)).8

An example is given in Figure 6. Remember that the disks in UE(C) and LE(C)9

are ordered from right to left. We denote by Top(C) the set of top disks of C.10

Note that a disk may satisfy more than one of the conditions above. A disk set11

F ⊆ Di,i+1 is feasible on Di,i+1 if Top(F) = F . For a feasible disk set F on12

Di,i+1, we denote by Ci,i+1(F) the set of all disk sets whose top disks are equal13

to F , that is,14

Ci,i+1(F) = {C ⊆ Di,i+1 | Top(C) = F}.

A top disk D in a feasible set F is said to be stable in F if ∆(C, D) consists only15

of top disks in F for any disk set C ∈ Ci,i+1(F). It should be noted that, if a top16

disk D is stable in F , then ∆(C, D) ⊆ F holds for any disk set C ⊆ Di,i+1 such17

that Top(C) = F . Therefore, we can compute ∆(C, D) in polynomial time by18

keeping track of only top disks F which satisfies |F| ≤ 16. Thus, below is the19

key lemma, which ensures that stable top disks always exist for every feasible20

disk set F on Di,i+1.21

Lemma 5.5. For any feasible disk set F on Di,i+1, at least one top disk K(F)22

is stable in F . Moreover, K(F) can be found in polynomial time.23

We postpone the proof of Lemma 5.5 to Section 6.24

5.4. Properties on disk subsets of DO25

We finish the concentration on Di,i+1, and look at the whole set of DO.26

12



A disk set F ⊆ DO is feasible on DO if Top(F ∩ Di,i+1) = F ∩ Di,i+1 for1

each i ∈ {0, . . . , k}. For a feasible disk set F on DO and i ∈ {0, . . . , k}, let2

F i,i+1 = F ∩ Di,i+1, and let3

C(F) = {C ⊆ DO | Top(C ∩ Di,i+1) = F i,i+1 for each i ∈ {0, . . . , k}}.

We say that F i,i+1 is safe for F if ∆(C,K(F i,i+1)) ⊂ F for any disk set C ∈4

C(F), where K(F i,i+1) is a stable top disk in F i,i+1 which is selected as in the5

proof of Lemma 5.5.6

Lemma 5.6. For any feasible disk set F on DO, there exists an index s ∈7

{0, . . . , k} such that Fs,s+1 is safe for F .8

We postpone the proof of Lemma 5.6 to Section 7.9

5.5. Algorithm for the problem on ⟨Pq ∩G,DO⟩10

For a feasible disk set F on DO, let f(F) be the maximum number of points11

in Pq ∩G uniquely covered by a disk set in C(F), that is,12

f(F) = max{profit(Pq ∩G, C) | C ∈ C(F)},

where profit(Pq ∩ G, C) is the number of points in Pq ∩ G that are uniquely13

covered by C. Then, since every subset of DO belongs to C(F) for some feasible14

disk set F on DO, the optimal value OPT(Pq ∩G,DO) for ⟨Pq ∩G,DO⟩ can be15

computed as16

OPT(Pq ∩G,DO) = max{f(F) | F is feasible on DO}.

Since |F| < 16(k + 1), this computation can be done in polynomial time if we17

have the values f(F) for all feasible disk sets F on DO.18

We here explain how to compute f(F) in polynomial time for all feasible19

disk sets F on DO, and complete the proof of Lemma 5.3.20

The values f(F) can be computed according to the “parent-child relation.”21

For a disk set C ⊆ DO, we denote simply by Top(C) =
∪

0≤i≤k Top(C ∩ Di,i+1).22

For a feasible disk set F on DO, let K(F) = K(Fs,s+1) where Fs,s+1 = F ∩23

Ds,s+1 is safe for F ; note that by Lemma 5.6 such an index s always exists. For24

two feasible disk sets F and F ′ on DO, we say that F ′ is a child of F if there25

exists a disk set C ∈ C(F) such that Top(C \ {K(F)}) = F ′.26

Lemma 5.7. The parent-child relation for the feasible disk sets on DO can be27

constructed in polynomial time. The parent-child relation is acyclic.28

Proof. We can enumerate all feasible disk sets on DO, as follows: We first29

generate all sets C ⊆ DO consisting of 16(k + 1) disks, and then check whether30

Top(C ∩ Di,i+1) = C ∩ Di,i+1 for each i ∈ {0, . . . , k}. Since k is a constant, this31

enumeration can be done in polynomial time.32

For a feasible disk set F on DO, let C be any disk set in C(F). Then, we33

have |Top(C \ {K(F)}) \Top(C)| ≤ 3 since the top disk K(F) = K(Fs,s+1) can34

13



appear in at most three sets among UE(Cs,s+1), LE(Cs,s+1), UE(LE(Cs,s+1) \1

UE(Cs,s+1)) and LE(UE(Cs,s+1) \ LE(Cs,s+1)). Therefore, the number of can-2

didates of children of F can be bounded by O(|DO|3). We can thus construct3

the parent-child relation in polynomial time.4

Consider the sequence of the x-coordinates of top disks from right to left.5

Since all disks have distinct x-coordinates, any child F ′ has a sequence lex-6

icographically smaller than its parent F , or F ′ ⊂ F . This implies that the7

parent-child relation is acyclic. □8

We finally give our algorithm to solve the problem on ⟨Pq ∩G,DO⟩.9

For each i ∈ {0, . . . , k}, let F0
i,i+1 be the disk set consisting of the 16 leftmost10

disks in Di,i+1 having the smallest x-coordinates. Let F0 =
∪

0≤i≤k F0
i,i+1, then11

|F0| ≤ 16(k + 1). As the initialization, we first compute f(F) for all feasible12

sets F on F0. Since |F0| is a constant, the total number of feasible sets F on13

F0 is also a constant. Therefore, this initialization can be done in polynomial14

time.15

We then compute f(F) for a feasible disk set F on DO from f(F ′) for16

all children F ′ of F . Since the parent-child relation is acyclic, we can find a17

feasible disk set F such that f(F ′) are already computed for all children F ′ of18

F . By Lemma 5.6 there always exists a feasible disk set Fs,s+1 = F ∩ Ds,s+119

on Ds,s+1 which is safe for F , and hence by Lemma 5.5 we have a stable top20

disk K(F) = K(Fs,s+1) in polynomial time. For a disk set C ⊆ DO and a disk21

D ∈ C, we denote by z(C, D) the difference of uniquely covered points in Pq ∩G22

caused by adding D to C \{D}, that is, the number of points in Pq ∩G that are23

included in D ∩A1(C) minus the number of points in Pq ∩G that are included24

in D ∩ A1(C \ {D}). Since Fs,s+1 is safe for F and K(F) = K(Fs,s+1), we25

have z(F ,K(F)) = z(C,K(F)) for all disk sets C ∈ C(F). Therefore, we can26

correctly update f(F) by27

f(F) := max{f(F ′) | F ′ is a child of F}+ z(F ,K(F)). (3)

This way, the algorithm correctly solves the problem on ⟨Pq ∩ G,DO⟩ in poly-28

nomial time.29

This completes the proof of Lemma 5.3. □30

6. Proof of Lemma 5.531

We now prove our key lemma, which ensures that stable top disks always32

exist for every feasible disk set F on Di,i+1. In most cases, we choose the33

rightmost disk of F as the stable top diskK(F) in F . However, as we mentioned34

before, the rightmost disk may intersect too many other disks including non-top35

disks. Indeed, K(F) will be one of the following five disks:36

1. the rightmost disk of F ;37

2. the rightmost disk of LE(F) \ UE(F);38

3. the second rightmost disk of LE(F) \ UE(F);39

4. the rightmost disk of UE(F) \ LE(F); and40
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Figure 7: Proof of Lemma 6.2.

5. the second rightmost disk of UE(F) \ LE(F).1

To prove Lemma 5.5, we need a thorough preparation.2

6.1. Upper and lower envelopes3

First, the following lemma clearly holds.4

Lemma 6.1. Let C ⊆ Di,i+1 be a disk set. If a disk D ∈ C is not in UE(C),5

then any point in D ∩Ri+1 is covered by at least one disk in UE(C). Similarly,6

if a disk D ∈ C is not in LE(C), then any point in D ∩Ri is covered by at least7

one disk in LE(C).8

We then give the following lemma for the upper envelope.9

Lemma 6.2. Let D and D′ be any two disks in a disk set C ⊆ Di,i+1 with10

x(D) < x(D′). Suppose that there are q disks D1, D2, . . . , Dq, q ≥ 1, such that11

Dj ∈ UE(C) and x(D) < x(Dj) < x(D′) for each index j ∈ {1, . . . , q}. Then,12

any point in D ∩D′ ∩Ri+1 is covered by at least 2 + q disks of C.13

Proof. It suffices to show that every point p in D ∩ D′ ∩ Ri+1 is covered by14

every disk Dj , 1 ≤ j ≤ q.15

We see that the intersection of D ∩ D′ and the closed halfplane above the16

lower boundary of Ri+1 is bounded by two arcs and one line, as illustrated in17

Figure 7: A part of the boundary of D, a part of the boundary of D′, and a18

part of the lower boundary of Ri+1. Let p
′ be the intersection of the boundaries19

of D and D′ that lies above (or on) the lower boundary of Ri+1. Consider the20

shorter arc a of the circle centered at p′ that connects the centers of D and D′.21

Note that a lies outside of Ri+1 since the centers of D and D′ lie below the22

lower boundary of Ri+1, but p lies above it. Then, the point p is contained in23

every unit disk with its center on this arc a.24
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′

D ∩D
′
∩Ri+1

Figure 8: Example of Lemma 6.4 for U∆(C, D). The gray region depicts (A1(C \ {D}) \
A1(C)) ∩Ri+1 for the disk D, and hence U∆(C, D) consists of D and the three black disks.

Let D′′ be a disk (not necessarily in C) with its center on the arc a and1

x(D′′) = x(Dj). Then, p ∈ D′′ by the observation above. Since Dj ∈ UE(C),2

we see y(Dj) ≥ y(D′′). Since the center of D′′ lies below the lower boundary of3

Ri+1, it follows that p ∈ Dj . □4

Similar arguments establish the counterpart for the lower envelope, as fol-5

lows.6

Lemma 6.3. Let D and D′ be any two disks in a disk set C ⊆ Di,i+1 with7

x(D) < x(D′). Suppose that there are q disks D1, D2, . . . , Dq, q ≥ 1, such that8

Dj ∈ LE(C) and x(D) < x(Dj) < x(D′) for each index j ∈ {1, . . . , q}. Then,9

any point in D ∩D′ ∩Ri is covered by at least 2 + q disks of C.10

6.2. Top disks11

For a disk D in a set C ⊆ Di,i+1, we denote by U∆(C, D) the set of all disks12

that form the boundary of (A1(C \ {D}) \A1(C)) ∩Ri+1, and by L∆(C, D) the13

set of all disks that form the boundary of (A1(C \ {D}) \ A1(C)) ∩ Ri. By the14

definition, we clearly have the following lemma. (See Figure 8.)15

Lemma 6.4. Let D and D′ be two disks in a set C ⊆ Di,i+1. Then, D
′ is not in16

U∆(C, D) if any point in D′∩D∩Ri+1 is contained in A≥3(C \{D}). Similarly,17

D′ is not in L∆(C, D) if any point in D′∩D∩Ri is contained in A≥3(C \{D}).18

The following lemma implies that, for a feasible disk set F on Di,i+1, we can19

check in linear time whether each top disk D ∈ F is stable in F .20

Lemma 6.5. Let D be any (top) disk in a feasible set F on Di,i+1. Then, D21

is stable in F if and only if D′ ̸∈ ∆(F ∪{D′}, D) for every disk D′ ∈ Di,i+1 \F22

such that Top(F ∪ {D′}) = F .23
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Proof. By the definition of stable disks, the necessity clearly holds. We thus1

show the sufficiency, i.e., we will show that, if D is not stable in F , then there2

exists a non-top disk D′ ∈ Di,i+1 \ F such that D′ ∈ ∆(F ∪ {D′}, D) and3

Top(F ∪ {D′}) = F .4

Since D is not stable in F , there exists a disk set C ∈ Ci,i+1(F) such that5

∆(C, D) contains non-top disks of C. Let D′ be an arbitrary non-top disk in6

∆(C, D) \ F . Then, we have D′ ∈ ∆(F ∪ {D′}, D). □7

For a feasible disk set F ⊆ Di,i+1, let UE(F) = (K⊤
1 ,K⊤

2 , . . . ,K⊤
α ) with8

x(K⊤
α ) < x(K⊤

α−1) < . . . < x(K⊤
1 ), (4)

and let LE(F) = (K⊥
1 ,K⊥

2 , . . . ,K⊥
β ) with9

x(K⊥
β ) < x(K⊥

β−1) < . . . < x(K⊥
1 ). (5)

Note that some disks may appear in both UE(F) and LE(F). Then, we have10

the following lemma.11

Lemma 6.6. Let D1 be the disk in F whose x-coordinate is largest. Suppose12

that there exists a disk Q ∈ Di,i+1 \ F such that Q ∈ U∆(F ∪ {Q}, D1) and13

Top(F ∪ {Q}) = F . Then, Q ∈ LE(F ∪ {Q}), |LE(F)| ≥ 6, and either14

|UE(F)| ≤ 2 or x(K⊤
3 ) < x(K⊥

6 ) holds.15

Proof. Note that D1 = K⊤
1 or D1 = K⊥

1 , and that x(K⊤
1 ) ≤ x(D1) and16

x(K⊥
1 ) ≤ x(D1) hold. Since Top(F ∪{Q}) = F and Q ̸∈ F , Q is a non-top disk.17

We first claim that there exists at most one disk K⊤ ∈ UE(F ∪ {Q}) such18

that x(Q) < x(K⊤) < x(D1). Suppose for a contradiction that there exist two19

disks K,K ′ ∈ UE(F ∪ {Q}) such that x(Q) < x(K) < x(K ′) < x(D1). Then,20

by Lemma 6.2 every point in Q ∩ D1 ∩ Ri+1 is covered by at least four disks21

and hence is contained in A≥3((F ∪{Q}) \ {D1}). By Lemma 6.4 we then have22

Q ̸∈ U∆(F ∪ {Q}, D1), a contradiction.23

This claim implies that Q ̸∈ UE(F∪{Q}); Otherwise, since x(K⊤
1 ) ≤ x(D1),24

we have Q ∈ {K⊤
1 ,K⊤

2 ,K⊤
3 } and hence Q is a top disk in F . Remember that25

each disk in F ∪ {Q} appears in UE(F ∪ {Q}) or LE(F ∪ {Q}), and hence we26

have Q ∈ LE(F ∪ {Q}). Then, since Q is a non-top disk, we have |LE(F)| ≥ 627

and28

x(Q) < x(K⊥
6 ). (6)

The claim also implies that either |UE(F)| ≤ 2 or29

x(K⊤
3 ) < x(Q) (7)

holds. By Inequalities (6) and (7) we have x(K⊤
3 ) < x(K⊥

6 ), as required. □30

Similar arguments establish the counterpart of Lemma 6.6, as follows.31

Lemma 6.7. Let D1 be the disk in F whose x-coordinate is largest. Suppose32

that there exists a disk Q ∈ Di,i+1 \ F such that Q ∈ L∆(F ∪ {Q}, D1) and33

Top(F ∪ {Q}) = F . Then, Q ∈ UE(F ∪ {Q}), |UE(F)| ≥ 6, and either34

|LE(F)| ≤ 2 or x(K⊥
3 ) < x(K⊤

6 ) holds.35
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Using Lemmas 6.6 and 6.7, we have the following lemma.1

Lemma 6.8. For a feasible disk set F on Di,i+1, let D1 be the disk in F whose2

x-coordinate is largest. Suppose that there exists a disk Q ∈ Di,i+1 \F such that3

Q ∈ ∆(F ∪ {Q}, D1) and Top(F ∪ {Q}) = F . Then, the following (a) and (b)4

hold:5

(a) If Q ∈ U∆(F ∪ {Q}, D1), then Q′ ̸∈ L∆(F ∪ {Q′}, D1) holds for any6

disk Q′ ∈ Di,i+1 \ F such that Top(F ∪ {Q′}) = F ;7

(b) If Q ∈ L∆(F ∪ {Q}, D1), then Q′ ̸∈ U∆(F ∪ {Q′}, D1) holds for any8

disk Q′ ∈ Di,i+1 \ F such that Top(F ∪ {Q′}) = F .9

Proof. We show that (a) holds. (The proof for (b) is similar.)10

Suppose that Q ∈ U∆(F ∪ {Q}, D1). Then, by Lemma 6.6 we have Q ∈11

LE(F ∪ {Q}) and12

|LE(F)| ≥ 6. (8)

Furthermore, either |UE(F)| ≤ 2 or13

x(K⊤
3 ) < x(K⊥

6 ) (9)

holds.14

Suppose for a contradiction that there exists a disk Q′ ∈ L∆(F ∪ {Q′}, D1)15

such that Q′ ∈ Di,i+1\F and Top(F∪{Q′}) = F . Then, by Lemma 6.7 we have16

Q′ ∈ UE(F ∪ {Q′}) and |UE(F)| ≥ 6. Thus, Inequality (9) holds. Moreover,17

by Inequality (8) we have18

x(K⊥
3 ) < x(K⊤

6 ). (10)

Therefore, by Inequalities (5), (9) and (10) we have x(K⊤
3 ) < x(K⊤

6 ). This19

contradicts Inequality (4). □20

Lemma 6.8 implies that, for every disk Q ∈ Di,i+1 \ F such that Top(F ∪21

{Q}) = F and Q ∈ ∆(F ∪ {Q}, D1), exactly one of Q ∈ U∆(F ∪ {Q}, D1) and22

Q ∈ L∆(F ∪ {Q}, D1) holds.23

6.3. Finalizing the proof of Lemma 5.524

Proof (of Lemma 5.5). We consider the following cases, and prove that there25

is a stable top disk K(F) in each case. Let D1 be the disk in F whose x-26

coordinate is largest. Note that D1 = K⊤
1 or D1 = K⊥

1 .27

Case 1: D1 is stable in F .28

In this case, we set K(F) = D1. Note that by Lemma 6.5 we can check29

whether D1 is stable in F in linear time.30

Case 2: D1 is not stable in F .31

Since D1 is not stable in F , by Lemma 6.5 there exists a non-top disk32

Q ∈ Di,i+1\F such thatQ ∈ ∆(F∪{Q}, D1) and Top(F∪{Q}) = F . Lemma 6.833

allows us to assume Q ∈ U∆(F ∪{Q}, D1) without loss of generality. (The case34

for Q ∈ L∆(F ∪ {Q}, D1) is symmetric.) Then, by Lemma 6.6 we have35

|LE(F)| ≥ 6 (11)
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and either |UE(F)| ≤ 2 or1

x(K⊤
3 ) < x(K⊥

6 ) (12)

holds.2

Consider an arbitrary non-top diskQ′ ∈ Di,i+1\F such that Top(F∪{Q′}) =3

F . We claim that4

x(Q′) < x(K⊥
6 ). (13)

Note that Inequality (11) ensures that the disk K⊥
6 exists. Since Q′ is a non-5

top disk, we clearly have x(Q′) < x(K⊥
6 ) if Q′ ∈ LE(F ∪ {Q′}). We thus6

consider the case where Q′ ∈ UE(F ∪ {Q′}). Then, since Q′ is a non-top disk,7

|UE(F)| ≥ 6 and x(Q′) < x(K⊤
6 ) hold. Furthermore, |UE(F)| ≥ 6 implies8

that Inequality (12) holds, and hence by Inequality (4) we have x(Q′) < x(K⊥
6 ).9

Therefore, in either case, Inequality (13) holds.10

Let D2 and D3 be the rightmost and the second rightmost disks in LE(F) \11

UE(F), respectively. Since either |UE(F)| ≤ 2 or x(K⊤
3 ) < x(K⊥

6 ) holds, at12

most two disks in UE(F) can appear also in K⊥
1 ,K⊥

2 , . . . ,K⊥
6 . Therefore, we13

have D2 ∈ {K⊥
1 ,K⊥

2 ,K⊥
3 } and D3 ∈ {K⊥

2 ,K⊥
3 ,K⊥

4 }. We consider the following14

two sub-cases.15

Case 2-1: D3 is in UE(LE(F) \ UE(F)).16

In this case, we show that D2 is stable in F , and hence we set K(F) = D2.17

By Lemma 6.5 it suffices to show that Q′ ̸∈ ∆(F ∪ {Q′}, D2) for every disk18

Q′ ∈ Di,i+1 \ F such that Top(F ∪ {Q′}) = F .19

We first show that Q′ ̸∈ L∆(F ∪ {Q′}, D2). Since D2 ∈ {K⊥
1 ,K⊥

2 ,K⊥
3 }, by20

Inequality (13) we have21

x(Q′) < x(K⊥
6 ) < x(K⊥

5 ) < x(K⊥
4 ) < x(D2).

By Lemma 6.3 every point in Q′ ∩D2 ∩Ri is covered by at least five disks, and22

hence is contained in A≥3((F ∪ {Q′}) \ {D2}). By Lemma 6.4 we thus have23

Q′ ̸∈ L∆(F ∪ {Q′}, D2), as required.24

We then show that Q′ ̸∈ U∆(F ∪ {Q′}, D2). Since D3 ∈ {K⊥
2 ,K⊥

3 ,K⊥
4 }25

and x(D3) < x(D2), by Inequality (13) we have x(Q′) < x(D3) < x(D2). Since26

D3 ∈ UE(LE(F) \ UE(F)), by Lemma 6.2 every point in Q′ ∩ D2 ∩ Ri+1 is27

covered by at least three disks. Moreover, since D2 ̸∈ UE(F), by Lemma 6.128

every point in Q′ ∩D2 ∩Ri+1 is covered by at least one disk in UE(F). Thus,29

in total, every point in Q′ ∩ D2 ∩ Ri+1 is covered by at least four disks in F ,30

and hence is contained in A≥3((F ∪{Q′}) \ {D2}). By Lemma 6.4 we thus have31

Q′ ̸∈ U∆(F ∪ {Q′}, D2), as required.32

Case 2-2: D3 is not in UE(LE(F) \ UE(F)).33

In this case, we show that D3 is stable in F , and hence we set K(F) = D3.34

By Lemma 6.5 it suffices to show that Q′ ̸∈ ∆(F ∪ {Q′}, D3) for every disk35

Q′ ∈ Di,i+1 \ F such that Top(F ∪ {Q′}) = F .36

We first show that Q′ ̸∈ L∆(F ∪ {Q′}, D3). Since D3 ∈ {K⊥
2 ,K⊥

3 ,K⊥
4 }, by37

Inequality (13) we have38

x(Q′) < x(K⊥
6 ) < x(K⊥

5 ) < x(D3).
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By Lemma 6.3 every point in Q′ ∩ D3 ∩ Ri is covered by at least four disks,1

and hence is contained in A≥3((F ∪{Q′}) \ {D3}). By Lemma 6.4 we thus have2

Q′ ̸∈ L∆(F ∪ {Q′}, D3), as required.3

We then show that Q′ ̸∈ U∆(F ∪ {Q′}, D3). Since D3 ̸∈ UE(LE(F) \4

UE(F)), by applying Lemma 6.1 to LE(F) \ UE(F), every point in Q′ ∩D3 ∩5

Ri+1 is covered by at least one disk X in UE(LE(F) \ UE(F)). Moreover,6

since D3 ̸∈ UE(F), by applying Lemma 6.1 to F , every point in Q′ ∩ D3 ∩7

Ri+1 is covered by at least one disk Y in UE(F). Note that X ̸= Y since8

X ∈ UE(LE(F) \ UE(F)) and Y ∈ UE(F). Thus, in total, every point in9

Q′ ∩D3 ∩Ri+1 is covered by at least four disks (Q′, D3, X, Y ) in F , and hence10

is contained in A≥3((F ∪ {Q′}) \ {D3}). By Lemma 6.4 we thus have Q′ ̸∈11

U∆(F ∪ {Q′}, D3), as required. □12

7. Proof of Lemma 5.613

We then prove another key lemma, which ensures that every feasible disk set14

F on DO has at least one Fs,s+1 = F ∩Ds,s+1, s ∈ {0, . . . , k}, which is safe for15

F . Recall that the stable top disk K(F i,i+1) ∈ Di,i+1 intersects disks only in16

Di−1,i ∪ Di,i+1 ∪ Di+1,i+2 for each i ∈ {1, . . . , k − 1}. Since K(F i,i+1) is stable17

in F i,i+1, our concern is only the intersections with disks in Di−1,i ∪ Di+1,i+2.18

Therefore, we give a sufficient condition for which K(F i,i+1) has no intersection19

with disks in
(
Di−1,i∪Di+1,i+2

)
\
(
F i−1,i∪F i+1,i+2

)
, and show that there exists20

an index s ∈ {0, . . . , k} such that Fs,s+1 satisfies the sufficient condition.21

A proof of Lemma 5.6 needs preparation. We first give an auxiliary lemma22

which states that at least one of F i,i+1 and F i+1,i+2 is safe for the other for23

each i ∈ {0, . . . , k − 1}.24

Remember that the ribbons R0, R1, . . . , Rk+1 are ordered from bottom to25

top, and that Di,i+1 is the set of all disks in DO with their centers lying between26

Ri and Ri+1 for each i ∈ {0, . . . , k}. For a disk set C ⊆ DO, let Ci,i+1 = C∩Di,i+127

for each i ∈ {0, . . . , k}. Then, C0,1, C1,2, . . . , Ck,k+1 form a partition of C.28

Let F be a feasible disk set on DO. Then, for each i ∈ {1, . . . , k−1}, F i−1,i,29

F i,i+1 and F i+1,i+2 are feasible disk sets on Di−1,i, Di,i+1 and Di+1,i+2, respec-30

tively. We say that F i,i+1 is safe for F i+1,i+2 if ∆(Ci,i+1∪Ci+1,i+2,K(F i,i+1)) ⊂31

F i,i+1 ∪ F i+1,i+2 for any disk set C in C(F). Similarly, we say that F i,i+1 is32

safe for F i−1,i if ∆(Ci−1,i ∪ Ci,i+1,K(F i,i+1)) ⊂ F i−1,i ∪F i,i+1 for any disk set33

C ∈ C(F). For notational convenience, let D−1,0 = ∅ and Dk+1,k+2 = ∅; F0,1 is34

always safe for F−1,0, and Fk,k+1 is always safe for Fk+1,k+2. By Lemma 5.435

the disk K(F i,i+1) ∈ Di,i+1 intersects disks only in Di−1,i ∪ Di,i+1 on Ri and36

disks only in Di,i+1 ∪ Di+1,i+2 on Ri+1. Therefore, for i ∈ {0, . . . , k}, F i,i+1 is37

safe for F if and only if F i,i+1 is safe for both F i−1,i and F i+1,i+2.38

Let F be a feasible disk set on DO, and let C be a disk set in C(F). For39

each i ∈ {0, . . . , k}, let ux(Ci,i+1) be the x-coordinate of the leftmost point of40

the area Ri+1 ∩K(F i,i+1)∩
(
A1(Ci,i+1)∪A2(Ci,i+1)

)
, while let lx(Ci,i+1) be the41

x-coordinate of the leftmost point of the area Ri ∩ K(F i,i+1) ∩
(
A1(Ci,i+1) ∪42

A2(Ci,i+1)
)
. Note that A1(Ci,i+1)∩D ̸= ∅ for every disk D ∈ Ci,i+1, because we43
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deal with only a disk set such that every disk in the set is part of the uniquely1

covered region of the set. Therefore, both ux(Ci,i+1) and lx(Ci,i+1) are well-2

defined. Since K(F i,i+1) is stable in F i,i+1, we see that ux(Ci,i+1) is invariant3

under the choice of C ∈ C(F). Thus, we also write ux(F i,i+1) to mean ux(Ci,i+1)4

for any C ∈ C(F). The same applies to lx(F i,i+1).5

We first give the following lemma.6

Lemma 7.1. Let F i,i+1 be a feasible disk set on Di,i+1. Let C ⊆ Di,i+1 be any7

disk set in Ci,i+1(F i,i+1), and Q be a non-top disk of C. Then,8

(a) every point (x, y) ∈ Q∩Ri+1 ∩
(
A1(C)∪A2(C)

)
satisfies x < ux(C), and9

(b) every point (x, y) ∈ Q ∩Ri ∩
(
A1(C) ∪A2(C)

)
satisfies x < lx(C).10

Proof. We show that (a) holds; The proof for (b) is symmetric.11

Suppose for a contradiction that there exists a point p′ = (x′, y′) ∈ Q ∩12

Ri+1 ∩
(
A1(C) ∪ A2(C)

)
which satisfies x′ ≥ ux(C). Since the disk K(F i,i+1)13

is stable in F i,i+1, no point in K(F i,i+1) ∩ Q is contained in A1(C) ∪ A2(C).14

Therefore, we have15

K(F i,i+1) ∩Q ∩Ri+1 ∩
(
A1(C) ∪A2(C)

)
= ∅, (14)

and hence p′ is not contained in K(F i,i+1).16

We now claim that x(Q) < x(K(F i,i+1)) holds. Recall the choice of17

K(F i,i+1) in Lemma 5.5. If K(F i,i+1) = D1 for the disk D1 in F i,i+1 whose x-18

coordinate is largest, then K(F i,i+1) has the largest x-coordinate in C and hence19

we have x(Q) < x(K(F i,i+1)). Otherwise K(F i,i+1) ∈ {K⊥
1 ,K⊥

2 ,K⊥
3 ,K⊥

4 },20

where LE(F i,i+1) = (K⊥
1 ,K⊥

2 , . . . ,K⊥
β ); we here omit the symmetric case.21

Then, since Q is a non-top disk of C, by Inequality (13) we have x(Q) < x(K⊥
6 ).22

By Inequality (5) we thus have x(Q) < x(K(F i,i+1)). Therefore, in either case,23

we have x(Q) < x(K(F i,i+1)) as claimed.24

Since the centers of Q and K(F i,i+1) lie between Ri and Ri+1, and x(Q) <25

x(K(F i,i+1)), we may observe the following: every point in (Q \K(F i,i+1)) ∩26

Ri+1 lies to the left of every point in (K(F i,i+1) \Q) ∩Ri+1.27

By the definition of ux(C), there exists a number y′′ such that p′′ =28

(ux(C), y′′) belongs to Ri+1 ∩ K(F i,i+1) ∩
(
A1(C) ∪ A2(C)

)
⊆ K(F i,i+1). We29

now claim that p′′ ∈ Q, thus contradicting Eq. (14).30

From the discussion above, we know that p′ ∈ (Q \K(F i,i+1)) ∩ Ri+1, and31

p′′ ∈ K(F i,i+1) ∩Ri+1. If p
′′ ̸∈ Q, then by the observation above, p′ lies to the32

left of p′′. This means that x′ < ux(C), which contradicts the assumption that33

x′ ≥ ux(C). Therefore, p′′ ∈ Q; this contradicts Eq. (14), and hence the claim34

is verified. □35

Lemma 7.1 gives the following lemma.36

Lemma 7.2. Let F be a feasible disk set on D. Then, for each i ∈ {0, . . . , k−1},37

the following (a) and (b) hold:38

(a) F i,i+1 is safe for F i+1,i+2 if lx(F i+1,i+2) < ux(F i,i+1);39

(b) F i+1,i+2 is safe for F i,i+1 if ux(F i,i+1) < lx(F i+1,i+2).40
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Proof. We show that (a) holds: If lx(F i+1,i+2) < ux(F i,i+1), then ∆(Ci,i+1 ∪1

Ci+1,i+2,K(F i,i+1)) ⊂ F i,i+1 ∪F i+1,i+2 for any disk set C in C(F). (The proof2

for (b) is symmetric.)3

Consider an arbitrary disk set C ∈ C(F), and let Q be a disk in4

Ci,i+1 ∪ Ci+1,i+2 such that Q ̸∈ F i,i+1 ∪ F i+1,i+2. We will show that Q ̸∈5

∆(Ci,i+1 ∪ Ci+1,i+2,K(F i,i+1)). Note that, however, we have Q ̸∈ ∆(Ci,i+1 ∪6

Ci+1,i+2,K(F i,i+1)) if Q ∈ Ci,i+1, because the disk K(F i,i+1) is stable in F i,i+1.7

We thus consider the case where Q ∈ Ci+1,i+2. Since K(F i,i+1) ∈ Ci,i+1,8

the intersection K(F i,i+1) ∩ Q is contained in Ri+1. Therefore, similarly to9

Lemma 6.4, we have Q ̸∈ ∆(Ci,i+1 ∪ Ci+1,i+2,K(F i,i+1)) if any point in Q ∩10

K(F i,i+1) ∩Ri+1 is contained in A≥3(Ci,i+1 ∪ Ci+1,i+2 \ {K(F i,i+1)}).11

Since K(F i,i+1) ∈ Ci,i+1, if a point in Q ∩K(F i,i+1) ∩Ri+1 is contained in12

A≥3(Ci+1,i+2), then the point is contained in A≥3(Ci,i+1∪Ci+1,i+2\{K(F i,i+1)}).13

Therefore, we consider a point (x′, y′) in Q∩K(F i,i+1)∩Ri+1 which is contained14

in A1(Ci+1,i+2) ∪ A2(Ci+1,i+2); and hence (x′, y′) is contained in at least one15

disk in Ci+1,i+2. Then, by Lemma 7.1 we have x′ < lx(F i+1,i+2) and hence16

x′ < ux(F i,i+1). Recall that ux(F i,i+1) is the x-coordinate of the leftmost17

point of the area Ri+1 ∩K(F i,i+1)∩
(
A1(Ci,i+1)∪A2(Ci,i+1)

)
. Therefore, since18

x′ < ux(F i,i+1), the point (x′, y′) is contained in at least three disks in Ci,i+119

(one of which is K(F i,i+1)). Thus, the point (x
′, y′) is contained in A≥3(Ci,i+1∪20

Ci+1,i+2 \ {K(F i,i+1)}). □21

We then finalize the proof of Lemma 5.6.22

Proof (of Lemma 5.6). Since the centers of any two unit disks have distinct23

x-coordinates, ux(F i,i+1) ̸= lx(F i+1,i+2) for each i ∈ {0, . . . , k− 1}. Therefore,24

by Lemma 7.2 at least one of F i,i+1 and F i+1,i+2 is safe for the other. Remember25

that F0,1 is always safe for F−1,0, and that Fk,k+1 is always safe for Fk+1,k+2.26

Therefore, there exists at least one index s ∈ {0, . . . , k}, such that Fs,s+1 is safe27

for both Fs−1,s and Fs+1,s+2. Then, Fs,s+1 is safe for F . □28

8. PTAS for the problem on ⟨Pq,DI⟩.29

Having finished the description of our PTAS for ⟨Pq,DO⟩, we turn to a PTAS30

for ⟨Pq,DI⟩. Namely, we give the following lemma, which completes the proof31

of Theorem 4.1.32

Lemma 8.1. For any fixed constant ε′ > 0, there is a polynomial-time (1+ε′)-33

approximation algorithm for the unique unit-disk coverage problem on ⟨Pq,DI⟩.34

35

Remember that the upper boundary of each ribbon Ri in the stripe36

RW (q, h, b) is open. Therefore, the ribbons in RW (q, h, b) have pairwise dis-37

tance strictly greater than b = 1/2. (See Figure 2.) Since DI consists of unit38

disks (with radius 1/2) whose centers are contained in ribbons, no disk in DI39

can cover points in two distinct ribbons. Therefore, we can independently solve40

the problem on ⟨Pq ∩ Ri,DI⟩ for each ribbon Ri in RW (q, h, b). Thus, if there41
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Figure 9: (a) Cells with diagonal 1/2 in a ribbon Ri, and (b) sub-ribbon of Ri in which every
(at most) rk gray cells form a group.

is a PTAS for the problem on ⟨Pq ∩Ri,DI⟩, then we can obtain a PTAS for the1

problem on ⟨Pq,DI⟩; We combine the approximate solutions to ⟨Pq ∩ Ri,DI⟩,2

and output it as our approximate solution to ⟨Pq,DI⟩.3

We now give a PTAS for the problem on ⟨Pq ∩ Ri,DI⟩ for each ribbon Ri.4

We first vertically divide Ri into rectangles, called cells, so that the diagonal of5

each cell is of length exactly 1/2. (See Figure 9(a).) Let Wc be the width of6

each cell, that is, Wc = 1/4 since h =
√
3/4. We may assume that, in each cell,7

the left boundary is closed and the right boundary is open. Let r = 4, then8

rWc = 1.9

Let k = ⌈1/ε′⌉. Similarly as in the PTAS for ⟨Pq,DO⟩, we remove r consec-10

utive cells from every r(1 + k) consecutive cells, and obtain the “sub-ribbon”11

consisting of “groups,” each of which contains at most rk consecutive cells. (See12

Figure 9(b).) Then, these groups have pairwise distance more than one, and13

hence no unit disk (with radius 1/2) can cover points in two distinct groups.14

(Remember that we have removed r cells of total width rWc = 1, and the left15

boundary of a cell is closed and the right boundary is open.) Therefore, we16

can independently solve the problem on ⟨Pq ∩ G,DI⟩ for each group G in the17

sub-ribbon. The similar arguments in Lemma 5.2 establish that the problem18

on ⟨Pq ∩Ri,DI⟩ admits a PTAS if there is a polynomial-time algorithm which19

optimally solves the problem on ⟨Pq ∩G,DI⟩ for each group G. Therefore, the20

following lemma completes the proof of Lemma 8.1.21

Lemma 8.2. There is a polynomial-time algorithm which optimally solves the22

problem on ⟨Pq∩G,DI⟩ for a group G consisting of at most rk consecutive cells.23

We give a polynomial-time algorithm which optimally solves the problem24

on ⟨Pq ∩ G,DI⟩ for a group G consisting of at most rk consecutive cells. Let25

Si,1, Si,2, . . . , Si,m be the cells in G ordered from left to right. (See Figure 11(a).)26

Remember that rk (and hence m) is a fixed constant. We denote by DI(Si,j)27
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(a) (b)

Figure 10: (a) Cell Si,j covered by one disk in DI(Si,j), and (b) Si,j covered by more than
one disks in DI(Si,j), where the uniquely covered region is hatched.

the set of disks whose centers are contained in Si,j . (Remember that, in each1

cell Si,j , the left boundary is closed and the right boundary is open.) Notice2

that any disk in DI(Si,j) covers all the points in Si,j since the diagonal of each3

cell is of length 1/2. (See Figure 10(a).)4

We have the following lemma, which is another crux of this paper.5

Lemma 8.3. Consider an arbitrary subset C ⊆ DI and let Si,j be a cell.6

(i) If |C ∩ DI(Si,j)| ≥ 2, then no point in Si,j is uniquely covered by C.7

(ii) If |C ∩DI(Si,j)| = 1, then a point in Si,j is uniquely covered by C if and8

only if no disk in C \ DI(Si,j) covers the point.9

(iii) If |C ∩DI(Si,j)| = 0, then a point in Si,j is uniquely covered by C if and10

only if exactly one disk in C \ DI(Si,j) covers the point.11

Proof. The lemma holds because any disk in DI(Si,j) covers all the points in12

Si,j . (See Figure 10(a) and (b).) □13

Lemma 8.3 motivates us to classify all the subsets C ⊆ DI into O(3rk ·|DI |rk)14

types, as follows. Let aj ∈ {0, 1, 2} for each index j, 1 ≤ j ≤ m. Then, a subset15

C ⊆ DI is called an (a1, a2, . . . , am)-cover using the set C′ ⊆ C if the following16

three conditions (i)–(iii) hold:17

(i) If aj = 2, then |C ∩ DI(Si,j)| ≥ 2;18

(ii) If aj = 1, then |C ∩ DI(Si,j)| = 1 and the disk D ∈ C ∩ DI(Si,j) is19

contained in C′;20

(iii) If aj = 0, then |C ∩ DI(Si,j)| = 0.21

Then, the problem on ⟨Pq∩G,DI⟩ can be solved optimally in polynomial time if22

there is a polynomial-time algorithm to find an (a1, a2, . . . , am)-cover using the23

set C′ that maximizes the number of uniquely covered points in Pq ∩G for each24

m-tuple (a1, a2, . . . , am) with aj ∈ {0, 1, 2} and a set C′ ⊆ DI . We denote this25
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Figure 11: (a) Group of m consecutive cells, (b) an instance ⟨Pq ∩G,DI ; a1, a2, . . . , am; C′⟩,
and (c) the “rotated” instance ⟨Pq ∩G,DI ; a1, a2, . . . , am; C′⟩.

instance by ⟨Pq ∩G,DI ; a1, a2, . . . , am; C′⟩. Figure 11(b) illustrates an instance1

⟨Pq ∩ G,DI ; a1, a2, . . . , am; C′⟩, where each aj is written below the cell Si,j ,2

the two disks are contained in C′, and the cells Si,j with aj = 2 are colored3

white because we know that there is no uniquely covered point in the cells. We4

solve the instances ⟨Pq∩G,DI ; a1, a2, . . . , am; C′⟩ for allm-tuples (a1, a2, . . . , am)5

and all “meaningful” sets C′ ⊆ DI , and output the best solution among them.6

Remember that m
(
≤ rk

)
is a fixed constant, and hence the number of all7

possible m-tuples, O(3m), is also bounded by a constant. Furthermore, we do8

not need to solve the problem for all sets C′ ⊆ DI ; The meaningful sets C′ ⊆ DI9

can be obtained by choosing exactly one disk from each DI(Si,j) with aj = 1.10

Since an m-tuple (a1, a2, . . . , am) has at most m elements such that aj = 1, the11

number of meaningful sets C′ ⊆ DI can be bounded by O(|DI |m).12

The problem on ⟨Pq ∩ G,DI ; a1, a2, . . . , am; C′⟩ can be optimally solved in13

polynomial time by slightly modifying the polynomial-time (exact) algorithm14

in Section 5 for the problem on ⟨Pq ∩ G′,DO⟩, where G′ is a group consisting15

of a constant number of ribbons. Remember that no point in Si,j with aj = 216

is uniquely covered, and hence we can ignore the points in Si,j with aj = 2.17

Therefore, we can treat the disks in DI(Si,j) with aj = 2 as if they form the18

set DO from the viewpoint of the cells Si,j′ with aj′∈ {0, 1}. Notice that the19

y-monotonicity is ensured for the intersection of any disk in DI(Si,j) with aj = 220

and the cells Si,j′ with aj′∈ {0, 1}. Furthermore, because 2Wc = 1/2 and the21

left boundary is closed and the right boundary is open in each cell, we have the22

following lemma which is the counterpart of Lemma 5.4.23
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Lemma 8.4. Let D and D′ be disks in DI(Si,j) and DI(Si,j′), respectively,1

such that aj = aj′ = 2. If D ∩D′ ∩ Si,j′′ ̸= ∅ for a cell Si,j′′ with aj′′ ∈ {0, 1},2

then j, j′ ∈ {j′′ − 2, j′′ − 1, j′′ + 1, j′′ + 2}.3

Recall that the choices of disks for the cells Si,j′ with aj′ = 1 are fixed by the set4

C′. Thus, our task is to choose disks from DI(Si,j) with aj = 2 which forms an5

optimal solution to ⟨Pq ∩ G,DI ; a1, a2, . . . , am; C′⟩. Therefore, the polynomial-6

time algorithm in Section 5 can be easily modified so that it solves the problem7

on ⟨Pq ∩ G,DI ; a1, a2, . . . , am; C′⟩, by rotating the plane to the horizontal di-8

rection. (See Figure 11(b) and (c).) Along the dynamic programming, when9

we delete a top disk, we also take the effect of C′ into account, and update the10

function accordingly; because C′ is fixed and we keep track of all top disks, the11

update formula (3) can be easily modified. Since the number of disks in C′ is12

constant, this modification keeps the running time polynomially bounded.13

This completes the proof of Lemma 8.2. □14

9. Budgeted version15

In this section, we consider the budgeted version and give the following16

theorem.17

Theorem 9.1. For any fixed constant ε > 0, there is a polynomial-time (2 +18

4/
√
3 + ε)-approximation algorithm for the budgeted unique unit-disk coverage19

problem.20

We give a sketch of how to adapt the algorithm for ⟨Pq∩G,DO⟩ in Section 5.521

to the budgeted unique unit-disk coverage problem. To this end, we first describe22

the adaptation to give an optimal solution to ⟨Pq∩G,DO⟩ in pseudo-polynomial23

time when budget, cost, and profit are all integers.24

We keep the same strategy, but for the dynamic programming, we slightly25

change the definition of f . In the budgeted version, profit(Pq ∩G, C) means the26

total profit of the points in Pq ∩G that are uniquely covered by a subset C⊆ DO,27

and cost(C) means the total cost of the disks in C. Let X =
∑

p∈P profit(p), then28

profit(Pq ∩G, C) ≤ X for any disk set C ⊆ DO. For a feasible disk set F on DO29

and an integer x ∈ {0, 1, . . . , X}, let g(F , x) be the minimum total cost of disks30

in a set C ∈ C(F) such that the total profit of uniquely covered points in Pq ∩G31

by C is at least x, that is,32

g(F , x) = min{cost(C) | C ∈ C(F) and profit(Pq ∩G, C) ≥ x}.

If there is no disk set C ∈ C(F) such that profit(Pq ∩ G, C) ≥ x, then let33

g(F , x) = +∞. Then, the optimal value OPT(Pq ∩ G,DO) for the budgeted34

version on ⟨Pq ∩G,DO⟩ can be computed as35

OPT(Pq ∩G,DO) = max{x | 0 ≤ x ≤ X, g(F , x) ≤ B}.

We proceed along the same way as the algorithm in Section 5.5, except for the36

update formula (3) that should be replaced by37

g(F , x) := min{g(F ′, y) | F ′ is a child of F , y+z(F ,K(F)) ≥ x}+cost(K(F)),

26



where z(F ,K(F)) means the difference of the total profit of uniquely covered1

points in Pq ∩ G caused by adding the disk K(F) to F \ {K(F)}. This way,2

we obtain an optimal solution to ⟨Pq ∩ G,DO⟩ for a group G consisting of at3

most k consecutive ribbons. Note that the blowup in the running time is only4

polynomial in X.5

We now explain how to obtain a solution to the problem on ⟨Pq∩Rj
W ,DO⟩ for6

each sub-stripe Rj
W , 0 ≤ j ≤ k. (See Figure 3.) The adapted algorithm above7

can solve the problem on each group Gl in Rj
W , and hence suppose that we have8

computed g(F , x) for each group Gl and all integers x ∈ {0, 1, . . . , X}. Then,9

obtaining a solution to ⟨Pq ∩ Rj
W ,DO⟩ can be regarded as solving an instance10

of the multiple-choice knapsack problem [2, 9], as follows: The capacity of the11

knapsack is equal to the budget B; Each g(F , x) inGl and x ∈ {0, 1, . . . , X} have12

a corresponding item with profit x and cost g(F , x); The items corresponding to13

Gl form a class, from which at most one item can be packed into the knapsack.14

The multiple-choice knapsack problem can be solved in pseudo-polynomial time15

which polynomially depends on X [2, 9], and hence we can obtain an optimal16

solution to ⟨Pq ∩Rj
W ,DO⟩, 0 ≤ j ≤ k, in pseudo-polynomial time.17

We apply the standard scale-and-round technique to the profit (as used for18

the ordinary knapsack problem [9, 12]), that is, the profit of each point p is19

scaled down to ⌊profit(p)/t⌋ by some appropriate scaling factor t which depends20

on a fixed constant ε′′ > 0. Then, for any fixed constant ε′′ > 0, we obtain a21

(1+ε′′)-approximate solution to ⟨Pq∩Rj
W ,DO⟩ for each j ∈ {0, . . . , k}. Overall,22

such an approximate solution to each of the k+1 subinstances ⟨Pq ∩Rj
W ,DO⟩,23

0 ≤ j ≤ k, can be obtained in polynomial time. By taking the best one, we can24

obtain a (1+ε′)-approximate solution to ⟨Pq,DO⟩ for any fixed constant ε′ > 0,25

by choosing ε′′ appropriately. Then, the similar arguments give (2+ 4/
√
3+ ε)-26

approximate solution to the budgeted unique unit-disk coverage problem on27

⟨P,D⟩. □28

10. Conclusion29

In this paper, we gave a polynomial-time (2+4/
√
3+ε)-approximation algo-30

rithm, for any fixed constant ε > 0, for the unique unit-disk coverage problem.31

Our algorithm combines the well-known shifting strategy [6] and a novel dy-32

namic programming algorithm to solve the problem restricted to regions of con-33

stant height. It is not clear how we can adapt the method in this paper to other34

shapes such as disks with different radii. This remains an open question. The35

generality of the approach enables us to give a polynomial-time (2+ 4/
√
3+ ε)-36

approximation algorithm, for any fixed constant ε > 0, for the budgeted version,37

too.38
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