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Abstract

The growth of the Internet since the last century and the spread of digital-multimedia transfer are use-

ful and convenient for us because it has enabled us to access gigantic shared data. As a consequence,

demands for applications such as broadcast monitoring, owner identification, proof of ownership, transac-

tion tracking, tampering detection, copy control, and information carrier for audio signal have increased

considerably due to technologies misusage. To answer such demands, audio information hiding has been

suggested. There are five requirements for audio information hiding. (1) Inaudibility : a property that

hidden information does not affect a perceptual quality of host signals. (2) Robustness: an ability to

extract hidden information correctly when attacks are performed. (3) Blindness: a property of extracting

hidden information correctly without the original signal. (4) Confidentiality : a property of concealing

the hidden data. (5) Capacity : quantity of hidden information. To meet the first requirement is a real

challenge because the human auditory system is very sensitive. When the first and the second are re-

quired together, the challenge is tougher because they conflict with each other. Compromising them has

proved to be difficult. Actually, not just two, but all requirements conflict with each other.

The aim of this research is to explore audio information hiding that can satisfy all requirements, espe-

cially the conflict between inaudibility and robustness. A literature review of various audio-information-

hiding techniques has suggested that audio watermarking based on singular value decomposition (SVD)

is one of the robust techniques, and the published results are promising. Fundamentally, its robustness is

due to the fact that a singular value is invariant under common signal processing. The hidden informa-

tion is embedded by slightly modifying singular values. However, there are two critical problems. First,

the problem about the balance between inaudibility and robustness. All SVD-based schemes treat an

audio signal as a meaningless time-series and rely only on a mathematical singular-value-manipulation.

They have never taken audio features or human perception into account. Second, when we see them

from the acoustic-signal-processing point of view, the physical meaning of singular values has never been

addressed. Thus, it seems impossible to formulate a modification rule associating with human perception.

The sole philosophy behind the published embedding rules seems to be that, notwithstanding the physical

meaning of singular values is unknown, a human being cannot perceive the difference between original

and watermarked sounds if the modification is done slightly.

Inspired by these facts, we propose a framework based on the singular-spectrum analysis (SSA),

which is closely related to the SVD. We show that, by using SSA, singular values can have the physical

meaning. Actually, they are scale factors of oscillatory components of the signal. Hence, by adopting

SSA, we can exploit the advantages of SVD-based techniques, and, at the same time, SSA provides

us the framework in which a modification rule can be informed. Quite contrary to the philosophy of

conventional SVD-based schemes, the philosophy of this work is based on an idea that the embedding

rules should be based on both the nature of the audio signal and the human audio-perceptual ability.

When combining human perception model, such as the psychoacoustic models, and the strength of the

SVD-based technique together, it is expected that the problem of conflicting requirements can be solved.

Solving this problem is the ultimate goal.

In this work, we investigate the potentiality of SSA and formulate some basic principles that can

be used to achieve the goal. Six audio-information-hiding models based on SSA are proposed. The test

results show that the proposed framework achieve five subgoals. The scheme we implement can keep

the advantages of the SVD-based technique and, at the same time, can reach a better performance with
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the help of an artificial intelligence technique. We also found the connection between singular-spectrum

index and peak frequency of oscillatory components and used the finding to improve performance further.

In addition, the self-synchronization for watermark detection is proposed. To demonstrate that the

framework is practicable, we applied it to applications of ownership protection, information carrier, and

fragile audio-watermarking.

Keywords: audio information hiding, singular-spectrum analysis, differential evolution, psychoacoustic

model, self-synchronization
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Chapter 1

Introduction

1.1 Importance of research and its challenges

Like a coin, the Internet has two sides. The Internet is a good distribution system, thus

for the music industry, it means a lot of benefits in terms of market expansion, but, at the

same time, it brings the danger of piracy of intellectual property rights [1]. Digital goods

have the distinctive characteristic, i.e., they are expensive to produce for the first copy

but cheap to reproduce for subsequent [2]. When combining with the great benefits from

the digital age, e.g., copying without loss of quality [3], the availability of efficient data

compression [4], and the availability of high-speed network [5], the music industry and

its artists have become victims [6]. Music sharing via the Internet has been estimated to

result in annual sale losses of 3.1 billion US dollars by 2005 [7]. The music industry has

been aware of this danger and has sought for a solution since 1990s [1].

The first technology that the industry or contents owners turn to is cryptography

[8,9]. Although it can solve many problems concerning confidentiality, data integrity, and

authentication [10], there are some problems that cannot be solved by cryptography. For

example, once information is decrypted, it is no longer protected. How can cryptography

protect the information which is decrypted legally but distributed illegally?

Another problem of cryptography is that it messes up information. It prevents infor-

mation usage. Actually, downloading digital products for free also has a positive effect

due to sampling, i.e., the match between product and customer’s tastes is increased [11].

Can cryptography protect information without messing it up? Another example is a
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story told by Toby Sharp [12] about a computer engineer who went to work within a

restricted country and the encrypted message is restricted. The bottom line is that, in

the end, cryptography cannot conceal the fact that two parties communicate to each other

secretly.

Alternatively, audio information hiding can be one of potential solutions [13,14]. It is a

scheme of making information unnoticeable. In other words, a user is not even aware of the

existence of hidden information. Therefore, it can serve the purpose of both information

protection and secret communication. In addition, it can protect content after the content

is decrypted.

Even though the use of audio information hiding for copyright control has been consid-

ered to meet the original goal [15], there are many other types of applications (Examples

and details will be given in Chapter 2.).

In general, there are five requirements for audio information hiding [13,16,17].

1. Inaudibility: a property that hidden information does not affect a perceptual

quality of the host signal.

2. Robustness: an ability to extract hidden information correctly when attacks are

performed.

3. Blindness: a property of extracting hidden information correctly without the orig-

inal signal.

4. Confidentiality: a property of concealing hidden data.

5. Capacity: quantity of the information embedded into the host signal.

Naturally, these requirements conflict with each other. The high robustness, for exam-

ple, normally comes with the cost of low audio quality or semi-transparency [18]. Some

techniques are good at transparency or inaudibility, but not blind [19]. High capacity

implies low robustness [20]. Therefore, in addition to proposing a new effective technique,

many researchers in this field have focused on how to compromise these conflicts, and

it has proved to be difficult. Therefore, there is a trade-off among these requirements,

and to solve the problem of conflicting requirements is one of the challenges in the audio

information hiding.

The other challenge comes from the fact that the human auditory system is very

sensitive. We can hear a sound wave with extremely small pressure fluctuations [21], and,
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by nature, a watermark is nothing but noise added to a host signal. How to fool our ears

is a difficult task by itself.

Therefore, from the viewpoints of social concerns and of the scientific and engineering

challenges, the research in audio information hiding is of interest.

As a final remark, like the Internet (and a coin), information hiding also has two sides.

The hidden information can be used for good or for bad. As reported by the Guardian

on Tuesday 7 November 2006 [22], an Al Qaeda operative, Dhiren Barot, concealed his

reconnaissance in New York within a copy of Bruce Willis movie Die Hard 3. From this

view point, the important of information hiding is in analyzing cover signals in order to

detect hidden message as well.

1.2 Motivation and research goal

A literature review of many audio-information-hiding techniques has suggested that audio

watermarking based on singular value decomposition (SVD) is one of the robust techniques

[19, 23]. Fundamentally, in SVD-based information hiding, a watermark bit is embedded

by modifying singular values of a matrix representing a host signal, and its robustness is

due to the invariance of singular values under common signal processing [24]. However,

SVD-based methods have two critical problems.

1. A balance between inaudibility and robustness for certain pieces of music is not

good enough, i.e., high inaudibility comes with the cost of sound quality. One of

the reasons is that all SVD-based schemes treat an audio signal as a meaningless

time-series. They are input-independent and rely only on a mathematical method

of extracting singular values. All SVD-based methods have never taken any audio

features nor human perception into account [18, 23, 25–43]. In other words, modifi-

cation rules employed by those schemes are uninformed.

2. When we look from the acoustic-signal-processing point of view, a physical meaning

of singular values has never been addressed [18, 23, 25–43]. Thus, it seems impos-

sible to formulate a modification rule associating with human perception when the

relation between singular value and physical feature is not established.

3



The motivation for this research has started from curiosity of what happen when

a mathematical manipulation method combines with a human perception model. Is it

possible to integrate into each other? Is it possible to bring the advantages of the SVD-

based scheme and those of the human perception model together? If all the answers

are yes, it is expected that the critical problems stated above can be overcome, and this

combination might pave the way to a solution that solves the conflict in requirements.

This research aims to explore audio information hiding that can satisfy all requirements,

especially the conflict between inaudibility and robustness.

We adopt the singular-spectrum analysis (SSA), which is an SVD-based analysis tech-

nique, as a core structure. We choose SSA because, when a signal is analyzed, singular

values can be interpreted and have the physical meaning. The physical meaning is needed

in order to link SSA to the perceptual model. We use SSA to decompose a signal into

a finite number of additive oscillatory components, and singular values are scale factors

of their associated components. Then, a watermark bit is embedded by slightly changing

scale factors of some oscillatory components. Hence, by adopting SSA, we can exploit the

advantages of SVD-based technique, and, at the same time, SSA provides us the frame-

work of which a modification rule which can be informed by human auditory-perception

conditions. The central philosophy of this research is that SSA equipped with such per-

ceptual conditions can give a good balance between inaudibility and robustness so that it

can overcome the critical problems in SVD-based methods.

The ultimate goal of this work is to resolve the problem of conflicting requirements.

To reach that goal, a few of subgoals are set for this dissertation.

1. To verify that the scheme based on SSA can keep the advantages of the SVD-based

technique.

2. After we verify that the SSA-based scheme also has the good properties as those of

the SVD-based scheme, we have to show that the proposed SSA-based scheme has

parameters which can be adjusted to obtain a better performance.

3. To find a relation between those parameters and their physical meanings, and to

make a connection between them and conventional analyses. Because all psychoa-

coustic models analyze signals by using the conventional analysis techniques such

as the Fourier transform.
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4. To verify that the proposed schemes can deploy information from the perceptual

model to improve its performance.

5. To show that the proposed SSA-based scheme can be applied to various applications.

In addition, we also aim to solve a so-called frame synchronization problem, the prob-

lem that the extraction process requires to know frame positions in advance. All SVD-

based schemes are frame-based, and most of them ignore this problem, whereas a few

of them adopt synchronization codes. In this work, we exploit the characteristics of the

singular spectrum to detect watermarked frames automatically.

1.3 Thesis outline

The organization of this dissertation is shown in Fig. 1.1. The rest of this dissertation

consists of five chapters and is organized as follows.

Chapter 2 introduces background knowledge about audio information hiding, its

general applications, and some conventional and famous techniques. Since the proposed

framework is closely related to methods based on SVD, the SVD-based frameworks are

reviewed and analyzed carefully and thoughtfully in order to recognize their advantages

and disadvantages. The basic tools and principles necessary to implement the proposed

schemes and to investigate their properties, such as singular-spectrum analysis, differential

evolution, and psychoacoustic principles, are also provided in this chapter.

Chapter 3 describes the proposed audio-information-hiding frameworks based on

SSA. We start with the simplest one, i.e., the core structure, on which the other improved

schemes are based. Thenceforth, the more complex schemes are introduced. We show in

this chapter how to make a balance between inaudibility and robustness by adopting the

differential evolution and how to achieve good performance in transparency by integrating

a psychoacoustic model to the scheme. Issues about embedding locations, the effect of

embedding the watermark into high- and low-order singular values, and the concept of

embedding repetitions, are discussed. In addition, we also propose a novel automatic-

frame-detection method without embedding additional synchronization code.

Chapter 4 reports results from implementations and evaluations three related, but

different, models based on the frameworks described in the previous chapter. We start
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with a database, conditions, and evaluation methods in the first section, after that the pa-

rameters that are used to implement each model are given in detail. The automatic frame

detection and the audio-information-hiding scheme based on SSA in discrete-wavelet-

transform domain are also implemented and investigated their properties in some aspects.

Finally, we demonstrate the scheme in which a psychoacoustic model is incorporated.

Chapter 5 gives three examples of applications of the SSA-based audio informa-

tion hiding: the ownership protection, the information carrier, and the fragile audio-

watermarking. Each application has its own requirements, and some of their requirements

are different. For example, the fragile audio-watermarking requires fragility, but the own-

ership protection requires robustness. On the contrary, the robustness is not a concern for

the information carrier. These applications are a good example that shows the flexibility

of the proposed framework. Evaluations with respect to each application’s requirements

are performed, and results are reported.

Chapter 6 summarizes this work and emphasizes its contributions to this research

field as well as to other research fields. Since the ultimate goal of audio information hiding

has yet to achieve, it discusses room for improvement.

1.4 Summary

The unique, innovative points can be summed up as follows: (1) this research exploits the

strength of audio watermarking based on SVD but overcomes its drawbacks by propos-

ing a framework based on SSA, (2) using SSA to interpret singular values and to hide

information has never been proposed before, (3) the psychoacoustic principles are inte-

grated to the SSA-based framework, (4) the links between SSA and standard analyses

need to be established, and (5) the characteristics of the singular spectrum can be used

to automatically detect watermarked frames.

In short, this chapter began with giving specific answers to the following questions:

what the problem that we want to solve is, why it is worth solving, and whether it is

challenging. Then, the motivation and goal of this dissertation are clarified. Lastly, the

structure of this thesis is outlined.
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Figure 1.1: Organization of this thesis.
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Chapter 2

Background

This chapter introduces background knowledge about audio information hiding, its general

applications, and some conventional and famous techniques. Since the proposed frame-

work is closely related to the methods based on SVD, the SVD-based frameworks are

reviewed and analyzed carefully and thoughtfully in order to recognize their advantages

and disadvantages. The basic tools and principles necessary to implement the proposed

schemes and to investigate their properties, such as singular-spectrum analysis, differential

evolution, and psychoacoustic principles, are also provided in this chapter.

2.1 Audio information hiding: state of the art

The state of the art of Audio Information Hiding (AIH) is provided in this section. We

define AIH and answer the following questions: what it is for, what it has been done so

far, and what the clues that we can use to tackle the problem are.

2.1.1 Overview of AIH systems

Strictly speaking, the words information hiding, watermarking, and steganography are

different but closely related. Both watermarking and steganography are information hid-

ing but with different aspects. Steganography is the art of hiding information, with a

requirement that the existence of the hidden information must be secret [44]. Whereas,

this requirement is not the main concern for watermarking. Instead, the relation between

the host (the thing into which the hidden information is embedded) and the hidden in-
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Figure 2.1: Category of information hiding.

formation is more concerned in the watermarking. That is, if the hidden information

depends upon the host, then the art of hiding such information into the host is called

watermarking [8]. Figure 2.1 depicts the information hiding class. It can be clearly seen

that there are both overlapped and separated areas between the steganography and the

watermarking.

In most published technical papers, the content and secrecy of the hidden information

are not assumed, i.e., they could be any. Thus, the terminologies are used interchangeably.

In this work, those terms are interchangeable as well. Accordingly, we also use the words

hidden information and watermark as synonym of each other.

Basically, an AIH system consists of two main processes: embedding and extraction, as

shown in Fig. 2.2. The embedding process can be considered as a function that takes two

inputs, which are a host signal and the hidden information, and returns a watermarked

signal. Given the host signal A and the hidden information w, the watermarked signal

A∗ can be expressed mathematically by the equation A∗=A+f(A,w) [45]. The function

f is an embedding function. The extraction process extracts the hidden information ŵ

from the watermarked signal A∗. The process can be expressed mathematically by the

equation ŵ = g(A∗, c(A)), where the function g is an extracting function and c(A) is a

function representing some information that depends on the host signal A. If there is no

such information (c(A)=0), the extraction process is called the blind detection; otherwise,

the non-blind detection.

In addition to the standard view (Fig. 2.2), the system can also be seen as a com-
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Figure 2.2: Audio-information-hiding system.

Figure 2.3: Audio information hiding viewed as a communication problem.

munication problem, as shown in Fig. 2.3 [1]. The hidden information is transmitted via

the noisy channel. The host audio signal is considered as a noise of the communication

channel. The objective is to send the information without distortion, with one additional

condition, i.e., the information itself should not be perceived by the human auditory sys-

tem. This view is useful in the development of digital audio watermarking methods based

on the spread spectrum technique [1, 14,46].

AIH systems can be characterized by a number of properties, such as inaudibility, data

payload, blind or non-blind detection, false positive rate, robustness, security, cipher keys,

and multiple watermarks [8]. This research focuses on three key properties: inaudibility,

robustness, and blind detection. However, the data payload, security, and the multiple

watermarks are investigated as secondary properties as well.

2.1.2 Applications of AIH systems

The use of AIH systems for the purpose of copyright control was the original goal of hidden

information [16]. Soon after the first successful implementation of a spread-spectrum-

based watermarking technique [47], a number of potential applications have been proposed

[8, 13,14,48,49]. In this section, we examine some proposed and actual applications.
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1. Ownership protection or owner identification. In the case of dispute of ownership of

signals, the owner who knows the watermark hidden inside the signals in question

can show the existence of this watermark. Then, he/she can claim the signals are

his/her. This application requires a very small false positive detection, the secrecy

of the watermark, and the robustness.

2. Proof of ownership. This application is related to the previous one, but more de-

manding. In this scenario, we assume that an attacker can detect and edit the host

signal so that the attacker can embed his/her own watermark into the watermarked

signal. Thus, the task is not just to identify but to prove the ownership.

3. Integrity verification or content authentication. The aim of this application is to

check whether a signal has been edited since the hidden information was embedded

into it. In this scenario, the watermark should be fragile to signal processing, so

that the complete extracted watermark can be used to verify integrity [50,51]. The

required properties are the blind detection, the data capacity (normally, the capacity

is higher than that required in the previous applications), and the fragility.

4. Broadcast monitoring. The monitoring system can be categorized into two groups:

passive and active. For the passive monitoring, all received signals are compared

with a database, so it raises many problems, such as searching, storing, and manag-

ing database [8]. To avoid these problems, the active monitoring system decodes the

identification information, which is transmitted along with the broadcast content.

Instead of inserting the information in a separate area of the broadcast signal, such

as in the vertical blanking interval (VBI) of a video signal, AIH techniques suggest

to embed it into the broadcast signal [52–54]. This application requires the high

data capacity, the blind detection, and the low rate of false positive.

5. Fingerprinting or transaction tracking. In the scenario that each distributed signal

contains a unique watermark, the watermark can be used to trace the responsible

person for misuses or illegal distribution of signals [55, 56]. The requirements for

this application are the same as those for the proof-of-ownership application.

6. Copy control and access control. A number of methods for copy control, which is

integrated in recording or playback systems, have been proposed [15, 57–59]. In
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these methods, the embedded watermark serves a useful purpose as a copy control

or access control policy. This application requires the blind detection and the low

rate of false positive.

7. Information carrier or added value services. In this scenario, the watermark is

not related to copyright information. It adds a value to the host signals, such as

annotation and linking content to the Internet [60]. Therefore, malicious attacks are

not an issue. The legacy enhancement [8] can be considered as one example of the

information carrier. The requirements for this application are the blind detection

and the high data capacity.

8. Applications of steganography. There are a lot of motivations for two parties who

want to communicate secretly [61, 62]. Thus, there are proposed steganography

applications, such as the steganography for dissidents or criminals [8]. The common

properties for these applications are the high data capacity, the robustness, and the

secrecy of the hidden information.

2.1.3 AIH techniques

There are many ways to classify AIH techniques since there are a number of properties

that we can use to characterize the algorithm. In other words, classifications depend

upon a set of criteria. For example, the audio watermarking techniques can be classified

into four categories [63]. The first category embeds information in the time domain,

such as the least-significant-bit (LSB) replacement-based schemes. The second category

embeds the watermark by introducing an echo to the host signal. The third category

embeds information in a certain transform domain, and, the last one, the watermark is

embedded based on an audio content and the human auditory system. However, this

classification is somehow arbitrary because there are a number of methods that fall into

more than one category. For example, the method based on the low-frequency amplitude

modification [64] embeds information in the time domain and is based on the human

auditory system, so it falls into both the first and the last categories. There is a method

based on the FFT amplitude interpolation and the human auditory system [20], thus it

falls into the third and the fourth categories. To avoid such a confusion, in this section,
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we try not to group the existing AIH techniques. If necessary, a dichotomy is preferred.

For example, one can classify the AIH techniques into two groups: the one that deploys

properties of the human auditory system [17,65,66] and the one that does not [67,68].

The following subsections briefly explain some conventional and famous AIH tech-

niques.

Least significant bit coding

The least-significant-bit (LSB) coding is one of the earliest and the simplest techniques

[69–71]. Basically, the watermark is embedded by the alternation of certain bits of audio

samples. The replaced bits are usually the LSBs so as to guarantee inaudibility. Since

the most of the information in a sample is contained in the most significant bits, those

LSBs hardly affect the sound perception of humans [72]. The extraction process extracts

the watermark by decoding the values of those bits.

The LSB-based technique has two major advantages. First, it has a very small com-

putational complexity [13]. So, it is good for real-time applications. Second, it has a very

large embedding capacity. The maximum possible capacity is the same as the sampling

rate, where all samples are used to embed one bit. However, it has a very serious problem

in terms of robustness because the random changes of LSBs, such as adding the white

Gaussian noise, destroy the watermark.

Echo hiding

The echo hiding technique was firstly described by Bender et al. in 1996 [73]. The

fundamental principle is that humans cannot perceive echoes with a sufficiently short

time [74]. Thus, hidden information can be embedded into the host by adding echoes.

The watermark bit is encoded by using the difference in delay times and amplitudes of the

echoes. The embedding process can be seen as a system that has two possible functions,

called kernels, as shown in Fig. 2.4(a). The watermark is extracted by detection of spacing

between echoes by examining the magnitude at two locations of the autocorrelation of

the cepstrum of watermarked signals [73].

From then on, there have been a lot of proposed improved kernels. For example, the

dual echo kernel shown in Fig. 2.4(b) was proposed to enhance the detection rate, and
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the successive echoes also make the sound quality of echoes signal improved considerably

[75]. The backward and forward kernel shown in Fig. 2.4(c), in some sense, is non-causal

because the forward echo is added to the host signal before the host signal exists [76].

However, its evaluation results show a lot of advantages, such as the reduction in the echo

strength and the increase in detectability. The combined kernels shown in Fig. 2.4(d)

combine the dual and backward-and-forward kernels to achieve the imperceptibility and

robustness, especially against an echo addition attack [77]. Besides proposing a new kernel,

there are other directions of development, such as the adaptive echo hiding proposed to

determine the maximum decay rates of impulses in the echo kernels with respect to energy

of segments [78].

The echo hiding is blind and robust, but the hidden information can be easily detected

by attackers. Moreover, adding echoes has a number of constraints in inaudibility due to

the sensitivity of the human auditory system.

So far in this section, we intentionally avoid mentioning a group of AIH techniques, which

is based solely on mathematical manipulation of the algebraic features called the singular

values. That is the techniques based on SVD. As stated in the first chapter, our proposed

SSA-based AIH scheme is closely related to the SVD-based ones. In order to keep the

advantages of SVD-based methods and to overcome their drawbacks, the SVD-based

techniques are reviewed carefully and thoughtfully. The summarized results are given in

detail in the following section.

2.1.4 SVD-based audio watermarking

The SVD-based audio watermarking was first reported in 2005 by Özer et al. [25] after the

success of applying the same technique in the image watermarking a few years before [79–

81]. Since then, it has been a hot research topic in the state-of-the-art audio watermarking

techniques [19]. All SVD-based watermarking techniques embed the hidden information

into the host signals by means of singular-value modification. The singular value produced

by the SVD has interesting properties due to its robust nature [24], such as the sound

quality of the audio signal is not affected much by changing singular values to some extent,

and the singular values are somewhat stable after various types of signal processing attacks
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Figure 2.4: Examples of echo kernels.
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Figure 2.5: Embedding and extraction processes of the SVD-based audio watermarking

of the Framework 1.

[33–36]. Thus, the reported experimental results from the SVD-based audio watermarking

were promising and impressive in terms of robustness [18,23,25–43].

Based on our survey and analysis, the published SVD-based audio watermarking meth-

ods can be categorized into two frameworks: framework 1 [24,25,28,29,37] and framework

2 [18, 19, 23, 26, 27, 30–36, 38–43]. The embedding and extraction processes of these two

frameworks are shown in Figs. 2.5 and 2.6, respectively. The key difference between them

is the use of the side information from the embedding process in the extraction process.

In order to extract the watermark, the extraction process of the framework 1 uses some

information which is an output from the watermark-matrix construction of the embedding
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process, whereas that of the framework 2 does not use such information. Therefore, the

methods based on the framework 1 are certainly non-blind. However, some of the methods

based on the framework 2 are blind [19,23,26,27,38,82], and some are non-blind [18,30–36].

Framework 1

The left flowchart of Fig. 2.5 illustrates the embedding process. The audio signal repre-

sented in a certain domain, such as time or frequency domain, is mapped to the matrix A.

Then, the matrix A is decomposed by SVD: A=UDV T, where D is a diagonal matrix,

and its diagonal members
√
λi, called the singular values, are sorted in descending order.

The matrix D and the watermark W are used to construct the watermark matrix WD,

i.e., WD=f1(D,W ). For example, WD=k×W+D, where W is a binary image which is

encrypted by a chaotic algorithm and k is a scale factor [28]. To determine the scale factor

k, a search algorithm, such as the adaptive tabu search (ATS), might be adopted [29].

Then, SVD is performed to the watermark matrix WD: WD=UWDWV
T
W . To embed

the watermark, the matrix D is replaced by the matrix WD. Thus, the watermarked

matrix AW is the product of the matrices U , WD, and the transpose of the matrix V .

Finally, the watermarked matrix AW is mapped to a one-dimensional signal, and then it

is transformed to the signal in the time domain.

The extraction process is illustrated in Fig. 2.5 (right). The watermarked signal is

firstly represented in the certain domain and mapped to the matrix A∗. Then, SVD is

performed to the matrix A∗: A∗=U ∗D∗WV
∗T. The diagonal matrix D∗W along with the

matrices UW and VW obtained from the embedding process are used to construct the

watermark matrix W ∗
D, where W ∗

D = UWD
∗
WV

T
W . Finally, the watermark matrix W ∗

D

and the matrix D are used to determine the extracted watermark W ∗. Although the

host signal does not directly present as an input of the extraction process, the matrix D,

which contains some information of the host signal, is required. Therefore, the methods

based on this framework are considered as non-blind.

Based on this framework, many methods develop differently in the domain trans-

formation, matrix formation, and the watermark-matrix construction. For example, the

short-time Fourier transform [25], discrete wavelet transform [40], or discrete cosine trans-

form [28] might be adopted as the domain transformation. The analysis of matrix for-
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Figure 2.6: Embedding and extraction processes of the SVD-based audio watermarking

of the Framework 2.
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mation is discussed in [83]. The watermark-matrix construction (the function f1) in the

embedding process directly affects the extraction. For example, if WD=k×W+D, then

the extracted watermark W ∗ is
W∗
D−D
k

[28, 29].

It should be noted that, even though the experimental results from the methods based

on this framework are excellent in terms of robustness, the high bit-detection rates are

possibly due to the false positive detection [24, 84, 85]. The false-positive rate raises

because the matrices UW and VW , which contain most information of the watermark,

are used to construct the watermark matrix W ∗
D, and our preliminary simulations have

confirmed this effect.

Framework 2

The embedding process is shown in Fig. 2.6 (left). In contrast with the framework 1, this

framework performs SVD only once in the embedding process, i.e, the SVD is performed

to the matrix A, which represents the original signal in a certain domain: A=UDV T.

Then, the watermark W is embedded by modification of the diagonal matrix D, i.e.,

DW = f2(D,W ), where DW is the modified D. The function f2 is called the singular-

value modification rule. The watermarked matrix AW is constructed by the SVD reversion

where the diagonal matrix D is replaced with the matrix DW , i.e., AW = UDWV
T.

Finally. the matrix AW is conversed and transformed to the time-domain watermarked

signal.

The extraction process is shown in the right flowchart of Fig. 2.6 (right). The wa-

termarked signal is transformed and mapped to the matrix A∗. Then, the matrix A∗

is decomposed by SVD, and the diagonal matrix D∗W is obtained. The extracted water-

mark W ∗ is decoded from the matrix D∗W with respect to the singular-value modification

rule f2. The extraction process may require some information of the host signal as an

input [18,30–36], or it may not [23,26,27,38,82]. Thus, the methods based on this frame-

work can be either blind or non-blind. For example, let us consider the modification rule

of the methods [18,30,31].

Given a watermark bit w ∈ {0, 1}, the first singular value
√
λ1 of the matrix A is

replaced with modified singular value
√
λ1W =

√
λ1×(1+α·w), where α is a scale factor

called the watermark intensity. According to this rule, the extracted watermark bit w∗
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is 1 if
√
λ1W√
λ1

= 1+α, and the w∗ is 0 if
√
λ1W√
λ1

= 1. It can be seen clearly that, in order

to extract the watermark bit, these methods require the first singular value
√
λ1 of the

matrix A, which represents the host signal. Note that different methods may modify

other singular values. For example, some methods [18, 30, 31, 33, 35, 36] modify only the

largest singular value. Other methods [23, 26, 27, 32, 38] modify all singular values, and

there is a method [82] that modifies only some small singular values.

The quantization index modulation (QIM) can be applied to the singular-value mod-

ification to make the methods to be blind [23,26,27].

Remarks

1. To avoid the false-positive-detection problem as happened to the framework 1, any

information of the watermark should not be used in the extraction process.

2. All SVD-based audio watermarking methods have shown that the singular values

are stable to some extent because the watermark encoded in the singular values is

extractable after several signal processing attacks, as evidenced by the published

results. Thus, the singular value is proved to be a potential candidate for hiding

information. However, to the best of our knowledge, all SVD-based audio water-

marking methods have treated an audio signal as a meaningless time-series, and

they have yet to provide the insight or explanation of its effectiveness. The question

of interpretation of the singular value has never been discussed and answered. More-

over, all modification rules are uninformed, i.e., the nature of signals or the nature

of signal perception have never been taken into account. The sole philosophy of all

SVD-based methods so far seems to be that, if something changes very slightly, we

hardly notice.

2.2 Singular-spectrum analysis

Singular-spectrum analysis (SSA) is a time-series analysis technique, which is useful for

identifying and extracting oscillatory components from a signal [86]. Compared to other

techniques for investigating time-series data, such as performing a Fourier transform or

the principle component analysis, the SSA is much younger. It was proposed by Broom-

head and King in 1986 [87] and has been widely used in various applications, such as
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extraction of periodicities and finding structures in time series [88]. As evidenced by be-

coming a standard tool in the analysis of climate, meteorological, and geophysical data,

it has proved to be one of the successful techniques [86]. It is also popular for analyzing

biomedical signals [89–91].

The SSA is a model-free algorithm in the sense that, during analyzing, statistical

assumptions concerning the signal are not made, so that it can be applied to arbitrary

signals including non-stationary ones [86]. There are many types of SSAs. The following

subsection describes the basic SSA, on which our proposed scheme is based.

2.2.1 The basic SSA

The basic SSA consists of four steps: embedding, singular value decomposition (SVD),

grouping, and diagonal averaging. The first two steps form the decomposition (or analysis)

stage. The last two steps form the reconstruction (or synthesis) stage.

Embedding step

A signal F = [f0 f1 f2 ... fN−1]T of length N , where N > 2, is mapped to the trajectory

matrix X of size L×K.

X =



f0 f1 f2 · · · fK−1

f1 f2 f3 · · · fK

f2 f3 f4 · · · fK+1

...
...

...
. . .

...

fL−1 fL fL+1 · · · fN−1


, (2.1)

where K=N−L+1, and where L is the only parameter of the basic SSA, called a window

length of matrix formation, and has a maximum value of N . For j = 0, 1, ...,K−1 , let xj,

called a lagged vector, denote the jth column of the matrix X, i.e., xj = [fj fj+1 ... fj+L−1]T.

Thus, X = [x0 x1 x2 ... xK−1]. Since the trajectory matrix X has equal elements on the

minor diagonals (ascending skew-diagonals from left to right), it is a Hankel matrix.
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SVD step

The trajectory matrix X is decomposed into a product of three matrices U , D, and V

with the following relationship.

X = UDV T, (2.2)

where the columns of U and V , ui and vi for i = 0, 1, ...,L−1 , are eigenvectors of

XXT and XTX, respectively, and ui and vi are sorted in the descending order of the

corresponding eigenvalues of XXT, and where D is the diagonal matrix whose elements

are the square root of the eigenvalues, called the singular value.

Let λ0, λ1, ..., and λL−1 denote the eigenvalues of XXT. The trajectory matrix X can

be written as

X = X 1 + X 2 + ...+ X d, (2.3)

where Xk =
√
λkukv

T
k and d = arg maxk (λk>0).

Grouping step

The set of indices of Xk, {1, 2, ..., d}, obtained from the previous step is partitioned into

m disjoint subsets Il for l = 1, 2, ...,m. Then, X1, X2, ..., and Xd are grouped into m

groups, so that the trajectory matrix X can be written as

X = XI1 + XI2 + ...+ XIm . (2.4)

Note that, ideally, all groups XIl should be Hankel matrices or, at least, satisfy the

separability conditions [86].

Diagonal averaging step

Each matrix XIl is mapped by diagonal averaging (Hankelizing) to a new time-series

of length N . The Hankelization of a matrix Y of dimension L×K to the time-series

G = [g0 g1 g2 ... gN−1]T is defined as follows.

gk =



1
k+1

k+1∑
m=1

y∗m,k−m+2, for 0 ≤ k < L∗−1

1
L∗

L∗∑
m=1

y∗m,k−m+2, for L∗−1 ≤ k < K∗

1
N−k

N−K∗+1∑
m=k−K∗+2

y∗m,k−m+2, for K∗ ≤ k < N,

(2.5)
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where yij is an element at the row i and column j of the matrix Y , L∗ = min(L,K),

K∗ = max(L,K), y∗ij = yij if L < K, and where y∗ij = yji if L ≥ K.

2.2.2 Interpretation of singular value

An example of the SSA decomposition of a signal is shown in Fig. 2.7. The first panel,

labeled Org on the vertical axis, is the signal zoomed to observe the first 300 samples.

The basic SSA is used to decompose the signal of the size of 2450 with the window length

of 500. The first 200 singular values are shown in Fig. 2.8. Note that there are more than

200 singular values that are greater than zero, and the number of the positive singular

values can be up to the size of the window length L.

The second to sixth panels show the 1st, 5th, 50th, 100th, and the 200th oscillatory

components (Xi) of the signal, respectively. These components associate with the 1st, 5th,

50th, 100th, and the 200th singular values, respectively, i.e., Xi is the result of Hankelization

of the matrix X i =
√
λiuiv

T
i . Thus, in the light of SSA, the singular value can be

interpreted as a scale factor of the oscillatory component. Since singular values are sorted

in descending order, the lower the component order, the more contribution to the signal.

The result of adding the first 100 oscillatory components is shown at the top panel of

Fig. 2.9, and the difference between the original and reconstructed signals is shown in the

bottom panel of the same figure. When all components are added up, the original signal

is obtained due to the linearity.

2.3 Differential evolution

Differential evolution is a direct search method that solves an optimization problem by

iteratively improving candidate solutions with regard to an objective function [92]. The

phrase “direct search” means that the method does not employ techniques of classical

analysis, i.e., it does not require the objective function to be differentiable. Thus, it

is often described as derivative-free [93]. Similar to the evolution strategies and genetic

algorithms [94], the differential evolution is inspired by biological mechanisms of evolution

and is population-based, i.e., it maintains multiple assignments or starting points forming

a population [95]. As a result, they can outperform a starting point problem, which occurs
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Figure 2.7: Example of using SSA to decompose a signal (top panel) into additive oscil-

latory components (last five panels).
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Figure 2.8: Example of the first 200 singular values.

Figure 2.9: Original and reconstructed signals (top). The difference between original and

reconstructed signals (bottom).
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when an optimizer is stuck in local extrema because of its randomized, initial point.

Collectively, the evolution strategies, genetic algorithms, differential evolution and

the likes are classified as evolutionary algorithms. However, they are different in many

ways [96]. For example, simplest implementations of the evolution strategies still face

the step size problem, which refers to the difficulty of determining the suitable step size

for searching. The optimal point may be missed if the step size is too large. But if it

is too small, computing time increases exponentially due to the curse of dimentionality

[97]. The differential evolution gets around this problem by deploying difference vectors.

The advantage of adopting difference vectors is that the step size and the orientation

adapt to the objective function landscape automatically [96]. Even though more complex

implementations of the evolution strategies such as the Nelder-Mead polyhedron search

[98] and the controlled random search [99] deploy difference vectors as well, the population

size of the Nelder-Mead algorithm is very limited, and the controlled random algorithm

exerts too high selective pressure due to its continually-replace-the-worst strategy [96].

Compared to the genetic algorithms, the differential evolution represents parameters

differently, i.e., it encodes all parameters as a floating-point number, whereas the genetic

algorithms encode them as a bit string. That means arithmetic and logical operators

are required in order to manipulate parameter vectors for the differential evolution and

the genetic algorithms respectively. In terms of complexity and flexibility, the arithmetic

operation is better than the logical one [96]. Moreover, the genetic algorithms typically

select base vectors (or parents) with a bias toward better vectors, while the differential

evolution does equally. In other words, the genetic algorithms more exert selective pressure

than the differential evolution does. It can cause a premature convergence to a local

extrema [96].

The differential evolution consists of four processes: initialization, mutation, crossover,

and selection, as illustrated in Fig. 2.10. There are many variants of the differential

evolution, depending upon the way the base vectors are specified, the number of difference

vectors used, and the crossover scheme. The following subsections describe the summary

of the classic differential evolution (technically, DE/rand/1/bin1), which is adopted as a

parameter optimizer in the proposed SSA-based audio information hiding.

1The technical name for the different variants is the notation DE/x/y/z, where x specifies how to

choose the base vectors, y is the number of difference vectors used in the mutation process, and z is the
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Figure 2.10: Differential evolution processes.

2.3.1 Initialization

Without loss of generality, we assume that the aim of the optimizer is to deliver parameters

xi for i=0, 1, ..., D−1 that minimize a cost function f(x0, x1, ..., xD−1).

For j=0, 1, ...,NP−1, let xj,G, called a target vector, denote D-dimensional parameter

vectors forming a population for the generation G, where G is a non-negative integer.

A parameter vector xj,G is constructed from the parameters xi for i= 0, 1, ..., D−1, i.e.,

xj,G=[x0,j,G x1,j,G ... xD−1,j,G]T.

Initialization is the process of initializing and initiating xj,0. To initialize, firstly, the

maximum xi,max and the minimum xi,min for each parameter xi must be specified. The ith

parameter of the jth vector for the first generation, i.e., xi,j,0, is defined as follows.

xi,j,0 = Ωi × (xi,j,max − xi,j,min) + xi,j,min, (2.6)

where Ωi is a random number generator that returns a number from within the interval

[0, 1). We put the subscript i to indicate that for each parameter xi a new random

number is generated. Note that the random numbers can be uniformly-distributed or

Gaussian-distributed.

2.3.2 Mutation

For each target vector xj,G, a mutant vector vj,G is created by the following differential

mutation.

vj,G = xr0,G + F × (xr1,G − xr2,G), (2.7)

crossover scheme. Thus, DE/rand/1/bin means that the base vectors are uniformly randomly chosen,

only one difference vector is used in the mutation process, and the number of parameters donated to a

trial vector by a mutant vector follows a binomial distribution [92,96].
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where r0 is the based vector index, r1, and r2 are called the difference vector indices which

are randomly chosen from {0, 1, ...,NP−1}\{j} and mutually different. F ∈ (0, 2] is a

predefined real number that controls the convergence or the rate the population evolves

by scaling a difference between two vectors xr1,G and xr2,G.

Note that the requirement for four different vector indices: j, r0, r1, and r2, makes

the minimum members of population to be four. If some pairs of these parameters are

equal, the performance of the differential evolution will drop. For example, if r1 =r2, then

there is no mutation. If r0 =j, then there is only mutation. If r1 or r2 is equal to r0, then

the differential evolution is reduced to the arithmetic recombination. Only when they are

distinct (j 6=r0 6= r1 6= r2), the differential evolution achieves the best performance [96].

2.3.3 Crossover

Crossover is the process of making trial vectors uj,G from the target vector xj,G and the

mutant vectors vj,G for j= 0, 1, ...,NP−1, where some parameters ui,j,G are the copy of

xi,j,G, and the others are the copy of vi,j,G. There are many crossover schemes determining

which parameters copied from which vectors, such as the one-point crossover, the N-point

crossover, the exponential crossover, and the uniform crossover [96]. Most literature sug-

gested the exponential and the uniform ones [100–103]. The classic differential evolution

adopts the uniform crossover, defined as follows.

ui,j,G =

 vi,j,G if (Ωi ≤ CR) or i = irand

xi,j,G otherwise,
(2.8)

where CR ∈ [0, 1] is an user-defined crossover constant and can be considered as a mu-

tation rate. Typically, the genetic algorithms set the mutation rate of D−1, but for the

differential evolution either 0 ≤ CR ≤ 0.2 or 0.9 ≤ CR ≤ 1 is recommended [92,96]. The

index irand is chosen randomly from {0, 1, ...,D−1}, which ensures that the trial vector

uj,G will get at least one parameter from the mutant vector vj,G. The random number

generator Ωi is uniform.

2.3.4 Selection

By using a greedy criterion, the trial vector uj,G is compared with the target vector xj,G.

If the cost function of the trial vector, f(uj,G), is not greater than that of the target
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vector, f(xj,G), the target vector xj,G+1 for the next generation G+1 is replaced by the

trial vector uj,G; otherwise, it retains the same vector xj,G.

xj,G+1 =

 uj,G if f(uj,G) ≤ f(xj,G)

xj,G otherwise.
(2.9)

Thus, there are NP competitions in a generation. After we have all members xj,G+1

for the generation G+1, the next mutant vectors vj,G+1 are created to be the contributors

to the next trial vectors uj,G+1 which will be compared with the target vectors xj,G+1 for

the survival selection for the next generation G+2, and so on. The evolutionary cycle of

mutation, crossover, and selection iteratively continues until a stopping criterion, such as

the maximum number of generations or the predefined lowest cost value, is met. Then,

the vector that yields the lowest cost is the solution.

2.4 Human auditory perception and psychoacoustic

models

Psychoacoustics is the science of sound perception. It investigates the statistical relation-

ships between acoustic stimuli and hearing sensations and aims to construct the psychoa-

coustic model [104,105]. We adopt the psychoacoustic model 1, which is used in MPEG-1

Audio [106,107], to our proposed SSA-based scheme. Hence, this section summarizes the

important psychoacoustic principles relevant to it.

2.4.1 Absolute threshold of hearing

Absolute threshold of hearing is the minimum detectable sound pressure level in the absent

of any other sounds [108]. It is a function of frequency with the following relation.

Tq(f) = 3.64

(
f

1000

)−0.8

− 6.5e−0.6( f
1000
−3.3)

2

+ 0.001

(
f

1000

)4

, (2.10)

where Tq(f) is the threshold of hearing of the sound pressure level (SPL) of a pure tone at

frequency f . This relation is plotted and shown in Fig. 2.11. The meaning of this curve

is that we cannot hear a pure tone with SPL under the absolute threshold curve [108].
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Figure 2.11: Absolute threshold of hearing.

2.4.2 Simultaneous masking

Masking is the situation when the presence of one sound (the masker) renders another

sound (the signal or the maskee) less detectable [21]. If the masker and maskee are pre-

sented simultaneously, the situation is called simultaneous masking [109]. The difference

between the sound pressure levels of the masker and the signal is called the signal-to-mask

ratio (SMR).

Since the frequency components of an audio signal can be considered as either noise-like

or tone-like [105,110], both the masker and maskee can be either noise-like or tone-like as

well. Therefore, one can classify the masking into four types: tone-masking-tone (TMT),

tone-masking-noise (TMN), noise-masking-tone (NMT), and noise-masking-noise (NMN).

The phenomena of TMT and NMN are normally excluded from psychoacoustic models

because there are no good models for them [110]. The minimum SMR of TMN (the

smallest difference between the sound pressure levels of the pure tone masking the narrow-

band noise and the narrow-band noise) is between 21 and 28 dB [111,112]. In the case of

NMT, the minimum SMR is between 2 and 6 dB [109].
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Figure 2.12: Spreading of masking into neighboring critical bands.

2.4.3 Spread of masking

The masking summarized in the previous subsection is the situation when a masker masks

maskees within the critical band2of the masker. However, masking effect can exist when

the maskee is in the different critical band. This phenomenon is called the spread of

masking. An representation example of the spread of the masking is shown in Fig. 2.12

[113].

2.4.4 Psychoacoustic model

The psychoacoustic model 1 delivers the SMR of the analyzed signal. According to the

standard ISO/IEC 11172-3, it consists of 5 steps, as illustrated in Fig.2.13 [105,110]. The

overview of these steps is summarized as follows. First, we calculate the fast Fourier

2Critical bandwidth is a measure of the effective bandwidth of the auditory filter and is defined

empirically by measuring some aspect of perception as a function of the bandwidth of the stimuli and

trying to determine a break point in the results [108]. The critical bandwidth BCc(f) can be approximated

by 25 + 75

(
1 + 1.4

(
f

1000

)2)0.69

, where f is the center frequency [109].

Note that the critical bandwidth expressed by this equation is widely used in perceptual models for

audio coding [105]. However, there is another measure, which is used widely in the current research on

psychoacoustics, that estimates the bandwidths of the filters in human hearing, called the equivalent

rectangular bandwidth or ERB. In this work, we follow the measure that the original model uses.

31



Figure 2.13: Psychoacoustic model 1.

transform (FFT) and the power spectral density (PSD) of the signal. Then, the PSD is

normalized to a sound pressure level (PSD) of 96 dB, i.e., the maximum SPL is limited to

96 dB. Second, we use the PSD to identify the tonal and noise components. A component

is classified as the tonal one if it is sinusoid-like; otherwise, it is a noise component. After

we obtain the tonal and noise components, we calculate the tonal and noise maskers in

each critical band. Third, we decimate unnecessary maskers by using two psychoacoustic

principles so that we obtain only the relevant ones. Fourth, we use the survival maskers

to calculate the individual masking threshold. Finally, we combine all masking thresh-

olds to produce the global masking threshold. The details of these steps are formulated

mathematically as follows [105,110].

1. Input audio sample s(n) is normalized according to the FFT-length NFFT (512

points) and the quantization bit depth b, i.e., the number of bit per sample.

x(n) =
s(n)

NFFT×(2b−1)
, (2.11)

for n = 0, 1, 2, ...,M − 1, where M is the length of the audio signal. Then, the

normalized input x(n) is segmented into frames of 512 samples, and, using a 1
16

th
-
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overlapped Hanning windows w(n), the power spectral density P (k) is estimated by

using a 512-point FFT.

P (k) = 90.302 + 10 log

∣∣∣∣∣
NFFT−1∑
n=0

w(n)×x(n)×e−j
2πkn
NFFT

∣∣∣∣∣
2

, (2.12)

for frequency indices k=0 to NFFT

2
, and the Hanning window w(n) is defined as

w(n) =
1

2

[
1− cos

(
2πn

NFFT

)]
. (2.13)

The output of this step is the normalized PSD P (k).

2. The local maxima in the PSD of input signal obtained from the previous step that

are greater than neighboring components within a certain Bark distance by 7 dB

are classified as tone-like components. Note that the Bark scale is a frequency

scale on which equal distances correspond with perceptually equal distances [114].

The relationship between the Bark scale z and the linear frequency scale f can be

expressed by the following formula [109].

z = 13 arctan(0.00076×f) + 3.5 arctan[(
f

7500
)2]. (2.14)

The tonal component set ST is defined as follows.

ST = {P (k)|P (k) > P (k ±1) and P (k) > P (k ±∆k) + 7}, (2.15)

where

∆k ∈


[2] , for 2 < k < 63 (0.17− 5.5 kHz),

[2, 3] , for 63 ≤k < 127 (5.5− 11 kHz),

[2, 6] , for 127 ≤k ≤256 (11− 20 kHz),

(2.16)

Then, the tonal masker PTM(k) of each tonal component is calculated by

PTM(k) = 10 log
1∑

r=−1

100.1×P (k+r). (2.17)

The components not within the ±∆k neighborhood of the tonal masker are used to

calculate the noise masker PNM(k̄). Note that there is only one noise masker for

each critical band.

PNM(k̄) = 10 log
∑
r

100.1×P (r), (2.18)
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for all r that satisfies the relation P (r) /∈ ST , where k̄ is the frequency index nearest

to the geometric mean of each critical band. Given the lower and upper spectral-line

boundaries of the critical band, which are v and w, respectively, the geometric mean

k̄ is defined as

k̄ =

(
w∏
r=v

r

) v
v−w+1

. (2.19)

The output of this step is the tonal and noise maskers, PTM(k) and PNM(k̄) respec-

tively, of each critical band.

3. There are two conditions used to remove unnecessary maskers. First, the maskers,

obtained from the previous step which are lower than the absolute threshold of

hearing Tq(k) are removed. In other words, the survival maskers are those that

satisfy the condition:

PTM,NM(k) ≥ Tq(k). (2.20)

Second, within a distance of 0.5 Bark, the weak maskers are removed, and the

strongest one is survived. Therefore, the output of this step is the relevant tonal

and noise maskers of each critical band.

4. The masking contribution at the frequency bin i due to the tonal maskers located

at bin j, TTM(i, j), is given by

TTM(i, j) = PTM(j)− 0.275×zb(j) + SF (i, j)− 6.025, (2.21)

where PTM(j) is the sound pressure level of the tonal masker in the frequency bin j,

zb(j) is the Bark frequency of the bin j, and SF (i, j) is the spread of masking from

the masker bin j to the maskee bin i, defined as follows.

SF (i, j) =



17∆zb − 0.4PTM(j) + 11, for − 3 ≤∆zb<−1,

(0.4PTM (j) + 6) ∆zb , for − 1 ≤∆zb<0,

−17∆zb , for 0 ≤∆zb<1,

(0.15PTM(j)− 17)∆zb − 0.15PTM(j), for 1 ≤∆zb<8,

(2.22)

where ∆zb =zb(i)−zb(j).

The masking contribution at the frequency bin i due to the noise masker located at

the bin j, TNM(i, j), is given by

TNM(i, j) = PNM(j)− 0.175×zb(j) + SF (i, j)− 2.025, (2.23)
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where PNM(j) is the sound pressure level of the noise masker in the frequency bin

j, and SF (i, j) is the spread of masking from the masker bin j to the maskee bin i,

defined as follows.

SF (i, j) =



17∆zb − 0.4PNM(j) + 11, for − 3 ≤∆zb<−1,

(0.4PNM(j) + 6)∆zb , for − 1 ≤∆zb<0,

−17∆zb , for 0 ≤∆zb<1,

(0.15PNM(j)− 17)∆zb − 0.15PNM(j), for 1 ≤∆zb<8.

(2.24)

The output of this step is the masking contributions TTM(i, j) and TNM(i, j) due to

each maskers.

5. Given the absolute threshold of hearing for the frequency bin i, Tq(i), the global

masking threshold Tg(i) is defined as follows.

Tg(i) = 10 log

(
100.1Tq(i) +

L∑
l=1

100.1TTM (i,l) +
M∑
m=1

100.1TNM (i,m)

)
, (2.25)

where L and M are numbers of tonal and noise maskers, respectively. The output of

this step is signal-to-mask ratio (SMR), which is defined as the difference between

the SPL of the global masking threshold and the PSD of the analyzed signal. Figure

2.14 shows an example of the SMR (red line) of one frame.

2.5 Summary

This chapter presented the background of audio information hiding, its general applica-

tions, and some famous watermarking techniques. The SVD-based audio watermarking

was reviewed and analyzed intensively. We classified all SVD-based methods into two

frameworks and discussed that the first framework has the problem of false positive de-

tection. The advantages and disadvantages of SVD-based frameworks were also discussed.

All tools we used in our investigation and implementation were introduced, including

the SSA, differential evolution, psychoacoustic principles, and the psychoacoustic model

1. We gave the interpretation of singular values which will play an important role in the

following chapters.
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Figure 2.14: Signal PSD, global masking level, and SMR.
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Chapter 3

Schemes of AIH based on SSA

SSA-based audio information hiding deploys the basic SSA, as described in the previous

chapter, to analyze host audio signals. Fundamentally, the hidden information is em-

bedded into the host signal by modifying some audio features with respect to a hidden-

information bit. The details of how the modification can be made are provided in great

detail in the following sections. We start with the core structure of the AIH based on

SSA, on which the other improved schemes are based. The core is the simplest one, and

in some contexts, it is equated with the fixed-parameter model. Thenceforth, the more

complex schemes are introduced. We propose a novel automatic-frame-detection method

and discuss the possibilities for AIH based on SSA in other domains in this chapter as

well.

3.1 Philosophy of this work

Before we start to explain the proposed schemes in detail, we would like to emphasize

the philosophy of this work, which makes this research different from other methods.

This work aims to satisfy three requirements: inaudibility, robustness, and blindness.

Satisfying these requirements has always been a difficult task. For example, the least-

significant-bit coding technique [69–71] is good at the inaudibility, but it is not robust.

The phase-manipulation techniques, such as the phase coding [73] and the phase mod-

ulation [115], are based on the fact that the human auditory system is not sensitive to

relative phase change. Thus, both are inaudible, but, for the phase-coding technique, the
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embedding capacity is low, and it is non-blind. The techniques based on echo hiding is

simple, blind, and robust [75–78]. However, adding echoes has a number of constraints in

inaudibility due to the sensitivity of the human auditory system. The spread-spectrum-

based technique is good in robustness but is poor in inaudibility and capacity [116]. The

wavelet-based technique, which embeds information in the high-frequency band, is good

in capacity but poor in robustness [20]. The trade-off between the inaudibility and the

robustness can be found in the methods based on adaptive phase modulation [117], the

methods based on periodical phase shift [118], and the methods based on cochlear delay

characteristics [17, 119, 120] as well. The SVD-based methods [18, 23, 25–43], as detailed

in Sect. 2.1.4, are robust but not good in inaudibility. These methods seem to be good in

one property but not good in other properties. Thus, these examples show that it is very

difficult to satisfy the inaudibility, the robustness, and the blindness, simultaneously.

To solve these problems of conflicting requirements, the SSA-based AIH framework

is proposed. The philosophy of this work is to exploit the robustness from the SVD-

based method and to improve its inaudibility by combining it with the human audio-

perceptual model. This combination is possible because the SSA is an SVD-based analysis

technique of which the singular values can be interpreted and have the physical meanings.

Therefore, we can make a connection between the SSA-based framework and the human

audio-perceptual model. We believe that the combination between the SSA and the

psychoacoustic model can help us to overcome the problem of conflicting requirements.

The following sections in this chapter show development of SSA-based AIH towards the

combination, and implementations and evaluation results are given in the next chapter.

3.2 Core structure of the SSA-based AIH

This section presents the embedding and extraction processes of the core structure. They

are fundamental to all other SSA-based schemes. We also discuss embedding locations,

the effect of embedding the watermark into high- and low-order singular values, and the

concept of embedding repetitions.
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Figure 3.1: Embedding and extraction processes of the core structure

3.2.1 Embedding process

The embedding process consists of six steps, as illustrated in Fig. 3.1 (left).

1. Firstly, an audio signal is segmented into non-overlapping frames. The number of

those frames is equal to that of hidden-information bits. For the simplest imple-

mentation, one bit of the hidden information (the watermark) is embedded into one

frame. Thus, the embedding capacity is determined by the frame size.

2. Then, trajectory matrices representing each frame are constructed.

3. SVD operation is performed on each matrix. The steps 2 and 3 correspond to the

embedding and SVD steps of the basic SSA algorithm, respectively. As a result,

singular spectra are obtained.

4. A watermark bit is embedded by modifying the singular spectra.

5. After the singular-value modification, each modified trajectory matrix is Hankelized.

This step corresponds to the diagonal averaging step of the basic SSA algorithm.

6. Finally, the watermarked signal is constructed by stacking those Hankelized frames.

The rule we use for the modification can be summarized as follows.
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Let {
√
λ1,
√
λ2, ...,

√
λd} denote a set of singular values in descending order and ε ∈

(0, 5] be a small real positive number. Given a watermark bit w ∈ {0, 1},

√
λi =


√
λl+ε(

√
λu−
√
λl), if w = 0

√
λl+(1− ε)(

√
λu−
√
λl), if w = 1,

(3.1)

for i = u+1, u+2, ..., l−1, where
√
λu is greater than

√
λl.

Figure 3.2 shows an example of a singular spectrum and its modification after embed-

ding “1” and “0”. Figure 3.2(a) is the singular spectrum. Given u=20, l=50, and ε=0.1,

Fig. 3.2(b) is its modification after embedding “1”, i.e.,
√
λ21,
√
λ22, ..., and

√
λ49 are set

to
√
λ50+0.9(

√
λ20−
√
λ50), and Fig. 3.2(c) shows its modification after embedding “0”, i.e.,

√
λ21,
√
λ22, ..., and

√
λ49 are set to

√
λ50+0.1(

√
λ20−

√
λ50). Figure 3.3 shows an example

of waveform when embedding “1” and “0” into the 35th oscillatory component.

Note that we adopt just three of four steps from the basic SSA. The grouping step is

neglect because its purpose is to separate a time series into meaningful additive sub-series,

such as trends and noise, according to separability conditions [86]. Seeing that this is not

the watermarking purpose, thus the step is excluded. However, one can consider that this

is the case where the index m in Eq. 2.4 is equal to the index d in Eq. 2.3.

3.2.2 Embedding areas

As discussed in Sect. 2.2.2 about the interpretation of the singular value, the lower singular-

value index, the more contribution to the signal. Therefore, if robustness is required, the

lower the index, the better performance. On the other hand, if fragility is required, the

higher, the better. However, modifying low-index singular values affect the sound quality

of the watermarked signal.

Figures 3.4 and 3.5 illustrate this phenomenon and show that the LSD and SDR vary

with embedding areas. The LSD and SDR are used to measure the sound quality of

the watermarked signal. In the experiment for this illustration, the relation between the

embedding position index (pi) on the x-axis on the figures and the parameter u is that

u= 1+4 ×(pi−1), where l=u+10. In addition, we also found that the sound quality of

the watermarked signal slightly be affected by the window-length parameter (L) of the

basic SSA, as demonstrated in Figs. 3.6 and 3.7. In these demonstrations, the relation
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Figure 3.2: Illustration of the embedding rule of the core structure.
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Figure 3.3: Example of embedding “0” and “1” into the 35th oscillatory component.

between the window-length index (wi) on the x-axis and the window length (L) is that

L=bwi×Nc, where N is a frame length and b·c is the floor function.

Therefore, it seems that modifying high-order singular values is a good strategy. How-

ever, the higher-order singular values change easier than the lower-order ones when attacks

are performed on the signal. Imitating the engineering strain (Cauchy strain), we define

the strain e of a singular value
√
λ as

e =
∆
√
λ√
λ
, (3.2)

where ∆
√
λ is the change in the value of the singular value, i.e., the difference between

the values of singular values before and after an attack.

We found that the strain increases as the order of the singular value increases. An

example of this phenomenon is shown in Fig. 3.8, where a frame of 7350 samples is attacked

by the MP3 and MP4 compression and the band-pass filtering.

3.2.3 Extraction process

The extraction process consists of four steps and is shown in Fig. 3.1 (right). The first

three steps are exactly the same as those of the embedding process. The watermarked

signal is segmented into several non-overlapping frames. Then, each frame is mapped to

the trajectory matrix, and SVD is performed on the matrix to deliver the singular values.

Lastly, the extracted watermark bits are decoded by using those singular values.

We have proposed two methods for decoding the watermark bit: decoding by the

median and by the polynomial fitting.
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Figure 3.4: Relation between LSD and embedding area.

Figure 3.5: Relation between SDR and embedding area.
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Figure 3.6: Relation between LSD and the window length (L).

Figure 3.7: Relation between SDR and the window length (L).
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Figure 3.8: The ratio of total deformation of the singular value to the initial value, given

the matrix size of 2940×4411.

Decoding by the median

The watermark bit is decoded by determining the value of
√
λm, where

√
λm is the median

of {
√
λu+1,

√
λu+2, ...,

√
λl−1}.

If
√
λu−

√
λm is greater than

√
λm−

√
λl, the watermark bit is 1; otherwise, the

watermark bit is 0.

Decoding by the polynomial fitting

An advantage of the median method is its simplicity in terms of both logic and computa-

tion. A drawback is that it uses only one singular value to decode the hidden bit, therefore

it may raise a question of the reliability. By contrast, the decoding by the polynomial

fitting uses all information of the singular values of [u+1, l−1].

From the basic findings of this research, we found that when a singular spectrum of a

reconstructed, watermarked frame is analyzed, the flatness resulting from rounding up or

down of a sequence of singular values, according to the embedding rule, becomes distorted,

as illustrated in Fig. 3.9. These distortions show patterns, as illustrated in Fig. 3.10, i.e., if

singular values of [u+1, l−1] are rounded down toward the lower bound, a convex upward

curve is present; or else, a concave downward curve. The concavity or convexity of the
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Figure 3.9: Example of singular spectra in embedding and detection processes in proposed

method: (a) when embedding “1” and (b) when embedding “0” in the embedding process,

(c) singular spectrum of the frame embedded “1” and (d) singular spectrum of the frame

embedded “0” in the extracting process.

singular spectrum on a certain interval can be used to predict the watermark bit by the

following algorithm.

All singular values of [u+1, l−1] are fitted on a degree-two polynomial, y(x) = ax2 +

bx+c, where y is a singular value and x is the index of the singular value. The coefficient a

of this quadratic formula has played an important role as it indicates the rate of change of

the singular values. Therefore, a sign of the coefficient a is used to predict the watermark

bit. That is, the minus sign indicates concavity or the watermark bit 1, and the plus

sign indicates convexity or the watermark bit 0. An example of the polynomial fitting is

shown in Fig. 3.11, where the watermark bit 1 is embedded into a frame by rounding the

singular values of [18, 32] up toward the upper-bound value, the 17th singular value.

3.2.4 Embedding repetitions

Bit-detection rate (BDR) is defined as the number of correct extraction bits divided

by the total number of watermark bits. A simple and straightforward way to increase

the bit-detection rate is by embedding repetitions, i.e., embedding one watermark bit

repeatedly into more than one subframes1. Figure 3.12 shows an example of embedding

repetitions. One frame is partitioned into k subframes, where k > 1 is an odd integer, and
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Figure 3.10: Distortion patterns in modified singular spectra: (a) On the interval [u+1, l−1],

the singular spectrum curve is concave downward if “1” is embedded. (b) The singular

spectrum curve is convex upward if “0” is embedded. In this example, u and l are 17 and

33 respectively.

Figure 3.11: The singular values on [18, 32] are fitted on a quadratic equation y(x) =

ax2 + bx+ c, where a=−0.0146, b=0.598, and c=3.853. Since the value of a is negative,

the graph is concave. Therefore, the watermark bit is 1.
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all subframes of a frame are embedded the same watermark bit by the process described

in Section 3.2.1.

To decode the watermark bit, the extraction process extracts all embedded bits from

all subframes, and the majority rule was applied. The extracted watermark bit of the

frame is 1 if dk
2
e of the extracted watermark bits of its subframes are 1, where d·e is the

ceiling function; otherwise, the extracted watermark bit of this frame is 0.

The reason the embedding repetitions increases the bit-detection rate is very simple:

if the BDR of a scheme without embedding a repetition is φ, then the BDR of the scheme

when embedding k repetitions into k subframes of one frame, φk, is as follows.

φk =

b k
2
c∑

i=0

(
k

i

)
(1− φ)iφk−i, (3.3)

where b·c is the floor function. It can be proved mathematically that if φ > 0.5, then

φk > φ. Figure 3.13 shows the relation between φk and φ when k=3, 7, 11, 15, and 19. It

can be seen clearly that when φ > 0.5, all curves are above the line φ=φk.

3.3 Differential evolution and the SSA-based AIH

The core structure of the SSA-based audio information hiding, described in the previous

section, has 3 parameters u, l, and ε. Since a singular spectrum from one audio signal is

different from that from other ones, therefore it is logical to state that, to achieve a better

result, those parameters should be adapted to the host audio signal. In other words, the

SSA-based scheme can be improved by selecting the appropriate parameters, which is

input-dependent, for embedding.

In this section, the cooperation between the core structure and the classic differen-

tial evolution is given in detail. The differential evolution is adopted as the parameter

optimizer for three reasons:

• It is a multi-point optimizer. The effect of the starting point problem is mitigated,

i.e., there is a good chance that the optimizer escapes the local minimum.

1To prevent confusions, the word frame is used in association with the embedding capacity, i.e., if the

capacity is x bps, then within a duration of one second of a signal, there is x frames. A frame can be

partitioned into many subframes for various purposed, and to increase the BDR is one of them.
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Figure 3.12: Example of embedding repetitions. Each frame is partitioned into several

subframes, and all subframes of the same frame are embedded a same watermark bit.

Figure 3.13: Bit-detection rate of the embedding repetitions.
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• It is a derivative-free approach, which means we do not have to worry about whether

the objective function is differentiable or not.

• It has good convergence properties and has proved to be the fastest algorithm in

the evolutionary computational class [92].

3.3.1 Differential evolution optimization

Intuitively, the best parameters are those that yield the high robustness and introduce

no perceptual distortion to the host audio signal. As mentioned in the first chapter, the

two requirements conflict with each other. Thus, the optimization can be viewed as a

trade-off mechanism. The optimizer deployed in this improved scheme aims to minimize

the cost value defined as follows.

Cost =

√
α·(LSD + (1− Sig (SDR)))2 + β ·BER

2
, (3.4)

where LSD, Sig(SDR), and BER are the log-spectral distance, the sigmoid function of

signal-to-distortion ratio (SDR) given that Sig(·) is a sigmoid function, and the average

bit-error rate, respectively.

Given P (ω) and P̂ (ω) are power spectra of original and watermarked signals respec-

tively, the LSD is defined as the following formula.

LSD =

√√√√√ 1

2π

π∫
−π

[
10 log

P (ω)

P̂ (ω)

]2

dω (3.5)

SDR is the power ratio between a signal and the distortion. Given amplitudes of

original and watermarked signals, Aorg(n) and Awmk(n), the SDR is defined as follows.

SDR = 10 log

∑
n

[Aorg(n)]2∑
n

[Aorg(n)− Awmk(n)]2
(3.6)

Bit-error rate (BER) is defined as the number of error bits divided by the total number

of embedded bits.

The term LSD + (1− Sig(SDR)) in Eq. (3.4) represents a cost in terms of objective

measures of the inaudibility, whereas the term BER represents a cost in terms of the

robustness. The two user-defined constants α and β with relationship α+β = 1 control

the balance of inaudibility and robustness, respectively.
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Figure 3.14: Differential evolution optimization.

The optimization is depicted in Fig. 3.14. Note that this is almost simplest because the

optimizer simulates just one attack, i.e., the MP3 compression. For all practical or specific

purposes, attacks can be simulated as many as needed so as to improve the performance

of the scheme.

3.3.2 Automatic parameter estimation

Using the differential evolution to hand over the input-dependent parameters raises one

problem: how to share those parameters between the embedding and extraction pro-

cesses. To assume that the extraction process knows the parameters u and l in advance

(fortunately, both extraction algorithms do not need the parameter ε) is not practical for

some real-world applications. Therefore, a method for automatic parameter estimation is

required. The new extraction process with automatic parameter estimation is shown in

Fig. 3.15.

The automatic-parameter-estimation problem can be described as follows.

Let {
√
λ1,
√
λ2, ...,

√
λd} denote a singular spectrum. According to the embedding
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Figure 3.15: Extraction process with automatic parameter estimation.

rule, there are only two scenarios the set of singular values {
√
λu+1,

√
λu+2, ...,

√
λl−1} ⊂

{
√
λ1,
√
λ2, ...,

√
λd}, where u<l<d, is modified That is, it is either concave or convex.

Given a modified singular spectrum {
√
λ1, ...,

√
λd}, where the {

√
λu+1, ...,

√
λl−1} ⊂

{
√
λ1, ...,

√
λd} is concave, and the possible maximum value of l−u is known, the problem

is to estimate parameters u and l. There are two reasons we are interested in only the

concave scenario: First, naturally, a singular spectrum is convex, thus it is much easier

to notice the concave part. Second, all frames in the whole audio signal share the same

parameters, therefore, statistically, it is more than enough to estimate those parameters

by using only the concave frames.

For the condition that the maximum possible value of l−u is known in advance, this

is not impractical. Because, although both parameters are input-dependent, it is not

necessary that the maximum possible value of l−u is input-dependent as well. In fact, the

initialization process of the differential evolution requires that the search space is fixed,

i.e., we predefine the possible minimum u and the possible maximum l. These two values

are input-independent and determine the possible maximum l−u. Therefore, it can be

shared between the embedding and extraction processes.

We have proposed two methods for automatic parameter estimation: the derivative-
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based and concavity density-based methods.

Derivative-based method

Let Λi denote a singular value
√
λi. Given a singular spectrum {Λ1,Λ2, ...,Λd}, we define

the first order derivative of the singular spectrum as {Λ′1,Λ′2, ...,Λ′d−1}, where

Λ′i = Λi+1 − Λi, (3.7)

for i=1 to d−1.

The second order derivative of the singular spectrum is defined as {Λ′′1,Λ′′2, ...,Λ′′d−2},

where

Λ′′i = Λ′i+1 − Λ′i, (3.8)

for i=1 to d−2.

Figures 3.16(b) and 3.16(c) illustrate an example of the first and second derivatives

of the singular spectrum shown in Fig. 3.16(a), respectively. It can be seen clearly that

when the singular spectrum is unmodified, the second-order derivative of the singular

spectrum is similar to an underdamped harmonic oscillator. When the singular spectrum

is modified and has a concave part, as shown in Fig. 3.17(a), it causes additional abrupt

changes in the slope of the singular spectrum. Therefore, spikes, which are caused by

those changes, present in the second derivative, as shown in Fig. 3.17(b). The parameters

u and l are estimated by detecting the spike and calculating a distance between the spike

and the point at which the oscillation stops.

Concavity density-based method

To understand the logic behind the concavity density-based method, let us first consider

Fig. 3.18. A line segment of length n−m connecting two singular values
√
λm and

√
λn is

drawn, where m and n are indices, and n is greater than m. Note that n−m is the length

of its projection on the index axis. Because of the convexity of the singular spectrum,

for any pairs of indices m and n, most singular values of [m+1, n−1] are under the line

segment.

However, when “1” is embedded, there exist some pairs of indices m and n such that

the singular values of [m,n] are mostly above the line segment, as shown in Fig. 3.19.
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Figure 3.16: Example of a singular spectrum and its derivatives: (a) singular spectrum,

(b) the first order derivative of (a), and (c) the second order derivative of (a).
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Figure 3.17: Example of a modified singular spectrum and its second order derivative:

(a) modified singular spectrum with a concave part and (b) the second derivative of (a).

Figure 3.18: Singular spectrum of original signal and a line segment connecting
√
λ16 and

√
λ37. Singular values on [17, 36] are under the line segment.

55



As a result, the number of singular values above given a line segment can be used as a

clue to detect the concave part of the singular spectrum. This phenomenal is deployed to

estimate the parameters u and l.

In this work, we define the concavity density as a measure of degree of the concavity.

Given a singular spectrum {
√
λ1,
√
λ2, ...,

√
λd}, the concavity density Dm,n of the singular

values from
√
λm to

√
λn is defined as follows.

Dm,n =
n−1∑

i=m+1

(√
λi −L(i)

)
, (3.9)

where L(i) is the function defining the line connecting
√
λm and

√
λn.

L(i) =
√
λm +

√
λm −

√
λn

m− n
(i−m) (3.10)

Basically, the Dm,n is a sum of subtractions between singular values and the line con-

necting
√
λm and

√
λn. An example of concavity-density calculation is demonstrated in

Fig. 3.20. Starting from m= 1, a line segment of length n−m, or a sequence of singular

value that is used to calculate the concavity density, is shifted to the right one singular-

value point at a time to determine a set of concavity density {D1,n, ..., Di,n+i−1, ..., Dd−n+1,d}

for i=1 to d−n+1.

Figure 3.21 shows an example of the concavity-density curve of the singular spectrum

in Fig. 3.19 when the line segment has a length of 30. It can be seen from this example

that the positive density corresponds roughly to the modification region of the singular

spectrum. Hence, it is possible that the parameters u and l can be estimated by guidance

from the concavity density.

The concavity density depends upon the choice of the length of a line segment, as

shown in Fig. 3.22. If the length is too short, such as the line segments #1 and #2,

or too long such as the line segment #3, we may not be able to detect the concavity.

Figure 3.23(a) shows concavity-density curves with different lengths. Therefore, in order

to correctly estimate the parameters u and l, we have to choose the appropriate length.

In this work, we get around the problem by using the average density at different lengths.

For example, the average density from Fig. 3.23(a) is shown in Fig. 3.23(b). To refine the

density curve, two constraints are applied:

1. Any negative-density value is ignored because it implies convexity.

56



2. Any positive-density curve that is narrower than Γ·(l−u), where Γ is a user-defined

real number around 1, is neglected because of the constraint on the minimum pos-

sible value of l−u in the differential evolution optimizer.

Then, the indices at the rising and falling edges of the refined density curve, together

with an offsetting constant, are used to estimate the parameters u and l for the given

frame. Finally, the parameters u and l for the watermarked signal are calculated by

averaging the estimated parameters u and l from all frames. The procedure is summarized

as illustrated in Fig. 3.24.

Let ûi,j and l̂i,j for j=1, 2, ..., ki denote the estimated parameters of the frame i. The

present of the subscript j indicates that it is possible that more than one concave intervals

are detected within one frame. The maximum number of intervals detected within the

frame i is denoted by ki.

Given a set E of the estimated parameter-interval [ûi,j, l̂i,j], the averaging algorithm

used to deliver the estimated parameters û and l̂ is determined by the following procedure.

Given two integral intervals [a, b] and [c, d], where a, b, c, and d are integers and

b−a≤ d−c, we say that there is an overlap between those two intervals if c < b ≤ d or

c ≤ a < d. For a pair of overlapping interval, ([a, b], [c, d]), we define the overlap degree η

as

η =
min(d−a, b−c)

max(b, d)−min(a, c)
, (3.11)

where max(·) and min(·) are the maximum and minimum functions, respectively.

As a consequence of the frame-parameter estimation algorithm, one thing we can

expect from the set E is that it must contain a lot of overlapping intervals [ûi,j, l̂i,j].

By the same token, we know that there is no overlap between intervals [ûi,j1 , l̂i,j1 ] and

[ûi,j2 , l̂i,j2 ] when j1 6= j2. Then, the averaging algorithm is just a process of recursively

grouping the overlapping members of the set E, which consists of the following steps.

1. Each interval [ûi,j2 , l̂i,j2 ] in the set E is assigned a number, called a frequency. Ini-

tially, all frequencies are assigned to 1.

2. Given a pair of estimated parameter-intervals, the overlap degree η is calculated. If

η is greater than a predefined value, η∗, the two intervals are merged to create a

new interval, i.e., the two intervals are removed from the set E, and the new one is
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Figure 3.19: Singular spectrum of a watermarked signal and two line segments. Line

segment #1 connects
√
λ16 and

√
λ37, and line segment #2 connects

√
λ21 and

√
λ49.

Into this frame, a watermark bit 1 is embedded by forcing the singular values
√
λ21 to

√
λ49 toward the singular value

√
λ20. The dotted curve represents the original singular

spectrum. It can be seen clearly that almost all of the singular values are above the line

segment #2.

Figure 3.20: A line segment connecting
√
λ18 and

√
λ42 is used to calculate the concavity

density D18,42 by summing up all differences between singular values and their associated

values on the line segment from index 19 to index 41. D18,42 in this example is −2.5353.

The minus sign implies that the segment of the singular spectrum on [18, 42] is convex.
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Figure 3.21: Set of concavity density {D1,31, D2,32, ..., D110,140}. Notice that there is a

strong relationship between regions of positive density and indices of modified singular

values.

Figure 3.22: Singular spectrum as illustrated in Fig. 3.19 with three line segments. The

line segment #1 connects
√
λ21 and

√
λ30, and the line segment #2 connects

√
λ41 and

√
λ50. They are too short. We cannot detect the concavity of the singular spectrum on

[21, 30] and on [41, 50] even though singular values on such intervals are modified to embed

“1”. Line segment #3 connecting
√
λ19 and

√
λ81 is too long. It is difficult to obtain the

positive concavity density from any long segment as well.

59



Figure 3.23: Concavity density curves when analyzing with four different lengths (a). An

average of those four curves (b).

Figure 3.24: Automatic parameter estimation diagram.
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added to the set. The frequency of the new interval is assigned by adding up the

frequencies of the two old intervals. The new interval is [a+c
2
, b+d

2
], where [a, b] and

[c, d] are the two old intervals.

3. Step 2 is repeated until the set E has no overlapping member.

4. The interval with the highest frequency is chosen as the estimated parameters û

and l̂ for the watermarked signal. If there are more than one intervals with the

highest frequency, the estimated parameters û and l̂ are randomly chosen from

them, uniformly.

The flow diagram of the algorithm is illustrated in Fig. 3.25.

3.4 Psychoacoustic model and the SSA-based AIH

The structure of this scheme is similar to the structure of the adaptive-parameter model.

The only difference is that, instead of using the differential evolution optimizer to de-

liver the parameters u and l, this scheme asks the psychoacoustic model, as described

in Sect. 2.4.4 to do that. The modified embedding process is shown in Fig. 3.26. The

psychoacoustic model is implemented based on the psychoacoustic model 1.

The output of the psychoacoustic model is SMR. To use the SMR, we first have to

establish the relation between frequencies and singular-value indices. As discussed in

Sect. 2.2.2, singular values can be interpreted as scale factors of oscillatory components.

When we use the Fourier transform to analyze each component, we can see that the

frequency range of each component is narrow, as shown in Figs. 3.27 and 3.28.

In this work, we associate the index of singular value with the peak frequency of its

oscillatory component. Then, the relation between the peak frequency of the oscillatory

component and the index can be established. For example, the relation of a frame of 1024

samples is illustrated in Fig. 3.29. In this figure, we know for sure that the singular values

from index 100 on have frequency components greater than 5 kHz. Therefore, given a

frequency range, we can approximately map it to the singular-value interval.

The algorithm we use to deliver the parameters u and l is as follows. These steps are

in the gray box of Fig. 3.26 and illustrated in Fig. 3.30.

1. The psychoacoustic model is used to calculate the SMR of each frame. According to
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Figure 3.25: Averaging algorithm for the automatic parameter estimation.
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Figure 3.26: Embedding process of the AIH scheme based on SSA and a psychoacoustic

model.
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Figure 3.27: Example of the spectra of oscillatory components.

64



Figure 3.28: Example of the spectra of oscillatory components (continued).
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Figure 3.29: Relation between frequencies and singular-value indices.

the psychoacoustic model 1, the frame size used for this calculation is 512 samples.

2. The average SMR is calculated from all SMRs. An example of the average SMR of

one frame is shown in Fig. 3.31.

3. We identify the frequency band [f1, f2] with the average SMR lower than a predefined

γ dB. If there are more than one band, the band with the lowest frequency is selected.

If the frequency bandwidth f2−f1 is wider than a predefined value, it is limited to

that value. In our simulation, the predefined value is 10 kHz. An example is shown

in Fig. 3.31.

4. The selected band [f1, f2] is mapped to a singular-value interval [u, l] for each frame.

To map the frequency range [f1, f2] to the interval [u, l], we first find the local

minimum which is closest to f1, and u is the index at this local minimum. Then,

we find the local maximum that is closest to f2 which must be on the right side of

u, and then l is the index at this local maximum. An example of this mapping is

shown in Fig. 3.32.

5. Finally, the parameters u and l for embedding are the arithmetic mean of boundaries

of all intervals.
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After obtaining the parameters, the following procedure is exactly the same as that of

the adaptive-parameter models.

3.5 Automatic frame detection for the SSA-based AIH

The embedding and extraction processes as described in previous sections are frame-based,

i.e., the host signal is divided into frames, and one watermark bit is embedded into one

frame. Actually, most proposed AIH schemes are frame-based. Thus, to correctly ex-

tract the watermark, the extraction process must know frame positions. The assumption

that the extraction process knows frame positions in advance might not be hold in some

practical situations. For example, an attacker can attack watermarked signals by cutting

a few audio samples, known as the cropping attack. It causes the extraction process to

work improperly. This problem is commonly called the frame synchronization problem.

There are two solutions to solve the frame synchronization problem [19]: (1) by binding

the watermark with invariant audio features of host signal [121] or self-synchronization

[122–124] and (2) by embedding a synchronization code into the host signal [125,126].

3.5.1 Embedding synchronization code

Firstly, the most simplest techniques were studied. A synchronization code is embedded

into every frame, where each frame is assumed to carry one bit of a watermark. A frame

size is assumed to be constant. Let pi denote the beginning position of a frame i, the goal

is to find the set {p1, p2, p3, ..., pN}, where N is the total number of frames. Two methods

were investigated and implemented [127].

LSB-based method

The LSB-based method generates a synchronization code by using normally distributed

random number sequence and replaces the last L bits (the L right-most bits) of samples

of each frame by a binary sequence derived from the generated random number sequence.

Given an audio frame i of length M , the synchronization code embedding process consists

of three steps as follows.
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Figure 3.30: Parameter selection based on the psychoacoustic model 1. Note that the

frame size from the segmentation of the core structure is not necessary to be the same as

that of the psychoacoustic model.
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Figure 3.31: Average SMR.

Figure 3.32: Example of the parameter selection: the frequency range [f1, f2] is mapped

to the interval [u, l].
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Figure 3.33: Example of replacing the last L bits of the sample i with gLi , where L= 3.

(a) The last 3 bits of the sample are 1, 0, and 0, respectively, and g3
i is 101. (b) The last

3 bits of the sample are 1, 0, and 1, respectively, after the replacement.

1. Generate the normally distributed random number sequence (g1, g2, g3, ..., gM) of

lenght M .

2. Convert the decimal gi to 16-bit binary number. If gLi is used to denote the last L

bits of the binary number, the synchronization code is (gL1 , g
L
2 , g

L
3 , ..., g

L
M).

3. Replace the last L bits of the sample i with gLi . An example of this replacement

process is shown in Fig. 3.33.

To detect the frame position, the cross-correlation between the sequence of last L bits

of modified signal and the synchronization code is calculated. The frame position where

the correlation is highest is detected as the correct position.

M-sequence method

M-sequence is a pseudo-random binary sequence generated by a linear feedback shift reg-

ister (LFSR) generator [128]. One of the interesting properties is that the autocorrelation

function of an M-sequence is very similar to a strain of Kronecker delta function. Thus,

it is one of a good choice for the synchronization code. In this method, the M-sequence,

n(t), is added to each audio frame while keeping the signal-to-noise ratio (SNR) at a

reasonable level. The synchronization code embedding process consists of three steps as

follows.

1. Generate the M-sequence n(t) of length M , where M is a frame size.

2. Determine a scale factor α for the M-sequence n(t) in such a way that the SNR is
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S dB. TM is duration of frame length M in time.

α =

√√√√√√√10−0.1S


∫ TM

t=0

x2(t)dt∫ TM

t=0

n2(t)dt

, (3.12)

where x(t) is host signal.

3. Add the scaled M-sequence αn(t), which is the synchronization code, to the audio

frame x(t) directly. Hence, the audio frame with synchronization code is x(t)+αn(t).

To detect the frame position, beginning from the first sample, a frame of length N is

selected, and the correlation between that frame and the synchronization code is calcu-

lated. Then, shifted to the right-hand side by one sample, the next frame of the same

length is selected to calculate the correlation with the synchronization code again. This

shifting process is continued until the last sample of the audio signal is reached. The

correlation peak indicates the frame position.

From our preliminary experiments, we found that both methods could work well in

the no-attack condition, but they are very fragile to signal processing attacks. We also

found that the LSB-based method could achieve the acceptable sound-quality level, but

it is not good enough when the fact that, in the simulation, no watermark information

was embedded is taken into account [127].

For this reason, the proposed SSA-based AIH pursues the other solution to the frame

synchronization problem.

3.5.2 Self-synchronization

We discover that, based on our proposed SSA-based audio watermarking, the scheme can

also be used to detect watermarked frame automatically by analyzing singular spectral.

However, to do this, we need to modify the embedding and extraction rules, and to fully

grasp the idea behind the new rules, let us start with basic findings from this work.

Consider an audio signal with three equal frames of length M , where its middle frame

is embedded the watermark bit 1 by the method described in Sect. 3.2.1, as illustrated in

Fig. 3.34. The starting and the last indices of samples of the middle frame are denoted

by n and n+M−1, respectively, and the frame is denoted by Gn,M . According to the
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Figure 3.34: Example of the audio clip with 3 frames and three segments from which

trajectory matrices are constructed.

embedding and extraction processes, if we use the frame Gn,M to construct a matrix, then

we can expect that there exists the concave part of the singular spectrum, as discussed in

Sect. 3.3.2. If x is an integer less than M , then frames Gn,M and Gn−x,M are overlapping.

We found that the singular spectrum of the trajectory matrix constructed by the frames

Gn−x,M also has a concave part if the overlapping area is large enough. The similar effect

occurs to the frame Gn+x,M as well. That is, if we construct matrices from frames Gi,M for

i=0 to 2M , there are a lot of matrices that we can interpret as embedded the watermark

bit 1. Those matrices are the ones that i is not too far from n. We call this the overlapping

effect of embedding one, and it is the basis of the automatic frame detection. We name the

process of constructing the frames Gi,M for i=0 to the last possible frame and extracting

the watermark bit from those frames the scan operation. This effect implies that we

can detect the hidden bit one by performing the scan operation even though we cannot

pinpoint the precise location of the watermarked frame. This is the reason we need the

new embedding and extraction rules.

The new embedding procedure for the automatic frame detection is as follows.

We first divide a frame into 4 equal subframes. Suppose that each subframe has a

length M . We represent one watermark bit by four bits of “0100” or “0110” depending

upon the watermark bit. If the watermark bit is 0, four bits of “0100” are embedded into

the 4 subframes. If the watermark bit is 1, “0110” are embedded into those subframes, as

illustrated in Fig. 3.35. For example, if the watermark bits are “001”, then the subframe-
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Figure 3.35: Four bits of “0100” are embedded into 4 subsegment of a frame, which

represents embedding “0” (left), and 4 bits of “0110” are embedded into 4 subsegment of

a frame, which represents embedding “1” (right).

embedding bits are “010001000110”. In this scheme, embedding “1” into a subframe is

the same as the embedding process of the core structure. However, embedding “0” into a

subframe means leaving that subframe untouched. We do not need to force some singular

values of the subframe toward the lower-bound value.

Given a frame G=[g0g1 ...g4M−1]T of length 4M , we define the subframe-scan operation

on G as follows.

Scan[G] = (b0, b1, ..., bb3M
δ
c) (3.13)

bi = f(u, l, Giδ,M), (3.14)

where δ is a scan step size, Giδ,M is a subframe [giδ giδ+1 ...giδ+M−1)]
T, for i=0 to 3M of the

frame G, and f(u, l, Giδ,M) is 1 if the singular spectrum curve of the matrix constructed

from the subframe Giδ,M on the interval [u+ 1, l−1] is concave downward; otherwise,

f(u, l, Giδ,M) is 0.

The meaning of this operation is that the scanner Scan[·], which operates on M sam-

ples, will scan through the frame G with the step size of δ and will return 0 or 1 depending

upon the characteristics of the singular spectrum of the scanned subframe.

We use the first “1” of “0100” or “0110”, or the first detection of concavity, as a

synchronization point. If we can detect the next concavity, we will interpret it as the

watermark bit 1. But if the concavity is detected for a short period, it is “0”. Since we

use the first detected concavity as a synchronization point, to make sure that all concavity

are surrounded by convexity, and the distance between two concavity is far enough, “0”

is added at the beginning and the end of the four-bit patterns. This is the reason behind

using “0100” to represent the watermark bit 0 and “0110” to represent the watermark

bit 1. An example of performing the subframe-scan operation according to Eq. (3.13) is

shown in Fig. 3.36.
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Figure 3.36: Example of performing the subframe-scan operation to a 3200-sample frame,

i.e., M=800, with δ=10, u=30, l=80, and “1” are embedded into the second subframe

of the frame.

Figure 3.37: Three-bit patterns of “010” and “000” are used to represented the water-

mark bit 1 and 0, respectively. If unembedded frames are allowed, it is possible that we

misinterpret some unembedded frames as having the watermark bit 0 embedded.

Before going any further, we would like to discuss why the 4-bit pattern is used to

represent one watermarking bit. Actually, any n-bit pattern where n is greater than 3 can

be used. In fact, a 3-bit pattern can be used as well, but, according to our experiments,

if the 3-bit pattern is used, we cannot distinguish between the frame that is embedded

the watermark bit 0 and the frame that is unembedded, as illustrated in Fig. 3.37. If we

assume that there is no such an unembedded frame, then the 3-bit pattern works well.

In this case, we can say one frame is divided into 3 subframes. If we want to embed the

watermark bit 1, then “010” are embedded into the 3 subframes. If we want to embed

the watermark bit 0, then “000” are embedded into those subframes. The reason that we

have the first and the last zeros in the n-bit pattern is to ensure that all concavities are

far enough. Therefore, without the assumption that there is no unembedded subframe, 4

is the minimum number of bits that serves the purpose.
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To detect a watermarked frame, we define another scanner, which operates on 4M

samples, called the frame-scan operation.

Given a watermarked audio signal Y = [y0 y1 ... yH−1]T of length H greater than 4M ,

the frame-scan operation F[Y ] scans from y0 with a scan step of ∆ until it detects the

first watermarked frame.

Let Yi = [yi∆ yi∆+1 ... yi∆+4M−1]T be a frame being scanned at step i, we first per-

form S[Yi]= (b0, b1, ..., bb3M
δ
c). Then, four rectangular windows Wj =(wj0, w

j
2, ..., w

j

b3M
δ
c) are

separately perform on Scan[Yi], i.e., Wj∗Scan[Yi]=(bj0, b
j
1, ..., b

j

b3M
δ
c) for j= 1 to 4.

wjk =


1 if k∈ [σ, σ+Σ], for j=1, 2, 3,

1 if k∈ [σ−Σ, σ], for j=2, 3, 4,

0 otherwise,

(3.15)

where σ=b3M
4δ
c(j−1), and Σ is a positive integer, called the overlap margin.

The value of bjk is calculated by the following equation.

bjk = wjk × bk, (3.16)

for k = 0, 1, ..., b3M
δ
c.

If
b3M
δ
c∑

k=0

bjk is greater than dΣ
2
e for j=1 or 4, or if

b3M
δ
c∑

k=0

bjk is greater than Σ+1 for j=2 or 3,

we say that, by looking through the window Wj, the concavity of the singular spectrum

is detected.

The scanner F[Y ] will stop scanning and declare a watermarked frame only when

the conditions described in Table 3.1 are satisfied. That is it will stop and return the

extracted watermark bit 0 if and only if the concavity of singular spectrum can not be

detected through the windows W1,W3 and W4, but it can be detected through window

W2. It will return the extracted watermark bit 1 if and only if the concavity of the singular

spectrum can not be detected through the windows W1 and W4, but it can be detected

through window W2 and W3. Otherwise, it continues scanning with the step of ∆. Then,

we can restart the frame-scan operation again and again until it reaches the end of the

watermarked signal Y .

An example of performing the four windows to a frame S[Yi] is shown in Fig. 3.38. The

second and third frames are embedded so that the frame-scan operation can decode the

pattern of bi as the watermarked bit 1.
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Table 3.1: Conditions for stopping frame-scan operation. Note that ‘◦’ is “The concavity

of singular spectrum can be detected,” and ‘×’ is “The concavity of singular spectrum

cannot be detected.”

W1 W2 W3 W4

Watermark bit = 0 × ◦ × ×

Watermark bit = 1 × ◦ ◦ ×

Figure 3.38: Example of performing the four windows to Scan[Yi].

3.6 AIH based on SSA in transform domain

As reviewed in Sect. 2.1.4 about the SVD-based audio watermarking schemes, some tech-

niques form matrices in certain transform domains, such as wavelet-, discrete cosine-,

and Fourier-transform domains. Even though the published results from both time and

transform domains are comparable [19, 23, 36], it is worthwhile to investigate the SSA in

other domain. In addition, to our knowledge, there is no AIH based on SSA in transform

domains in existing literature.

In this section, we study and construct the AIH scheme based on the SSA in discrete

wavelet transform (DWT) domain. We made an assumption in the beginning that, since

the human auditory system is not sensitive to high frequency [129], it should be possible

to modify the very-low-order singular values of the trajectory matrix that is constructed

by the detail coefficients of the DWT. As discussed in Sects. 2.2.2 and 3.2.2, the lower the

order, the better performance in robustness.
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3.6.1 Discrete wavelet transform

A wavelet transform is a tool that cuts up signals into different frequency components,

and then studies each component with a resolution matched to its scale [130]. That is,

given a signal of finite energy, the wavelet transform projects the signal on a family of

frequency bands which are generated by the shifts of the mother wavelet. A DWT is any

wavelet transform where the wavelet are discretely sampled [131]. The advantages of the

wavelet transform are as follows [132]: (1) it offers a simultaneous localization in time and

frequency domains, (2) it is computationally very fast with the fast wavelet transform,

(3) it is able to separate the fine details in a signal, (4) it can be used to decompose a

signal into component wavelet, and (5) it can obtain a good approximation of the given

function by using only a few coefficients.

The DWT of a signal x is calculated by passing the signal x through cascading filter

bank. An example of 3-level DWT is shown in Fig. 3.39. The signal x[n] is decomposed

simultaneously by using a low-pass filter with impulse response g and a high-pass filter

with impulse response h. Then, half the samples from each filter can be deleted because

half the frequencies of the signal x[n] are removed. The outputs from the low-pass filter

branch is called approximation coefficients, whereas those from the high-pass filter branch

is called detail coefficients. The approximation coefficients from the preceding level are

then passed through the same pair of filter bank at the next level, and so on. The

frequency domain representation of the three-level DWT of the signal with N samples,

frequency range from 0 to fn is illustrated in Fig. 3.40. According to this example, four

output scales are produced: (1) detail coefficients of N
2

samples with frequency range from

fn
2

to fn from the first level, (2) detail coefficients of N
4

samples with frequency range from

fn
4

to fn
2

from the second level, (3) detail coefficients of N
8

samples with frequency range

from fn
8

to fn
4

from the third level, and (4) approximation coefficients of N
8

samples with

frequency range from 0 to fn
8

.

3.6.2 Embedding process

The embedding process consists of eight steps, as shown in Fig. 3.41 (left).

1. The host signal is segmented into non-overlapping frames.
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Figure 3.39: Three-level DWT filter bank.

Figure 3.40: Frequency domain representation of the three-level DWT of the signal with

frequency range from 0 to fn.

2. Each frame is represented by the approximation and detail coefficients by using the

DWT.

3. Only detail coefficients are used to construct the trajectory matrix.

4. SVD is performed to each matrix.

5. The singular values obtained from the previous step with the index within the

interval of [u+1, l−1] are forced to have the same value as the singular value at the

index u if the watermark bit is 1; otherwise, their new values are the same as the

singular value at the index l.

6. The modified detail coefficients are created by Hankelizing the modified trajectory

matrix.

7. The watermarked frame is built by applying inverse DWT to the approximation and

modified detail coefficients.

8. Finally, the watermarked signal is obtained by stacking all frames.
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Figure 3.41: Embedding and extraction processes of the AIH based on SSA in DWT

domain.
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3.6.3 Extraction process

The extraction process consists of five steps, as shown in Fig.3.41 (right). The first four

steps are exactly the same as those of the embedding process. After obtaining the singular

values, the method of decoding by the median, as described in Sect. 3.2.3, is adopted in

the final step.

3.7 Summary

This chapter proposed the SSA-based AIH frameworks. The basis of all frameworks is

called the core structure. The embedding process of the core structure modifies some

predefined singular values. These modified singular values are signal-independent. We

also discussed the effect of embedding areas on the sound quality of watermarked signal

and the robustness of a watermark. To discuss the effect on the sound quality, we defined

the strain as a measure of deformation of a singular value under attacks. We showed that

a higher-order singular value has a higher strain, thus, it is less robust, but the sound

quality of a watermark signal is better.

Then, we proposed the improved framework in which the differential evolution opti-

mizer is integrated. The optimizer is used to find the parameters. Since the modified

singular values are signal-dependent, the automatic parameter estimation was proposed

to find those parameters in the extraction process; otherwise, the framework cannot be

considered as blind.

Then, we proposed the other improved framework in which the psychoacoustic model 1

is integrated. The relationship between singular-value indices and frequency components

was established.

Then, we proposed the singular-spectrum analyzing technique that can be used to

automatically detect watermarked frames. Finally, we studied the basic SSA in DWT

domain.
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Chapter 4

Implementations and evaluations of

the proposed schemes

Based on the frameworks described in the previous chapter, we implemented and evaluated

three related, but different, models. We start with a database, conditions, and evaluation

methods in the first section, after that the parameters that were used to implement each

model are given in detail. The automatic frame detection and the AIH scheme based on

SSA in DWT domain were also implemented and investigated their properties in some

aspects. Finally, we demonstrate the AIH scheme in which a psychoacoustic model is

incorporated.

4.1 Database and evaluation methods

4.1.1 Database and conditions

One hundred host signals from the RWC music-genre database [133] were used in our

experiments. All have a sampling rate of 44.1 kHz, 16-bit quantization, and two channels.

A watermark was embedded in one channel. The audio-signal duration depends upon

the capacity, total number of watermark bits, and the number of repetitions. Unless

otherwise stated, the watermark was embedded starting from the initial segment of host

signals. All simulations were operated on the Fujitsu CX250 Cluster (JAIST parallel

computers), where each computing node is equipped with two Intel Xeon E5-2680v2 2.80

GHz (10 cores each) and 64 GB memory (4 GB DDR3-1866 ECC ×16).
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We compared the proposed schemes with the conventional SVD-based scheme [23]. It

was chosen as a reference for three reasons:

1. It is one of a few blind SVD-based techniques.

2. Its published results are promising.

3. Both the SSA-based and SVD-based frameworks belong to the same class of the

audio information hiding.

4.1.2 Sound-quality tests

The purpose of sound-quality tests is to measure the effectiveness of the proposed schemes

in terms of inaudibility. Both objective and subjective evaluations were conducted in our

experiments.

Objective evaluation

Three following distance measures the perceptual evaluation of audio quality (PEAQ), the

LSD, and the SDR were chosen. The PEAQ measures the degradation of the watermarked

signal compared with the original. It covers a scale, so called the objective difference grade

(ODG) from −4 (worst) to 0 (best) [134]. The LSD is a distance measure between two

spectra and is defined in Eq. (3.5). The SDR is a power ratio between the signal and the

distortion and is defined in Eq. (3.12).

The evaluation criteria for the good sound-quality are as follows. The ODG must be

greater than −1 (not annoying), the LSD must be less than 0.4 dB, and the SDR must

be greater than 20 dB.

Before evaluating the proposed schemes, we have already verified the perfection of SSA

as an analysis-synthesis tool by checking the ODG, LSD, and SDR of synthesis signals

(without embedding), compared to the originals. The results showed that all ODGs were

around zero, all LSDs were zero, and all SDRs were infinity [135]. In other words, the

framework of singular-spectrum analysis is perfect in the sense that the framework itself

does not introduce distortion into the system.
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Subjective evaluation

The ABX test was used to evaluate sound quality of watermarked signals. The ABX test

was chosen because it is a discrimination test method for the overall difference when there

is no specified attribute to be discriminated [136]. The ABX test is to identify whether a

listener can perceive a difference between two clips of music or not. Firstly, we presented

a subject with two clips, A and B, and then, after presenting the third clip X, which is

randomly selected from either A or B, we asked the subject to match X to either A or B.

In our experiments, A was the original signal, and B was the watermarked signal. The

sequence of presenting A and B to participants was random. We tested 20 audio clips

in total. There were 35 normal-hearing subjects participating in the test. We assumed a

binomial distribution and used it as a statistical analysis tool [137]. Typically, the 95%

confidence level is sufficient for psychoacoustic experiments, i.e., to reach such a level, 14

out of 20 correct identifications was the criterion indicating a perceptible difference [138].

4.1.3 Robustness tests

The effectiveness of the proposed schemes in terms of robustness is measured by the

watermark extraction precision. Either the bit-error rate (BER) or bit-detection rate

(BDR) can represent the watermark extraction precision. The BER is defined as the

number of error bits divided by the total number of embedded bits. Given the embedded-

watermark bit-string w(i) and the extracted-watermark bit-string ŵ(i) for i=1 to N ,

BER =

N∑
i=1

w(i)⊕ ŵ(i)

N
, (4.1)

where ⊕ is the bitwise XOR operator.

In this work, the BER is preferred, and the relation between the BER and BDR is

that BER = 1−BDR. The criterion for the robust AIH is that the BER must be lower

than 0.1 or 10%.

Five attacks were performed on watermarked signals: (1) Gaussian-noise addition with

average signal-to-noise ratio (SNR) of 36 dB, (2) re-sampling with 16 and 22.05 kHz, (3)

band-pass filtering with 100-6000 Hz and −12 dB/Oct, (4) MP3 compression with 128

kbps joint stereo, and (5) MP4 compression with 96 kbps.
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Table 4.1: Parameters for the fixed-parameter model.

Simulation 1 Simulation 2 Simulation 3

Frame/subframe length N (sample) 2450 816 816

Window length L (sample) 980 326 326

Parameter u 20 20 20

Parameter l 60 60 60

Parameter ε 0.1 0.1 0.1

Embedding capacity (bps) 18 54 10.8

Payload (bit) 150 150 150

Total duration (second) 8.3 2.8 13.9

Repetition No No 5

Table 4.2: ODGs, LSDs, and SERs: comparison of the fixed-parameter model and the

conventional method.

ODG LSD SDR

Simulation 1 −0.13 0.36 20.96

Simulation 2 −0.35 0.68 23.49

Simulation 3 −0.13 0.63 23.01

Conventional method [23] 0.20 0.11 26.82

4.2 Implementations and evaluations of the SSA-based

AIH schemes

4.2.1 Fixed-parameter model

The fixed-parameter model was implemented based on the core structure of the SSA-based

AIH schemes, as described in Sect. 3.2, with the parameters shown in Table 4.1.

Sound-quality evaluation

The average ODG, LSD, and SDR of watermark signals compared between the fixed-

parameter model and the conventional SVD-based method are shown in Table 4.2. Note

that the capacity of the conventional SVD-based method is around 6 bps, and its frame

size is 85×85 samples. The evaluation details can be found in Appendix A.
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Table 4.3: BERs (%) comparison of the fix-parameter model and the conventional SVD-

based method when attacks (i.e., MP3 and MP4 compression, Gaussian noise addition

(AWGN), re-sampling with 16 and 22.05 kHz (RES 16 and RES 22.05, respectively), and

band-pass filtering (BPF)) were performed.

No attack MP3 MP4 AWGN RES 16 RES 22.05 BPF

POL MED POL MED POL MED POL MED POL MED POL MED POL MED

Simulation 1 1.76 1.17 7.51 7.10 5.03 4.35 1.76 1.17 4.17 3.78 2.76 2.26 4.95 5.91

Simulation 2 4.10 2.24 16.38 14.77 11.52 9.28 4.10 2.24 7.54 6.14 5.11 3.54 12.92 11.28

Simulation 3 0.97 0.13 14.59 11.63 9.61 6.74 0.98 0.17 5.22 4.24 2.48 1.78 10.52 8.25

Conventional method [23] 0.00 59.00 1.20 0.00 2.67 2.67 38.08

Table 4.4: Average BERs (%): comparison of the fix-parameter model and the conven-

tional SVD-based method.

Average BER (%)

POL MED

Simulation 1 3.99 3.68

Simulation 2 8.81 7.07

Simulation 3 6.33 4.70

Conventional method [23] 14.80

Robustness evaluation

The results of robustness tests are shown in Table 4.3. We also compare the BERs when

the watermark is decoded by the median method (MED) and by the polynomial fitting

method (POL). The average BERs of the fixed-parameter model and the conventional

method are summarized in Table 4.4. The evaluation details can be found in Appendix A.

Discussion

In this work, we compare our results with the conventional SVD-based method [23].

The details of comparative evaluations of the conventional method, the other typical

methods, and the fixed-parameter model can be found in Appendix D. In short, the

conventional SVD-based method is used as our benchmark because it is the most robust

method against several attacks, except against the MP3 compression and the band-pass

filtering. In addition, it is blind and inaudible.

Compared with the conventional method, the degradation in the sound quality of
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Figure 4.1: Relation between frequencies and singular-value indices at different frame size.

watermarked signals obtained from the fixed-parameter model is quite larger, especially

when the frame or subframe size of the SSA-based method is small, as in the cases

of simulations 2 and 3. Effect of the frame size to sound quality is not beyond our

expectations because the smaller frame size implies the higher capacity. This relationship

is supported by comparing the results from the simulations 1 and 2, where the capacity

and the ODG and LSD are inversely proportional. There is another subtle reason that the

frame size affects sound quality. It associates with our findings concerning the relation

between frequency ranges and singular-value indices. When the frame size is smaller,

the singular-value interval covers the larger range of frequencies, as shown in Fig. 4.1.

Therefore, modifying singular values of the smaller frame size affects more frequency

components than modifying those of the larger frame size.

On the other hand, the robustness of the fixed-parameter model is better than that

of the conventional one. However, we have been aware that this conclusion might be

biased due to the possibility that the conventional method might be fragile only to the

MP3 and band-pass filtering since the number of attacks is not big enough. However, the

BERs of the simulation 1 and the conventional method are comparable even when we do

not take the MP3 and band-pass filtering into consideration. We also found that there

is no significant difference in terms of extraction performance between the median and
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polynomial fitting methods for the fixed-parameter model.

Comparing the BERs of simulation 2 and 3 can confirm that BER can be reduced

by embedding repetitions, as theoretically explained in Sect. 3.2.4. Compared the frame

sizes in the simulation 1 and 3, we can infer that embedding information in one long

frame is better than doing so in many short frames of the same total duration in terms of

both inaudibility and robustness. However, when computation complexity is taken into

account, embedding repetitions may be better because time complexity of SVD of a m×n

matrix is O(min{mn2,m2n}) [139–141]. That is, embedding x subframes of length N is

less complex than embedding a frame of length x×N . For this very reason, in our latter

implementations, even though we could make a better result by increasing the frame size,

we chose to implement based on comparatively small frames, and it is enough to verify

the concepts of SSA-based AIH.

The final remark is about the robustness of the host signal in the sense that whether

all audio signals have the same tendency, e.g., the properties of the singular values, in the

SSA-based decomposition or not. According to the primary theorem concerning the SVD,

every matrix of complex numbers has a singular value decomposition, and the singular

values are uniquely determined [142]. Therefore, this theorem guarantees the existence

of the singular values. The only property of the singular-value plot that we require is

that the plot is approximately convex. Mathematically, the region above the singular

spectrum plot is not a convex set. However, we do not require the plot to be strictly

convex. Broadly speaking, we require that the approximation of the singular spectrum

curve by the quadratic equation is convex. From our experiments, and based on the

robustness evaluation results, this condition holds. It is possible that the non-strictly-

convex nature of the singular spectrum plot might pose a problem that limits the overall

performance of the scheme; therefore, this issue will be investigated further.

4.2.2 Partially-blind, adaptive-parameter model

The partially-blind, adaptive-parameter model (hereinafter called the partially-blind model)

was implemented based on the core structure where the parameter set {u, l, ε} was deter-

mined by the differential evolution optimization, as described in Sect. 3.3.1. The model is

partially-blind because it is assumed that the parameters, which are signal-dependent, are
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Table 4.5: Parameters for the partially-blind model.

Subframe length N (sample) 2450

Window length L (sample) 980

Embedding capacity (bps) 18

Payload (bit) 150

Total duration (second) 8.3

Repetition No

{u, l, ε} provided in Appendix B

Table 4.6: Average, maximum, and minimum correct identification of the ABX tasks with

20 stimuli for the fixed-parameter and partially-blind models.

Fixed-parameter model Adaptive-parameter model

Average correct identification (%) 73.00 49.78

Maximum correct identification 19 13

Minimum correct identification 9 7

presented at the extraction stage. In other words, the parameters u, l, and ε are shared

between the embedding and extraction processes, someway. The aim of this implementa-

tion is to verify the assumption that the poor sound-quality of some watermarked signals

obtained from the fixed-parameter model is due to the singular-value modification that

takes place in inappropriate locations. The parameters for the implementation of the

partially-blind model are shown in Table 4.5.

Sound-quality evaluation

The results from objective sound quality tests are shown in Table 4.7. Twenty out of

100 audio clips were randomly selected and used in the ABX test with 35 normal-hearing

persons. The results are shown in Table 4.6. The correct identification of X when audio

signals were embedded by using the fixed-parameter model was around 70%, whereas it

was about the chance level in the case of the adaptive-parameter model.

Robustness evaluation

The results from robustness tests are shown in Table 4.8. The table shows only BERs

from the median method. The evaluation details can be found in Appendix A.
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Table 4.7: ODGs, LSDs, and SERs: comparison of the fixed-parameter model, partially-

blind model, and the conventional method.

ODG LSD SDR

Partially-bland model 0.19 0.16 35.25

Fixed-parameter model −0.13 0.36 20.96

Conventional method [23] 0.20 0.11 26.82

Table 4.8: BERs (%): comparison of the fix-parameter model, partially-blind model,

and the conventional SVD-based method when attacks (i.e., MP3 and MP4 compression,

Gaussian noise addition (AWGN), re-sampling with 16 and 22.05 kHz (RES 16 and RES

22.05, respectively), and band-pass filtering (BPF)) were performed.

No attack MP3 MP4 AWGN RES 16 RES 22.05 BPF

Partially-blind model 1.34 5.80 6.52 1.34 2.58 1.92 5.62

Fixed-parameter model 0.13 11.63 6.74 0.17 4.24 1.78 8.25

Conventional method [23] 0.00 59.00 1.20 0.00 2.67 2.67 38.08

Discussion

Compared with the fixed-parameter model, the robustness of the partially-blind model is

comparable. However, the sound quality significantly improves both in objective and sub-

jective evaluations. The average correct identification of 49.78% indicates that subjects

hardly perceive the difference between A and B, i.e., between the original and water-

marked signals.

From our experiments, we found that the parameter set obtained from differential

evolution was good at some specific tasks included in the differential evaluation optimiza-

tion. For example, if the simulation of MP3 compression is removed from the optimizer

in Fig.3.14, watermarked signals will be fragile to the MP3 attack. Therefore, the prac-

tical model should include potential attacks as many as possible in order to find the best

parameters. Note that adding an attack to the optimizer increases computational time

considerably, so it presents some kind of trade-off.
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Table 4.9: Parameters for the completely-blind model.

Subframe length N (sample) 2450

Window length L 980

Embedding capacity (bps) 18

Payload (bit) 150

Total duration (second) 8.3

Repetition No

{u, l, ε} provided in Appendix B

Table 4.10: ODGs, LSDs, and SERs: comparison of the fixed-parameter model, partially-

blind model, completely-blind model, and the conventional method.

ODG LSD SDR

Completely-blind model 0.18 0.24 22.39

Partially-blind model 0.19 0.16 35.25

Fixed-parameter model −0.13 0.36 20.96

Conventional method [23] 0.20 0.11 26.82

4.2.3 Completely-blind, adaptive-parameter model

Similar to the partially-blind model, the completely-blind, adaptive-parameter model

(hereinafter called the completely-blind model) was built based on the core structure and

the differential evolution. In addition, to avoid the assumption that the extraction process

knows the signal-dependent parameters in advance, the automatic parameter estimation

described in Sect. 3.3.2 was integrated into the scheme.

From our preliminary comparative-evaluation of the derivative-based and concavity

density-based methods, we found that the latter provides a better estimation (see Ap-

pendix C). Hence, it was chosen to estimate the parameter set {u, l, ε} in the extraction

process. The parameters for the implementation of the completely-blind model are shown

in Table 4.9.

Sound-quality evaluation

The results from sound-quality tests are shown in Table 4.10. The evaluation details can

be found in Appendix A.
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Table 4.11: BERs (%): comparison of the fix-parameter model, partially-blind model,

completely-blind model, and the conventional SVD-based method when attacks (i.e., MP3

and MP4 compression, Gaussian noise addition (AWGN), re-sampling with 16 and 22.05

kHz (RES 16 and RES 22.05, respectively), and band-pass filtering (BPF)) were per-

formed.

No attack MP3 MP4 AWGN RES 16 RES 22.05 BPF

Completely-blind model 11.45 21.54 13.74 11.45 15.64 13.76 22.77

Partially-blind model 1.34 5.8 6.52 1.34 2.58 1.92 5.62

Fixed-parameter model 0.13 11.63 6.77 0.17 4.24 1.78 8.25

Conventional method [23] 0.00 59.00 1.20 0.00 2.67 2.67 38.08

Robustness evaluation

The results of robustness tests are shown in Table 4.11. The evaluation details can be

found in Appendix A.

Discussion

Compared with the partially-blind model, the robustness of the completely-blind model

decreases. On the other hand, compared with the fixed-parameter model, the sound

quality of the completely-blind model increases. Its robustness is poorer than that of the

partially-blind model because there is one additional and critical condition that constrains

the differential evolution, i.e., the extraction process must be blind. From our experimen-

tal results, to be blind, the intervals [u, l] have to be large. As a result, a large interval is

not likely to be placed at low-order singular values since it will strongly affect the sound

quality. For this reason, most parameters u and l are quite large compared with those

delivered by the differential evolution in the partially-blind model. Therefore, it is less

robust. The completely-blind model is better than the fixed-parameter in sound quality

for a very obvious reason. It deploys the differential evolution.

91



4.3 Experiments on AIH integrated with a psychoa-

coustic model

The following schemes were implemented based on the core structure, the psychoacoustic

model 1, and the frequency-to-index mapping algorithm described in Sect. 3.4. The objec-

tive of these implementations was to verify that the psychoacoustic model can provide the

SMR information that the SSA-based AIH scheme can use to improve the performance.

In this section, we report the results from two implementations. The first one is the

implementation without the automatic parameter estimation, which can be considered

as the partially-blind scheme. The second one is the implementation with the automatic

parameter estimation, which can be considered as the completely-blind scheme.

4.3.1 Scheme without the automatic parameter estimation

We simulated the scheme without the automatic parameter estimation in four conditions

on the SMR criterion γ and the frame length N . The parameters for this implementation

are shown in Table 4.12.

We tested with 12 signals randomly selected from the RWC database. The comparison

of the average ODGs, the average LSDs, and the average SDRs are shown in Table 4.13.

It can be seen from this table that there is no significant difference in sound quality among

the four simulations, and they are slightly poorer than the partially-blind model and the

conventional SVD-based one in the LSD. However, in other measures (the ODG and the

SDR), they are comparable or better than them. Therefore, in terms of inaudibility, the

psychoacoustic model can be used to determine the parameters as well as the differential

evolution.

The results from robustness tests are shown in Table 4.14. The average BER of the

first, second, third, and the fourth simulations, the fixed-parameter model, the partially-

blind model, and the conventional SVD-based method are 30.78%, 9.56%, 5.03%, 4.76%,

3.54%, 3.58%, and 14.80%, respectively. Except for the first simulation, the other pro-

posed schemes are better than the conventional one. Comparing all four simulations, we

found that the smaller the frame size, the poorer the robustness. The robustness depends

upon the value of γ. The reason for this result is that the low SMRs imply inaudible
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Table 4.12: Parameters for the psychoacoustic-model-based AIH schemes. Note that the

word adaptive means the value of γ depends on the maximum SMR. If the maximum SMR

is greater than 25 dB, γ=18. If the maximum SMR is less than 20 dB, γ=12. Otherwise,

γ = 15. N is the audio frame-length into which one bit of the hidden information is

embedded. Also, note that this frame size is not necessary to be the same as that of the

psychoacoustic model.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Frame length N (sample) 816 2450 2450 2450

Window length L (sample) 326 980 980 980

Embedding capacity (bps) 54 18 18 18

Payload (bit) 150 150 150 150

Total duration (second) 2.77 8.33 8.33 8.33

Repetition No No No No

SMR criterion γ (dB) 10 10 15 adaptive

Parameters u and l provided in Appendix B

components. The perceptual-coding techniques, such as the MP3 or MP4 compression,

normally destroy components with the low SMRs. Thus, embedding hidden information

into the components with the higher SMRs increases the chance that the information sur-

vives after signal processing. Another reason is that the higher SMRs usually associate

with the lower singular-value indices. We also found that embedding the information in

the lower index is more robust. When the adaptive strategy is used to set the value of

γ, its average BER is very close to those of the previous SSA-based methods. Therefore,

with a suitable value of γ, the psychoacoustic model can be used to deliver the parameters

as well as the differential evolution in terms of robustness.

4.3.2 Scheme with the automatic parameter estimation

The automatic parameter estimation, as described in Sect. 3.3.2, was integrated into the

AIH scheme with the psychoacoustic model. In this experiment, we used the same settings

as those of the simulation 4 in Table 4.12. Since the automatic parameter estimation does

not affect the embedding process of the scheme, the sound-quality results were the same

as those of the simulation 4 in Table 4.13. However, the robustness results were different

because they depended on the accuracy of the automatic parameter estimation. The
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Table 4.13: ODGs, LSDs, and SDRs: comparison of the psychoacoustic-model-based

AIH schemes, the fixed-parameter model, the partially-blind model, and the conventional

SVD-based method.

ODG LSD SDR

Simulation 1 0.20 0.33 42.52

Simulation 2 0.19 0.22 34.75

Simulation 3 0.16 0.31 25.68

Simulation 4 0.18 0.34 24.30

Fixed-parameter model -0.13 0.36 20.96

Partially-blind model 0.19 0.16 35.25

Conventional method [23] 0.20 0.11 26.82

Table 4.14: BERs (%) comparison of the psychoacoustic-model-based AIH schemes,

the fixed-parameter model, the partially-blind model, and the conventional SVD-based

method when attacks (i.e., MP3 and MP4 compression, Gaussian noise addition (AWGN),

re-sampling with 16 and 22.05 kHz (RES 16 and RES 22.05, respectively), and band-pass

filtering (BPF)) were performed.

No attack MP3 MP4 AWGN RES 16 RES 22.05 BPF

Simulation 1 4.17 31.33 47.94 4.17 52.39 22.11 53.33

Simulation 2 2.00 22.50 12.83 2.00 9.50 4.39 13.72

Simulation 3 1.67 11.44 5.39 1.67 5.89 2.50 6.67

Simulation 4 1.61 10.94 5.22 1.61 5.17 2.39 6.39

Fixed-parameter model 1.17 7.10 4.35 1.17 3.78 2.26 4.95

Partially-blind model 1.34 5.80 6.52 1.34 2.58 1.92 5.62

Conventional method [23] 0.00 59.00 1.20 0.00 3.67 1.67 38.08
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Table 4.15: Actual and estimated values of the parameters u and l used in the scheme

with the automatic parameter estimation. The most left column shows the track numbers.

Actual value Estimated value

u l û l̂

Track no. 01 30 90 26 90

Track no. 07 40 90 39 93

Track no. 13 20 60 23 66

Track no. 28 45 110 43 110

Track no. 37 40 120 44 120

Track no. 49 40 100 38 99

Track no. 54 30 90 30 90

Track no. 57 75 160 81 155

Track no. 64 30 90 28 90

Track no. 85 60 140 64 140

Track no. 91 40 100 37 100

Track no. 100 35 93 38 95

estimated values of u and l, compared with the actual ones, are shown in Table 4.15.

The results from the robustness evaluations are shown in Table 4.16. The average

BERs of the psychoacoustic-model-based scheme without and with the automatic param-

eter estimation, the fixed-parameter model, the partially-blind model, and the conven-

tional SVD-based method are 4.76%, 6.78%, 3.54%, 3.58%, and 14.80%, respectively. The

average BER of the scheme with the automatic parameter estimation satisfies the criterion

for the robustness as its average BER was less than 10%. Compared with the conventional

method, the psychoacoustic-model-based schemes are more robust. However, compared

with the previously proposed SSA-based methods, they are less robust to some degree.

Therefore, the overall performance of the psychoacoustic-model-based schemes seem to

be slightly poorer than that of the partially-blind model.
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Table 4.16: BERs (%) comparison of the psychoacoustic-model-based AIH schemes with

and without the automatic parameter estimation (APE), the fixed-parameter model, the

partially-blind model, and the conventional SVD-based method when attacks (i.e., MP3

and MP4 compression, Gaussian noise addition (AWGN), re-sampling with 16 and 22.05

kHz (RES 16 and RES 22.05, respectively), and band-pass filtering (BPF)) were per-

formed.

No attack MP3 MP4 AWGN RES 16 RES 22.05 BPF

Scheme with the APE 2.50 19.44 6.61 2.50 8.83 6.06 11.50

Scheme without the APE 1.61 10.94 5.22 1.61 5.17 2.39 6.39

Fixed-parameter model 1.17 7.10 4.35 1.17 3.78 2.26 4.95

Partially-blind model 1.34 5.80 6.52 1.34 2.58 1.92 5.62

Conventional method [23] 0.00 59.00 1.20 0.00 3.67 1.67 38.08

4.3.3 Discussion

There are five observations concerning the performance and the limitation of the proposed

AIH schemes with the psychoacoustic model to be discussed. First, we have shown that the

psychoacoustic model can be used to determine the parameters u and l. These parameters

are host-signal-dependent and of importance because their values determine the balance

between the inaudibility and the robustness. In the partially-blind model, the differential

evolution is used to determine the parameters. Compared with using the differential

evolution, there are three great advantages of using the psychoacoustic model.

• The computational time is reduced considerably because the differential evolution

optimization has a large search space. The comparison of the computational time

is shown in Table 4.17. To determine the parameters u and l for one signal, the

differential evolution takes about 13 hours, whereas the psychoacoustic-model-based

method takes about 4.3 seconds.

• The optimal parameters from the differential evolution depends on many factors,

such as the simulations included in the optimizer. Moreover, the cost function has

two additional parameters. In this sense, using the psychoacoustic model reduces

the number of scheme parameters.

• We can achieve the better inaudibility when the frame size is small, as shown in

Table 4.18. It implies that the psychoacoustic-model-based scheme can achieve a
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Table 4.17: Comparison of the computational times for determining the parameters of

a host signal when the automatic parameterization is based on the differential evolution

and when it is based on the psychoacoustic model.

Function
Computational time

of the function

Search space/

No. of operation

Approximated total

computational time

Differential Evolution Cost function evaluation 3 minutes 44 seconds 31815 possible vectors 13 hours 9 minutes

Psychoacoustic model SMR calculation 0.36 seconds 717 times 4.3 minutes

higher embedding capacity, compared with the partially-blind model.

Second, in the first experiment, the fourth simulation is the best, compared with

other simulations. However, the robustness of this simulation is slightly poorer than

that of the fixed-parameter model and the partially-blind model. This is because we

use only the SMR from the psychoacoustic model as the guidance for determining the

parameters. The low SMR can gain inaudibility but may lose robustness. In addition,

the low-SMR component is more likely to be destroyed by the perceptual coding such as

the MP3 compression. As a result, the BER of the fourth simulation is marginally higher

than that of the previously proposed schemes when the MP3 compression is performed

on the watermarked signals. To improve the robustness, we may include the two-tone

suppression to the psychoacoustic model. Then, the hidden information is embedded into

the suppressed areas where they have a high SMR so that the scheme can achieve both

inaudibility and robustness. This is one of our future work.

Third, different from the previously proposed schemes, in this one, we also investigated

the effect when we slightly adapted the embedding rule. Instead of modifying the singular

spectrum when the watermark bit 0 is embedded, we did not modify it. We found that

the effectiveness in terms of robustness are the same, but in terms of inaudibility, the ob-

jective scores improves slightly, as shown in Table 4.19. The previously proposed schemes,

especially the one with the differential evolution optimization, can benefit from this fact

because the optimization function directly handles the trade-off between inaudibility and

robustness.

Fourth, analyzing a host signal by using the psychoacoustic model and determining

the relationship between the frequency and the singular-value index of the signal might

expose the limitation in finding the balance between the inaudibility and the robustness of
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Table 4.18: ODGs, LSDs, and SDRs: comparision of the psychoacoustic-model-based AIH

scheme and the partially-blind model when the frame size is small.

ODG LSD SDR

Simulation 1 0.20 0.33 42.52

Partially-blind model (N = 816) -0.35 0.68 23.49

Table 4.19: ODGs, LSDs, and SDRs: comparison of the psychoacoustic-model-based AIH

scheme when the singular spectrum is modified and when it is not modified to embed the

watermark bit 0.

ODG LSD SDR

The singular spectrum is modified. 0.18 0.34 24.30

The singular spectrum is not modified. 0.18 0.25 25.61

the proposed scheme. Figures 4.2 and 4.3, for instance, show the psychoacoustic analysis

of a host signal and the relationship between the peak frequency and the singular-value

index of the host signal, respectively. Figure 4.2 shows that components with low SMRs

are under the absolute threshold of hearing. On the one hand, if we embed information

into these components, the information can be easily destroyed by the perceptual-coding

techniques. Therefore, it is not robust. On the other hand, if we embed information

into the components with higher SMRs, the inaudibility may not be achieved. The pro-

posed psychoacoustic-model-based scheme encounters difficulty when the frame has this

kind of characteristic. The similar difficulty can be seen from a different viewpoint, as

shown in Fig. 4.3. In this figure, a small singular-value interval associates with a large

frequency-range. When we modify a large interval on a singular spectrum to achieve a

good robustness, it will strongly affect many frequency-components so that the sound

quality may drop.

The final remark is about the relationship between the singular-value index and the

peak frequency of the oscillatory components. This relationship is unique because the

singular values are uniquely determined. That is, given one frame, we have only one

curve that describes the relation between the singular-value index and the peak frequency

of the oscillatory components associated with that index. However, these relationships

vary from frame to frame. The examples of these relationships from six different frames
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Figure 4.2: Psychoacoustic analysis of the host signal (track no. 57) and its SMR.

Figure 4.3: Relationship between dominant frequency and singular-value index of the

signal (track no. 57).
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and from different audio signals are shown in Fig. 4.4. Some share common properties.

For example, Figs. 4.4(c), 4.4(e), and 4.4(f) look more like the relationship of which the

frequency increases as the index increases. Figures 4.4(a) and 4.4(b) have more oscillation

at the higher indices than at the lower indices. The relationship in Fig. 4.4(d) looks almost

like random.

This proposed scheme makes the assumption that the frame to be embedded the

watermark has the relationship between the singular-value index and the peak frequency

as those in Figs. 4.4(c), 4.4(e), and 4.4(f). Actually, those in Figs. 4.4(a) and 4.4(b) are

also acceptable because our proposed scheme has never embedded the watermark into

the indices greater than L
2
, where L is the window length for the matrix formation of the

basic SSA. To characterize these relationships, we first define the degree of dispersion, ζ,

of the relationship curve as follows.

ζ =

L
2∑
i=1

∣∣fp(i)−Θ(i)
∣∣ . (4.2)

Θ(i) =

(
fp(

L
2
)− 1

L
2
− fp (1)

)
×
(
i− L

2

)
+ fp

(
L

2

)
, (4.3)

where i is the singular-value index, fp(i) is the peak frequency of the oscillatory com-

ponent associated with the index i, Θ(i) is the line connecting two points
(
1, fp(1)

)
and(

L
2
, fp(

L
2
)
)

, and L is the window length for the matrix formation.

Then, we define ζref as the degree of dispersion of the reference curve, as shown in

Fig. 4.5, of which the differences between fp(i) and Θ(i) for each i = 1 to L are set to

2 kHz. Finally, the degree of dispersion ζB (in Bel) of the relationship curve, compared

with the reference curve, is defined as

ζB = log
ζ

ζref

. (4.4)

The value of ζB can be used to characterize the relationships between the peak fre-

quency and the singular-value index, i.e., the lower the value of ζB, the curve the more

like the reference curve. Examples of the distribution of ζB over 100 frames of two audio

signals are shown in Fig. 4.6. Based on our observation, the curve with the value of ζB

lower than 0.5 Bel looks more like the curves in Figs.4.4(a), 4.4(b), 4.4(c), 4.4(e), and

4.4(f), and we found this kind of curves about half the time, for instance, 45% in the

signal 1 and 77% in the signal 2 of Fig. 4.6.
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Figure 4.4: Relationships between the dominant frequency and the singular-value index

from six different frames.
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Figure 4.5: Reference relationship between the dominant frequency and the singular-value

index.

This finding implies that, at least, those frames with the ζB < 0.5 Bel will be improved

considerably in terms of the inaudibility when we apply the proposed method, which is

based on the psychoacoustic model and this kind of the index-frequency relationship, to

determine the parameters u and l.

4.4 Experiments on the automatic frame detection

The SSA-based AIH scheme with the automatic frame detection was implemented based

on the scheme described in Sect. 3.5.2 with the parameters shown in Table 4.20.

To evaluate the scheme, 30 audio signals were randomly chosen from the RWC database.

Each signal is clipped to 48000 samples randomly. Then, 2 to 7 locations were randomly

generated for embedding watermark bits. There were 140 bits in total.

The accuracy of our automatic frame detection was 80%. (112 out of 140 clips were

correctly detected.) The false positive detection was 6.42%. The sound quality evaluations

are shown in Figs.4.7, 4.8, and 4.9. The average ODG, LSD, and SDR were 0.05, 0.17

dB, and 32.56 dB, respectively.
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Figure 4.6: Examples of the distribution of ζB over 100 frames of two audio signals.
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Figure 4.7: ODGs of watermarked signals obtained from the scheme with the automatic

frame detection.

Figure 4.8: LSDs of watermarked signals obtained from the scheme with the automatic

frame detection.

Figure 4.9: SDRs of watermarked signals obtained from the scheme with the automatic

frame detection.
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Table 4.20: Parameters for the SSA-based AIH scheme with the automatic frame detec-

tion.

Subframe length N (sample) 800

Window length L (sample) 320

Subframe-scan step size δ 10

Frame-scan step size ∆ 10

Overlap margin Σ 20

Maximum embedding capacity (bps) 13.78

Payload (bit/audio signal) 2-7

Total duration (second) 1.1

Discussion

The sound quality is very good even though the subframe size is very small. There are

two facts that can explain these results. First, the capacity is four-time less than that of

the scheme without the automatic frame detection since four subframes are required to

represent one watermark bit. Second, singular values are disturbed only when subframes

are embedded the watermark bit 1 and are untouched when embedding the watermark

bit 0.

The detection rate of 80% can confirm the fundamental concepts on which the proposed

scheme is based. From our analysis of data, we found that the detection rate is determined

by the algorithm that interprets the bit string bi. In the proposed scheme, our algorithm

uses the simplest rectangular windows to find the pattern of bi. Even in the case the

algorithm could not detect a watermark bit, we found that the string bi correctly presented

the concavity on singular spectra, but with distortion to some degree. Therefore, effective

pattern recognition techniques could be helpful in this situation.

Unexpectedly, false positive detections occur, i.e., the algorithm reports that there is

a watermark when there is no hidden information embedded there. We investigated this

problem by analyzing unwatermarked signals with the proposed automatic frame detec-

tion. We found that in those false-positive-detection cases, there are natural concavities

on singular spectra. If the false positive detection is a serious concern, we can get around

the problem by detecting the natural concavity and then hiding information only in the
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Table 4.21: Parameters for the AIH scheme based on SSA in DWT domain.

Frame length N (sample) 2448

No. of the filter bank levels 3

Wavelet name Daubechies 1 [143]

No. of the detail coefficients 2142

Window length L (sample) 856

Parameter u 5

Parameter l 100

Embedding capacity (bps) 18

Payload (bit) 150

Total duration (second) 8.5

Repetition No

no-concavity frames. Otherwise, a good pattern recognition is required due to our findings

that the patterns of the string bi of the natural concavity are different from those of the

embedded watermark. This problem will be investigated in the future.

4.5 Experiments on AIH based on SSA in DWT do-

main

The parameters for implementation are shown in Table 4.21. We chose the 3-level DWT

with the wavelet Daubechies 1. The frame size N is a bit smaller than that of the fixed-

parameter model because the n-level DWT requires that N is divisible by 2n, and we

have N− N
2n

detail coefficients in total. The trajectory matrix is constructed by using a

sequence of detail coefficients ranging from low to high frequencies, i.e., from the level 3

to the level 1.

Evaluation and discussion

Compared with the SSA-based AIH in time domain, the performance in terms of robust-

ness and inaudibility of the scheme in DWT domain is rather poor. The ODG, LSD,

and SDR are −0.4429, 1.5063 dB, and 23.4094 dB, respectively. The average BER is

5.74%, and it increases to around the chance level when attacks were applied except for

the Gaussian noise addition.
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There are many opened questions at this point. For example, what will happen when

we form the trajectory matrix differently, when we change the mother wavelet, or when

we increase or decrease the filter bank levels. We leave these curiosity for future work.

Besides, the myth about the singular value loses its physical meaning when a trajectory

matrix is formed by wavelet coefficients. Although the idea of embedding information in

high-frequency coefficients seems reasonable, it is not clear what are singular values of the

matrix formed by them.

4.6 Summary

Compared with the conventional method, the fixed-parameter model was more robust.

However, the sound quality of watermarked signals obtained from this model was poorer.

We found that the frame size affected both the sound quality of watermarked signal and

the robustness of the watermark. The bigger size is more robust and inaudible than the

smaller one. Embedding repetitions can reduce the BER, but, at the same embedding

capacity, the bigger frame size is still better in robustness. There was no significant

difference between extractions by the median and by the polynomial fitting for the fixed-

parameter model.

In comparison with the fixed-parameter model, the partially-blind model outperformed

it in terms of the sound quality. The sound-quality measures of watermark signals ob-

tained from the partially-blind model and the conventional method were comparable, but

the robustness of the partially-blind model was significantly better. The robustness of

the partially-blind model dropped considerably when compared with that of the fixed-

parameter one. Therefore, there was clearly a trade-off between inaudibility and robust-

ness. The completely-blind model could extract a watermark blindly, but its detection

rate decreased due to the blindness condition.

When the psychoacoustic model was integrated into the scheme, the sound quality

of watermarked signal was the best. The automatic frame detection could detect frames

with the accuracy of 80% and the sound quality of watermarked signals was very good.

The scheme based on SSA in DWT domain was the most fragile, and the singular values

of this scheme lost their physical meaning.
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Chapter 5

Applications of the SSA-based AIH

Three applications of the SSA-based AIH are proposed in this chapter: ownership pro-

tection, information carrier, and fragile audio-watermarking. Each application has its

own requirements, and some of their requirements are different. For example, the fragile

audio-watermarking requires fragility, but the ownership protection requires robustness.

However, the robustness is not a concern for the information carrier. These applications

are a good example that shows the flexibility of the proposed SSA-based AIH. Evaluations

with respect to each application’s requirements are performed, and results are reported.

5.1 Ownership protection with SSA-based audio wa-

termarking

When there is disagreement over ownership of audio work, the watermark can serve the

useful purpose of identifying the true owner. Only the owner who knows the secret message

can reveal the existence of it. The important properties that the AIH scheme for the

ownership protection or ownership identification requires are the secrecy of the watermark

and robustness. We have already shown that all proposed models are robust against

many signal processing attacks. Due to the general requirement of inaudibility, the audio

watermark is a secret message to some degree if there is no explicit expression somewhere

stating that its host is watermarked. Straightforwardly, to increase the degree of secrecy,

any efficient encryption technique can be integrated to the watermarking scheme [144–

146].
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Figure 5.1: Embedding and extraction processes of the AIH scheme for the ownership

protection.

5.1.1 Implementation

All models proposed in Chapter 3 can be directly applied to this application. In this

demonstration, we show an example of applying the most widely used RSA (Rivest-

Shamir-Adleman) algorithm [147] to the fixed-parameter model. The simplest model is

chosen in order to reduce the computational time in our simulation. It is obvious that the

better performance in inaudibility could be achieved if the adaptive-parameter models are

the main structure of this application.

The embedding and extraction processes are shown in Fig. 5.1 and similar to those of

the fixed-parameter model in Sect. 4.2.1. There are two differences between Fig. 5.1 and

Fig. 3.1. First, instead of embedding the watermark, the embedding process in Fig. 5.1

embeds the encrypted watermark. Second, after decoding singular values, the extraction

process in Fig. 5.1 has to decrypt the encrypted data to deliver the extracted watermark.

Thus, the additional processes are the encryption with the encryption key (public key)

and decryption with the decryption key (private key).

The concept of the RSA encryption and decryption is quite simple [148–150]: an

integer m, such that 0 ≤ m < n and gcd(m,n) = 1, where gcd is the greatest common

109



divisor, is encrypted to the integer c≡me (modn), where (e, n) is the encryption key. The

decryption key (d, n) is used to decrypt the message c by computing cd≡(me)d≡m(modn).

The RSA cryptosystem generates a pair of public- and private-keys by the following steps.

1. Compute an integer n as the product of two very large, random primes p and q.

2. Select an integer e, which is an odd number between 3 and n−1, that is a relatively

prime to p−1 and q−1.

3. Pick an integer d to be a large number by random, which satisfies the condition

gcd(d, (p− 1)×(q − 1))=1.

5.1.2 Evaluation and discussion

In information hiding sense, there is no difference between this application and the im-

plementation of the fixed-parameter model since the only difference between them is the

contents of the watermark. Therefore, the sound quality is at the same level. Actually,

the robustness is at the same level as well if we calculate the BER by comparing the

encrypted watermark with the extracted, encrypted watermark. However, from our ex-

periment with 3 different watermark bit-strings embedded into one audio signal (track

number 1) from the RWC database, the average BER increases to about 50% when we

compare the watermark with the extracted watermark in the case of wrong decryption

keys. This result is to be expected anyway.

In this application, we show how to apply the proposed scheme without any modifi-

cation. In the next two applications, we will show how to modify the proposed scheme to

meet the requirements of other applications.

5.2 Information carrier with SSA-based audio water-

marking

In this application, the watermark is the secondary information that adds values to the

host signal. There is no motivation for attackers to attack or destroy the watermark [14].

Thus, the robustness is not required. Two mandatory requirements are blind detection

and high capacity.
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The embedding capacity of the SSA-based AIH scheme is associated with the frame

size. The higher capacity means the smaller frame size, and, as a result, the fewer singular

values. When the singular values are too few, it is difficult to select the embedding area

(specifically, the parameters u and l) without adversely affecting the sound quality. This

is because, according to the proposed singular-value modification rule, all singular values

of the interval [u+1, l−1] are rounded up or down to the upper- or lower-bound values,

respectively. However, the SSA-based AIH scheme can still achieve the high capacity by

adopting the quantization index modulation (QIM) [151–153], i.e., all singular values are

quantized by the QIM technique.

5.2.1 Implementation

The implementation of this application is similar to the implementation of the fixed-

parameter model. The embedding and extraction processes can be depicted as Fig. 3.1 on

the left and the right, respectively. The differences are in the steps of the singular-value

modification and decoding the singular value. We applied QIM steps as described by

Vivekananda Bhat K. et al. [23] to the main scheme.

Embedding process

The embedding process consists of six steps as follows.

1. The host signal is segmented into non-overlapping frames.

2. Each frame is represented by the trajectory matrix.

3. Each matrix is factorized by SVD to deliver the singular values.

4. All singular values obtained from the previous step are quantized by the following

procedure.

• Given a singular spectrum {
√
λ1,
√
λ2, ...,

√
λn}, the Euclidean norm of the

singular spectrum is defined as∥∥∥√λ∥∥∥ =

√√
λ1

2
+
√
λ2

2
+ · · ·+

√
λn

2
. (5.1)

• All singular values
√
λi for i = 1 to n are multiplied by the factor of

∥∥∥√λw∥∥∥∥∥∥√λ∥∥∥ ,
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where
∥∥∥√λw∥∥∥ is a function of the watermark bit w ∈ {0, 1}.

∥∥∥√λw

∥∥∥ =


∆·

(
b
∥∥∥√λ∥∥∥

∆
c+ d− (b

∥∥∥√λ∥∥∥
∆
cmod 2)

)
+ ∆

2
, if w = 0

∆·

b∥∥∥√λ∥∥∥
∆
c+ d−

(
(b

∥∥∥√λ∥∥∥
∆
c+ d) mod 2

)+ ∆
2
, if w = 1,

(5.2)

where d and ∆ are a user-defined parameter and the quantization step, respec-

tively. In our experiment, we set d=1 and ∆=0.5.

5. After replacing old singular values with the new ones, each matrix is mapped to the

watermarked frame by Hankelizing.

6. Finally, the watermarked signal is constructed by combining those frames.

Extraction process

The first three steps of the extraction process are exactly the same as those of the em-

bedding one. After obtaining the singular spectrum {
√
λ1,
√
λ2, ...,

√
λd}, the extracted

watermark-bit ŵ is 1 if (b
∥∥∥√λ∥∥∥

∆
cmod2) is equal to 0; otherwise, the extracted watermark-bit

ŵ is 0.

5.2.2 Evaluation

Our implementation was evaluated at 16, 32, 64, 128, 256, and 512 bps. Each bit-rate

relates to the frame sizes of 2756, 1378, 689, 344, 172, and 86 samples, respectively.

The relation between the BER and the embedding capacity is shown in Fig. 5.2. At

the capacity of 512 bps, the BER is still lower than 10%. However, the sound quality

decreases as the capacity increases, as shown in Figs. 5.3, 5.4, and 5.5.

5.2.3 Discussion

Although all the three sound-quality measures (Figs.5.3, 5.4, and 5.5) agree that sound-

quality distortion in the watermarked signals increases with the capacity, it does not

clear which measure is more reliable than the other. For example, according to the

IHC’s criteria [154], the ODG greater than −2 is acceptable. With 10% BER allowed,
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Figure 5.2: Relation between robustness and embedding capacity of the proposed frame-

work for the information carrier.

the embedding capacity of the scheme is at least 512 bps. Differently, based on our

observations, if the LSD is greater than 0.4 dB, the distortion can be perceived easily.

The capacity is then limited around 100 bps. In speech signal processing, the signal-

to-noise ratio (SNR) of which greater than 25 dB indicates a very good signal, and the

SDR is similar to SNR. Thus, the maximum capacity is about 170 bps. Even with the

smallest embedding capacity, for example, 100 bps, it is still high compared with the

fixed-parameter model. At the same level of LSD, the capacity of this scheme is greater

than that of the fixed-parameter model at least two times.

Note that the parameters d and ∆ was set to 1 and 0.5, respectively, as suggested

by Vivekananda Bhat K. [23]. Undoubtedly, those parameters affect sound quality and

robustness because they determine the values of modified singular values. Therefore,

overall improvement can be achieved by searching for the optimum d and ∆.

5.3 Fragile audio-watermarking based on SSA

Fragile audio watermarking can be used to ensure the credibility of the host signals [155]

and to prove the integrity of the content [156]. The watermark is used to verify that the

host signal has not been edited since it was embedded. Therefore, it must be fragile to the

signal processing. As discussed in Sect. 3.2.2, the SSA-based AIH scheme provides a good

insight about the location of embedding areas where we can expect the watermark to be
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Figure 5.3: Relation between PEAQ and embedding capacity.

Figure 5.4: Relation between LSD and embedding capacity.

Figure 5.5: Relation between SDR and embedding capacity.
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Figure 5.6: Double embedding: information is embedded twice into two areas.

fragile. As shown in Fig. 3.8, the strain increases as the singular-value index increases

when common signal processing is performed to the watermarked sound. Therefore, high-

order singular values are good candidates for the fragile watermarking.

5.3.1 Implementation

The implementation of this application can be done easily by applying the core structure

of the SSA-based AIH to embed the watermark twice. The first embedding performs on

the low-order singular values as the fixed-parameter does, whereas the second embed-

ding performs on higher-order ones, as demonstrated in Fig. 5.6. Then, the integrity of

watermarked signals can be verified by the watermarks extracted from both areas.

Embedding process

The embedding process consists of seven steps as follows.

1. The host signal is segmented into non-overlapping frames.

2. Each frame is represented by the trajectory matrix.

3. Each matrix is factorized by SVD to deliver the singular values.

4. Two intervals of singular values [u1, l1] and [u2, l2] are chosen, and the equation 3.1

is adopted to modify the singular values within these two intervals.

5. After the singular-value modification, each matrix is mapped to the watermarked

frame by Hankelizing.
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6. Finally, the watermarked signal is constructed by combining those frames.

Extraction process

The extraction process described in Sect. 3.2.3 is performed to the watermarked signal

twice in order to extracted two watermarks ŵ1(i) and ŵ2(i) for i=1 to N . We can use only

the BER of the second extracted the watermark ŵ2(i) or the difference between the BERs

of these two watermarks to verify the genuineness of the signal carried the watermarked.

For example, if the difference is greater than a predefined value, the watermarked signal

is tampered.

5.3.2 Evaluation

In our experiment, two intervals were from indices 20 to 60 and indices 100 to 200. The

frame size was 1632 samples, and 150 bits of watermark were embedded into 100 audio

signals. The aim of this experiment is just to show an effect on the watermarks when

watermarked signals are modified, and we can use that effect to detect tampering.

The BER comparisons are shown in Figs. 5.7 and 5.8 in the cases of no attack and

MP3 attack, respectively. The average LSD is 0.6085 dB.

5.3.3 Discussion

It can be seen that MP3 compression damages the second watermark more severely.

However, in this implementation, the detection rate when there is no attack is also not

good. If we do not know the expected difference between BERs in the case of no attack in

advance, it may be difficult to judge whether an audio signal is tampered. One possible

solution is by selecting the proper index-intervals for embedding the watermarks. The

differential evolution can be applied similarly to the adaptive-parameter models.

5.4 Summary

The proposed schemes were applied in three applications. For the ownership protection,

the fixed-parameter model was integrated with the RSA algorithm to protect hidden

information. Without the decryption key, the average BER increased to about 50%. For
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Figure 5.7: BERs (%) of double embedding when no attack.

Figure 5.8: BERs (%) of double embedding when MP3 was performed to watermarked

signals.
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the information carrier application, the core structure was modified to embed a watermark

bit into all singular values by using QIM. The embedding capacity was increased up

to 170 bps at the SDR of 25 dB. For the fragile audio-watermarking, a watermark bit

was embedded into the high-order singular values which have a high strain. Thus, the

watermark bit was destroyed easily.

The performances of all three applications could be improved enormously since all

parameters have not yet been adjusted to their best values.
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Chapter 6

Conclusion

This chapter summarizes this work and emphasizes its contributions to AIH research field

as well as to other research fields. Since the ultimate goal of audio information hiding has

yet to achieve, it discusses room for improvement in the last section.

6.1 Summary

In this work, we used SSA to analyze signals and investigated the characteristic of singular

spectrum in order to propose a novel AIH framework. To be concise, let us break down

the basic findings from our study first.

1. A singular value is slightly changed under many signal processing attacks. This

property makes it be a good choice for hiding information.

2. A singular value delivered by SSA can be interpreted as a scale factor of an oscillatory

component. Since singular values are sorted in descending order, the lower-order

singular values have contributed more to the signal.

3. A singular spectrum is naturally convex, and we can embed information into it by

forcing a small part of it to be concave.

4. A strain is defined to measure the deformation of a singular value when it is under

attack. We found that a singular value with a higher order has a higher strain.

In other words, the higher-order singular value changes its value easier than the

lower-order one. Based on this finding, we can make a general rule for embed-

ding: modifying lower-order singular values makes a watermark more robust, and
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modifying higher-order singular values makes a watermark more fragile.

5. We found that modifying higher-order singular values makes a watermark more

inaudible. (This fact can be explained by 2.) Therefore, there is a trade-off if we

consider 4 and 5 together.

6. Even though the relation between singular-value indices and frequency components

of signals is not clear to formulate analytically, there exists a trend, and the relation

can be established empirically.

These facts are fundamental to our work and are used to build six SSA-based AIH

schemes: the fixed-parameter model, the partially-blind model, the completely-blind

model, the AIH based on SSA and the psychoacoustic model, the AIH based on SSA

in DWT domain, and the SSA-based AIH scheme with the automatic frame detection.

All of them can be considered as variants of the same framework.

Compared with the conventional method and all other models, the fixed-parameter

model is most robust. However, the sound quality of watermarked signals obtained from

it is poorest. The reason is that this model modifies the lowest-order singular values

compared to the other models. The results from the fixed-parameter model can achieve

the first subgoal (as stated in Chapter 1) because it verifies that the SSA-based scheme

can keep the advantages of the SVD-based technique.

Compared with the fixed-parameter model, the adaptive-parameter models (both

completely-blind and partially-blind) outperformed it in terms of the sound quality be-

cause the differential evolution optimizer is used to find the balance between inaudibility

and robustness. Thus, the success of the adaptive-parameter models can be considered

as the achievement in the second subgoal since it shows that the proposed scheme has

parameters that can be adjusted to gain better performance. In addition, the robustness

of the partially-blind model is better than that of the conventional method.

When the psychoacoustic model is integrated into the scheme, the sound quality of wa-

termarked signal is the best. The results verify the connection between singular spectrum

and frequency components of the signal and show that the SMR from the psychoacoustic

model can be used to reduce distortion in the sound quality. One drawback of this im-

plementation is that it is fragile to signal processing because the criterion that we used

to determine the parameters is too simple.
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The proposed automatic frame detection can detect frames with the accuracy of 80%

and the sound quality of watermarked signals is very good compared with the fixed-

parameter model. The scheme based on SSA in DWT domain is the most fragile, and the

singular values of this scheme lost their physical meaning.

Finally, three applications were proposed: ownership protection, information carrier,

and fragile audio-watermarking. For the ownership protection, the fixed-parameter model

is integrated with the RSA algorithm to protect the hidden information. Without the

decryption key, the average BER increased to about 50%. For the information carrier

application, the core structure is modified to embed a watermark bit into all singular

values by using QIM. The embedding capacity is increased up to 170 bps at the SDR of

25 dB. For the fragile audio-watermarking, a watermark bit is embedded into high-order

singular values, which have a high strain. Thus, the watermark bit is destroyed easily.

The performances of all three applications could be improved enormously since all

parameters in the implementations were not adjusted to their best values. However, it

does not go so far to say that at least five subgoals are checked.

To sum things up, the unique and novel points of this work are as follows.

1. We proposed AIH framework based on SSA because we want to exploit the strength

of the SVD-based one. We can deal with drawbacks of the SVD-based framework

by using the fact that, based on SSA, we can know the meaning of singular values.

In addition, the SSA-based AIH framework by itself has never been proposed before

our work.

2. Prior to the present time, all SVD-based schemes have embedded hidden information

into host signal by using various uninformed rules. In contrast, this work shows

that the human perception model can be incorporated into the basic SSA-based

framework so that the embedding rule can be informed. In order to achieve that

state, we have bridged the gap between the standard analysis tool and the SSA.

The results show that the proposed schemes can improve the sound quality a great

deal.

3. We also show that a singular spectrum has a very useful characteristic for infor-

mation hiding, i.e., its convexity by nature. We can exploit this characteristic for

self-synchronization by looking for concavity through the proposed scan operation.
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6.2 Contributions

The contributions of this work can be seen from different viewpoints. Broadly speaking,

to society, it offers a solution to social concerns (Sect. 1.1) and to applications that require

AIH (Sect. 2.1.2).

This research has explored a non-standard signal processing technique based on SVD.

At least, it is not a conventional analysis method for audio/speech signal processing. We

also investigate the properties and characteristics of the singular values delivered by this

method. We discovered that the singular spectrum curve is approximately convex and

made good use of it to hide the information. In order to improve the performance, we

combined the psychoacoustic model to the SSA-based scheme and made the connection

between them. This framework is general and not limited to the AIH applications.

From the engineering viewpoint, this research contributes to the AIH research field by

developing a new and effective AIH framework with a few variants. We show their poten-

tiality to solve different problems with different requirements. Moreover, the algorithms

that we develop, such as the concavity detection or self-synchronization, are simple and

can be used to solve other similar problems in other fields.

Information hiding in audio is the youngest in its family, and some published methods

in the audio watermarking originate from other domains. For example, the SVD-based

audio watermarking was influenced by image watermarking. Thus, to the related research

fields, this work can contribute to other domains as well. It is not so difficult to imagine

using image pixels to form a trajectory matrix, and then its singular values are modified

in order to hide information. Even though in some other domains, such as the visual

domain, the physical meaning of singular values is lost or changed, but our proposed

framework is general enough to be applied.

6.3 Future work

Despite the success of our current SSA-based framework, the ultimate goal has yet to

reach. There are rooms for further enhancements.

1. The AIH scheme based on SSA and the psychoacoustic model has shown a good

sign of progress towards the ultimate goal. For the next step, we need to increase
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the robustness. There are many directions we can pursue. For example, if we persist

to use the same psychoacoustic model, we have to use the SMR wisely and more

efficiently. In the current version, information is embedded into the singular values

that associate with the sub-bands that have SMR less than 10 dB. Experimenting

more on the threshold of the maximum limit in dB of SMR, the pattern of SMR

curve, and adding the two-tone suppression to the psychoacoustic model and embed

information into the suppressed areas that are above the global masking threshold

are our future plan. If such the suppressed exist, embedding information there might

achieve both inaudibility and robustness. We believe it will achieve inaudibility

because of the suppression, and robutness because the frequency range is above the

masking threshold.

2. The concept behind the AIH scheme based on SSA in DWT domain seems to be jus-

tifiable. If we are insensitive to high-frequency signals, modifying detail coefficients

should not strongly affect the sound quality of watermarked signals. Thus, we can

modify low-order singular values to gain the robustness. Although the preliminary

results show negative, there are a lot of opened questions (as discussed in Sect. 4.5).

It might be worthwhile to explore.

3. There are two critical problems for the automatic frame detection. First, the al-

gorithm is time-consuming. Reducing the computational time is one of the future

work. At least, two parameters δ and ∆ connect with a total number of SVD oper-

ations. Increasing them reduces the number of SVD operations, but it surely affects

detection accuracy. Then, what are the maximum values of them? Are there any

other ways to reduce the time? This is one of the future work. Second, the algo-

rithm used to interpret the pattern of bi can be improved. Then, it is expected that

the detection rate increases.

4. As shown in Eq. 2.1, a trajectory matrix is formed by lagged vectors, and L−2

members of two consecutive lagged vectors are overlapping. The interesting ques-

tion is what happen to the relation between singular-value indices and frequency

components if the number of overlapped members is less than L−2. Can we exploit

it?

5. All three proposed applications can be improved by fine-tuning their parameters.

123



Appendices

124



Appendix A

Evaluation details of the proposed

SSA-based AIH

One hundred host signals from the RWC music-genre database [133] were used in our

experiments. All have a sampling rate of 44.1 kHz, 16-bit quantization, and two channels.

A watermark was embedded in one channel. The watermark was embedded starting from

the initial segment of host signals. All simulations were operated in the Fujitsu CX250

Cluster (JAIST parallel computers), where each computing node is equipped with two

Intel Xeon E5-2680v2 2.80 GHz (10 cores each) and 64 GB memory (4 GB DDR3-1866

ECC ×16).

Three distance measures, which are the PEAQ, the LSD, and the SDR, were used to

evaluate the sound quality of the watermarked signals.

Five attacks were performed on watermarked signals: Gaussian-noise addition with

average signal-to-nois ratio (SNR) of 36 dB, re-sampling with 16 and 22.05 kHz, band-

pass filtering with 100-6000 Hz and −12 dB/Oct, MP3 compression with 128 kbps joint

stereo, and MP4 compression with 96 kbps.
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Figure A.1: PEAQ (N=2450, Fixed-parameter model, No repetition.)

Figure A.2: LSD (N=2450, Fixed-parameter model, No repetition.)

Figure A.3: SDR (N=2450, Fixed-parameter model, No repetition.)
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Figure A.4: PEAQ (N=816, Fixed-parameter model, No repetition.)

Figure A.5: LSD (N=816, Fixed-parameter model, No repetition.)

Figure A.6: SDR (N=816, Fixed-parameter model, No repetition.)
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Figure A.7: PEAQ (N=816, Fixed-parameter model, Repetitions =5.)

Figure A.8: LSD (N=816, Fixed-parameter model, Repetitions =5.)

Figure A.9: SDR (N=816, Fixed-parameter model, Repetitions =5.)
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Figure A.10: BER (%) (MP3, Fixed-parameter model, N=2450, No repetition.)

Figure A.11: BER (%) (MP3 attack, Fixed-parameter model, N=816, No repetition.)

Figure A.12: BER (%) (MP3 attack, Fixed-parameter model, N=816, Repetitions =5.)
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Figure A.13: BER (%) (MP4, Fixed-parameter model, N=2450, No repetition.)

Figure A.14: BER (%) (MP4 attack, Fixed-parameter model, N=816, No repetition.)

Figure A.15: BER (%) (MP4 attack, Fixed-parameter model, N=816, Repetitions =5.)
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Figure A.16: BER (%) (AWGN, Fixed-parameter model, N=2450, No repetition.)

Figure A.17: BER (%) (AWGN, Fixed-parameter model, N=816, No repetition.)

Figure A.18: BER (%) (AWGN, Fixed-parameter model, N=816, Repetitions =5.)

131



Figure A.19: BER (%) (BPF, Fixed-parameter model, N=2450, No repetition.)

Figure A.20: BER (%) (BPF, Fixed-parameter model, N=816, No repetition.)

Figure A.21: BER (%) (BPF, Fixed-parameter model, N=816, Repetitions =5.)
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Figure A.22: BER (%) (RES 16, Fixed-parameter model, N=2450, No repetition.)

Figure A.23: BER (%) (RES 16, Fixed-parameter model, N=816, No repetition.)

Figure A.24: BER (%) (RES 16, Fixed-parameter model, N=816, Repetitions =5.)
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Figure A.25: BER (%) (RES 22.05, Fixed-parameter model, N=2450, No repetition.)

Figure A.26: BER (%) (RES 22.05, Fixed-parameter model, N=816, No repetition.)

Figure A.27: BER (%) (RES 22.05, Fixed-parameter model, N=816, Repetitions =5.)
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Figure A.28: BER (%) (No attack, Fixed-parameter model, N=2450, No repetition.)

Figure A.29: BER (%) (No attack, Fixed-parameter model, N=816, No repetition.)

Figure A.30: BER (%) (No attack, Fixed-parameter model, N=816, Repetitions =5.)
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Figure A.31: BER (%) (No attack, Partially-blind model, N=2450, No repetition.)

Figure A.32: BER (%) (MP3, Partially-blind model, N=2450, No repetition.)

Figure A.33: BER (%) (BPF, Partially-blind model, N=2450, No repetition.)
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Figure A.34: BER (%) (RES 16, Partially-blind model, N=2450, No repetition.)

Figure A.35: BER (%) (RES 22.05, Partially-blind model, N=2450, No repetition.)

Figure A.36: BER (%) (AWGN, Partially-blind model, N=2450, No repetition.)
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Figure A.37: PEAQ (N=2450, Completely-blind model, No repetition.)

Figure A.38: LSD (N=2450, Completely-blind model, No repetition.)

Figure A.39: SDR (N=2450, Completely-blind model, No repetition.)
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Figure A.40: BER (%) (No attack, Completely-blind model, N=2450, No repetition.)

Figure A.41: BER (%) (MP3, Completely-blind model, N=2450, No repetition.)

Figure A.42: BER (%) (BPF, Completely-blind model, N=2450, No repetition.)
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Figure A.43: BER (%) (RES 16, Completely-blind model, N=2450, No repetition.)

Figure A.44: BER (%) (RES 22.05, Completely-blind model, N=2450, No repetition.)

Figure A.45: BER (%) (AWGN, Completely-blind model, N=2450, No repetition.)
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Appendix B

Optimized parameters

141



Table B.1: Parameters I (Partially-blind model).

ε u l cost ε u l cost

1 0 11 43 0.83 26 0 12 64 2.86

2 0.025 33 71 0.61 27 0.075 10 34 1.1

3 0 10 32 4.48 28 0.025 12 34 1.02

4 0.075 23 55 0.63 29 0 10 34 5.43

5 0 11 51 4.72 30 0.075 10 54 1.47

6 0 10 54 1.41 31 0.05 11 37 0.66

7 0.05 17 63 2.16 32 0.05 18 50 0.87

8 0 20 56 1.51 33 0.075 11 35 1.26

9 0 109 169 5.42 34 0 10 40 1.96

10 0 10 58 4.02 35 0.025 10 38 2.4

11 0 90 132 0.62 36 0.1 10 42 1.25

12 0 94 154 3.09 37 0 10 40 1.06

13 0.025 19 49 2.84 38 0.05 12 38 1.32

14 0.025 10 66 1.51 39 0 15 59 3.56

15 0.175 10 34 5.7 40 0.025 14 36 1.68

16 0 65 119 5.19 41 0 11 51 5.9

17 0 14 72 2.91 42 0.025 10 32 1.23

18 0 13 67 2.17 43 0.025 13 43 2.16

19 0.075 10 34 7.09 44 0.05 110 168 5.89

20 0 13 57 5.2 45 0 83 143 3.09

21 0.025 13 33 1 46 0.075 13 55 1.77

22 0.075 11 37 19.57 47 0.025 20 52 2.4

23 0.075 105 165 3.54 48 0.05 11 33 0.79

24 0 10 30 4.02 49 0.125 10 38 1.14

25 0.05 14 50 1.47 50 0.075 15 39 0.71
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Table B.2: Parameters II (Partially-blind model).

ε u l cost ε u l cost

51 0.025 17 45 0.99 76 0.05 13 33 0.81

52 0.025 10 34 1.1 77 0 35 95 3.55

53 0 10 50 2.41 78 0 72 130 4.48

54 0.05 13 43 1.32 79 0 10 40 1.27

55 0 105 165 4.72 80 0 13 59 3.11

56 0.05 10 46 0.96 81 0.1 11 49 1.49

57 0.05 10 30 0.97 82 0.05 19 57 2.37

58 0.05 19 77 2.39 83 0.075 13 45 1.25

59 0.15 22 42 0.54 84 0 11 43 0.89

60 0 10 54 2.21 85 0.075 11 41 1.05

61 0.175 10 42 1.33 86 0.1 14 38 0.81

62 0.175 10 36 0.94 87 0.175 10 36 1.07

63 0.125 13 33 0.71 88 0.075 12 40 0.77

64 0 11 53 3.11 89 0 13 41 0.99

65 0.1 23 51 1.47 90 0.025 18 38 0.73

66 0.05 10 34 1.25 91 0.075 11 43 0.82

67 0.05 18 40 0.71 92 0 64 122 4.01

68 0 23 55 0.52 93 0.025 11 39 1.4

69 0.05 10 56 1.21 94 0.1 14 52 1.56

70 0 17 53 0.75 95 0 39 87 1.67

71 0.075 10 46 0.79 96 0.025 11 39 0.91

72 0 11 43 0.66 97 0.025 90 146 4.95

73 0.125 10 40 1.27 98 0 67 125 7.07

74 0 13 43 1.17 99 0 76 134 6.13

75 0 26 46 0.57 100 0.025 10 46 1.74
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Table B.3: Parameters I (Completely-blind model).

e u l cost e u l cost

1 0 34 92 10.19 46 0 62 118 20.74

7 0.025 68 126 11.69 47 0 45 105 12.07

13 0 18 68 13.58 48 0 65 119 10.19

28 0 40 90 7.55 49 0.025 26 72 8.69

31 0 10 54 14.72 50 0 40 94 7.17

32 0.025 32 84 7.93 51 0 37 91 7.93

33 0 10 56 16.6 52 0.025 35 85 13.2

34 0 10 58 15.47 53 0 13 71 9.81

35 0.025 77 137 19.99 54 0 51 107 10.56

36 0.1 69 119 26.78 55 0.05 31 81 16.97

37 0 43 97 12.82 56 0 29 89 9.06

38 0 22 70 10.94 57 0.025 21 69 7.56

39 0 55 113 15.46 58 0 36 84 15.84

40 0 11 67 7.18 59 0.025 37 91 5.29

41 0.025 94 148 20.74 60 0 30 80 10.56

42 0 15 59 16.6 64 0 31 91 13.96

43 0 14 64 12.07 85 0 10 60 3.87

44 0 31 83 15.84 91 0 27 81 5.68

45 0.025 77 133 12.82 100 0 29 79 16.59
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Table B.4: Parameters (Psychoacoustic model).

1 7 13 28 37 49 54 57 64 85 91 100

Simulation 1
u 80 100 60 70 100 80 80 150 80 100 80 90

l 150 150 100 150 200 150 150 250 150 200 150 160

Simulation 2
u 80 100 60 70 100 80 80 150 80 100 80 90

l 150 150 100 150 200 150 150 250 150 200 150 160

Simulation 3
u 40 50 30 35 50 40 40 75 40 50 40 45

l 100 100 70 100 130 100 100 160 100 130 100 103

Simulation 4
u 30 40 20 45 40 40 30 75 30 60 40 35

l 90 90 60 110 120 100 90 160 90 140 100 93
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Appendix C

Evaluation of the parameter

estimation methods

Twelve signals from RWC music-genre database [133] (Tracks 01, 07, 13, 28, 37, 49, 54,

57, 64, 85, 91, and 100) were used. The first 294000 samples of one channel of each signal

were used in our experiments. Each 294000-sample signal was divided into 120 frames,

where each frame consists of 2450 samples. Singular spectrum on the interval [u, l] of each

frame was modified. The values of u and l were determined by the differential evolution

optimization. The window length L for matrix formation in the basic SSA was set to 500.

In order to implement the concavity density-based method, we set the offsetting con-

stant for adjusting indices at the rising and falling edges of the positive average-density

curve as follows. Given σ and τ are the indices at rising and falling edges respectively, the

estimated u is dσ + 0.3×(τ − σ)e, and the estimated l is dτ + 0.7×(τ − σ)e, where d·e is

the ceiling function. Five different lengths (15, 20, 25, 30, and 35) were used to calculate

the concavity density curves.

Experimental results are shown in Table C.1. The derivative-based method could

not deliver estimated l when the value of l is quite high, i.e., l is located at the tail

of the singular spectrum. On the other hand, the estimation by the concavity density-

based method is reasonable. The root-mean-square deviations were 4.33 and 3.33 for the

estimation of u and l respectively. The indices at rising and falling edges of the average

positive-density curve are shown in Table C.2.
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Table C.1: Actual and estimated parameters. The symbol × denotes the estimation

method cannot deliver the estimated value.

01 07 13 28 37 49 54 57 64 85 91 100

Actual singular spectrum u 21 17 39 64 28 70 60 20 20 40 62 61

modification range l 37 33 71 84 50 100 92 28 36 66 90 95

Derivative-based u 24 18 13 26 15 46 41 19 19 10 44 56

estimation l 37 31 × × × × × 27 34 × × 94

Concavity density-based u 22 17 43 59 35 71 63 17 21 48 67 66

estimation l 37 33 72 85 50 92 98 31 40 66 88 96

Table C.2: Indices at rising (σ) and falling (τ) edges of the average positve-density curve

derived from the concavity density-based method.

01 07 13 28 37 49 54 57 64 85 91 100

Actual u 21 17 39 64 28 70 60 20 20 40 62 61

Rising-edge index σ 18 13 36 53 31 66 55 14 16 44 62 59

Actual l 37 33 71 84 50 100 92 28 36 66 90 95

Falling-edge index τ 29 25 57 72 42 81 80 24 30 57 77 81
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Appendix D

Comparative evaluations of inaudible

and robust audio-watermarking

methods

Seven methods were implemented and compared: the method based on the least-significant-

bit (LSB) replacement [14], the method based on the direct spread spectrum (DSS) [157],

the echo hiding method (ECHO) [158], the conventional SVD-based method [23], and the

three methods based on the cochlear delay characteristics, which are the non-blind [119],

the blind [120], and the reversible ones [17]. Five attacks were performed on watermarked

signals: Gaussian-noise addition with average signal-to-nois ratio (SNR) of 36 dB, re-

sampling with 16 and 22.05 kHz, band-pass filtering with 100-6000 Hz and −12 dB/Oct,

MP3 compression with 128 kbps joint stereo, and MP4 compression with 96 kbps. The

average BERs are shown in Table D.1.

Table D.1: Average BER (%): comparison of the fixed-parameter model and the typical

methods.

DSS ECHO LSB Non-blind Blind Reversible SVD Fixed

BER (%) 14.28 2.89 35.40 5.32 5.25 5.25 14.74 3.68
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Figure D.1: PEAQ Comparison.

Figure D.2: LSD Comparison.

Figure D.3: SDR Comparison.

Figure D.4: BER Comparison (No attack).
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Figure D.5: BER Comparison (MP3 compression).

Figure D.6: BER Comparison (MP4 compression).

Figure D.7: BER Comparison (AWGN).

Figure D.8: BER Comparison (8-bit re-quantization).
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Figure D.9: BER Comparison (22.05 kHz re-sampling).

Figure D.10: BER Comparison (16 kHz re-sampling).

Figure D.11: BER Comparison (Band-pass filtering).
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