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Power Allocation in an Asymmetric Wireless
Sensor Network

Weiwei Jiang, Xin He and Tadashi Matsumoto

Abstract—This letter investigates the power allocation problem
for an asymmetric wireless senor network, where multiple sensors
observe a common binary source and transmit their corrupted
observations to a data fusion node. We propose a power allocation
scheme by maximizing the weighted channel capacity subject
to the sum power constraint and show that this problem is
convex. The simulation results verify that the proposed power
allocation scheme outperforms the uniform power allocation
method. Furthermore, a scheduling scheme for binary data
gathering is proposed by determining the sensors that dominate
the bit error rate performance.

Index Terms—Power Allocation, Binary Sensor Network, Rate-
distortion

I. INTRODUCTION

A TYPICAL wireless sensor network (WSN) is a network
composed of a group of sensor nodes to monitor physical

phenomena. The WSN is recognized as a promising technique
to build information and communication systems where many
sensing devices are involved such as in the Internet of things.
Usually, in sensor networks, each sensor node is equipped with
a battery, and the power is usually scarce owing to the limit
battery size. Hence, the energy efficiency in sensor networks
is an extremely important issue for constructing WSNs.

In [1], [2], an optimization framework for joint source
coding, routing and resource allocation was presented in sensor
networks. The distortion and power are weighted by two
vectors in the optimization problem to achieve the optimal
balancing between them. The optimization problem can then
be solved efficiently in the dual domain. Optimal power allo-
cation for Gaussian sensor network with distortion constraints
was considered in [3], where both time division multiple
access (TDMA) and non-orthogonal multiple access (NOMA)
schemes are assumed in transmission phases of sensors. In [4],
the power allocation scheme was considered by minimizing the
outage probability with the aim of its application to wireless
camera networks.

In this work, we focus on a specific scenario of WSN,
where multiple sensor nodes observe a common source (ob-
ject) and produce erroneous observations. They first convert
their erroneous observations into binary sequence, which are
then encoded in a distributed manner and transmitted to a
data fusion node over independent additive white Gaussian

X. He is with the School of Mathematics and Computer Science, Anhui
Normal University, China (e-mail: xin.he@ahnu.edu.cn).

W. Jiang was with the School of Information Science, JAIST, Japan (e-mail:
weiweijiangcn@gmail.com).

T. Matsumoto is with the School of Information Science, JAIST, Japan.

pL

X

Encoder

Encoder

Joint
Decoder

object

p1

…
 …

S1

SL

e1

eL

X̂
Sensor 1

Sensor L Fusion node

Fig. 1. System model: an asymmetric wireless sensor network.

noise (AWGN) channels. Such WSN is referred to as binary
data gathering WSN, for which a series of encoding and
decoding schemes were proposed [5]–[8]. However, in those
known schemes, only uniform power allocation is assumed.
In [9]–[12], various power allocation schemes are investigated
for asymmetric Gaussian source WSNs though, such studies
on binary source WSNs have not been well addressed yet.
Therefore, we address the power allocation for the asymmetric
binary data gathering WSN, where each sensor has different
observation accuracy.

Major Contributions. We propose a power allocation
scheme for the network shown in Fig. 1 by maximizing the
mutual information between the source information and its
estimation subject to the sum power constraint. Our strategy
is different from that proposed in [10], where rate-distortion
function is used in the optimization. However, the mutual
information is yet unknown according to the state-of-the-art
studies. To solve this intractable problem in practice, we adopt
mathematical tools which are used for solving problems in
information theory, and reformulate the problem in the frame-
work of convex optimization by maximizing the summation
of weighted channel capacity of each link. Furthermore, a
scheduling scheme is proposed by analyzing the sensor subset
that dominates the bit error rate (BER) performance.

The rest of this letter is organized as follows. The system
model is described in Section II. Section III discusses the
proposed power allocation scheme. The numerical results are
shown in Section IV. We conclude this letter in Section V.

II. SYSTEM MODEL

Main notations are summarized in Table I. We consider an
asymmetric wireless sensor network as showed in Fig. 1. For
each sensor i P t1, 2, ..., Lu, the observation value Xi can be
considered as a corrupted version of the true value X with a bit
error rate (BER) pi. Observation Xi is encoded and transmitted
via an orthogonal AWGN channel to the data fusion node
with a transmission power Si � αiST , with ST and αi being
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TABLE I
MAIN NOTATIONS.

Notation Meaning Notation Meaning
X , Xi, �̂ source, i-th observation, estimates pi, P1 � P5 observation error probability, vector of pi
Si, ST transmission power of i-th sensor, total power αi power ratio of i-th sensor (optimizing variable)
pe, ppiqe system BER floor and that achieved by i sensors ei BER of the link between i-th sensor and fusion node
Fk all subsets of choosing k sensors from L sensors E, Ec subset of sensors containing errors and its complementary set
w, wi vector of weights and its i-th element Wi subset of first i elements of w
�Wi unequal-weight partitions of Wi Wi equal-weight partitions of Wi

δ dominating sensor number ε pre-set tolerance in BER

the total transmission power of the network and the power
allocation ratio for each sensor, respectively. Without loss of
generality, we assume the noise power and the geometric gain
for each channel are normalized to unity.

The data fusion node performs joint decoding of the signals
received from the sensors, which is considered as a binary
CEO1. For a symmetric sensor network or a majority vote
CEO, the theoretical bit error probability (BEP) pe represent-
ing the error floor of system BER is given by [13]

pe �

$''&''%
°
k¡L

2

PbpK � kq L is odd°
k¡L

2

PbpK � kq � 1
2PbpK � L

2 q L is even,
(1)

and Pb(�) is the Poisson Binomial function

PbpK � kq �
¸
EPFk

¹
iPE

ppiq
¹
jPEc

p1� pjq, (2)

where Fk is the set of all subset of k sensors selected from
all L sensors, E is the set of sensors that contain errors and
cardpEq � k, while Ec is the complementary set of E as
Ec � t1, 2, ..., Lu z E. The reason is that the BEP is
determined by comparing the number of 1’s and 0’s in a group
of L Bernoulli trails, which is equivalent to Poisson binomial
distribution.

III. POWER ALLOCATION SCHEMES

Similarly to the water-filling problem, larger powers should
be allocated to those sensors with less observation errors.
In this section, we propose a power allocation scheme and
a scheduling scheme for the system to optimize the BER
performance. The convex optimization model for the power
allocation is constructed and solved from the Karush-Kuhn-
Tucker (KKT) conditions. A lemma for BEP of asymmetric
sensor networks is derived, from which the scheduling scheme
is developed.

A. Convex Optimization

We aim to minimize the BER given the total transmission
power ST , which is equivalent to maximizing the mutual
information between the source X and its estimate X̂ . The
reason of using mutual information is that it indicates the

1The CEO tries to reconstruct the source, which he cannot directly observe,
as accurate as possible from multiple copies of corrupted observations
transmitted by the deployed agents.

mutual dependence between X and X̂ . Hence, the problem
of power allocation is modeled as

max
α1,α2,...,αL

IpX; X̂q, (3)

subject to$&%
1�Hbpeiq ¤ CpSiq, ei ¥ 0, Si � αiST
L°
i�1

αi � 1, αi ¥ 0
, (4)

where the first constraint is obtained from the Shannon’s
source-channel separation theorem [14] with ei representing
the BER between Xi and its estimates X̂i. The function Hbp�q
calculates the binary entropy, and Cp�q is the capacity function
for each channel, which are defined as

Hbpeiq � �ei logpeiq � p1� eiq logp1� eiq (5)

and
CpSiq � log2p1� Siq (6)

respectively. Using the chain rule of mutual information and
the Markov property of X Ñ X̂i Ñ X̂ , we have

IpX; X̂q �HpXq �HpX|X̂q ¥ HpXq �
Ļ

i�1

HpX|X̂iq

�HpXq �
Ļ

i�1

Hbppi � eiq, (7)

with � denoting binary convolution, i.e., a � b � ap1 � bq �
bp1�aq. Since HpXq is a constant, the objective function can
be approximated by

max
Ļ

i�1

�Hbppi � eiq, (8)

while the negative of binary entropy function is convex that
may not be maximized, we further use the first order term
c1 � c2p of the Taylor series of function Hbppq at a small
enough p, where c1 and c2 are constants, and the definition of
operator � to simplify the objective function, as

min c2

Ļ

i�1

pi � ei � Lc1 � min c2

Ļ

i�1

p1� 2piqei � pi � Lc1

Ø min
Ļ

i�1

p1� 2piqei (since pi, c1 and c2 are fixed). (9)

Assuming capacity achieving coding, we further derive ei as

ei �

#
0 Si ¥ 1

H�1
b r1� CpSiqs Si   1

. (10)
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Since the capacity function Cp�q and the inverse binary entropy
function H�1

b p�q are monotonically increasing functions, the
object function can be finally reduced to as follows.

min
Ļ

i�1

p1� 2piqei �min
Ļ

i�1

p1� 2piqH
�1
b r1� CpSiqs

�max
Ļ

i�1

p1� 2piqCpSiq. (11)

It is clear that the objective function is concave. We are now
able to adopt KKT conditions to derive the power allocation
values αi. The KKT conditions are

∇fpαiq � �p1� 2piq
ST

1� αiST
ln 2� λ1 � 0, (12)

µ1αi � 0, (13)

where λ1 and µ1 are Lagrange multipliers. After solving these
equations, we get the optimal value

α�i �
1� 2pi°

i

p1� 2piq
p1�

¸
i

1

ST
q �

1

ST
. (14)

Alternatively, we may use computational tools such as cvx to
calculate numerical results.

B. BEP and Sensor Scheduling

The BEP for an asymmetric sensor network is dominated
by a subset of the sensors, while for symmetric scenarios each
link impacts the BEP performance. Hence, determining such
subset and only allocating power to the dominating sensors
can have a considerable improvement in the sense of BER
given limited sum power.

In an asymmetric sensor network, weighted vote scheme
greatly advantages over the majority vote that is adopted in
symmetric scenarios. The decoding scheme for our system
performs a so-called fc function for each sensor before the
CEO makes a final decision [13]. In principle, it may be
considered as a weighted vote scheme, for which the hard
decision of X̂ follows

X̂ � wTX, (15)

X � rX̂1 X̂2 ... X̂Ls
T, (16)

where p�qT denotes the matrix transpose. The weight vector
w for all sensors is given by

w � rw1, w2, ..., wLs
T , (17)

wi �
Li°L
i�1 Li

, (18)

where Li is the log-likelihood ratio (LLR) of the observation
error with each sensor, given by

Li � log
1� pi
pi

. (19)

To derive the subset of dominating sensors, we first assume
the observation BER vector P � rp1, � � � , pLs is sorted in
ascending order. Consequently, the weight vector w is also
sorted but in descending order. Furthermore, let Wi denote the
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P1= [0.05, 0.07, 0.1, 0.2, 0.22, 0.27, 0.3]
P2 = [0.01, 0.04, 0.07, 0.25, 0.3, 0.31, 0.35]
P3 = [0.004, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4]
P4 = [0.001, 0.02, 0.05, 0.1, 0.3, 0.32, 0.4]
P5 = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]

Fig. 2. BEP vs. number of sorted sensors.

subset of the first i elements of w, and p�qc the complementary
set. Then we have the following lemma.

Lemma 3.1: @ �Wi,Wi � Wi,
°

rwiP�Wi

rwi ¡ °
rwc
i P
�Wc

i

rwci , and°
wiPWi

wi �
°

wc
iPW

c
i

wci , the BEP p
piq
e for the sensor subset is

given by

ppiqe �
¸
�Wi

¹
xParg �Wi

px
¹

yParg �Wc
i

p1� pyq

�
1

2

¸
Wi

¹
xPargWi

px
¹

yPargWc
i

p1� pyq. (20)

The BEP equation defines a weighted Poisson Binomial com-
pared to (1), indicating that the decision is no longer made
by the majority number but the majority sum weight, and
the decision may be reversed in some cases when adding
more sensors. Recall, however, that the weight vector w is
in descending order, such reversal may occur less likely when
increasing the number of sensors. This is because the sensors
having large weights dominate the decision-making policy
while the new comers are not strong enough to make any
significant impact on the decision.

Hence, in asymmetric cases, there should exist a dominating
sensor number δ, and after reaching δ, remaining sensors do
not affect the BEP significantly. As a formal expression, the
dominating sensor number δ is expressed as

δ � argmin
i

ppiqe � ppLqe ¤ ε, (21)

where ε is predefined regarding to the Quality of Service (QoS)
requirement of the sensor network. The sensor subset D �
t1, 2, ... δu is then regarded as the set of dominating sensors.

Algorithm 1. We propose a scheduling algorithm in a
straightforward way from the discussion above. We simply
activate the dominating sensors with equal power allocation
while leaving the rest sensors hibernating. When the ob-
servation error vector P changes, the dominating sensors
can be identified adaptively and the sensor network can be
rescheduled according to the new dominating sensors.
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Fig. 3. BER performance with proposed power allocation and scheduling
schemes. Convex optimization is the result of calculating (14), while the
scheduling is the result of performing Algorithm 1.

IV. NUMERICAL RESULTS

To demonstrate our schemes, we exemplify five observation
error vectors as labeled in the legend of Fig. 2, which
depicts the relationship between the sensor subset and the
corresponding BEP values. We predefine these five error
vectors, P1 � P5, to identify dissimilar BEP values and
the dominating sensor number. The numerical BEP results
indicate that the dominating sensor number for P1, P2, P3
and P4 are 3, 3, 4, and 4 respectively. BEP improvement by
adding more sensors, after reaching the dominating numbers,
is negligible in scenarios P1 � P4. In contrast, in a symmetric
scenario represented by P5, adding sensors reduces BEP. In
the simulations of which results shown in Fig. 3, we adopt the
joint CEO decoding scheme which is the same as authors pro-
posed in [8]. The information length is 10000, and a memory-
one Recursive Systematic Convolutional (RSC) encoder with
generator polynomial G � r03, 02s8 for each sensor, the
doping ratio of Accumulator (ACC) is 1, and the modulation is
Binary Phase Shift Keying (BPSK). The proposed technique
can be also applied to higher order modulation. Compared
to the equal power schemes, both of the convex optimization
scheme and scheduling schemes have 2�3.5 dB total power
gains in the cliff region. The error floors of BER are also
consistent with the BEP Lemma 3.1 and the numerical results
in Fig. 2. The scheduling scheme may have minor sacrifice
for the BEP in some scenarios as expected.

In fact, the total power is mostly allocated to the dominating
sensors in low SNR region as the result of the convex optimiza-
tion scheme, which is essentially consistent to the scheduling
scheme and the intuition. However, the scheduling scheme
only consider the power allocation among the dominating
sensors, which may cause some performance loss in cliff
region. It is also noticeable that the convex optimization
scheme may have a small performance loss after reaching the
BEP of dominating sensors. This is due to our approximation
to the objective function in equations (7) and (9), which may
cause acceptable performance loss in high SNR region.

V. CONCLUSION

We have proposed a power allocation scheme and a sen-
sor scheduling scheme for asymmetric sensor networks. The
power allocation scheme is based on convex optimization,
of which objective is to maximize the mutual information
between the source and its estimate. The scheduling scheme
is built from the BEP lemma we have derived for a weighted
vote CEO scheme. We have demonstrated that both schemes
achieve 2�3.5 dB total power gains in the cliff region, and
they depend on the observation error vectors. All numerical
results and the theoretical analysis have been shown to be
consistent.
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