
Doctoral Dissertation

Construction and Decoding of Low Density

Lattice Codes

Ricardo Antonio PARRAO HERNANDEZ

Supervisor: Associate Professor Brian M. KURKOSKI

School of Information Science
Japan Advanced Institute of Science and Technology

December, 2016

Reviewed by

Professor Tadashi Matsumoto

Professor Le Minh Nguyen

Professor Emanuele Viterbo

Professor Tadashi Wadayama

i

Abstract

Modern information and communication systems are based on the reli-
able and efficient transmission of information. For practical applications the
coding scheme used by the transmission system not only needs to have good
coding characteristics, but also needs to be efficiently implemented.

Different efficient coding schemes exist for q-ary fields, but in the real
world communications the noise model is usually not in a q-ary field, instead
the exist in the real domain. A coding scheme that can exploit the real al-
gebra of the channel is a more natural approach for data transmission.

Lattice codes have potential to become an efficient and practical coding
scheme for the AWGN channel and particularly for multi-terminal Gaussian
networks because the encoder and the channel use the same real algebra.

Recently, a variety of lattices called low density lattices codes (LDLC)
have been studied because they can be seen as a Euclidean space code ana-
logue to low density parity check codes (LDPC). Has been reported that
LDLC lattices can attain 0.6dB to the unconstraint capacity for dimension
100, 000. In addition, they can be decoded efficiently using iterative decoders.
Previous constructions for LDLC lattices, such as the latin square design, are
based on high-complexity computer search algorithms to eliminate 4-cycles.

On the other hand, finite fields codes based on array codes have been
widely studied, these codes have a deterministic (no pseudorandom) and low
computational complexity construction. In addition, a triangular-structured
parity check matrix based on array codes can be easily constructed, which
add benefits for encoding.

In the iterative LDLC decoder the messages consist of infinite Gaussian
mixtures, and for any implementation, the Gaussian mixtures must be ap-
proximated. Different authors had introduced various ways to overcome the

ii

Gaussian mixtures approximation, but these methods are not a good approx-
imation and/or have a high computational complexity.

The focus of this dissertation is to describe an efficient construction and
iterative decoding algorithm for LDLC lattices. In this dissertation there are
two main contributions:

1. The first main contribution is the design of LDLC lattices based on
array codes. The proposed lattices are called “array LDLC lattices”.
The inverse generator matrices for array LDLC lattices can be defined
by four parameters, And has the following properties: a 4-cycle free
matrix to improve the performance of the belief propagation (BP) de-
coding, triangular structure to aid encoding and shaping operations,
sparseness for low storage and has a deterministic construction, i.e no
pseudorandom construction.

The benefit of the structure of the array LDLC lattices is that the gen-
erator matrix can be obtained by doing block matrix inversion. And
the generator matrix can be use to derivate a upper bound for the min-
imum distance. By numerical results the derivate upper bound is a
good approximation for most of the array LDLC lattices. In addition
having a triangular structure some elements less protected than others.
A method to balance the protection of the elements is given. These
methods also can be use as a guide for LDLC lattice design.

Finally, for all cases considered, the array LDLC lattices have a better
performance than the latin square construction.

2. The second main contribution is a new parametric LDLC lattice de-
coding algorithm, the new decoding algorithm is called the “three/two
Gaussian parametric decoder”, the proposed decoding algorithm ap-
proximate the infinite mixture of Gaussian with a finite number of
Gaussians either two or three. The major advantage of the proposed
LDLC decoding algorithm is a favorable performance-complexity trade-
off as compared to previous parametric decoding algorithms. Another
advantage of the proposed algorithm is that it is nearly parameter-free;
the only parameter selection of interest is the number of Gaussians in

iii

the approximation, two or three Gaussians. This is in contrast to other
LDLC decoders that have algorithmic parameters.

Strengths of the algorithm include its simplicity and suitability for anal-
ysis. Analysis is performed by evaluating the Kullback-Leibler diver-
gence between the true messages and the three/two Gaussian approx-
imation. The approximation using three or two Gaussians is more
accurate than previously proposed approximations.

Also, noise thresholds for the three/two Gaussian parametric decoding
algorithm are presented, the proposed decoder reduces the noise thresh-
olds 0.05dB compared to previous parametric decoders. The numerical
results show that for n = 1, 000 the two-Gaussian approximation is the
same as the best known decoding algorithm. But when the dimension
is n = 10, 000, a three-Gaussian approximation is needed. Finally the
results presented are use as a guide on how to choose different param-
eters for LDLC lattice design.

The array LDLC lattices and three/two Gaussian parametric decoding
algorithm are a step forward to a more practical algorithms for LDLC lattices.

Keywords: Lattice codes, LDLC lattices, deterministic construction,
parametric decoder,

iv

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor as-
sociate professor Brian M. Kurkoski for the continuous support of my Ph.D
study and related research, for his patience, motivation, and immense knowl-
edge.

Besides my advisor. I would like to thank the rest of my thesis committee:
Prof. Tadashi Matsumoto, Prof. Le Minh Nguyen, Prof. Emanuele Viterbo
and Prof. Tadashi Wadayama for their insightful comments and encourage-
ment, which incented me to widen my research from various perspectives.

I thank my fellow labmates and friends: Jessica Sanchez, Javier Cuadros,
Erick Garcia, Fan Zhou, Xiaobo Zhou, Meng Cheng, Penshun Lu, Kun
Wu, Sekiya Ryota, Valtteri Tervo, Shen Qian, Weiwei Jiang, Jiajie Xue,
Ha Doan, Warangrat Wiriya, Alan Zhang, Thanh Nguyen, Shoh Kato and
Tung Nguyen for the stimulating discussions, for the sleepless nights we were
working together before deadlines, and for all the funny moments we have
had in the last years.

I like to thank the administrative staff Aya Inoue and Tomoko Taniguchi
for their help.

Last but not the least, I want to thank my family for all the love an
support throughout writing this dissertation and my life in general.

v

Acronyms

AWGN Additive white Gaussian noise. 5

BP Belief propagation. 2, 31, 36

GMR Gaussian mixture reduction. 9

KL Kullback-Leiber. 76

LDLC Low density lattice codes. 2, 31

LDPC Low density parity check. 2, 31

LLL Lenstra-Lenstra-Lovasz. 17

MM Moment matching. 44, 70

SER Symbol error rate. 62

SNR Signal-to-noise ratio. 5

VNR Volume-to-noise ratio. 5

vi

List of Symbols

A2 Two dimensional lattice, the hexagonal lattice.. 13

D4 Four dimensional lattice.. 4

E8 Eight dimensional lattice.. 4

V (Λ) Volume of the lattice.. 6, 14

α Necessary condition on the generator sequence.. 32

Rn Euclidean space, set of real numbers.. 1, 12

Zn Set of integer numbers.. 13

G Lattice generator matrix.. 12, 31

H Lattice inverse generator.. 31

b̂ Estimated information b̂ ∈ Zn.. 40

x̂ Estimated lattice point.. 24, 40

h Generator sequence.. 31

v Basis vector.. 12

x Lattice point.. 12, 37

y Received signal.. 37

τ 2 Square norm of a vector.. 15, 57

d Row/column degree.. 31

d2
min(Λ) Square minimum distance of a lattice.. 16

vii

Contents

Abstract i

Acknowledgments iv

1 Introduction 1
1.1 A brief history of lattices . 3
1.2 System model . 4

1.2.1 AWGN channel . 5
1.3 Problems to solve . 6

1.3.1 LDLC construction . 6
1.3.2 LDLC decoding algorithm 7

1.4 Contributions . 8
1.4.1 Proposed LDLC lattice construction: “Array LDLC” . 8
1.4.2 Proposed LDLC decoder: “Three/Two Gaussian Para-

metric Decoding Algorithm” 9
1.5 Organization . 11

2 Lattices 12
2.1 Definition of lattices . 12

2.1.1 Definition of Nested lattices 15
2.1.2 Minimum distance of a lattice 15

2.2 Root lattices . 18
2.2.1 An lattice . 18
2.2.2 Dn lattice . 18
2.2.3 E8 lattice . 19
2.2.4 Barnes-Wall lattice . 20

2.3 Construction based on linear binary codes 20
2.3.1 Construction A . 22

viii

CONTENTS ix

2.3.2 Construction D and D’ 23
2.4 Finding the closest lattice point 24

2.4.1 Root lattice decoding 25
2.4.2 Decoding Algorithm for Construction A lattices 25
2.4.3 Sphere decoding . 26

2.5 Volume-to-Noise Ratio . 27
2.6 Conlcusion . 29

3 Low Density Lattice Codes 31
3.1 Definition . 31
3.2 Construction . 32

3.2.1 Triangular Form . 33
3.3 Decoding LDLC lattices . 35

3.3.1 Belief Propagation . 36
3.3.2 Decoding Algorithm 36
3.3.3 Decoder Convergence 40

3.4 Parametric Decoders . 42
3.5 Conclusion . 45

4 Array LDLC Lattices 46
4.1 Array Codes . 46

4.1.1 Construction . 46
4.1.2 Minimum Distance . 48
4.1.3 Triangular Form . 48

4.2 Array LDLC Lattice . 50
4.2.1 Desired Conditions for the parity check matrix H . . . 50
4.2.2 Proposed Construction 51
4.2.3 Reliability for low degree message 52
4.2.4 Array LDLC lattice construction algorithm 54

4.3 Minimum distance of the array LDLC lattices 56
4.4 Numerical results . 62
4.5 Conclusion . 66

5 Three/Two Gaussian Parametric Decoder 68
5.1 Introduction . 68
5.2 Operations on Gaussian Mixtures 69

5.2.1 Product over Gaussian mixtures 69
5.2.2 Moment Matching Approxiamtion 70

CONTENTS x

5.3 Three/Two Gaussian approximation 72
5.3.1 Gaussian Neighbors Selection 74
5.3.2 Kullback-Leiber divergence 76

5.4 Three/Two Gaussian Parametric Decoder 81
5.4.1 Description . 81
5.4.2 Forward-backward recursion 83
5.4.3 Complexity . 84
5.4.4 Pseudocode of the Three/Two Gaussian Parametric

Decoding Algorithm 87
5.5 Numerical Results . 89

5.5.1 Noise Thresholds . 89
5.5.2 Finite-length results 93

5.6 Conclusion . 95

6 Conclusion 97

Appendix A 100
A.1 Block matrix inversion . 100
A.2 QR factorization . 101

Appendix B 102
B.1 LLL-reduction algorithm . 102
B.2 LDLC Construction . 104

Bibliography 105

Publications 111

List of Figures

1.1 In real communications the channel and the medium consist
of functions in the real domain. 2

1.2 A basic communication model. 5

2.1 The two dimensional hexagonal lattice (A2 lattice), the blue
points are the lattice point, in addition the Voronoi region of
the lattice point is also illustrated. Each lattice point of the
A2 lattice has 6 neighbors. 13

2.2 A nested lattice representation in two dimension the coarse
lattice is 4A2 (in red) and the fine lattice is the A2 lattice (in
blue). 16

2.3 Generator matrix for the Barnes-Wall lattice. 21
2.4 Sphere decoding algorithm, search the closest lattice point to

y that are inside of a ball of radius r. 27
2.5 Probability of decoding error in terms of the volume-to-noise

ratio (VNR) for different lattices. 30

3.1 Block diagram for constructing latin square LDLC lattice in-
verse generator matrices [1]. 34

3.2 Example for the factor graph for LDLC lattice with n = 6 and
generator sequence h = {1, 1√

2
}. 37

3.3 Message propagation for variance converge analysis at variance
vl+1

2 . 43

4.1 Increasing the power of less protected elements (red square)
also increases the protection of those elements. 53

xi

LIST OF FIGURES xii

4.2 Parity check matrix of LDLC lattice based on array codes,
constructed with d = 4, p = 5 and the generator sequence
h = {1, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
}. An the elements with low row degree

were multiplying by c1 = 4, c2 = 2 and c3,...,n = 1. 55
4.3 Block diagram for the construction of the inverse generator

matrix for the array LDLC lattices 56
4.4 Comparison of the minimum distance for the array LDLC

lattices, for p = 3 and d = 3 with generator sequence h =
{1, ha, ha}. 59

4.5 Comparison of the minimum distance for the array LDLC lat-
tices, for p = 5 and d = 4, with generator sequence h =
{1, ha, ha, ha}. 60

4.6 Minimum distance upper bound for triangular array LDLC
lattices for various degree d. 62

4.7 Comparison between the triangular inverse generator matrices
and the full inverse generator matrices for small dimensional
array LDLC lattices. 63

4.8 Simulation results for various lattice dimensions 64
4.9 Comparison when the balance factors (bf) are used and when

are not, for various lattice dimension with parameter: degree
d = 3, 4, 5, 6, generator sequence of the form h = {1, ha, ha, . . . , ha},
with ha = 0.4, and prime number p = 13 65

5.1 The single Gaussian moment matching (MM) approximation,
red line, for the Gaussian mixture f(w) in blue. 71

5.2 Multiplication of a Gaussian mixture R(w) and a single Gaus-
sian Y (w). The true product Y (w)R(w) and the single Gaus-
sian moment matching (MM) approximation MM

(
Y (w)R(w)

)
.

This operation take place at the variable node. 73
5.3 Proposed approximation for the infinite Gaussian mixtureR(w),

by selecting Gaussians that are close the single Gaussian Y (w).
b) The two-Gaussian approximation. c) The three-Gaussian
approximation. 75

5.4 KL divergence for the dominant message (h = 1), for single
Gaussian approximation (dot line), two Gaussian approxima-
tion (solid line) and three Gaussian approximation (dash line).
For vc = 0.088 correspond to an early iteration. 76

LIST OF FIGURES xiii

5.5 KL divergence for the dominant message (h = 1), for single
Gaussian approximation (dot line), two Gaussian approxima-
tion (solid line). For vc = 0.011 correspond to an intermediate
iteration, and the single Gaussian is not accurate. 77

5.6 KL divergence for the non-dominant message hi = 0.5 (early
iteration), for single Gaussian approximation (dot line), two
Gaussian approximation (solid line) and three Gaussian ap-
proximation (dash line) . 78

5.7 KL divergence for the non-dominant message hi = 0.5 (mid-
dle iteration), for single Gaussian approximation (dash line),
two Gaussian approximation (dot line) and three Gaussian
approximation (solid line) . 79

5.8 KL divergence for the non-dominant message hi = 0.5 (late
iteration), for single Gaussian approximation (dash line), the
two Gaussian case and three Gaussian case are below 10−15. . 80

5.9 Forward-backward recursion at the variable node 83
5.10 Average number of iterations required for decoder convergence

in terms of the VNR, for LDLC dimension n = 1000 and
degree d = 7. 85

5.11 Time comparison between GMR algorithm [2], with M = 2
and M = 3, and the three/two Gaussian parametric decoding
algorithm, for lattice dimension n = 1000 and V NR = 2. . . . 86

5.12 Noise thresholds, measured in distance from capacity, for three/two
Gaussian decoder and the single Gaussian decoder, for various
LDLC lattices with parameters d = 7 and α. 91

5.13 Noise thresholds details, measured in distance from capacity,
for the Three/Two Gaussian parametric decoder and the single
Gaussian decoder, for various LDLC lattices with parameters
d = 7 and α. 92

5.14 Comparison in terms of the number of Gaussians M used in
the approximation. The comparison is made in terms SER vs
VNR. For LDLC lattices with dimension n = 100, n = 1000,
n = 10000. 93

5.15 Comparison in terms of the number of Gaussians M used in
the approximation. The comparison is made in terms SER vs
VNR. For LDLC lattices with dimension n = 100, n = 1000,
n = 10000. 95

List of Tables

1.1 Benefits of the array LDLC lattice inverse generator matrices. 9
1.2 Benefits of the three/two Gaussian parametric decoding algo-

rithm. 10

2.1 Comparison between different root lattices 21

3.1 Results presented in [1] for different LDLC lattice dimension.
V NR = 0 dB is the capacity. 41

4.1 Minimum distance results presented in [3] for array LDPC
codes for different values of p and k = j. 49

4.2 Comparison of the exact minimum distance for different array
LDLC lattices, when α ≤ 1. 61

4.3 Row/column degree and constellation size 64
4.4 Balance factors c and minimum distance upper bound for dif-

ferent triangular LDLC lattices. 66

xiv

Chapter 1

Introduction

Modern information and communication systems are based on the reliable
and efficient transmission of information. Channels encountered in practical
applications are usually disturbed regardless whether they are correspond to
information transmission over noisy and time-variant wired/wireless chan-
nels, or information stored over physical media (e.g. flash memories and
optical discs) that might be damaged by scratches. Knowing these distur-
bances, appropriate coding schemes need to be employed, such that errors
during the transmission can be corrected.

Practical applications for channel coding include space and satellite com-
munications, mobile communications, digital video and audio broadcasting,
data transmission and data storage. For practical applications the coding
scheme not only needs to have good coding characteristics but also needs to
be efficiently implementable, e.g. hardware within integrated circuits.

For data transmission, there exist efficient binary coding schemes, such
as turbo codes [4] and low density parity check codes (LDPC) [5]. But in
real life the noise and the transmission medium are not binary, instead the
noise and the medium are functions in the real domain Rn, e.g. Fig 1.1 shows
an example of a wireless transmission. Lattice codes are codes over the real
numbers which possess great potential to become an efficient, practical and
reliable communication scheme for the AWGN channel. Shannon showed
that codes with very long random Gaussian-distributed codewords can ap-
proach the AWGN capacity [6], and now it is known that lattice codes can
also achieve the AWGN capacity [7] [8] [9]. Lattices are especially appealing

1

Figure 1.1: In real communications the channel and the medium consist of
functions in the real domain.

for multi-terminal Gaussian networks, where the encoder and the channel
use the same real algebra.

Recently, a variety of lattices called low density lattice codes (LDLC), in-
troduced by Sommer, Feder and Shalvi [1], have been studied. LDLC lattices
are high-dimensional lattices defined by a sparse inverse generator matrix.
The construction and decoding of LDLCs resemble low density parity check
(LDPC) codes, that is, using a belief propagation (BP) decoding algorithm
on a sparse graph. It was reported that the LDLC belief propagation de-
coder attains a symbol error rate of 10−5 at 0.6 dB from the unconstrained
AWGN channel capacity. Already, relaying and physical layer network cod-
ing schemes that use LDLCs have been described [10][11] [12][13]. But how
to construct and efficiently decode LDLCs are an open problem.

2

1.1 A brief history of lattices

In the seventeenth century the astronomer Johannes Kepler conjectures that
the face-centered cubic lattice forms the best sphere packing in three di-
mensions. And Gauss showed that there is no other lattice better than the
face-centers cubic lattice in three dimension.

The first step on the concept of lattice was taken by George Boole when
he tried to formalize propositional logic in the style of algebra. In [14] the
list of laws which are satisfied by various algebras was presented, e.g. calcu-
lus of logic. The rules that Boole set concerned three binary operations on
a structure, the first two satisfied associative, commutative and distributive
laws, the third one corresponded to the creation of complements. Richard
Dedekind was interested in algebraic number theory, and Dedekind investi-
gated properties of structures called “dual groups.

Lattice structures started to be studied in other areas of mathematics at
the end of 1920s. Karl Menger presented the set of axioms characterizing
projective geometries [15] which are in fact complemented modular lattices.

Merits in the early developments of lattice theory belong to Garrett
Birhoff who also approached it from the side of algebra and united its vari-
ous applications [16]. G. Birkhoff also introduced the English word “lattice,
but was inspired by the image of some Hasse diagrams presenting lattices.
The development did not take place only in lattice theory proper or in its
connection with algebra, but also in the field of geometry, topology, logic,
probability and functional analysis. the first summarising works on lattices
started to appear, Birkhoff in [17] presented the notions of lattice theory.

The mathematician Hermann Minkowski used lattices to related n-dimensional
geometry with number theory. The Minkowski-Hlawka theorem play the role
of Shannon’s random coding technique for providing the existence of “good”
lattice codes.

The relation between error-correcting codes, sphere packing and lattices
was studied by Leech and Sloane [18], and Conway and Sloane [19] in 1970’s
and 1980’s. In a series of works through the 1980’s and 1990’s, Forney [20][21]
[22]established tools to characterise and evaluate lattice codes, towards their

3

implementation in digital communications.

In the 802.11 and LTE standards the set of possible coded signals corre-
sponds to a finite segment from some high dimensional lattices. The ITU-T
standard V.34 for voice band telephone channel modems at 33.6 kbits per
second uses a four-dimensional constellation selected form D4 lattice. Lattice
codebooks are also used for data compression; one recommendation for the
ITU-T 729.1 speech-coding standardised the Gosset lattice E8 as the code-
book for code-excited linear prediction(CELP)[23].

In 1996 Ajtai shows a remarkable worst-case to average-case reduction
for lattice problems, yielding to lattice-based cryptography [24]. A crypto
systems based on lattices is the NTRU algorithm [25].

Erez and Zamir showed in [8] that lattice codes can achieve the AWGN
channel capacity in 2004. In 2006 Sommer, Erez and Shalvi introduced low
density lattice codes (LDLC)[26], that can achieve 0.6dB from the lattice ca-
pacity. In [1] the construction and a decoding algorithm was given in detail.
LDLC lattices resemble LDPC codes.

In 2006 Nazer and Gatspar introduced a scheme for the physical layer
network, called compute-and-forward[10], that allows intermediate nodes to
both recover linear combinations of codewords and eliminate noise. This
reduces a network into a set of reliable linear equations. The compute-and-
forward strategy can be done efficiently if the code is a lattice code. This
technique makes lattice codes very attractive for the physical layer network
problem.

1.2 System model

In Fig 1.2 the basic structure of the communication model is shown. The
transmitter performs two operations, source coding and channel coding, and
the receiver performs the inverse of the transmitter operations. The channel
code is used such that the receiver is able to detect and/or correct errors.

4

Source
Encoder

Channel
Encoder

Channel

Source
Decoder

Channel
Decoder

Figure 1.2: A basic communication model.

1.2.1 AWGN channel

This work considers the additive white Gaussian noise (AWGN) channel
model [27]. In this model the received signal y is a sum of the transmit-
ted signal x and white Gaussian noise z, for zi ∼ N (0, σ2), as:

y = x + z, (1.1)

where the noise z is assumed to be independent of the signal x. Without
further conditions, the capacity of these channel may be infinite. This dis-
sertation considers the AWGN channel without restrictions [28]. These con-
sideration leads to the volume-to-noise ratio (VNR) [29], analogous to the
signal-to-noise ratio (SNR). The VNR is the ratio of the normalized volume
of the lattice and the normalized volume of a noise sphere.

5

V NR =
Volume of the lattice

Volume of noise sphere
(1.2)

V NR =
V (Λ)2/n

2πeσ2
. (1.3)

where V (Λ) is the volume of the lattice and 2πeσ2 is the volume of the n-
dimensional noise sphere of squared radius nσ2. This dissertation considers
lattice capacity when

σ2 =
V (Λ)2/n

2πe
. (1.4)

A lattice that achieves lattice capacity, also achieves the channel capacity of
the power constrained AWGN channel, with properly shaping region [8].

Characteristics like fading, interference and other channel properties are
not considered in this model. However, this channel model is an accurate
mathematical model for evaluating system performances.

1.3 Problems to solve

Lattices have been studied for many years as was described in previous sec-
tion. Nevertheless there are still open problems to be solved, especially for
high dimensional lattices. This dissertation is focused on the study of LDLC
lattices, and specifically its main focus is on two problems. The first one is
how to construct LDLC lattices, and the second one is how to find the closest
lattice point to a given point for LDLC lattices i.e. LDLC lattice decoding.

1.3.1 LDLC construction

The construction process of the LDLC lattices inverse generator matrices in
[1] requires high processing time and high amount of memory. The construc-
tion algorithm given by Sommer et. al. [1] generates random permutations

6

in order to search for and eliminate 4-cycles in the matrix and finally assign
the values of the non-zero elements in a latin square manner. These permu-
tation matrices need to be stored and as the dimension increases, these op-
erations require high computational complexity. The characteristic of these
latin square LDLC lattice inverse generator matrices is that they are 4-cycle
free and sparseness.

Having a triangular structure is a desired property for the LDLC lattice
inverse generator matrices, in order to aid shaping and encoding operations.
In [30] a method to construct triangular inverse generator matrices for LDLC
lattices was given. First a latin square LDLC lattice inverse generator matrix
was generated as was described in [1], and then by row and column permuta-
tions the triangular structure of the inverse generator matrix was generated.
This row and column permutations operations are computationally demand-
ing as the dimension increases.

The first problem to solve in this dissertation is how to construct LDLC
lattice inverse generator matrices with a low computational complexity al-
gorithm. In addition the LDLC inverse generator matrices need to have a
triangular structure, free of 4-cycles and present sparseness.

1.3.2 LDLC decoding algorithm

In the idealized LDLC belief propagation decoder, the messages passed be-
tween check and variable nodes are continuous functions. In any implemen-
tation, these continuous functions must be approximated. In the original
implementation [1], these messages were approximated by a discretely quan-
tized function. The amount of quantization, typically 1024 bins, is imprac-
ticably large.

A computationally efficient approach is to represent the messages as a
mixture of Gaussian functions. For the AWGN channel, the messages are
precisely represented using a mixture containing an infinite number of Gaus-
sians, which is clearly not practical.

Various authors introduced parametric decoder algorithms in order to
approximate the infinite mixture of Gaussians with a finite number of Gaus-

7

sians. These parametric algorithms use tables to find the dominant Gaussians
in the mixture [31], or use a single Gaussian approximation for combining
pair of Gaussians for reducing the number of Gaussians in the mixture [2][32].
But those operations are not suitable for implementation and/or present a
weak approximation.

The second problem this dissertation solves is to construct a parametric
decoding algorithm for LDLC lattices, the decoding algorithm need to use
a good approximation for the infinite Gaussian mixtures and have low com-
putational complexity.Having a low computational complexity construction
and decoding algorithms are a step forward to a more practical algorithms
for LDLC lattices.

1.4 Contributions

In this section a description of the contributions of the dissertation is given.
The contributions are divided into two sections. The first section corresponds
to the contributions for the proposed construction algorithm. The second sec-
tion summarizes the contributions for the proposed decoding algorithm.

1.4.1 Proposed LDLC lattice construction: “Array
LDLC”

The new method to construct LDLC lattices uses the construction of the
binary array LDPC codes [33] as base for design the LDLC inverse generator
matrix. To be in congruence with the base of the construction, it is called
“Array LDLC lattice”.

The array LDLC lattice inverse generator matrices have a deterministic
construction, i.e. no pseudo-random construction, are 4-cycle free in order
to improve the performance of the BP decoding, triangular structure, for aid
encoding and shaping operation, and sparse for low storage. The benefits of
the array LDLC lattice inverse generator matrices are summarized in Table
1.1.

8

Table 1.1: Benefits of the array LDLC lattice inverse generator matrices.

Properties Benefits
Low computational

Deterministic construction complexity construction

4-cycle free Improve BP-decoding

Sparseness Low storage

Triangular structure Simplify encoding and
shaping operations

In addition to the new construction, the following contributions are given:

1. Upper bound for the minimum distance.

2. A method to increase the protection to the less protected elements.

3. Guideline for choosing the balance factor.

1.4.2 Proposed LDLC decoder: “Three/Two Gaus-
sian Parametric Decoding Algorithm”

The major advantage of the new LDLC decoding algorithm is a favorable
performance-complexity tradeoff as compared to previous parametric decod-
ing algorithms such as the Gaussian mixture reduction (GMR) algorithm [2]
and the table search algorithm [31].

The new decoding algorithm is nearly parameter free; the only parameter
selection of interest is the number of Gaussians M used in the approxima-
tion which is either 2 or 3, accordingly it is called the “three/two Gaussian

9

Table 1.2: Benefits of the three/two Gaussian parametric decoding algorithm.

Properties Benefits

Almost parameter-free one degree of freedom

Message between nodes
are single Gaussians Low storage

Infinite Gaussian mixture are
approximated with Good approximation
2 or 3 Gaussians

parametric decoding algorithm”.

Having a nearly parameter free algorithm is an advantage compared to
other LDLC decoders that have algorithmic parameters, e.g. threshold pa-
rameters and list size of the GMR algorithm. The benefits of the three/two
Gaussian parametric decoding algorithm are summarized in Table 1.2.

For small and medium-dimension lattices of dimension n = 1, 000 or less,
the complexity-performance tradeoff is particularly favorable using M = 2
Gaussians in the approximation. It is shown that performance is practically
indistinguishable from the GMR algorithm [2], but complexity is significantly
lower. For higher-dimensional lattices of dimension n = 10, 000, the two-
Gaussian approximation has some performance loss, which is recovered by
increasing to an M = 3 Gaussian approximation. To maintain a low com-
putational complexity the number of Gaussians used in the approximation
should be either M = 2 or M = 3. Selecting a greater number of Gaussians
M ≥ 4 does not give any significant advantage in performance.

In addition, the noise thresholds for the Three/Two Gaussian parametric
decoding algorithm are shown, the result of the noise thresholds can be used
as a reference for LDLC lattice designing.

10

1.5 Organization

Chapter 2 gives the definition and background on lattices, not only those
which are used in these dissertation, but general definitions as well, for read-
ers which are interested in the study of lattices. These definitions include
the description of some small dimensional lattices, such as A2, D3, D4, E8

and the Barnes-Wall lattice.

In Chapter 3, the description of low density lattices codes, the conven-
tional construction algorithm and the previous decoding algorithm are de-
scribed. In Chapter 4 description of LDPC array codes are presented and
the new LDLC lattice construction called “array LDLC lattices” are intro-
duced. The proposed LDLC decoding algorithm called “three/two Gaussian
parametric decoding algorithm” and its analysis are presented in Chapter 5,
and finally the conclusion and future work is presented in Chapter 6.

11

Chapter 2

Lattices

In this chapter basic definitions for the study of lattices are presented. These
basic definitions include the well known A2, D3, D4, E8 and Barnes-Wall
lattices, basic constructions based on binary codes, notions on the minimum
distance and the volume-to-noise ratio. This chapter not only includes the
lattice knowledge used in this dissertation, but also definitions that are useful
for those who want to begin the study of lattices.

2.1 Definition of lattices

A lattice Λ is a periodic linear arrangement of points in the n-dimensional
Euclidean space Rn. It can be seen as the set of all integer combinations of
basis vectors. A matrix G whose columns are the basis vectors v, is called
the generator matrix of the lattice.

G =


| | |

v1 v2 . . . vn

| | |

 . (2.1)

A lattice point x is defined as:

12

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.1: The two dimensional hexagonal lattice (A2 lattice), the blue
points are the lattice point, in addition the Voronoi region of the lattice
point is also illustrated. Each lattice point of the A2 lattice has 6 neighbors.

x = Gb, (2.2)

where x ∈ Rn and b ∈ Zn are column vectors.

In Fig 2.1 can be seen the graphical representation of the 2-dimensional
A2 hexagonal lattice, which can be constructed with

G =

√3
2

0

1
2

1

 . (2.3)

The blue dots represent lattice points and also the Voronoi region is il-

13

lustrated. The Voronoi region of a lattice point is defined as the set of all
points in Rn that are closer to a lattice point than to any other lattice point.
The volume V (Λ) of the Voronoi region is given by:

V (Λ) = | det(G)|. (2.4)

Other interesting property of the lattice is the kissing number, which is
the number of closest neighbors a lattice point has. The density of a lattice is
the proportion of the space that is occupied by a sphere inside the fundamen-
tal region (spheres centered on each lattice point, with radius such spheres
just touch). The n-dimensional sphere in Rn with center u = (u1, . . . , un)
and radius ρ, consists of all points x = (x1, . . . , xn) that satisfy:

(x1 − u1)2 + · · ·+ (xn − un)2 = ρ2 (2.5)

The density of a lattice is defined by:

volume of one sphere

volume of fundamental region
. (2.6)

These two properties are used to analyze the packing properties of the
lattice. The packing problem is similar to the quantization problem [34].

Also for lattices, given any vector y ∈ Rn, how to estimate the closest
lattice point in Λ is a non-trivial problem. For small dimensions low com-
plexity algorithms are known, but as the dimension increases the algorithms
to estimate the closest lattice point are not simple. Recall that an advantage
of lattice codes is that decoding and quantization are combined as a ”single
entity”; lattice codes can directly maps digital information into a vector in
Rn and vice versa.

14

2.1.1 Definition of Nested lattices

A lattice code is all lattice points to lie inside of a constrained region, usually
this region is a Voronoi region of a scaled lattice.

A pair of n-dimensional lattices Λ1 and Λ2, are called nested if

Λ2 ⊆ Λ1, (2.7)

Λ2 is a sublattice of Λ1 and it is denoted as Λ1/Λ2. The generator matrices
of Λ1 and Λ2 satisfy

G2 = G1 · J, (2.8)

where J is the n× n nesting matrix and det(J) ≥ 1, with equality if the two
lattices are identical. For nested lattices Λ1 is called the fine lattice and Λ2

is called the coarse lattice. The volumes satisfy

V (Λ2) = det
(
J · V (Λ1)

)
(2.9)

In Fig 2.2 a two dimensional nested lattice code A2/4A2 can be seen,
where the blue dots represent the A2 lattice, the fine lattice, and the red
dots represent the coarse lattice 4A2. Each coarse lattice contains sixteen
points of the fine lattice, and can be represented using four bits.

2.1.2 Minimum distance of a lattice

The squared norm τ 2 of a lattice point x ∈ Λ is

15

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 2.2: A nested lattice representation in two dimension the coarse lattice
is 4A2 (in red) and the fine lattice is the A2 lattice (in blue).

τ 2
x = ||x||2 =

n∑
i=1

x2
i . (2.10)

The squared minimum distance or squared minimal norm of the lattice
d2
min(Λ) is the minimum square norm among two distinct lattice points, and

it is defined as:

d2
min(Λ) = min{||x− y||2 : x,y ∈ Λ,x 6= y} (2.11)

d2
min(Λ) = min

x∈Λ
{||x||2 : x 6= 0}, (2.12)

and d2
min(Λ) > 0.

The squared minimum distance of a lattice is upper bounded by the norm
of all basis vectors vi, for i = 1, 2, . . . , n, in the generator matrix shown in

16

equation (2.3):

d2
min(Λ) ≤ min(||v1||2, ||v2||2, . . . , ||vn||2) (2.13)

Finding the minimum distance of lattice is not a trivial problem since it
requires an intensive search among all lattice points, and as the dimension
increases the number of point also increases.

There exist different techniques to estimate the squared minimum dis-
tance of a lattice. One technique is by searching using the sphere decoding
algorithm [35], but depending on the parameters can lead to search over
great number of points or not find any point(for more information see Sec-
tion 2.4.3). Other technique is by using the Lenstra-Lenstra-Lovasz (LLL)
lattice basis reduction algorithm [36].

The LLL-reduction algorithm is a polynomial time lattice reduction al-
gorithm invented by Arjen Lenstra, Hendrik Lenstra and Laszlo Lovasz in
1982, that changes the basis of G into a shortest basis G′ such that the lattice
remains the same.The LLL-reduction algorithm has the following operations:

1. Swapping 2 vectors of the basis. This swapping only changes the order
of vector in the basis, so the lattice is not affected.

2. Replacing vi by −vi.

3. Adding to a vector vi a linear combination of the other vector of the
basis.

In aAppendix B.1 the pseudocode for the LLL-reduction algorithm is de-
scribed. Since the squared minimum distance d2

min of the lattice is upper
bounded by the square norms of the basis vectors in the generator matrix,
the LLL-reduction algorithm gives us a better knowledge of the squared min-
imum distance.

17

2.2 Root lattices

The root lattices are the n-dimensional lattices An(n ≥ 1), Dn(n ≥ 2) and
E8(n = 8). These lattices are the densest known sphere packing and cov-
erings in dimensions n ≤ 8, for dimension n = 16 the best known lattice
is the Barnes-Wall lattice. They can be used as the basis for efficient block
quantizers for uniformly distributed inputs, and to construct codes for a
band-limited channel with Gaussian noise.

2.2.1 An lattice

The An lattice is defined as:

An = {(x0, x1, . . . , xn) ∈ Zn+1 : x0 + x1 + · · ·+ xn = 0} (2.14)

which uses n + 1 coordinates to define an n-dimensional lattice. An lies in
the hyperplane

∑
xi = 0 in Rn.

In two dimensions the densest lattice is the A2 lattice also called the
hexagonal lattice, since the Voronoi cells are hexagons. A possible generator
matrix for this lattice is:

G =

 √3
2

0

−1
2

1

 . (2.15)

2.2.2 Dn lattice

Th Dn lattice is defined as:

Dn = {(x1, x2, . . . , xn) ∈ Zn : x1 + x2 + · · ·+ xn is even}, (2.16)

18

Dn is obtained by coloring the points of Zn alternately black and white, like
a checkerboard, and taking the black points as lattice points. Also the Dn

lattice is known as the “checkerboard lattice”.

In three dimensions the densest lattice is the face-centered cubic lattice
A3 and D3, and has the shape of the pyramid of oranges. A possible gener-
ator matrix for this lattice is:

G =

−1 1 0
−1 −1 1
0 0 −1

 . (2.17)

In four dimensions the most useful lattice is the D4 lattice. A possible
generator matrix for this lattice is:

G =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 2

 . (2.18)

2.2.3 E8 lattice

In eight dimensions the most useful lattice is the E8 lattice. The E8 lattice
consists of the points

(x1, . . . , x8) : all xi ∈ Z or all xi ∈ Z +
1

2
,
∑

xi ≡ 0 mod 2, (2.19)

19

A possible generator matrix is:

G =



2 −1 0 0 0 0 0 1
2

0 1 −1 0 0 0 0 1
2

0 0 1 −1 0 0 0 1
2

0 0 0 1 −1 0 0 1
2

0 0 0 0 1 −1 0 1
2

0 0 0 0 0 1 −1 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2



. (2.20)

2.2.4 Barnes-Wall lattice

In dimension n = 16 the best known lattice is the Barnes-Wall (BW16) lat-
tice, introduced by Barnes and Wall in [37]. This lattice can be generated
by applying construction B to the first-order Reed-Muller code of length 16.
A possible generator matrix is shown in Fig. 2.3.

In Table 2.1 a comparison between A2, D3, D4, E8 and BW16 is shown,
where the kissing number, density, packing radius and minimal norm are
given. These values are from Conway and Sloane [19].

2.3 Construction based on linear binary codes

There are lattice constructions that are based on linear binary codes. An
(n, k, d) linear binary code C maps k information bits into binary codewords
c of length n. The number of codewords is given by M = 2k, and these
codewords are subject to the constraint

20

G = 1√
2



4 2 2 2 2 2 2 2 2 2 2 1 0 0 0 1
0 2 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 2 0 0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 2 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 2 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 2 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 2 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 2 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1


Figure 2.3: Generator matrix for the Barnes-Wall lattice.

Table 2.1: Comparison between different root lattices

Determinant Kissing Density Packing Minimal
number radius norm

A2
3
4

6 π√
12

1
2

1

D3 4 12 π√
18

1√
2

2

D4 4 24 π2

16
1√
2

2

E8 1 240 π4

384
1√
2

2

BW16 254 4320 π8

16·8!
1 4

H · cm = 0 (2.21)

for m = 1, . . . ,M , where all the additions and multiplications are modulo
2, and H is the parity check matrix of the code C. The minimum distance
of the code C is denoted by d, i.e., the minimum Hamming distance weight

21

over all non-zero codewords.

2.3.1 Construction A

Construction A is method to construct a lattice by lifting a linear binary
code C to the Euclidean space.

The set of all integer vectors whose modulo 2 reductions belongs to C
forms a lattice. In other words construction A is defined as:

Λc = {x ∈ Zn : x mod 2 ∈ C} or (2.22)

Λc = 2Zn + C, (2.23)

where x is a lattice point if and only if x is congruent modulo 2 to a codeword
of C, and the minimum distance of the lattice constructed using construction
A, Λc, is given by dmin(Λc) = min{

√
d, 2}.

This construction is not only applicable for binary alphabet, but it can
be extended to q-ary linear code C and is applied as:

Λc = qZn + C. (2.24)

where q is a prime number. And has the following properties:

1. det(Λc) = qn−k.

2. Λc contains a cubic lattice: qZn ⊂ Λc.

3. If the generator matrix of C has a systematic representation GC =
[Ik|Pt]t, where Ik is an k × k identity matrix and P is a (n − k) × k

22

matrix. A possible generator matrix for the lattice constructed using
construction A is:

GΛc =

[
Ik | 0
P | qIn−k

]
. (2.25)

The advantage of construction A is that there is a series of similarities be-
tween properties of the codes and that of the resulting lattices, e.g. linking
the dual of the code and the dual of the lattice, or the weight enumerator
of the code and the theta series of the lattice [19]. The well known lattice
E8 can be constructed by applying construction A to the (8,4,4) extended
Hamming code.

2.3.2 Construction D and D’

Construction D and D’ use a nested family of binary codes to produce a
lattice ΛD or ΛD′ [38][39]. The difference between construction D and D’ is
that, construction D works with a set of generator matrices and construction
D’ works with the set of parity-check matrices. In this dissertation only con-
struction D’ is described, and it is as follows:

Let α = 1 or 2, and let C0 ⊆ C1 ⊆ · · · ⊆ Ca be a family of binary lin-
ear codes,where has parameters [n, ki, di] and the minimum distance satisfies
di ≥ α4i for i = 0, . . . , a. Let h1, . . . ,hn be linear independent binary vectors
such that for i = 1, . . . , a, the code Ci is defined by the ri = n − ki parity-
check vectors h1, . . . ,hri , and let r−1 = 0. Consider the vector hj as integral
vector in Rn. The new lattice ΛD′ consists of those x ∈ Zn that satisfy

hj · x ≡ 0(mod2i+1) (2.26)

23

for all i = 0, . . . , a and ra−i−1 + 1 ≤ j ≤ ra−1. Then minimum distance dΛD′

satisfies

min{da, 4da−1, 4
2da−2, . . . , 4

ad0, 4
a+1} ≤ d2

Λ′D
≤ 4a+1. (2.27)

The kissing number γ satisfies[40]:

γ ≤ 2n+
∑

1≤i≤a

24iAdi (2.28)

where Adi is the number of codewords in Ci with minimum weight di.

Construction D and D’ have been used to construct lattices based on low
density parity check (LDPC) codes and these lattices are called LDPC lat-
tices [41], or those based on turbo codes and are called turbo lattices [40],
and more recently those which are based on polar codes, are called polar
lattices [42]. There exist other lattice constructions, in the following chapter
a construction for low density lattice codes is introduced, which is the main
lattice code of this work.

2.4 Finding the closest lattice point

An important problem is finding the closest lattice point x̂∈ Λ to a given
point y ∈ Rn such that the Euclidean distance between y and x̂ is mini-
mized. If the lattice is used as a code for the AWGN channel, then finding
the closest lattice point corresponds to maximum likelihood decoding [43].
If the lattice is used for quantization then the closest lattice point problem
corresponds to the minimum distortion point.

In 1981 Boas showed that finding the closest lattice point problem is NP-
hard [44], and no polynomial-time algorithm is known with a performance

24

ratio better than exponential in terms of the lattice dimension. Different au-
thors had proposed algorithms that want to solve this problem, and for some
specific lattices there exist low complexity algorithms which are attractive
for practical applications. In this section some of the well known decoding
algorithms are shown for different lattices.

2.4.1 Root lattice decoding

In [43] low complexity algorithms for finding the closest point for different
root lattices to an arbitrary point y ∈ Rn are given. Let

f(y) = closest integer to y, (2.29)

in case of a tie, choose the integer with the smallest absolute value. And let
g(y), be the same as f(y) except that the worst component of y, the one
furtherest apart from an integer, is rounded the wrong way.

To find the closest point of Dn to y: Given y ∈ Rn, the closest point of
Dn, is whichever of f(y) and g(y) has an even sum of components.

And to find the closest point of E8 given y = (y1, . . . , y8) ∈ R8 is as
follows:

1. Compute f(y) and g(y).

2. Select whichever has an even sum of components; call it x̂0.

3. Compute f(y − 1
2
) and g(y − 1

2
), where 1

2
= (1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
)

4. Select whichever has an even sum of components; add 1
2

and call the
result x̂1.

5. The result, is whichever the closest point to y between x̂0 and x̂1 is.

2.4.2 Decoding Algorithm for Construction A lattices

Finding the closest lattice point from a lattice constructed with construction
A [19, Chap 20.5], given point y ∈ Rn is described as follows:

25

1. Reduce all yi to the range −1 ≤ yi < 3 by subtracting a vector 4z,
where z ∈ Zn.

2. Denote the set of i for which 1 < yi < 3 as S.

3. For i ∈ S, replace yi with 2− yi.

4. Since y is now in the cube −1 ≤ yi ≤ 1, apply the decoder for C to y
to obtain c.

5. For i ∈ S change ci to 2− ci.

6. Then x̂ = c + 4z is the closest lattice point to y.

2.4.3 Sphere decoding

The sphere decoding algorithm [35][45] solves the problem

min
x̂∈Λ
||y − x̂|| = min

w∈y−Λ
||w||, (2.30)

where y = Gζ and w = Gξ for ζ, ξ ∈ Rn. Then we have w =
∑n

i=1 ξivi
where ξi = ζi − bi, for b ∈ Zn.

It is needed to find the shortest vector in the translate lattice y− Λ. By
constructing a ball of radius r centered at y and testing all lattice points
inside the ball.

In Fig 2.4 a visual representation of the sphere decoding is shown. Clearly
for the sphere decoding, if r is too large, there exist too many points inside
the ball and the search is exponential in size. And if r is too small, there
are no points inside the ball. There is no specific way on how to choose the
value of r. One approach is that r be the covering radius of the lattice. The
covering radius is the smallest distance from a lattice point and a deep hole,
which is the furthest point in Rn form a lattice point. Another candidate is
the minimum distance of the lattice, which is upper bounded by the norms
of the basis vector in the generator matrix. But knowing the covering radius

26

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 2.4: Sphere decoding algorithm, search the closest lattice point to y
that are inside of a ball of radius r.

and the minimum distance of a lattice is not a trivial problem as the dimen-
sion increases.

For a more practical use of the sphere decoding algorithm the radius r
could be adaptively adjusted according to the noise level. If there is no
lattice point inside the ball the radius must be increased. If the distance
of a detected lattice point is smaller than the radius, the radius r can be
decreased. The sphere decoding algorithm has exponential complexity in the
dimension of the lattice, which makes it unattractive for high dimensional
lattices.

2.5 Volume-to-Noise Ratio

A useful measurement for comparison of the performance of the decoding of
lattice codes is the volume-to-noise ratio (VNR)[29], which is analogous to

27

signal-to-noise ratio. The VNR is the ratio of the normalized volume of Λ
and the normalized volume of a noise sphere. The VNR is defined as:

V NR =
V (Λ)2/n

2πeσ2
. (2.31)

where V (Λ)2/n is the normalized volume of Λ per two dimensions. And 2πeσ2

is the volume of the normalized noise sphere of square radius nσ2 for n large.

The VNR relies on the following ideas:

• For a given V (Λ) the best possible shape R(Λ) is a n-dimensional
sphere.

• For having the probability of error Pe(Λ, σ
2) to be small, the R(Λ) must

be larger than a noise sphere of radius nσ2.

The volume Vs(n, r
2) of an n-dimensional sphere of square radius nr2, is

given by

Vs(n, r
2) =

(2πkr2)k

k!
→ (2πer2)k (2.32)

for n even and k = n
2
. The limit for n → ∞ uses Stirling’s approximations

k!→ (k
e
)k.

By the law of large numbers, as n → ∞ , the probability Pes(n, r
2, σ2)

that a Gaussian noise with variance σ2 per dimension falls outside a sphere
of square radius nr2 goes to 0 if σ2 < r2, and goes to 1 if σ2 > r2.

Theorem 1: For large n , the probability of error Pe(Λ, σ
2) of a minimum-

distance decoder for a n-dimensional lattice Λ on an AWGN channel with
noise variance σ2 per dimension cannot be small unless V (Λ)2/n > 2πeσ2.

28

Moreover, if V (Λ)2/n ≈ 2πeσ2, then n must be small unless n is large [29,
Thoeriem 1].

In this dissertation the probability of error as a function of VNR was used
as evaluation criteria, with has the following benefits:

• if a lattice Λ is scaled by β > 0 while σ2 is scaled by β2, then the volume
scales by βn, i.e V (βΛ) = βnV (Λ). And the probability of error does
not change.

• The probability of error Pe(Λ, σ
2) cannot be small unless V NR > 1.

The lattice capacity is when V NR = 1, this is only possible if:

σ2 =
V (Λ)2/n

2πe
(2.33)

Remark In this dissertation the VNR is used, since only the uncon-
strained lattice transmission is considered. And it is considered a symbol
error when one element in the decoded lattice point x̂i is different to the
transmitted lattice point xi, i.e. x̂i 6= xi. In this dissertation most of the re-
sults presented are in terms of the symbol error rate as a function of the VNR.

In Fig 2.5 the symbol error rate in terms of the VNR for different lattices
is shown. It has been shown that as the dimension goes to infinity the lattice
codes can achieve capacity with zero error probability[28][8].

2.6 Conlcusion

In this chapter various characteristics of lattices were described, like the kiss-
ing number, density and minimum distance of a lattice, also the well known
small dimensional lattice were given, like the A2, D4, and E8. For small
dimensional lattices the decoding algorithm was also described. In addition

29

3.5 4 4.5 5 5.5 6 6.5 7
10

−6

10
−5

10
−4

10
−3

VNR

S
y
m

b
o
l
E

rr
o
r

R
a
te

A2

D3

D4

E8

Figure 2.5: Probability of decoding error in terms of the volume-to-noise
ratio (VNR) for different lattices.

construction based on linear binary codes and its decoding algorithm were
described. Finally this chapter gave the definition of the volume-to-noise
ratio (VNR) which is a way to normalize the noise power, and it is used to
evaluate the performance of the lattice, since this dissertation considers only
the unconstrained lattice transmission.

30

Chapter 3

Low Density Lattice Codes

In this chapter low density lattice code (LDLC) are introduced. LDLCs are
high-dimensional lattices defined by a sparse inverse generator matrix. The
decoding of LDLCs resembles low density parity check codes (LDPC), that
is, using a belief propagation (BP) decoding algorithm on a sparse graph.

3.1 Definition

A low density lattice code (LDLC), introduced by Sommer et al. [1], is an
n-dimensional lattice code defined by a non-singular generator matrix G sat-
isfying the property that the inverse generator matrix H= G−1 is sparse and
| det (G)|=1.

The row/column degree is the number of nonzero elements in the row/column
of the inverse generator matrix H. The LDLC is called regular if all row de-
grees and column degrees of the inverse generator matrix are equal to the
same value d.

For LDLC lattices the values of the non-zero elements of the inverse gen-
erator matrix H are taken from the generator sequence h= {h1, . . . , hd}, such
that h1 ≥ · · · ≥ hd. Note that the inverse generator for binary low density
parity check codes (LDPC) are only defined by the locations of the non-zero
elements. But for LDLC lattices these non-zero values need to be chosen.

31

In order to guarantee the exponential converge of the iterative decoding
the values of the generator sequence need to satisfy:

α ,

∑d
i=2 h

2
i

h2
1

≤ 1, (3.1)

having α too small will results in a faster convergence, but numerical results
show that α should be close to 1. But how to choose the best generator
sequence or the best value of α is a hard problem. In this dissertation a
contribution on how to choose the generator sequence is given.

A regular LDLC is called “latin square” if every row and column of the
inverse generator matrix has the same d non-zero elements, except for a pos-
sible change of random sign.

As an example we have a latin square LDLC with dimension n = 6, de-
gree d = 3 and generator sequence {1, 0.8, 0.5}, a possible inverse generator
matrix is:

H =


0 −0.8 0 −0.5 1 0

0.8 0 0 1 0 −0.5
0 0.5 1 0 0.8 0
0 0 −0.5 −0.8 0 1
1 0 0 0 0.5 0.8

0.5 −1 −0.8 0 0 0

 . (3.2)

This inverse generator matrix should be further normalized by the con-
stant n

√
| det(H)| in order to have | det(H)| = | det(G)| = 1, as required by

the definition.

3.2 Construction

In [1] an algorithm to construct latin square LDLC lattice inverse generator
matrix H was introduced. This algorithm generates d random permutations

32

of length n. Then, a searching operation is performed to identify cycles of
degree 2 and 4 in order to eliminate them, the importance of the inverse
generator matrix not having 2-cycles and 4-cycles is to improve the perfor-
mance of the BP decoding. This process gives the positions of the non-zero
elements. These non zero elements are taken from the generator sequence h
and are assigned in a latin square manner, i.e. where all columns and rows
contain all elements in the generator sequence just with a change in order
and random sign. In Fig 3.1 the block diagram of the construction algorithm
presented in [1] is shown.

The algorithm presented in [1] has the following limitations:

1. All the position of the matrices needs to be stored while searching for
cycles (high use of memory).

2. Searching for cycles is computationaly demanding as the dimension
increases.

A construction that can reduce the computational complexity for LDLC
lattice inverse generator matrices is desired, in order to lead to more practical
applications and will be shown in Chapt 4.

3.2.1 Triangular Form

A triangular form for the inverse generator matrix is a convenient structure
for encoding and shaping operations.

A triangular inverse generator matrix for LDLC lattices was introduced
in [30]. The triangular inverse generator HT assumes that all elements along
the diagonal are equal to the largest element in the generator sequence with
“+” sign. This can be done by permuting rows and columns in the inverse
generator matrix H, and by multiplying whole rows by −1 when is necessary.
Then by a similar procedure by which the latin squared LDLC lattice was
constructed, the column degree of the rightmost column of H will start from
1 and gradually increase until d. In the same manner, the row degree of
the top row will be 1, and it will gradually increase until d. The triangular

33

Input
dimension
degree
generator sequence

Generate a random
permutation matrix

Search for 2-cycle
and 4-cycleEliminate cycle

A cycle exist?

Assign the
values from

Output
inverse generator matrix

Yes

No

Figure 3.1: Block diagram for constructing latin square LDLC lattice inverse
generator matrices [1].

inverse generator HT is not regular.

For example the triangular LDLC lattice inverse generator of dimension
n = 8, degree d = 3 and generator sequence h = {1, 0.5, 0.7} is as follows:

34

HT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0.7 0 1 0 0 0 0 0
0 0 −0.7 1 0 0 0 0
−0.5 0 0 0.7 1 0 0 0

0 −0.7 0 0.5 0 1 0 0
0 −0.5 0 0 0.7 0 1 0
0 0 −0.5 0 0 0.7 0 1


. (3.3)

Having a triangular structure is convenient for encoding, but the compo-
nents where the HT column have a low degree are less protected against error
due to noise. This can be solved by giving to the less protected elements a
smaller amount of information.

A possible finite constellation for the HT of the previous example is as
follows: the first two integers can assume one of two possible integer values
(1 bit of information, e.g {0, 4}). The next two integers can assume one
of four integer values (2 bits of information, e.g {0, 2, 4, 6}), where all the
other integers can assume one of eight possible values and contain 3 bits of
information {0, 1, 2, 3, 4, 5, 6, 7}.

If the constellation size of all integers is eight, the information rate is 3
bits/integer. But having a triangular form makes it impractical to have this
rate. Instead the information rate is (2 · 1 + 2 · 2 + 4 · 3)/8 = 2.25bits/integer.
There is tradeoff between the information/rate of the code and the perfor-
mance in terms of the VNR.

3.3 Decoding LDLC lattices

In this section the description of the decoding algorithm for LDLC lattices
is described. The decoding algorithm is based on the belief propagation al-
gorithm.

35

3.3.1 Belief Propagation

The belief propagation (BP) is a technique invented in 1982 by Pearl [46] to
solve inference problems. Inference problems can be found in different fields,
such as artificial intelligence, computer vision, statistical physics and digital
communications.

The BP algorithm has given excellent results for decoding error-correcting
codes. And has been used to decode turbo codes [4] and LDPC codes [5].
In fact the decoding of error correcting codes is an inference problem, the
receiver tries to infer the message that was transmitted and has been cor-
rupted with noise.

In general the the BP decoding algorithm sends messages between two
types of nodes, one called variable nodes and another called check nodes.
And after enough iterations these message are likely to converge. A graphi-
cal representation which the variable node and the check nodes are illustrated
is called Tanner graph or bipartite graph [47].

3.3.2 Decoding Algorithm

Similar to LDPC codes, the bipartite graph is defined with variable nodes
corresponding to a single element of the lattice codeword x = Gb and check
nodes corresponding to a check equation of the form

∑
k hkxik is an integer,

where ik are the positions of the non-zero elements at the corresponding row
of the inverse generator H, and the integer is unknown. In Fig 3.2 a factor
graph is shown for the inverse generator:

H =



1 0 0 1√
2

0 0

0 1 0 0 1√
2

0

0 0 1 0 0 1√
2

1√
2

0 0 0 1 0

0 1√
2

0 0 0 1

0 0 1√
2

1 0 0


, (3.4)

36

4

1

2 31 5 6

2 3 4 5 6

Figure 3.2: Example for the factor graph for LDLC lattice with n = 6 and
generator sequence h = {1, 1√

2
}.

with n = 6 and generator sequence h = {1, 1√
2
}. An edge connects variable

node i and check node j if and only if Hi,j 6= 0. This properties of the LDLC
lattice can be exploited by decoding it by iterative decoding algorithm such
as belief propagation.

Sommer et al. introduced an iterative decoder for LDLC lattices in [1].
In the case of LDLC lattice decoder the messages between variable and check
nodes are real functions, for the AWGN channel these functions are Gaussian
mixtures, instead of scalar values as in binary LDPC codes.

Let the transmitted lattice point be x= Gb where G is the generator of
the n-dimensional LDLC lattice with G = H−1, and b ∈ Zn. And let y be
the received signal given by:

37

y = x + z, (3.5)

where z ∼ N (w; 0, σ2) is the additive white Gaussian noise with 0 mean and
variance σ2. The Gaussian function is defined as:

N (w;µ, σ2) =
1√

2πσ2
e−

(w−µ)2

2σ2 (3.6)

.

The LDLC decoder algorithm presented in [1] is as follows:

• Initialization: each variable node k send to all its check nodes a Gaus-
sian message f(w)

fk(w) = Yk(w) = N (w; yk, σ
2), (3.7)

for k = 1, 2 . . . , n.

• Check-to-variable message: The messages that the check node send
back to the variable node are calculated in three steps.

1. Convolution step: all messages except fj(w), are convolved after
expanding each message by its generator sequence h:

p̃j(w) = f1

(w
h1

)
⊗ · · · ⊗ fj−1

(w

hj−1

)
⊗ fj+1

(w

hj+1

)
⊗ . . . fd

(w
hd

)
.

(3.8)

for j = 1, 2 . . . d, where ⊗ denotes convolution.

2. Stretching step: The messages p̃j(w) are stretched by −hj to:

pj(w) = p̃(−hjw). (3.9)

38

3. Periodic extension: Each message pj(w) is extended to a periodic
function with period 1/|hj|:

Rj(w) =
∞∑

i=−∞

pj(w −
i

hj
). (3.10)

• Variable-to-check message: The variable-to-check messages fj(w) is cal-
culated in two steps.

1. The product step: where a product of all incoming messages is
made, except for the message j:

f̃j(w) = Yj(w)
d∏

l=1,l 6=j

Rl(w). (3.11)

2. The normalization step: where the message f̃j(w) is normalized
as:

fj(w) =
f̃j(w)∫∞

−∞ f̃j(w)dw
. (3.12)

These steps are repeated until the maximum number of iterations is
reached.

• Final decision: The estimated integer information vector b̂ is calcu-
lated. At the last iteration r, the product of all incoming message is
performed as:

f̃
(r)
final(w) = Yj(w)

d∏
l=1

Rl(w), (3.13)

39

and the estimated lattice point x̂ and estimated information b̂ are:

x̂ = argmax
w

f̃
(r)
final(w), and (3.14)

b̂ = bHx̂e (3.15)

respectively, the be denotes the rounding to the closest integer opera-
tion.

The complexity of the quantized BP decoding algorithm [1] is O(n·t·d· L
∆

)
where ∆ is the probability density function resolution and L is the range
length, and is dominated by a discrete Fourier transform of size 1/∆ oc-
curred during the convolution step. Also, as the message gets narrow in
every iteration, quantization errors could occur, i.e. a zero output instead
of an impulse. In addition, the storage required for the messages between
variable and check nodes is d/∆ per node. During the implementation w is
restricted to some range of integers which increases the storage needed.

Sommer et al. shows the performance of the quantized version for differ-
ent lattice dimension, they show that for dimension n = 100, 000 LDLCs can
attain a symbol error rate of 10−5 at VNR of 0.6dB. The generator sequence
for this result is { 1

2.31
, 1

3.17
, 1

5.11
, 1

7.33
, 1

11.71
, 1

13.11
, 1

17.55
} which has α = 0.9220.

The results given in [1] are shown in Table 3.1.

3.3.3 Decoder Convergence

In this section a review of the proof of the variance convergence for the LDLC
lattice decoder [1] is presented. Analysis of the convergence of the variance
is simpler than analyzing the convergence on the means, because eq (3.10)
and (3.12) are mixtures of infinite Gaussians.

In the latin square LDLC construction there are d edge types, corre-
sponding to the d coefficients. For any iteration l, all messages have the

40

Table 3.1: Results presented in [1] for different LDLC lattice dimension.
V NR = 0 dB is the capacity.

Dimension n Degree d Generator sequence h VNR (dB) SER

100 5 { 1
2.31

, 1
3.17

, 1
5.11

, 1
7.33

, 1
11.71
} 3.7 10−5

1,000 7 { 1
2.31

, 1
3.17

, 1
5.11

, 1
7.33

, 1
11.71

, 1
13.11

, 1
17.55
} 1.5 10−5

10,000 7 { 1
2.31

, 1
3.17

, 1
5.11

, 1
7.33

, 1
11.71

, 1
13.11

, 1
17.55
} 0.8 10−5

100,000 7 { 1
2.31

, 1
3.17

, 1
5.11

, 1
7.33

, 1
11.71

, 1
13.11

, 1
17.55
} 0.6 10−5

same mixture variance [1, Lemma 3]. Let v
(l)
i be the mixture variance from

the input of a check node along the edge for hi, for i = 1, . . . , d, the mixture
variance of the outgoing message is ui.

Consider d = 4 and the convergence of v2. The variance at the variable
node output is given by:

1

vl+1
2

=
1

u1

+
1

u3

+
1

u4

+
1

σ2
(3.16)

≤ 1

u1

, (3.17)

since ui ≥ 0.

For the check node, the mixture variance is:

41

u1 =
h2

2v2 + h2
3v3 + h4

4v4

h2
1

, (3.18)

we can write

u1 ≤
h2

2 + h2
3 + h4

4

h2
1

· v2 = αv2 (3.19)

since it is assumed that v1 ≥ v2 ≥ v3 ≥ v4. Combining (3.19) and (3.17)

1

v
(l+1)
2

≥ 1

u1

≥ 1

αv
(l)
2

(3.20)

v
(l+1)
2 ≤ αv2 (3.21)

since v
(1)
2 = σ2, the sequence of v

(l)
2 are exponentially approaching 0 in the

iteration number l. In order to guarantee the exponential convergence of the
decoding α needs to satisfy α < 1.

Fig. 3.3 shows the path of the messages that participate in this check.
Choosing a small value of α results in a faster convergence, but should not be
too small since errors occurs, probably due to the lattice itself is bad or due
to the fast convergence . In the following chapters an analysis of the noise
thresholds, for the proposed decoder, is shown. The result (section 5.5.1)
gives an insight of which values for α “close to, but strictly less than, 1” are
suitable for a good performance (contribution of this dissertation).

3.4 Parametric Decoders

In order to implement decoders in an efficient way, in terms of computational
complexity, various authors have proposed parametric LDLC lattice decod-

42

Figure 3.3: Message propagation for variance converge analysis at variance
vl+1

2

.

ing algorithms which employs finite Gaussian mixtures to approximate the
messages consisting on an infinite number of Gaussians.

An LDLC lattice decoder using a Gaussian mixture reduction algorithm
was introduced in [2], this algorithm approximates a large number of Gaus-
sians with a smaller number of Gaussians. All possible pairs of Gaussians
on a list are searched and the closest pairs, in terms of the Kullback-Leiber
divergence, are replaced with a single Gaussian. This reduction process is
done at every multiplication that takes place at the variable node. Further,
using single Gaussians as the messages between the variable and check nodes
leads to reduced memory requirements with a minor performance penalty
[32]. This parametric algorithm uses two parameters, the number of Gaus-
sians in the mixture M and a threshold θ in order to say if two Gaussians can
be approximated with a smaller number of Gaussian. The smaller the value
of θ, the better the approximation performed, but increases the number of

43

Gaussians in the mixture. The complexity of this algorithm is O(n ·d ·t ·M4).

Yona and Feder [31] presented a parametric decoder, where the Gaus-
sian mixture approximation is made by taking the dominating Gaussian in
the mixture. First, the Gaussian in the mixture are stored in a table, and
in order to obtain the dominant mixture a searching process is needed, the
Gaussians mixture tables are sorted in terms of the mixture coefficients. But
these relatively complicated operations, whether the Gaussian mixture re-
duction or sorting, must be performed at every multiplication at the variable
node, on each iteration. Such operations may not be suitable if LDLC de-
coders are to be implemented in hardware. The complexity of this algorithm
is O(n · d · t ·K ·M3), where t is the number of iterations, M is the size of
the search tables, and K is the finite number of periods taken in the periodic
expansion.

In [48] a single-Gaussian moment matching (MM) approximation was
used internally at the variable node for every incoming message, with this
approximation internally at the variable node maintains a single Gaussian
message that is easily represented with its mean and variance, which reduces
the storage memory required. This approximation is not an accurate approx-
imation since at every multiplication some part of information is lost. This
loss can be high, depending on the values of the means and variances. In
parametric LDLC lattice decoding algorithms, having an accurate approxi-
mation for the message is a key element in order to have a good performance.

In addition, in [48] density evolution noise thresholds were presented. The
noise threshold give an insight of the lowest VNR for the parametric decoder
asymptotically large dimensional lattice converges. The noise thresholds were
calculated with a data pool of 105, over 50 iterations and different degrees
d were studied. The single Gaussian moment matching decoder is computa-
tionally efficient, it can reduce the memory needed for implementation and
has a noise threshold of 0.1dB to the best know LDLC lattice using the quan-
tized decoder at dimension 100, 000. But in the work presented in [48] finite
dimension results were not given.

44

3.5 Conclusion

Low density lattice codes (LDLC), introduced by Sommer, Feder and Shalvi
[1], are high-dimensional lattices defined by a sparse inverse generator ma-
trix. The construction and decoding of LDLCs resemble low density parity
check (LDPC) codes, that is, using a belief propagation (BP) decoding algo-
rithm on a sparse graph. It was reported that the LDLC belief propagation
decoder attains a symbol error rate of 10−5 at VNR= 0.6 dB.

In order to implement a LDLC decoder the message needs to be quan-
tized, and various authors had presented different parametric decoders, where
the message are only represented by the means and variance of the Gaussian
mixtures, which is a key feature to the proposed decoder in this work.

Already, relaying and physical layer network coding schemes that use
LDLCs have been described [49] [12][13].

45

Chapter 4

Array LDLC Lattices

In this chapter a proposed LDLC inverse generator matrix construction called
“Array LDLC lattices” is described. This construction uses principles of ar-
ray codes in order to have an efficiently encoded and deterministic construc-
tion. The proposed inverse generator matrix is sparse, 4-cycle free and is
defined by four parameters.

4.1 Array Codes

Low density parity check codes (LDPC) array codes [50] refer to a general
class of algebraic error correcting codes defined on arrays, for detecting and
correcting burst of errors.

LDPC array codes use a deterministic construction rather than random
construction. If we see array codes as binary codes, their parity check matri-
ces are sparse, and can be decoded in an iterative manner [51]. Also having an
structured construction can be used to guarantee distance properties and/or
reduce the complexity of the implementation.

4.1.1 Construction

An algebraic construction for array codes, which is analogous to Reed-Salomon
codes is presented in [52], has symbols that lie in rings rather than in Ga-
lois fields. A construction for LDPC binary code is introduced in [33], these

46

LDPC codes are called “LDPC array codes”.

The LDPC array code parity check matrix is defined by three parameters:
a prime number p and two integers k and j such that j ≤ k ≤ p, where k and
j represent the number of non-zero elements by row and column respectively,
called the row and column weight or degree of the parity check matrix. Then
the parity check matrix of an LDPC array code is:

H =


(P0)0 (P1)0 · · · (Pk−1)0

(P0)1 (P1)1 · · · (Pk−1)1

(P0)2 (P1)2 · · · (Pk−1)2

...
...

. . .
...

(P0)j−1 (P1)j−1 · · · (Pk−1)j−1

 , (4.1)

H =


I I · · · I
I (P1)1 · · · (Pk−1)1

I (P1)2 · · · (Pk−1)2

...
...

. . .
...

(I (P1)j−1 · · · (Pk−1)j−1

 , (4.2)

where P is a p × p permutation matrix and I is the p × p identity matrix.
The matrix Pk represents a k left cyclic shift. For example, for p = 5, the
matrix P is:

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 , (4.3)

and

47

P3 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 , (4.4)

represents three left shift by P. By construction, H is 4-cycle free, since
there are not two rows where a 1 is overlapping in two columns.

4.1.2 Minimum Distance

The minimum distance d of a binary code C is the least Hamming distance
between any two distinct codewords u and u′, which can be defined as:

d = min{dH(u,u′)|u, u′ ∈ C,u 6= u′} (4.5)

where dH(u,u′) denotes the Hamming distance between u and u′.

In [3] the minimum distance d(p, k) of the array LDPC codes for the
prime number p and row/column weight k = j, were studied. The results
are presented on Table 4.1.

4.1.3 Triangular Form

Having a parity check matrix in triangular form is desirable. Gaussian elim-
ination could be used to obtain the desirable triangular form, but this op-
eration results in increasing the processing complexity as the dimension in-
creases, making this method unattractive.

Elefteriou and Olcer [53] define a modified array code by cyclically shift-
ing the rows of the H matrix in a block-wise manner. The number of cyclic
shifts for each block row is such that the jp× kp leftmost subblock contains

48

p d(p,7) d(p,6) d(p,5) d(p,4)
7 14 12 12 8
11 20 16 10 10
13 20 14 12 10
17 18-24 16 12 10
19 18 or 20 18 12 10
23 18-22 18-20 12 10
29 18-24 18-20 12 10
31 18-24 18-20 12 10
43 18-24 18-20 12 10
47 18-24 18-20 12 10
53 18-24 18-20 12 10
59 18-24 18-20 12 10

Table 4.1: Minimum distance results presented in [3] for array LDPC codes
for different values of p and k = j.

the identity matrix I along the diagonal. We define this new matrix Hs as:

Hs =


I I I · · · I I · · · I

Pk−1 I P · · · Pj−2 Pj−1 · · · Pk−2

P2(k−2) P2(k−1) I · · · P2(j−3) P2(j−2) · · · P2(k−3)

...
...

...
...

...
...

P(j−1)(k−j+1) P(j−1)(k−j+2) · · · I Pj−1 · · · P(j−1)(k−1)

 .
(4.6)

The matrix Hs is 4-cycle free and has the same column and row weight as
H.

To make this matrix in a triangular form, the lower triangular elements
of Hs are set to zero, obtaining:

49

Hp =


I I I · · · I I · · · I
0 I P · · · Pj−2 Pj−1 · · · Pk−2

0 0 I · · · P2(j−3) P2(j−2) · · · P2(k−3)

...
...

...
...

...
...

0 0 0 · · · I Pj−1 · · · P(j−1)(k−1)

 , (4.7)

where 0 is the p× p null matrix.

The triangular form of the LDPC array code has no 4-cycles. The trian-
gular form structure is useful for an easy encoding.

4.2 Array LDLC Lattice

In this section one of the main contributions of this work is described, that is
a structured construction for LDLC lattices. Having a structured construc-
tion is desired since it can be easily implemented in hardware.

The proposed method to construct LDLC lattices takes as a reference the
construction of the array LDPC codes. To be in congruence with the base of
the construction, it is called “Array LDLC lattice”.

4.2.1 Desired Conditions for the parity check matrix
H

In order to construct the parity check matrix H the following conditions are
desired:

1. Sparseness, the row and column weight is less or equal to d.

2. 4-cycle free, to improve the performance of the belief propagation de-
coding algorithm.

50

3. Triangular structure, In order to apply shaping operation for practical
applications.

4. For every row with degree dj the condition,

α ,

∑dj
i=2 h

2
i

h2
1

< 1, (4.8)

is satisfied. Recall that α < 1 guarantees an exponential rate for con-
vergence on the message variances as was shown in Section 3.3.3.

4.2.2 Proposed Construction

Since the LDLC parity check matrix is square, the parameters j, k are the
same and denote the maximum row and column degree, that is d = j = k.
Generating the modified array code as in equation (4.7) gives a sparse, 4-
cycle free and triangular binary matrix.

The non-zero elements are modified in two ways:

1. Elements on the main have the greatest element in the generator se-
quence h1.

2. Off-diagonal elements are modified to be elements of the generator se-
quence h2 ≥ · · · ≥ hd−1 > 0 with random sign, as with [1].

The array LDLC lattice inverse generator matrix H is:

51

H =



h1I h2I h3I h4I . . . hdI
h1I h2P h3P

2 . . . hd−1P
d−1

h1I h2P
2 ... hd−2P

d−2

0 h1I . . . hd−3P
d−3

. . .
...
h1I


(4.9)

4.2.3 Reliability for low degree message

Having a lower triangular structure, it is evident that the rows and columns
do not all contain d non-zero elements. This implies that the codewords
components whose column degree is low are less protected. For example, a
column with only one non-zero element is uncoded, since it only participates
in a single check equation.

There are two techniques that can increase the protection of the less pro-
tected elements. the first one is to let the information integer that are less
protected should have a smaller amount of information, for example belong
to a smaller constellation, as was observed by Sommer et al.[30]. But there
is not an efficient way on how to choose this constellation.

The second technique is by increase the power of the less protected ele-
ments, this is done by scaling those elements by some factor. In the proposed
construction, the elements are scaled by a factor 1

ci
for i = 1, 2 . . . , d, where

c1 > c2 > · · · > cd, the vectors c = {c1, . . . , cd} are called “balance factors”.
In Fig. 4.1 the idea of this principle is illustrated.

Lemma 4.2.1 In order to keep a constrain in the power the balance factors
need to satisfy that:

d∏
i=1

ci = 1, (4.10)

52

Increasing the power of the less protected elements.

0-2 -1 1 2

Less protected elements

Inverse generator matrix

Figure 4.1: Increasing the power of less protected elements (red square) also
increases the protection of those elements.

so that | det(H)| = |hn1 | is not modified.

Lemma 4.2.2 The balance factors multiplying each block in the inverse gen-
erator matrix H do not affect the value of αj [54], then αj is given by:

αj =

∑dj
i=2

h2i
c2j

h21
c2j

, (4.11)

for block j = 1, 2, . . . , d.

53

Finally the inverse generator matrix for array LDLC lattices H is:

H =



h1
c1

I h2
c1

I h3
c1

I h4
c1

I . . . hd
c1

I
h1
c2

I h2
c2

P1 h3
c2

P2 . . . hd−1

c2
Pd−1

h1
c3

I h1
c3

P2 ... hd−2

c3
P d−2

0 h1
c4

I . . . hd−3

c4
Pd−3

. . .
...
h1
cd

I


. (4.12)

An example in Fig. 4.2 is presented, where a LDLC based on array
codes parity check matrix is given with d = 4, p = 5,the generator sequence
h = {1, 1

2
, 1

2
, 1

2
, 1

2
}., and the balance factors are c = {1, 1, 2, 4}.

Since it has been proved that there no exist a length 4 cycles in array
codes. The array LDLC lattices inverse generator matrix is also free of 4-
cycles.

4.2.4 Array LDLC lattice construction algorithm

In this section the algorithm for constructing the inverse generator for ar-
ray LDLC lattices is given. The construction algorithm generates the inverse
generator matrix which is Which is lower triangular, sparse and 4-cycles free.
The construction algorithm is as follows:

Input:

• prime number p.

• maximum number of nonzero elements d.

• generator sequence h.

• balance factors c.

Output :

• A dp× dp parity check matrix H.

54



1 0 0 0 0 0 −1
2

0 0 0 0 0 1
2

0 0 0 0 0 0 1
2

0 1 0 0 0 0 0 1
2

0 0 0 0 0 −1
2

1
2

0 0 0 0 0
0 0 1 0 1

2
0 0 0 −1

2
0 0 0 0 0 0 1

2
0 0 0 0

0 0 0 1 0 −1
2

0 0 0 1
2

0 0 0 0 0 0 −1
2

0 0 0
0 0 0 0 1 0 0 0 0 0 1

2
0 0 0 0 0 0 −1

2
0 1

2

0 0 0 0 0 1 0 0 0 0 0 1
2

0 −1
2

0 0 0 0 1
2

0
0 0 0 0 0 0 1 0 0 0 0 0 −1

2
0 1

2
0 0 0 0 0

0 0 0 0 0 0 0 1 0 1
2

0 0 0 0 0 −1
2

0 0 0 0
0 0 0 0 0 0 0 0 1 0 1

2
0 0 0 0 0 1

2
0 0 0

0 0 0 0 0 0 0 0 0 1 0 −1
2

0 0 0 0 0 −1
2

0 0
0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1

2
0

0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 −1
2

0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 −1

2
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 −1

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4

0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4


Figure 4.2: Parity check matrix of LDLC lattice based on array codes, con-
structed with d = 4, p = 5 and the generator sequence h = {1, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
}.

An the elements with low row degree were multiplying by c1 = 4, c2 = 2 and
c3,...,n = 1.

1. Construct the dp × dp modified array code as equation (4.7), using
j = k = d.

2. Change the non-zero elements of H with elements in the generator
sequence h, where each block i in block row l contains hi, with random
sign.

3. For each block row i in the inverse generator H, multiply it by 1
ci

.

In Fig. 4.3 the block diagram of the construction algorithm is shown.
The advantage of the construction algorithm is it low memory requirements
since there is no need to storage additional elements, and it is a deterministic

55

Input
Prime number
Maximum degree
generator sequence
balance factors

Construct a modified
array code eq(4.7)

Change the values of
with elements of
in a latin square manner

For each block row

multiply it by

Figure 4.3: Block diagram for the construction of the inverse generator matrix
for the array LDLC lattices

construction, i.e. no pseudorandom construction.

4.3 Minimum distance of the array LDLC lat-

tices

By using the generator matrix G = H−1 we can give some bound in the
minimum distance of the array LDLC lattice.

An advantage of the construction of the inverse generator for array LDLC
lattices is that it is possible to compute the generator matrix by using block
matrix inversion (see appendix A.1).

Lemma 4.3.1 The square minimum distance d2
min is upper bounded by the

56

square norms τ 2 of the basis vectors in the generator matrix G.

d2
min ≤ min(τ 2

1 , τ
2
2 , . . . , τ

2
n). (4.13)

Since the generator matrix gives an upper bound for the square minimum
distance, it is desire that τ 2

1 = τ 2
2 = · · · = τ 2

n. But these in practice is hard
to achieve, it is not guarantee that all basis vectors in the generator matrix
has the minimum norm.

Lets derivate the square minimum distance upper bound for some finite
dimensions array LDLC lattices, in order to show the process of the deriva-
tion. Consider d = 3 and let the generator sequence be h = {1, ha, ha},
where ha < 1, to simplify the derivation. The array LDLC lattice inverse
generator with these characteristics is:

H =

 1
c1

I ha
c1

I ha
c1

I

0 1
c2

I ha
c1

P

0 0 1
c3

I

 , (4.14)

by using block matrix inversion [55] (see appendix A.1), the generator matrix
G = H−1 is:

G =

 c1I −hac2I (hac3I− h2
2c3P)

0 c2I −hac3P
0 0 c3I

 , (4.15)

Let τ 2
1 , τ

2
2 , τ

2
3 be the square norms of the block vectors in the generator

matrix G, and assuming that τ 2
1 = τ 2

2 = τ 2
3 (a desire condition in the gener-

ator matrix). The square norms are:

57

τ 2
1 = c2

1, (4.16)

τ 2
3 = c2

2(h2
a + 1) (4.17)

and

τ 2
3 = c2

3(h4
a + 2h2

a + 1). (4.18)

In addition, by Lemma 4.2.2 the balance factors needs to satisfy that :

c1 · c2 · c3 = 1, (4.19)

in order to have det(G) = 1. Now with the system of the equation the solu-
tions are:

d2
min ≤ c2

1 = 3
√

(h2
a + 1)(h4

a + 2ha + 1). (4.20)

c2
2 =

c2
1

(h2
a + 1)

. (4.21)

c2
3 =

c2
1

(h4
a + 2ha + 1)

. (4.22)

Theorem 4.3.2 The square minimum distance upper bound for array LDLC
lattices is independent of the size of the block, i.e is independent of the prime
number p. The square minimum distance upper bound only depends on the
generator sequence h and the balance factors c.

58

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

h
a

S
q
u
a
re

 E
u
c
lid

e
a
n
 d

is
ta

n
c
e

Min dist upper bound

Array LDLC n=9, d=3

α = 1

Array LDLC n=15, d=3

Figure 4.4: Comparison of the minimum distance for the array LDLC lattices,
for p = 3 and d = 3 with generator sequence h = {1, ha, ha}.

Fig. 4.4 the minimum distance upper bound for d = 3 is shown. A com-
parison for the minimum distance in terms of ha for some finite length array
LDLC lattices, constructed using p = 3 and p = 5, is performed. The exact
minimum distance for the finite length array LDLC lattices is obtained by
performing sphere decoding (see section 2.4.3). In Fig. 4.4 can be seen that
the minimum distance upper bound goes to infinity as the value of ha in-
creases, but for lattices the minimum distance can not go to infinity, because
there exist a lattice point at some finite minimum distance. In addition it is
shown which values satisfy α ≤ 1 (a necessary condition for designing LDLC
lattices).

For most of the case when α ≤ 1 the derived square minimum distance
upper bound is a very accurate approximation of the true square minimum
distance. The biggest square minimum distance for the array LDLC lattices
with degree d = 3 is d2

min = 1.3151, and is when the generator sequence
h = {1, 0.61, 0.61}, balance factors c = {1.7114, 1, 0.8537} and α = 0.7442.

59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

h
a

S
q
u
a
re

 E
u
c
lid

e
a
n
 d

is
ta

n
c
e

Min. dist. upper bound

Array LDLC n=20, d=4

α =1

Figure 4.5: Comparison of the minimum distance for the array LDLC lattices,
for p = 5 and d = 4, with generator sequence h = {1, ha, ha, ha}.

Now consider the array LDLC lattices with the following characteristics:
the degree be d = 4 and generator sequence h = {1, ha, ha, ha}, by block
matrix inversion the generator matrix G is given by:

G =


c1I −hac2I (hac3I− h2

ac3P) (h2
ac4P

2 − h2
ac4P + (h2

ac4 + hac4)I)
0 c2I hac3P h2

ac4P
3 + hac4I

0 0 c3I hac4P
0 0 0 c4I


(4.23)

,

and by performing the same procedure as for d = 3 the square minimum
distance upper bound is given by:

60

Table 4.2: Comparison of the exact minimum distance for different array
LDLC lattices, when α ≤ 1.

d p c h d2
min α

3 3 {1.7114, 1, 0.8537} {1, 0.61, 0.61} 1.3151 0.7442
3 5 {1.7114, 1, 0.8537} {1, 0.61, 0.61} 1.3151 0.7442
4 5 {1.2080, 1.0761, 0.9586, {1, 1, 0.51, 0.51, 1.3375 0.7803

0.8025} 0.51}

d2
min =

√
(h2

a + 1)(h4
a + h2

a + 1)(h6
a + 2h4

a + 2h2
a + (h2

a + ha) + 1). (4.24)

The comparison of the true square minimum distance and the proposed
upper bound for the triangular array LDLC lattice of dimension n = 20,
this imply that d = 4 and p = 5 is shown in Fig. 4.5. The biggest
value for the square minimum distance is d2

min = 1.6778, and can be get
it when the generator sequence is h = {1, 1.81, 1.81, 1.81}, balance factors
c = {3.0206, 1.4636, 0.7078, 0.3189} and α = 3.8283. Even if the condition
on α is not satisfy is still a lattice (not a LDLC lattice). For the case when
α is satisfied the biggest square minimum distance is d2

min = 1.3375 and
is when the generator sequence is h = {1, 0.51, 0.51, 0.51}, balance factors
c = {1.2080, 1.0761, 0.9586, 0.8025} and α = 0.7803.

The same analysis can be done for d > 4, but he generator matrix become
larger and does not yield insight, and the true minimum distance become
harder to compute. In Fig. 4.6 a comparison various minimum distance up-
per bound in terms of the degree d is shown. The minimum distance upper
bound increases in terms of the degree distribution d and not in terms of the
prime number p.

Table 4.2 shows the array LDLC lattices with the biggest square minimum
distance, when α ≤ 1, for different finite dimensions. When α > 1 it is clearly
that the generator sequence is cumbersome as d gets bigger.

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

h
a

S
q

u
a

re
 E

u
c
lid

e
a

n
 d

is
ta

n
c
e

d=3

d=4d=5d=6d=7

α=1

Figure 4.6: Minimum distance upper bound for triangular array LDLC lat-
tices for various degree d.

4.4 Numerical results

Various array LDLC lattices based were simulated for the AWGN channel.
This dissertation evaluate the performance of the array LDLC lattices using
the symbol error rate (SER) in terms of volume-to-noise ratio (VNR), it is
consider a symbol error when one element of the estimated lattice point x̂ is
not equal to the transmitted lattice point x, i.e x̂i 6= xi.

The array LDLC lattice inverse generator matrices H was generated us-
ing the parameters shown in Table 4.2. And two cases were simulated, the
first one is when the inverse generator matrix has a triangular structure and
the second case is when the inverse generator is a full matrix. For the full
matrix case the balance factors are not needed, the balance factors are c = 1.
For all inverse generator matrices are normalize to have | det(H)| = 1 for a
fair comparison.

Figure 4.7 shows the comparison between array LDLC lattice inverse gen-

62

0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

VNR [dB]

S
E

R

Array LDLC n=9
Array LDLC n=15
Array LDLC n=20
fullArray LDLC n=9
fullArray LDLC n=15
fullArray LDLC n=20
E8

Figure 4.7: Comparison between the triangular inverse generator matrices
and the full inverse generator matrices for small dimensional array LDLC
lattices.

erator be a full matrix and be triangular. For all the simulated array LDLC
lattices the full matrix case present a better performance than the triangular
version, this is due to the protection of each element, it is clear that having
a full array LDLC lattice, all elements are equally protected. In addition a
comparison with the well know E8 is perform, where the full array LDLC
lattice presents a gain of 0.6dB in terms of the VNR compare to the E8 lattice.

In addition a comparison with the triangular LDLC lattice inverse gener-
ator given in [30] was done. The construction parameters are shown in Table
4.4 and the constellation size is shown in Table 4.3. For the array LDLC lat-
tices the balance factors are c = {4, 2, 1, 1, 1, 1, 1} (for n = 91, n = 49) and
c = {4, 2, 1, 1} (for n = 20) were used. The inverse generator matrices were

63

Table 4.3: Row/column degree and constellation size

Degree constelation size
1 2
2 2
3 4
4 4
5 8
6 8
7 8

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Distance from capacity [dB]

S
E

R

Symbol error rate (SER) for varios lattice dimension

Sommer's n=20
Sommerss n=49
LDLC based on arry code n=49
LDLC based on array codes n=20
Sommers n=91
LDLC based on array codes n=91

Figure 4.8: Simulation results for various lattice dimensions

further normalized to get det(H) = 1, as the definition of LDLC lattices, for
a fair comparison.

Figure 4.8 shows the comparison between the array LDLC lattices and
Sommer’s construction [30]. For the array LDLC lattices presents a gain of

64

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

VNR

S
E

R

w/o bf, d=3, n=39.

bf, d=3, n=39.

w/o bf, d=4, n=52.

bf, d=4, n=52.

w/o bf, d=5, n=65.

bf, d=5, n=65.

w/o bf, d=6, n=78.

bf, d=6, n=78.

Figure 4.9: Comparison when the balance factors (bf) are used and when
are not, for various lattice dimension with parameter: degree d = 3, 4, 5, 6,
generator sequence of the form h = {1, ha, ha, . . . , ha}, with ha = 0.4, and
prime number p = 13

0.3 dB close to lattice capacity for dimension n = 91.

Finally Figure 4.9 shows the symbol error rate (SER) comparison for
triangular array LDLC lattices, when the balance factors are used and when
are not used them. These triangular array LDLC lattices was constructed
be setting the prime number p = 13 and using different degree distribution
d = 3, 4, 5, 6 for triangular array LDLC lattice dimension n = 39, 52, 65, 78
respectively, the generator sequence is of the form h = {1, ha, . . . , ha}. The
performance of the lattice was evaluated using the three/two Gaussian para-
metric decoder algorithm (See chapter 5). The use of the balance factor
improve the performance about 0.4dB in terms of the VNR for dimension
n = 78. Table 4.4 shows the values for balance factors c and the minimum

65

Table 4.4: Balance factors c and minimum distance upper bound for different
triangular LDLC lattices.

d c d2
min

3 {1.0770, 1, 0.9285} 1.16
4 {1.1288, 1.0481, 0.9731, 0.8686} 1.2742
5 {1.1782, 1.0939, 1.0157, 0.9446, 0.8087} 1.3881
6 {1.2168, 1.1298, 1.0490, 0.9903, 0.8905, 0.7864} 1.4896

distance upper bound of the simulated triangular array LDLC lattices.

Increasing the dimension n by increasing the prime number p does not
give good performance, since the number of low degree row/column increases,
but increasing the dimension of the lattice by its degree distribution d causes
an improved on the performance.

4.5 Conclusion

LDLC lattices provide close to optimal, practical lattice codes. However
methods to construct these codes present a high computational complexity.
In this dissertation a new method to construct a dp× dp LDLC inverse gen-
erator matrices is shown. The new construction is based on LDPC array
codes, accordingly with the base the new construction is called “array LDLC
lattices”. The array LDLC lattices takes the characteristics of LDPC array
codes, that are deterministic construction (not pseudorandom) to have low
computational complexity, sparseness in order to require low storage, 4-cycle
free to eliminate tedious computations under the BP decoding and triangular
structure to simplify encoding and shaping operations.

The inverse generators matrices for array LDLC lattices are defined by
four parameters: the maximum degree d, a prime number p, the generator
sequence h (non-zero elements in the matrix) and the balance factors c.

The structure that the inverse generator and the generator matrices of
the array LDLC lattices is suitable for derivate an upper bound on the square
minimum distance. The dissertation shows how to derivate the square mini-

66

mum distance upper bound. The derived upper bound is a close approxima-
tion for the true square minimum distance for α ≤ 1, this results can be use
as a guide on how to choose the values for the generator sequence h.

67

Chapter 5

Three/Two Gaussian
Parametric Decoder

In this chapter, a proposed LDLC decoding algorithm for low density lattice
codes (LDLC) is described. This decoding algorithm has only one param-
eter, that is the number of Gaussians needed for the approximation, two
or three Gaussians, and correspondingly is called the “Three/Two Gaussian
Parametric Decoder”. In addition,variable node operation in the three/two
Gaussian parametric decoder is suitable for analysis, performed by evaluating
the Kullback-Leiber divergence. The three/two decoding algorithm has simi-
lar performance to previous decoders with a lower computational complexity.

5.1 Introduction

On Section 3.3.2 a description on the full complexity quantize decoding al-
gorithm for LDLC lattices was described. The quantized decoding passes
infinite Gaussian mixtures among the variable nodes and check nodes. And
the operations that takes pace in the variable node and in the check node are
made over continuous functions. This algorithm is not suitable for implemen-
tation due to the high computational complexity, like the memory required
and processing time.

Different authors has proposed parametric decoding algorithms for LDLC
lattices, such that the Gaussian mixture reduction (GMR) algorithm [2] and

68

the table search algorithm [31] (see Section 3.4). These algorithms presents
a week approximation or tedious operations.

Having a parametric algorithm implies that the Gaussians functions are
only represented by its mean and variance. Let define a Gaussian function
be:

N (w;µ, v) =
1√

2πv2
e
−(w−µ)2

2v2 (5.1)

with mean µ and variance v. First lets described some operations over Gaus-
sian mixtures.

5.2 Operations on Gaussian Mixtures

This section describes the product of Gaussian mixtures and the moment
matching approximation.

Let f(w) be a mixture of N Gaussians,

f(w) =
N∑
i=1

ciN (w;mi, vi), (5.2)

with mean mi, variance vi and mixing coefficients ci > 0 and
∑N

i=1 ci = 1 for
i = 1, 2 . . . , N .

5.2.1 Product over Gaussian mixtures

The product of two Gaussian mixtures f(w) =
∑N

i=1 fi(w) and g(w) =∑M
j=1 gj(w) is f(w)·g(w). The product of two components fi(w) = c1N (w;m1, v1)

and gj(w) = c2N (w;m2, v2) is a single Gaussian s(w) = cN (w;m, v) with
mean m, variance v and mixing coefficient c given by:

69

1

v
=

1

v1

+
1

v2

, (5.3)

m

v
=
m1

v1

+
m2

v2

(5.4)

and

c =
c1c2√

2π(v1 + v2)
e
− (m1−m2)

2

2v1+2v2 . (5.5)

The Gaussian product f(w) · g(w) is the mixture of the N ·M products
obtained using the pair-wise operation above.

5.2.2 Moment Matching Approxiamtion

The single Gaussian moment matching (MM) approximation, is the single-
Gaussian approximation of a Gaussian mixture f(w), given by (5.2), with
a single Gaussian q(w) = N (w;m, v) which minimizes the Kullback-Leiber
(KL) divergence between f(w) and q(w) [56, appdx. A]. The moment-matching
approximation (MM) finds the single Gaussian q(w) which has the same mean
m and variance v as f(w).

The mean m is given by:

m =
N∑
i=1

cimi, (5.6)

and variance v is given by:

70

f (w)

q(w) =MM
(

f (w)
)

Figure 5.1: The single Gaussian moment matching (MM) approximation, red
line, for the Gaussian mixture f(w) in blue.

v =
N∑
i=1

cim
2
i −

(N∑
i=1

cimi

)2
. (5.7)

This operation is denoted as:

q(w) = MM
(
f(w)

)
. (5.8)

In Figure 5.1 the MM approximation is shown, the blue line is the Gaus-
sian mixture f(w) and in red line the MM approximation of f(w).

71

5.3 Three/Two Gaussian approximation

In this section an approximation of the product of a single Gaussian and a
Gaussian mixture is described, which is key for understanding the behavior
of the three/two Gaussian parametric decoding algorithm. Analysis is per-
formed by evaluating the Kullback-Leiber divergence.

Having a good approximation at the variable node is a key step for ac-
curate performance in the parametric LDLC decoder. The approximation in
the tails of the Gaussian function is very important. A poor approximation
in the Gaussian messages causes errors to accumulate as the LDLC iterative
decoding progresses.

Instead of calculating the periodic expansion over all integers, it is con-
venient to use a reduced number of integers. Since the periodic expansion
takes place at the variable node, and due to multiplication with the channel
message, the resultant periodic Gaussians that are far from the channel mes-
sage have near-zero mixing coefficients, and can safely be ignored.

Consider the multiplication of the following to Gaussians. The single
Gaussian Y (w) represents the channel message and has mean ma and vari-
ance va with va = σ2. The Gaussian mixture R(w) represents the check-to-
variable node messages and is a periodic mixture of Gaussians with period
1
|h| and parameters mc and vc, and is given by:

R(w) =
∞∑

i=−∞

N (w;mc +
i

h
, vc). (5.9)

And let an approximation R̃(w) be:

R̃(w) =
∑
i∈B

N (w;mc +
i

h
, vc). (5.10)

72

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−5

Y (w)R(w)

b)

a)

Figure 5.2: Multiplication of a Gaussian mixture R(w) and a single Gaus-
sian Y (w). The true product Y (w)R(w) and the single Gaussian moment
matching (MM) approximation MM

(
Y (w)R(w)

)
. This operation take place

at the variable node.

that is the summation in (5.9) restricted to some finite integer set B.

The idea is to approximate an infinite Gaussian mixture Y (w)R(w) with

Y (w)R̃(w), which consists of a finite number of Gaussians. In Fig. 5.2-
a Y (w), R(w) are illustrated. In Fig. 5.2-b the true product Y (w)R(w),
the single Gaussian moment matching approximation MM

(
Y (w)R(w)

)
are

shown. The true product and the MM approximation has a dissimilarity in
its tails, and this dissimilarity can causes errors to accumulate as decoder
progresses, i.e making a bad decision on the selection of the Gaussian.

73

5.3.1 Gaussian Neighbors Selection

Here two cases of |B| = 3 and |B| = 2 Gaussians neighbors near ma are
considered. Let the two-Gaussian set be B = {b1, b2} with b2 = b1 + 1, and
the three-Gaussian set be B = {b0, b1, b2}, with b0 = b1 − 1 and b2 = b1 + 1.

For the two-Gaussian set, two integers are selected, one less than, and
one greater than a non-integer estimate. Find b1 such that:

b1

h
+mc < ma <

b1 + 1

h
+mc, (5.11)

for h > 0. That is,

b1 = b−h(mc −ma)c. (5.12)

And in the three-Gaussian set the nearest Gaussian and its two nearest
neighbors are chosen. That is:

b0 = b1 − 1, (5.13)

b1 = dh(mc −ma)c, and (5.14)

b2 = b1 + 1. (5.15)

The resulting mixture is:

74

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

a)

b)

c)−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5.3: Proposed approximation for the infinite Gaussian mixture R(w),
by selecting Gaussians that are close the single Gaussian Y (w). b) The
two-Gaussian approximation. c) The three-Gaussian approximation.

R̃(w) = N (w;
b1

h
+mc, vc) +N (w;

b2

h
+mc, vc), (5.16)

for the two-Gaussian set. And for three-Gaussian set it is:

R̃(w) = N (w;
b0

h
+mc, vc) +N (w;

b1

h
+mc, vc) +N (w;

b2

h
+mc, vc), (5.17)

where R̃(w) is the approximation of R(w).

75

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

v
c
=0.088, h=1

m
c
 (with m

a
 = 0)

K
L
 d

iv
e
rg

e
n
c
e

va=0.05

va=0.04

va=0.03

va=0.02

va=0.01

MM approx

2−Gaussian

3−Gaussian

Figure 5.4: KL divergence for the dominant message (h = 1), for single
Gaussian approximation (dot line), two Gaussian approximation (solid line)
and three Gaussian approximation (dash line). For vc = 0.088 correspond to
an early iteration.

Figure 5.3 shows the idea of how to selecting Gaussians in R(w) which are
closest to the single Gaussian Y (w). Figure 5.3-b shows the selection for the
two-Gaussian set and Figure 5.3-c shows the selection for the three-Gaussian
case.

5.3.2 Kullback-Leiber divergence

In this section the analysis using the Kullback-Leiber (KL) divergence is
shown. By selecting a small number of Gaussians it is desired to minimize
the KL divergence between Y (w)R(w) and the approximation Y (w)R̃(w).
The KL divergence is given by∫ ∞

−∞
Y (w)R(w) log

Y (w)R(w)

Y (w)R̃(w)
dw. (5.18)

76

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

(b) v
c
=0.011, h=1

K
L
 d

iv
e
rg

e
n
c
e

m
c
 (with m

a
 = 0)

va=0.05
va=0.04
va=0.03
va=0.02
va=0.01

MM approx

2−Gaussian

Figure 5.5: KL divergence for the dominant message (h = 1), for single Gaus-
sian approximation (dot line), two Gaussian approximation (solid line). For
vc = 0.011 correspond to an intermediate iteration, and the single Gaussian
is not accurate.

When Y (w)R(w) and Y (w)R̃(w) are a mixture of Gaussians, by select-
ing the mean and variance close to each other will minimize the divergence.
While the KL divergence between the two Gaussian mixtures is not analyti-
cally tractable in general, various approximations for the KL divergence for
general Gaussians mixture models were proposed [57]. However, these ap-
proximations are not suitable for the Gaussian mixtures which occur during
the message passing decoding of lattices, in the sense they do not give insight
to the problem. Instead the KL divergence is evaluated numerically, this has
the advantage of giving the exact value.

Figures 5.4–5.6 show the KL divergence for the single-Gaussian moment
matching approximation (dashed-line), three-Gaussian approximation (solid-
line) and two-Gaussian approximation (dotted-line), using typically observed

77

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

v
c
=0.527, h=0.5

m
c
 (with m

a
 = 0)

K
L
 d

iv
e
rg

e
n
c
e

va=0.05
va=0.04
va=0.03
va=0.02
va=0.01

2−Gaussian

3−Gaussian

MM approx

Figure 5.6: KL divergence for the non-dominant message hi = 0.5 (early
iteration), for single Gaussian approximation (dot line), two Gaussian ap-
proximation (solid line) and three Gaussian approximation (dash line)

values for va and vc under LDLC decoding. All values for mc are presented,
but not all are equally likely because mc is not uniformly distributed. The
Kullback-Leiber divergence only depends on mc −ma, so by setting ma = 0,
the analysis depends only on mc, vc and va. The worse case is when h = 1.

Fig. 5.4 shows vc = 0.088, corresponding to an early decoding iteration.
Here, even the MM approximation has a KL divergence of less than 10−2.
Empirically it has been observed that a KL divergence of greater than 10−2 is
a poor approximation for the proposed LDLC decoding algorithm. But KL
divergence of less than 10−3 at least gives visually similar Gaussian functions.

Fig. 5.5 shows vc = 0.011, corresponding to intermediate iterations of
LDLC decoding, where the MM approxiamtion presents worse KL diver-
gence. The KL divergence for two-Gaussian approximation is always less
than 10−2 and the three-Gaussian approximation is even better. This sug-
gests that the two-Gaussian approximation may be sufficient. The simulation

78

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

v
c
=0.263, h=0.5

K
L
 d

iv
e
rg

e
n
c
e

m
c
 (with m

a
 = 0)

va=0.05

va=0.04

va=0.03

va=0.02

va=0.01

MM approx

2−Gaussian

Figure 5.7: KL divergence for the non-dominant message hi = 0.5 (mid-
dle iteration), for single Gaussian approximation (dash line), two Gaussian
approximation (dot line) and three Gaussian approximation (solid line)

results will show that this is often true, but when the dimension is very large,
e.g. n = 10, 000, the three-Gaussian approximation is more reliable.

In Fig. 5.6 the MM approximation presents a good approximation for
an early iteration for the non-dominant edge (hi < 1). In Fig. 5.7 an in-
termediate iteration for the non-dominant edge, and Fig. 5.8 shows the KL
divergence for the late iteration.

The message on the edge with the highest value in the generator sequence
(hi = 1; dominant edge) gives more reliable information during the message
passing. For this reason the dominant edge required more accurate approxi-
mation.

Clearly, the accuracy of the approximation increases as the number of
Gaussians increases. In order to have a low complexity parametric decoding

79

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

v
c
=0.066, h=0.5

K
L
 d

iv
e
rg

e
n
c
e

m
c
 (with m

a
 = 0)

va=0.05

va=0.04

va=0.03

va=0.02

va=0.01

MM approx.

Figure 5.8: KL divergence for the non-dominant message hi = 0.5 (late
iteration), for single Gaussian approximation (dash line), the two Gaussian
case and three Gaussian case are below 10−15.

algorithm a single Gaussian approximation is desired. However, using the
MM approximation is not accurate.

As is shown in Fig. 5.2, the MM approximation has difference in the tails
of the Gaussian mixture which contribute significantly in the KL divergence.
For this reason the MM approximation is not suitable for a good approxima-
tion.

Note that the approximation given in this section does not minimize the
KL divergence, but is used because it is efficient for a decoder to implement.
By maintaining the dominant Gaussians in the mixture, the approximation
is a good one, as we have shown in this section.

80

5.4 Three/Two Gaussian Parametric Decoder

A parametric LDLC decoding algorithm is presented here. Internally at the
variable node, messages are represented by mixtures of Gaussians, but exter-
nally only single Gaussians are used. There are two types of approximations
used at the variable node: (1) the 3/2 Gaussian approximation from Section
5.3.1, and (2) the MM approximation used before variable node output; pre-
vious work [32] has shown that a single Gaussian message from the variable
node to the check node is sufficient.

The variable-to-check message along edge k is a single Gaussian denoted
fk(w). The check-to-variable message along edge k is a single Gaussian de-
noted Rk(w). Single Gaussians are represented by its mean and variance.
Thus, storage of variable-to-check messages requires 2 · n · d elements, and
likewise for the check-to-variable messages. Internally at the variable node,
messages are represented by mixtures of multiple Gaussians.

5.4.1 Description

For the AWGN channel, let the received message be

yk(w) = N (w; yk, σ
2). (5.19)

for k = 1, 2, . . . , n and σ2 is the noise variance. The check node and variable
node operations are:

• Check Node: The incoming messages are d single Gaussians fi(w) =
N (w;mi, vi). The output message p̃i(w) at the convolution step is a
single Gaussian with mean m̃i and variance ṽi given by:

81

m̃i = − 1

hi

d\i∑
j=1

hjmj (5.20)

ṽi =
1

h2
i

d\i∑
j=1

h2
jvj. (5.21)

The computation of m̃ and ṽ can be performed using a forward-backward
recursion.

• Variable node: The messages coming from the check node are a single
Gaussian N (w; m̃i, ṽi), for i = 1, 2, . . . , d. Then the expansion step
(periodic with period 1/|hi| if B ∈ Z) is approximated by:

R̃i(w) =
∑
b∈B

N (w;mi(b), ṽi) (5.22)

where the mean mi(b) of each Gaussian, for b ∈ B, is given by:

mi(b) = m̃i +
b

hi
, (5.23)

and the set B represents a subset of the integers, e.g. two or three.
Rather than searching over all integers B ∈ Z, instead select two or
three integers close to the channel message, as described in Section
5.3.1. The message fi(w) sent back to the check node is a single Gaus-
sian approximated by:

pi(w) = yk(w)

d\i∏
j=1

R̃j(w), (5.24)

fi(w) = MM
(
pi(w)

)
, (5.25)

where yk(w) = N (w; yk, σ
2) is the channel message, and R̃j(w) is the

approximation of the periodic expansion. To maintain low complexity,
just a single Gaussian is used in the messages between variable and
check nodes. The single Gaussian message to send to the check node
is calculated by the moment matching algorithm.

A forward-backward recursion can be used to reduce the complexity to
calculate message multiplications, as shown in the next section.

82

MM

Single Gaussian

Figure 5.9: Forward-backward recursion at the variable node

5.4.2 Forward-backward recursion

Computing the output at the variable node fi(w), for i = 1, 2, . . . , d can
be implemented by a forward-backward recursion. This recursion is distinct
from previously described forward-backward approaches [2] in how the chan-
nel value y is handled — in the three/two Gaussian parametric decoding
algorithm the channel message is multiplied last (although the channel mes-
sage yk is used to select the periodic Gaussians).

The forward-backward recursion is done as follows:

1. The forward recursion defined as:

ηi(w) = ηi−1(w) · R̃i(w), (5.26)

for i = 2, 3, . . . , d, with η1(w) initialized as equal to R̃1(w) .

83

2. The backward recursion βi(w) is computed, for i = d− 1, d− 2, . . . , 1,
as:

βi−1(w) = βi(w) · R̃i−1(w), (5.27)

with βd(w) initialized as the approximation R̃d(w).

3. Then combining the forward and backward recursion, we obtain:

f̃i(w) = ηi−1(w) · βi+1(w). (5.28)

4. Finally, the single Gaussian output of the variable node k is calculated
using the moment matching approximation:

fi(w) = MM
(
yk(w) · f̃i(w)

)
. (5.29)

The forward-backward process is illustrated in Fig. 5.9.

5.4.3 Complexity

The complexity of the three/two Gaussian parametric decoding algorithm is
dominated by the forward and backward algorithm which is O(n · t · 2d−1)
if messages are approximated by two Gaussians, and O(n · t · 3d−1) if three
Gaussians are selected, in general the complexity is O(n · t ·Md−1), where
M is the number of Gaussians used in the approximation, t is the number
of iterations, n is the lattice dimension and d is the degree of the LDLC
inverse generator matrix. In practice, it would appear that M ≥ 4, does not
ssignificantly increase the performance.

For comparison, the complexity of the quantized BP decoding algorithm
[1] is O(n · t · d · L

∆
) where ∆ is the probability density function resolution

and L is the range length, and is dominated by a discrete Fourier transform.
The complexity for [2] is O(n ·d · t ·K2 ·M4), and is dominated by a moment
matching algorithm. And for [31] the complexity is O(n · d · t ·K ·M3), and
is dominated by sorting and searching in tables, where K is the number of
replications and M the number of Gaussian used in the mixtures. The com-
mon values which present similar performance are n = 100, d = 5, L = 4,
∆ = 1

256
, M = 6 and K = 3.

84

The parametric decoder presented in [31] requires storing a n ·d list of M
Gaussians.

0 1 2 3 4 5 6
10

0

10
1

10
2

VNR [dB]

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
it
e
ra

ti
o
n
 f
o
r

c
o
n

v
e
rg

e
n
c
e

GMR M=2, θ=0.5

2−Gaussian

3−Gaussian

4−Gaussian

Figure 5.10: Average number of iterations required for decoder convergence
in terms of the VNR, for LDLC dimension n = 1000 and degree d = 7.

In Fig. 5.10, the average number of iterations required for decoder con-
vergence is shown. We took a sample of 1000 converged codewords (non-
converging cases are ignored) and evaluated the mean of the number of iter-
ations needed. The average number of iteration reduces as VNR increases.
The use of three Gaussians does not reduce the average number of iterations.
The GMR decoder for M = 2 and θ = 0.01 required more iterations on av-
erage to converge. The three/two Gaussian parametric decoding algorithm
looks about the same.

In addition, we also compare the computation time of the three/two Gaus-

85

sian parametric decoding algorithm with that of the GMR algorithm. The
performance of the GMR decoder presented in [2] depends on two parame-
ters, the Gaussian quadratic loss threshold θ and the maximum number of
Gaussians M . A small value of θ presents a better approximation (and thus
better performance) but the computational complexity increases. In Fig.
5.11 a computation time comparison for one iteration between the GMR de-
coder and the three/two Gaussian parametric decoding algorithm is shown.
We simulated 1000 codewords for dimension n = 1000, at V NR = 2dB,
and found the average time for one iteration. The proposed decoding algo-
rithm presents a lower computation time for the values of θ when the GMR
presents a good approximation [2]. The three/two Gaussian parametric de-
coding algorithm is independent of the value of θ. In fact, the only parameter
is whether there are two or three Gaussians.

0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

θ

A
v
e
ra

g
e
 t
im

e
 f
o
r

o
n
e
 i
te

ra
ti
o
n
 (

s
e
c
o
n
d
s
)

GMR, M=3

GMR, M=2

2−Gaussian

Figure 5.11: Time comparison between GMR algorithm [2], with M = 2
and M = 3, and the three/two Gaussian parametric decoding algorithm, for
lattice dimension n = 1000 and V NR = 2.

86

The storage needed for the three/two Gaussian parametric decoding algo-
rithm is 2 ·n · d for the M-Gaussian approximation, since the message passed
between check and variable nodes are single Gaussians, and these messages
are parameterized by two values, the mean and the variance. Internally in
the variable node the temporary storage needed is 2d−1 and 3d−1, for the
two-Gaussian and three-Gaussian approximation respectively. The use of a
larger number of Gaussians as an approximation presents additional incre-
ment in the complexity, where the storage required in the variable node is
4d−1 or more.

5.4.4 Pseudocode of the Three/Two Gaussian Para-
metric Decoding Algorithm

In this section the pseudocode of the three/two Gaussian parametric decod-
ing algorithm is given. And is as follows:

Input:

• The received message y = Gb + z.

• the channel variance σ2.

• The inverse generator H.

• The maximum number of iterations iter max.

Output:

• The estimated information b̂.

Initialization:

1. At variable node k, for k = 1, 2, . . . , n, send to all connected check
nodes the message yk and σ2 from the channel.

Check node:

87

2. At the check node, every single Gaussian message p̃i(w) to send it back
to the variable node, for i = 1, 2, . . . , d, is computed as in equation
(5.20) and equation (5.21).

V ariable node:

3. At the variable node k the ith message, for i = 1, 2, . . . , d, calculate the
message to send back to the check node. By selecting 2 or 3 Gaussians
as describe in section 5.3.1.

4. The selecting mixtures are multiplied except the message i, to calculate

d\i∏
j=1

R̃j(w). (5.30)

5. Then pi(w)is calculated by multiplying the channel message yk(w) as
in equation (5.24).

6. A moment matching is performed to send back to the check node a
single Gaussian message fi(w).

7. Steps 2-6 are repeated until the maximum number of iterations iter max
is reached.

Final Decision:

8. The final estimate x̂k is made by combining all messages at the variable
node, and x̂k is the mean of

MM
(
yk(w)

d∏
i=1

R̃i(w)
)
. (5.31)

9. Finally the received message is estimated by

b̂ = Hx̂. (5.32)

88

The benefits of the three/two Gaussian parametric decoding algorithm
are that is almost parameter free, the only degree of freedom is the num-
ber of Gaussians M . The infinite Gaussian mixtures are approximated only
with two or three Gaussians which are a good approximation. The messages
between variable nodes and check nodes are single Gaussians and are only
defined by two variables, the mean and variance, which required a low stor-
age.

5.5 Numerical Results

In this section two types of numerical results for the proposed three/two
Gaussian parametric decoding algorithm are shown:

• The noise thresholds for different LDLC lattices.

• The symbol error rate (SER) for dimension n = {100, 1000, 10000} in
terms of the volume-to-noise ratio (VNR).

5.5.1 Noise Thresholds

Noise thresholds are used to evaluate the performance of the three/two Gaus-
sian parametric decoding algorithm. The noise threshold is the lowest VNR
for which three/two Gaussian parametric decoding of asymptotically large-
dimensional lattice converges. Performing exact density evolution would re-
quire the joint distribution for the mean and variance of the messages sent
between the variable node and check node, which are the parameters used
for the messages in the decoding algorithm. The evaluation of exact density
evolution for two variables is computationally demanding. Instead we per-
form Monte Carlo density evolution which has been used for non-binary low
density parity check codes [58].

We consider a lattice construction as described in [1], with generator se-
quence h = {1, w, . . . , w}, where w is given by:

89

w =

√
α

d− 1
, (5.33)

and α is defined as:

α =

∑d
i=2 h

2
i

h2
1

, (5.34)

and α ≤ 1 is a necessary condition for exponential convergence of the belief-
propagation decoder [1].

The evaluation of Monte Carlo density evolution is similar to the one given
in [48], and is as follows. The data pool consist of two types of elements:
ones with label 1 denoted by P(1) and others with label w denoted by P(w).
P(1) consists in N(1) = 106 messages and P(w) consists of N(w) = (d− 1) · 106

messages, i.e.

P(1) = {(m1, v1), . . . , (mN(1)
, vN(1)

)} (5.35)

P(w) = {(m1, v1), . . . , (mN(w)
,N(w)

)}, (5.36)

where m and v denote the mean and variance respectively.

The messages (ml, vl), for all l = 1, . . . , N(1) (l = 1, . . . , N(w) for the w
label message), are initialized as follows. The noise variance σ2 is assigned
to vl, and ml is initialized with the received symbol generated from N (0, σ2),
since the all zero codeword (lattice point) is assumed.

At each half iteration the variable/check node input consists of one ele-
ment of P(1) and d − 1 elements from P(w). The check and variable nodes
are computed as shown in Section 5.4.1 and stored in an output pool. The

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

1

1.5

2

2.5

3

3.5

4

α

N
o
is

e
 T

h
re

s
h
o
ld

s

Single Gaussian

2−Gaussians

3−Gaussians

Finite length [5], n=100,000

"Dithered" code d=5

"Dithered" code d=6

"Dithered" code d=7

Figure 5.12: Noise thresholds, measured in distance from capacity, for
three/two Gaussian decoder and the single Gaussian decoder, for various
LDLC lattices with parameters d = 7 and α.

output pool becomes the input pool for the next half iteration. The mean
of the variable-to-check node messages for the w labeled edge was used to
check for convergence. When the mean of all vi ∈ P(w) samples fell below to
0.001, within 50 iterations, then convergence was declared.

The noise thresholds, obtained using the three/two parametric decoding
algorithm and the single-Gaussian decoder [48], are shown in Fig. 5.12 for
several values of α and d = 7. In addition, the noise thresholds for the
sequence { 1

2.31
, 1

3.17
, 1

5.11
, 1

7.33
, 1

11.71
, 1

13.11
, 1

17.55
} normalized with 1

2.31
to obtain

h = {1, 0.73, 0.45, 0.32, 0.20.18, 0.13} for d = 5, d = 6 and d = 7 as proposed
in [1] are shown; this LDLC is denoted as the “dithered” code.

In Fig. 5.13 a closer look at the noise thresholds, shows that the use
of three Gaussians to approximate the messages does not significantly re-
duce the noise threshold compared with approximating with two Gaussians.
The noise thresholds for the three/two Gaussian parametric decoding algo-
rithm are reduced by 0.05 dB compared with the noise thresholds for the

91

0.7 0.75 0.8 0.85 0.9 0.95

0.65

0.7

0.75

0.8

0.85

0.9

α

N
o
is

e
 T

h
re

s
h
o
ld

2−Gaussian

3−Gaussian

"Dithered" code [5] d=7

"Dithered" code [5] d=6

Single Gaussian

4−Gaussian

d=6

d=7

Figure 5.13: Noise thresholds details, measured in distance from capacity,
for the Three/Two Gaussian parametric decoder and the single Gaussian
decoder, for various LDLC lattices with parameters d = 7 and α.

single-Gaussian decoder in [48]. Interestingly, the noise thresholds for the
considered lattice construction are slightly better than the dithered code.

By evaluating the noise threshold it is confirm that for having a good
performance α ≤ 1. Also an approximation of the best value of α is derived,
where 0.75 < α < 0.77. In addition Figure 5.12 and Figure 5.13 can be use
as guide for LDLC lattice design, by selecting the values of the generator
sequence h in terms of α.

92

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

n=1000

n=100

n=10000
Noise
Threshold

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

Figure 5.14: Comparison in terms of the number of Gaussians M used in the
approximation. The comparison is made in terms SER vs VNR. For LDLC
lattices with dimension n = 100, n = 1000, n = 10000.

5.5.2 Finite-length results

To evaluate the three/two Gaussian parametric decoding algorithm the all
zeros codeword was simulated over the AWGN channel. The inverse gen-
erator matrix was generated as in [1], with the generator sequence h =
{1, 1√

d
, . . . , 1√

d
}, with this choice of generator sequence we have α = d−1

d
.

The inverse generator matrices H were further normalized in order to have
n
√
| det(H)| = 1 for fair comparison.

Different lattice dimensions n = 100, n = 1000 and n = 10000 were sim-
ulated, and the inverse generator H has degree d = 3 for dimension n = 100,
and d = 7 for dimension n = 1000 and n = 10000. The symbol error rate
(SER; a symbol error is b̂i 6= bki, for i = 1, 2, . . . , n) as a function of volume-
to-noise ratio (VNR). It is consider that lattice capacity is when V NR = 0dB.

93

In the three/two Gaussian parametric decoding algorithm two cases are
investigated. The first one is how the performance is affected based on the
number of Gaussians M selected. The second case is how the three/two de-
coding algorithm compared with the quantize decoding algorithm [1] and the
GMR decoding algorithm [2].

In Figure 5.14 the comparison between the number of Gaussians M
selected as the approximation is shown. It is shown that for dimension
n ≤ 1, 000 selecting two-Gaussian M = 2 are enough for achieve the per-
formance of the quantize algorithm. But when n = 10, 000 three-Gaussians
are enough. In addition a comparison with four-Gaussian was simulated,
increasing to M = 4 did not give any visible improvement. The constructed
LDLC for d = 7 has α = 0.8571 and its noise threshold is 0.68dB. The
gap to the noise threshold for the three/two Gaussian parametric decoding
algorithm is 0.22dB at SER of 10−7 when the approximation is done with
three-Gaussians or four-Gaussians for lattice dimension n = 10, 000.

In Figure 5.15 the comparison between the quantized decoding algorithm
quantize decoding algorithm [1], the GMR decoding algorithm [2] and the
three/two Gaussian parametric decoding algorithm is shown. In the quan-
tize algorithm the probability density function resolution is δ = 1

256
and each

probability density function was represented with a vector of L = 1024. For
the GMR decoding algorithm the number of Gaussians in the mixture are
set to M = 3 and M = 10, and the threshold θ = 0.1 and θ = 0.01 respec-
tively. Finally for the three/two Gaussian parametric decoding algorithm
two cases are simulated when the approximation is done with two-Gaussians
and three-Gaussians.

The three/two Gaussian parametric decoding algorithm perform nearly
as well as the quantize algorithm. The GMR decoding algorithm present an
error floor this is due to the number of Gaussians using in mixture. The
three/two parametric decoding algorithm performs as well as the GMR de-
coding algorithm but with a significant reduction on computational complex-
ity. In addition the three/two Gaussian parametric decoding algorithm does
not present an error floor at least at SER of 107 at dimension n = 10, 000,
which is a good property for practical applications.

94

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

Noise
Threshold

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

 Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

n=1000

n=100

n=10000

0 0.5 1 1.5 2 2.5 3 3.5 410−7

10−6

10−5

10−4

10−3

10−2

10−1

VNR[dB]

SE
R

Quantized
GMR M=3, Θ=0.1
GMR M=10, Θ=0.01
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
theta 01
4−Gaussian
Quantized
GMR M=3, Θ=0.1
2−Gaussian
3−Gaussian
3−Gaussian at Dominant
4−Gaussian
theta 01
data22

Noise
Threshold

n=1000

n=100

n=10000

Figure 5.15: Comparison in terms of the number of Gaussians M used in the
approximation. The comparison is made in terms SER vs VNR. For LDLC
lattices with dimension n = 100, n = 1000, n = 10000.

5.6 Conclusion

In this chapter the three/two Gaussian parametric decoding algorithm for
low density lattice codes (LDLC) was presented.

The three/two Gaussian parametric decoding algorithm approximates the
Gaussian mixture with only two or three Gaussians which are close to the
channel value. These selections are more accurate approximations than the
single Gaussian approximation, in terms of the Kullback-Leiber divergence.

The advantages of the three/two Gaussian parametric decoding algorithm
are:

1. Reduces the noise thresholds compared to single Gaussian decoders.

95

2. Has lower complexity, not only in terms in computation time per iter-
ation but also in the average number of iterations to converge. Con-
vergence in terms of volume-to-noise ratio for LDLC is presented for
the first time in the literature. The noise threshold analysis and the
average number of iteration presented in this work are a guideline for
LDLC lattice design.

3. For dimension n = 1, 000 the approximated with two Gaussian per-
forms nearly similar compare to the best-known decoding algorithm,
and for dimension n = 10, 000 three Gaussian approximation is needed.

4. Has only one parameter that is the number of Gaussians (three or two)
needed for approximating the messages.

These characteristics of the three/two Gaussian parametric decoder al-
gorithm makes it attractive for different applications, such as the physical
layer network that uses LDLC lattices [10] and/or crypto-systems which use
LDLC lattices [59].

In addition it has been verify that α ≤ 1 for a good performance, and
estimation of the best value of 0.75 < α < 0.77 was given. This results can
be use as guide for LDLC lattice design.

96

Chapter 6

Conclusion

Modern information and communication systems are based on the reliable
and efficient transmission of information. In wireless communication the
noise is a real function, a coding scheme that can exploits the real algebra of
the channel seems to be a more natural approach for data transmission.

On the other hand lattice codes have potential to become an efficient and
practical coding scheme for the AWGN channel, since lattice codes are codes
over the real numbers.

Recently a variety of lattices called low density lattices codes (LDLC) have
been studied. The LDLC lattices can be decoded in an iterative manner, and
have been reported that LDLC lattices attains 0.6dB from the unconstrained
capacity at dimension n = 100, 000.

In the LDLC belief propagation decoder the messages passed between
nodes are continuous functions, and for implementation these functions need
to be approximated, previous decoding algorithm are not suitable for im-
plementation due to not accurate approximation and/or high computational
complexity. In addition construction for LDLC present a high computational
complexity, since its required to search and store a big number of data as the
dimension increase.

In this dissertation an efficient method to construct LDLC lattices based
on array codes and a parametric decoder for LDLC lattices were presented.

97

The proposed construction method generated a dp×dp LDLC inverse gen-
erator matrix, and is based on array codes, this construction is called “array
LDLC lattices”. The inverse generator of array LDLC lattices is defined by
4 parameters: the maximum degree d, a prime number p, the balance factors
c and the value of the non zero elements (generator sequence) h. The inverse
generator matrix for array LDLC lattices is sparse, triangular and 4-cycle
free, and the proposed construction has a low computational complexity. In
addition a upper bound for the minimum distance was given.

The 4-cycle free property, by construction, eliminates tedious computa-
tions, and having a triangular structure is an important property that aids
to perform shaping and encoding operations.

The proposed parametric decoding algorithm approximates the Gaussian
mixture with only two or three Gaussians which are close to the channel
value. These selections are more accurate approximations than the single
Gaussian approximation, in terms of the Kullback-Leiber divergence. The
proposed decoding algorithm is nearly parameter-free; the only parameter
selection of interest is the number of Gaussians in the approximation, two or
three Gaussians.

The numerical results show that for n = 1, 000 the two-Gaussian approx-
imation is the same as the full-complexity decoder. But when the dimension
is n = 10, 000, a three-Gaussian approximation is needed. Selecting a bigger
number of Gaussians e.g M = 4, did not give any visual advantage in per-
formance in terms of the symbol error rate.

In addition, this dissertation provided the noise thresholds, which can
be use for lattice design, as a guide to select the generator sequence. The
proposed construction and decoding algorithm are a step forward to a more
practical algorithms for LDLC lattices.

Based on the achievements of this dissertation, several directions as the
future work can be provided.

• Implementation of high dimensional LDLC lattices based on array
codes, this implies the parameter p is large.

98

• In the triangular array LDLC lattice, investigate how to choose the
most suitable values of generator sequence h and the balance factor
c in order to increase the reliability of those symbols which are less
protected. These parameters are related with the convergence under
iterative decoder and the performance in terms of symbol error rate.

• In the array LDLC lattices increase the degree distribution in order
to have less elements with a low degree. One possibility is by adding
elements of the generator sequence randomly, but keeping the 4-cycle
free property.

• Applying shaping operations to the array LDLC lattices. This imply
to have a finite constellation.

• Applying the proposed decoder algorithm to fading channels, not only
in the point-to-point communication scheme, but also in the multi ter-
minal network scheme. For multi terminal networks, we can exploit the
benefits of lattice codes under a compute-and-forward relaying scheme
[10].

• Extend the proposed LDLC decoding algorithm to the complex LDLC
case. Other authors have preliminary study complex LDLC lattices
[60].

• The Three/Two Gaussian parametric decoder can be occupied not only
in the communications field but also in other fields where LDLC are
occupied, e.g crypto-systems which use LDLC lattices [59].

99

Appendix A

Matrix operations

In this section we describe some matrix operation used in this work.

A.1 Block matrix inversion

A block matrix or partitioned matrix is a matrix which has been partitioned
in a collection of smaller matrices or sub-matrices.

Lets define the matrix H be of the form:

H =

[
A B
C D

]
(A.1)

.

The inverse H−1 is given by:

H−1 =

[
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
,

(A.2)

assuming that all sub-matrix inverse exist.

100

When the block matrix is in triangular form (e.g the array LDLC lattices)
like:

H =

[
A B
0 D

]
, (A.3)

the inverse is given by:

H−1 =

[
A−1 A−1BD−1

0 D−1

]
. (A.4)

A.2 QR factorization

The QR factorization is a decomposition of a matrix A in to a product of
matrices A = QR, where Q is an orthogonal matrix and R is an upper
triangular matrix. The QR factorization can be calculated using the Gram-
Schmit process [55]

The QR factorization for the n×m matrix A has the following properties:

• if the rank(A) = m, that factors Q and R are uniquely determined
and the main diagonal of R are all positive.

• if A is a square matrix (n = m), then the matrix Q is unitary.

101

Appendix B

Pseudocode

In this appendix different pseudocode for different algorithms are described.

B.1 LLL-reduction algorithm

Algorithm 1: Subroutine: reduce

input : i such that (i ≤ m)
while j ← (i− 1) > 0 do

vi = vi − round(ui[j])vj;
ui = ui − round(ui[j])uj;
j = j − 1

102

Algorithm 2: LLL-reduction algorithm

input : Basis { v1,v2, · · · ,vn}
output: Reduce basis { v∗1,v

∗
2, · · · ,v∗n}

for i← 1 to n do
ui = 0;
ui[i] = 1;
v∗i = vi;
for j ← 1 to i− 1 do

ui[j] = (vi · vj)/(v∗j · v∗j);
v∗i = v∗i − ui[j]v

∗
j ;

reduce(i)

while i← 1 < n do
if ||v∗i ||2 ≤ c||v∗i+1||2 then

i = i+ 1;
else

v∗i+1 = v∗i+1 + ui+1[i]v∗i ;
ui[i] = (vi · v∗i+1)/(v∗i+1 · v∗i+1);
ui[i+ 1] = 1;
ui;1[i] = 1;
ui+1[i+ 1] = 0;
v∗i = v∗i − ui[i]v

∗
i+1;

swap(ui,ui+1) swap(v∗i ,v
∗
i+1) swap(vi,vi+1);

for k ← i+ 2 to n do
uk[i] = (vk · vi)/(v∗i · v∗i);
uk[i+ 1] = (vk · vi+1)/(v∗i+1 · v∗i+1);

if |ui+1[i]| > 1
2

then
reduce(i+1)

i = max(i− 1, 1)

103

B.2 LDLC Construction

Algorithm 3: latin square LDLC lattice construction algorithm

input : Dimension n, degree d and generator sequence h
output: Latin square LDLC inverse generator matrix H
Initialization:
choose d random permutation on {1, 2, . . . , n};
Arrange the permutation in an d× n matrix P;
c← 1 // Column index;
loopless col← 0 // Num. of consecutive cols. without loops

while loopless col < n do
chn perm← 0;
// Search for 2-cycles and 4-cylces;
if exist i 6= j such that Pi,c = Pj,c then

chn perm← i;
else

if exist c0 6= c such that P:,c = P:,c have two or more common
elements then

chn perm← row index which have the first common
element appear in column c of P ;

if chn perm 6= 0 then
Choose a random integer 1 ≤ i ≤ n;
Swap location c and i in row chn perm;
loopless col← 0 ;

else
loopless col← loopless col + 1;

c← c+ 1;
if c > n then

c← 1;

// Constructing the inverse generator H;
Initialize H as an n× n zero matrix;
for i← 1 : n do

for j ← 1 : d do
HPj,i,i ← hj · random sign

104

Bibliography

[1] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” In-
formation Theory, IEEE Transactions on, vol. 54, no. 4, pp. 1561–1585,
April 2008.

[2] B. Kurkoski and J. Dauwels, “Message-passing decoding of lattices us-
ing Gaussian mixtures,” in Info.Theory, 2008. ISIT 2008. IEEE Inter-
national Symposium on, July 2008, pp. 2489–2493.

[3] E. Rosnes, M. A. Ambroze, and M. Tomlinson, “On the mini-
mum/stopping distance of array low-density parity-check codes,” IEEE
Transactions on Information Theory, vol. 60, no. 9, pp. 5204–5214, Sept
2014.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Communica-
tions, 1993. ICC ’93 Geneva. Technical Program, Conference Record,
IEEE International Conference on, vol. 2, May 1993, pp. 1064–1070
vol.2.

[5] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA,
USA: The M.I.T. Press, 1963.

[6] C. E. Shannon, “Probability of error for optimal codes in a Gaussian
channel,” Bell System Technical Journal, The, vol. 38, pp. 611–656,
1959.

[7] R. de Buda, “The upper error bound of a new near-optimal code,” Info.
Theory, IEEE Trans. on, vol. 21, pp. 441–445, Jul. 1975.

105

[8] U. Erez and R. Zamir, “Achieving 1
2

log(1+SNR) on the AWGN channel
with lattice encoding and decoding,” Info. Theory, IEEE Trans. on,
vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[9] T. Linder, C. Schlegel, and K. Zeger, “Corrected proof of de Buda’s
theorem,” Info. Theory, IEEE Trans. on, vol. 39, no. 5, pp. 1735–1737,
Sep 1993.

[10] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing inter-
ference through structured codes,” IEEE Transactions on Information
Theory, vol. 57, no. 10, pp. 6463–6486, Oct 2011.

[11] B. Chen, D. Jayakody, and M. Flanagan, “Low-density lattice coded
relaying with joint iterative decoding,” Communications, IEEE Trans-
actions on, vol. 63, no. 12, pp. 4824–4837, Dec 2015.

[12] Y. Wang and A. Burr, “Physical-layer network coding via low density
lattice codes,” in Networks and Communications (EuCNC), 2014 Euro-
pean Conference on, June 2014, pp. 1–5.

[13] N. Ferdinand, M. Nokleby, and B. Aazhang, “Low density lattice codes
for the relay channel,” in Communications (ICC), 2013 IEEE Interna-
tional Conference on, June 2013, pp. 3035–3040.

[14] G. Boole, The Mathematical Analysis of Logic. Cambridge Uni-
versity Press, 1847, cambridge Books Online. [Online]. Available:
http://dx.doi.org/10.1017/CBO9780511701337

[15] K. Menger, “New foundations of projective and affine geometry,”
Annals of Mathematics, vol. 37, no. 2, pp. 456–482, 1936. [Online].
Available: http://www.jstor.org/stable/1968458

[16] G. Birkhoff, “On the combination of subalgebras,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 29, pp. 441–464,
10 1933.

[17] ——, Lattice Theory, ser. American Mathematical Society colloquium
publications. American Mathematical Society, 1940, no. v. 25, pt. 2.

[18] J. Leech and N. J. A. Sloane, Sphere Packing and Error-Correcting
Codes. New York, NY: Springer New York, 1988, pp. 136–156.

106

[19] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
3rd ed. New York, NY, USA: Springer-Verlag, 1999, iSBN 0-387-98585-
9.

[20] G. D. Forney, Jr., “Multidimensional constellations—part II: Voronoi
constellations,” vol. 7, no. 6, pp. 941–958, Aug. 1989.

[21] G. D. Forney, “Coset codes. II. binary lattices and related codes,” IEEE
Transactions on Information Theory, vol. 34, no. 5, pp. 1152–1187, Sep
1988.

[22] ——, “Trellis shaping,” IEEE Transactions on Information Theory,
vol. 38, no. 2, pp. 281–300, March 1992.

[23] J. D. Gibson, T. Berger, T. Lookabaugh, D. Lindbergh, and R. L. Baker,
Digital Compression for Multimedia: Principles and Standards. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[24] M. Ajtai, “The shortest vector problem in l2 is np-hard for randomized
reductions (extended abstract),” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, ser. STOC ’98.
New York, NY, USA: ACM, 1998, pp. 10–19. [Online]. Available:
http://doi.acm.org/10.1145/276698.276705

[25] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-
based public key cryptosystem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 267–288. [Online]. Available:
http://dx.doi.org/10.1007/BFb0054868

[26] N. Sommer, M. Feder, and O. Shalvi, “Low density lattice codes,” in
Info. Theory, 2006 IEEE International Symposium on. Seattle, WA,
USA: IEEE, Jul. 2006.

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006.

[28] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
Info. Theory, IEEE Trans. on, vol. 40, no. 2, pp. 409–417, Mar. 1994.

107

[29] G. Forney, M. Trott, and S.-Y. Chung, “Sphere-bound-achieving coset
codes and multilevel coset codes,” Information Theory, IEEE Transac-
tions on, vol. 46, no. 3, pp. 820–850, May 2000.

[30] N. Sommer, M. Feder, and O. Shalvi, “Shaping methods for low-denisty
lattice codes,” in Proc. Info. Theory Workshop, 2009, Oct. 2009, pp.
238–242.

[31] Y. Yona and M. Feder, “Efficient parametric decoder of low density
lattice codes,” in Information Theory, 2009. ISIT 2009. IEEE Interna-
tional Symposium on. Seoul, Korea: IEEE, Jun.-Jul. 2009, pp. 744–748.

[32] B. Kurkoski and J. Dauwels, “Reduced-memory decoding of low-density
lattice codes,” Communications Letters, IEEE, vol. 14, no. 7, pp. 659–
661, July 2010.

[33] J. L. Fan, “Array codes as low-density parity check codes,” in Proc.
Intern. Symp. on Turbo Codes, 2000.

[34] R. Zamir, Lattice Coding for Signals and Networks. Cambridge Uni-
versity Press, 2014, iSBN 9780521766982.

[35] E. Viterbo and E. Biglieri, “A universal decoding algorithm for lattice
codes,” in 14 Colloq. GRETSI (Juan-les-Pins, France), pp. 611–614,
Sep 1993.

[36] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factor-
ing polynomials with rational coefficients,” Mathematische An-
nalen, vol. 261, no. 4, pp. 515–534, 1982. [Online]. Available:
http://dx.doi.org/10.1007/BF01457454

[37] E. S. Barnes and G. E. Wall, “Some extreme forms defined in terms of
abelian groups,” Journal of the Australian Mathematical Society, vol. 1,
pp. 47–63, 8 1959.

[38] E. S. Barnes and N. J. A. Sloane, “New lattice packings of spheres,”
Canad. J. Math, pp. 117–130, 1983.

[39] A. Bos, J. H. Conway, and N. J. A. Sloane, “Further lattice packings in
high dimensions,” vol. 29, pp. 171–180, 12 1982.

108

[40] A. Sakzad, M.-R. Sadeghi, and D. Panario, “Construction of turbo lat-
tices,” in Communication, Control, and Computing (Allerton), 2010
48th Annual Allerton Conference on, Sept 2010, pp. 14–21.

[41] M.-R. Sadeghi, A. Banihashemi, and D. Panario, “Low-density parity-
check lattices: Construction and decoding analysis,” Info. Theory, IEEE
Trans. on, vol. 52, no. 10, pp. 4481–4495, Oct 2006.

[42] Y. Yan and C. Ling, “A construction of lattices from polar codes,” in
Information Theory Workshop (ITW), 2012 IEEE, Sept 2012, pp. 124–
128.

[43] J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms
for lattice quantizers and codes,” vol. 28, no. 2, pp. 227–232, Mar. 1982.

[44] P. van Emde-Boas, Another NP-complete partition problem and the com-
plexity of computing short vectors in a lattice, ser. Report. Department
of Mathematics. University of Amsterdam. Department, Univ., 1981.

[45] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm i. expected
complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp.
2806–2818, Aug 2005.

[46] J. Pearl, “Reverend bayes on inference engines: a distributed hierarchical
approach,” in in Proceedings of the National Conference on Artificial
Intelligence, 1982, pp. 133–136.

[47] R. M. Tanner, “A recursive approach to low complexity codes,” no. 5,
pp. 533–547, 1981.

[48] B. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Single-Gaussian mes-
sages and noise thresholds for decoding low-density lattice codes,” in
Information Theory, 2009. ISIT 2009. IEEE International Symposium
on. Seoul, Korea: IEEE, Jun.–Jul. 2009, pp. 734–738.

[49] B. Chen, D. Jayakody, and M. Flanagan, “Cooperative relaying with
low-density lattice coding and joint iterative decoding,” in Turbo Codes
and Iterative Information Processing (ISTC), 2014 8th International
Symposium on, Aug 2014, pp. 254–258.

109

[50] P. F. M. Blaum and H. van Tilborg, Hanbook of Coding Theory. Ele-
sevier, Amsterdam, 1998.

[51] J. Fan, “Constrained coding and soft iterative decoding,” ser. The
Springer International Series in Engineering and Computer Science, vol.
627. Springer US, 2001, pp. 195–203.

[52] M. Blaum and R. Roth, “New array codes for multiple phased burst
correction,” Information Theory, IEEE Transactions on, vol. 39, no. 1,
pp. 66–77, Jan 1993.

[53] E. Eleftheriou and S. Olcer, “Low-density parity-check codes for digital
subscriber lines,” in Communications, 2002. ICC 2002. IEEE Interna-
tional Conference on, vol. 3, 2002, pp. 1752–1757 vol.3.

[54] B. M. Kurkoski and R. A. P. Hernandez, “Message variance conver-
gence condition for generalizations of ldlc lattices,” in Information The-
ory Workshop (ITW), 2014 IEEE, Nov 2014, pp. 20–24.

[55] R. A. Horn and C. R. Johnson, Eds., Matrix Analysis. New York, NY,
USA: Cambridge University Press, 1986.

[56] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2005.

[57] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler
divergence between gaussian mixture models,” in Acoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE International Conference
on, vol. 4, April 2007, pp. IV–317–IV–320.

[58] M. C. Davey, “Error-correction using low-density parity-check codes,”
Ph.D. dissertation, University of Cambridge, 1999.

[59] R. Hooshmand, T. Eghlidos, and M. R. Aref, “Improving GGH public
key scheme using low density lattice codes,” CoRR, vol. abs/1503.03292,
2015. [Online]. Available: http://arxiv.org/abs/1503.03292

[60] Y. Yona and M. Feder, “Complex low density lattice codes,” in 2010
IEEE International Symposium on Information Theory, June 2010, pp.
1027–1031.

110

Publications

[1] R. A. Parrao Hernandez and B. M. Kurkoski, “The three/two Gaus-
sian parametric LDLC lattice decoding and its analysis,” IEEE Trans-
actions on Communications, vol. 64, no. 9, pp. 36243633, Sept 2016.

[2] R. A. Parrao Hernandez and B. M. Kurkoski, “Design of triangular
array LDLC lattices based on minimum distance bounds,” submitted
to IEEE Communications Letter. Submitted October 2016.

[3] R. A. Parrao Hernandez and B. M. Kurkoski, “The three/two Gaus-
sian parametric LDLC lattice decoding algorithm and its analysis,” in
Proceedings of the IEEE Information Theory Workshop, (Jeju Island,
Korea), October 2015.

[4] T. X. Nguyen, R. A. Parrao Hernandez, and B. M. Kurkoski, “Ro-
bust content-based image hash functions using nested lattice codes,” in
International Workshop on Digital Forensics and Watermarking (IWDW
2015), (Tokyo, Japan), pp 406-407, October 2015.

[5] B. M. Kurkoski and R. A. Parrao Hernandez, “Message variance
convergence condition for generalizations of LDLC lattices”, Informa-
tion Theory Workshop (ITW), 2014 IEEE, pp. 20-24, November 2014.

[6] R. A. Parrao Hernandez and B. M. Kurkoski, “Low Complexity
Construction of Low Density Lattice Codes Based on Array Codes,”
IEEE International Symposium on Information Theory and Its Ap-
plications (ISITA 2014), pp. 264-268,Melbourne, Australia, October,
2014

[7] R. A. Parrao Hernandez, Brian M. Kurkoski, “Construction Array
LDLC Lattices”; Proceedings of The 37th Symposium on Information

111

Theory and Its Applications (SITA 2014), pp. 415-420, Toyama, Japan,
December 2014.

[8] R. A. Parrao Hernandez, Brian M. Kurkoski, “Construction of Low
Density Lattice Codes Based on Array Codes,” Proceedings of The 36th
Symposium on Information Theory and Its Applications (SITA 2013),
pp. 232-237, Ito, Japan, November, 2013.

[9] R. A. Parrao Hernandez, Brian M. Kurkoski, “Proportional La-
belling Schemes for Multi-level Nested Lattice Codes” Presentation at
Workshop on Coding for Flash Memories, Fukui, Japan, May, 2013

112

