
rERA: An Optimization Algorithm of Task Dependency
Graph for Scheduling

Zhuo CHENG Yasuo TAN Yuto LIM

School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

1 Introduction

Currently, almost all the practical systems are multi-

task systems, such as chemical and nuclear plant con-

trol, telecommunications, and multimedia systems. In

such systems, different tasks work together to achieve

desired functions. In order to guarantee the correct-

ness of the functions, the tasks are required to be com-

pleted in specific orders. Any violation of such orders

will lead to the systems in unpredictable states, which

may cause disasters.

To characterize such orders, task dependency graph

is an expressive form. In order to generate a schedul-

ing sequence that is consistent with the orders charac-

terized by the task dependency graph, scheduling al-

gorithms need to traverse the graphs. Therefore, the

complexity (size of node and edge) of the graphs can

obviously affect the efficiency of the scheduling algo-

rithms. Unfortunately, task dependency graph directed

obtained by some technical, such as causality interfaces

[1], usually contains some redundant edges which can

increase the complexity of the graph.

In this paper, based on the analysis of task depen-

dency, we propose an algorithm to remove the redun-

dant edges of the task dependency graphs. The effec-

tiveness of the algorithm is illustrated through a sim-

ple example. By this way, the complexity of the task

dependency graph is reduced, which can improve the

efficiency of scheduling algorithms.

2 Task Dependency Graph

Definition (task dependency graph) A task de-

pendency graph is a directed acyclic graph. G =

(V,E, v0, ve), where V is task (node) set, E ⊆ V × V

is dependency relation (edge) set, with (vi, vj) ∈ E,

vi �= vj, where vi, vj ∈ V . v0 ∈ V is the start task, and

ve ∈ V is the end task.

An edge (vi, vj) in the task dependency graph means

task vj can start to execute only after task vi has been

completed. We use vi ≺ vj to illustrate this depen-

dency relation. The dependency relation is transitive.

That is, vi ≺ vj , vj ≺ vk =⇒ vi ≺ vk. The left side of

Fig. 1 shows a task dependency graph with six tasks

and eight dependency relations.

v0

v1 v2

v3

v4

ve

v0

v1 v2

v3

v4

ve

Fig. 1 Task Dependency Graph

Algorithm 1 redundant Edge Removal Algorithm (rERA)
Input: task dependency graph G = (V,E, v0, ve)
Output: task dependency graph G′ = (V,E′, v0, ve) without redundant edges
1: E′ := E
2: for all node vi ∈ V do
3: compute D(vi), the set of descendants nodes of task vi
4: compute C(vi), the set of child nodes of task vi
5: end for
6: for all node vi ∈ V do
7: for all vj ∈ C(vi), vk ∈ D(vi), and vj ∈ D(vk) do
8: remove the edge (vi, vj)
9: update C(vi)

10: E′ := E′\(vi, vj)
11: C(vi) := C(vi)\vj

12: end for
13: end for
14: return the optimized graph G′ = (V,E′, v0, ve)

3 Optimization Algorithm

Task dependency graph is to characterize task exe-

cution orders. However, some edges in the graph are

not necessary, which can increase the complexity of the

graph. For example, in the left figure of Fig. 1, edge

(v3, v4) and (v4, ve) indicate the relation v3 ≺ v4 and

v4 ≺ ve. Based on the transitivity of dependency re-

lation, we can get v3 ≺ ve, which means edge (v3, ve)

in the graph is not necessary as it indicates the depen-

dency relation v3 ≺ ve that has already been indicated

by other edges. To remove such redundant edges, we

propose redundant Edge Removal Algorithm (rERA)

for task dependency graph described in Alg. 1.

Through using rERA, we can get the optimized task

dependency graph as shown in the right side of Fig.

1. Compared with the left side of Fig. 1, we can see

that, two redundant edges (v3, ve) and (v2, ve) are re-

moved. This has reduced the complexity of the task

dependency graph, which can increase the efficiency of

scheduling algorithms.

References

[1] E.A. Lee, H. Zheng, and Y. Zhou “Causality In-

terfaces and Compositional Causality Analysis,”

Foundations of Interface Technologies, pp. 1–16,

2008.

2016 年　電子情報通信学会総合大会

Copyright © 2016 IEICE2016/3/15 〜 18　福岡市 171

A-10-16

（ 基礎・ 境界講演論文集）

