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Abstract

Vitrification is a powerful tool for the efficient production of offspring derived from cryopre-

served oocytes or embryos in mammalian species including domestic animals. Genome

editing technologies such as transcription activator-like effector nucleases (TALENs) and

clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated

(Cas)9 are now available even for domestic species, suggesting that the vitrification of

embryos at the pronuclear stage (PN) will be more important because they could provide

genomic host cells to be targeted by TALENs or CRISPR/Cas9. Although we reported the

successful production of piglets derived from vitrified PN embryos by a solid-surface vitrifica-

tion method with glutathione supplementation, further improvements are required. The cryo-

protective agent (CPA) carboxylated ε-poly-L-lysine (COOH-PLL) was introduced in 2009.

COOH-PLL reduces the physical and physiological damage caused by cryopreservation in

mammalian stem cells and the vitrification of mouse oocytes and embryos. Those results

suggested that vitrification of COOH-PLL may help improve the developmental ability of pig

embryos vitrified at the PN stage. However, it remains unclear whether COOH-PLL is avail-

able as a CPA for the vitrification of embryos in domestic species. In this study, we evalu-

ated COOH-PLL as a CPA with ethylene glycol (EG) and Cryotop as a device for the

vitrification of PN pig embryos. Exposure to vitrification solution supplemented with COOH-

PLL up to 30% did not decrease developmental ability to the 2-cell stage and the blastocyst

stage. After warming, most of the vitrified embryos survived regardless of the concentra-

tion of COOH-PLL (76.0 ± 11.8% to 91.8 ± 4.6%). However, the vitrified embryos without

COOH-PLL showed a lower development rate up to the blastocyst stage (1.3 ± 1.0%) com-

pared to the fresh embryos (28.4 ± 5.0%) (p<0.05). In contrast, supplementation of 20%

(w/v) COOH-PLL in the vitrification solution dramatically improved the developmental ability

to blastocysts of the vitrified embryos (19.4 ± 4.6%) compared to those without COOH-PLL

(p<0.05). After the transfer of embryos vitrified with 30% (v/v) EG and 20% (w/v) COOH-

PLL, we successfully obtained 15 piglets from 8 recipients. Taken together, our present

findings demonstrate for the first time that COOH-PLL is an effective CPA for embryo
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vitrification in the pig. COOH-PLL is a promising CPA for further improvements in the vitrifi-

cation of oocytes and embryos in mammalian species.

Introduction

For the production of transgenic animals, pre-implantation embryos at the pronuclear (PN)

stage are usually used, as the injection of foreign DNA into pronuclei contributes to the recom-

bination of genomic DNA [1]. It was demonstrated that PN embryos can be used not only for

transgenic animals but also for knockout animals by using a genome-editing system such as

zinc-finger nucleases (ZFNs) [2], transcription activator-like effector nucleases (TALENs) [3],

or clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated

(Cas)9 [4] through the induction of these nucleotides. Even in the pig, gene-modified pigs have

been successfully produced using a genome-editing system via microinjection or somatic cell

nuclear transfer [5–8] because gene-modified pigs can contribute to the expansion of lots of bio-

medical researches, for example generating human organs and tissues, designing new dung

screening methodologies and developing new human disease models [9]. In addition, it has

been recently reported successful interspecies human-pig blastocyst complementation [10].

These results lead us the idea that the cryopreservation of embryos will become more important,

because such embryos are ready-to-use after warming. However, it is well known that pig

embryos are very sensitive to damage caused by low temperature and osmotic stress [11].

The vitrification method is now common for the cryopreservation of oocytes and embryos

instead of conventional freezing methods. The vitrification method was first reported by Rall

and Fahy [12]. The major advantages of the vitrification method are (1) the elimination of the

physiological damage caused by intracellular or extracellular ice crystal formation, and (2) the

reduction of chilling damage by shortening the exposure to suboptimal temperature [13]. One

of the major factors that can affect the efficiency of vitrification is the cryoprotective agent

(CPA). Various CPAs such as dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, and

propylene glycol have been widely used for the vitrification of oocytes and embryos in various

mammalian species [14–16].

Our previous study demonstrated that compared to DMSO, EG had a lesser toxic effect on

the vitrification of unfertilized oocytes in mice [17]. It was also suggested that the current

CPAs, even EG, have toxic effects on cell viability in a dose-dependent manner [18], indicating

that the development of a new CPA showing high efficiency and low toxicity is necessary for

further improvements in vitrification. Carboxylated ε-poly-L-lysine (COOH-PLL) was intro-

duced as a CPA in 2009 by Matsumura and Hyon [18]. They demonstrated that COOH-PLL

reduced the risks of damage by ice recrystallization during freezing and thawing, with anti-

freezing protein-like activities [19]. We succeeded in producing mouse offspring derived from

unfertilized oocytes and PN embryos vitrified with COOH-PLL and EG [20, 21]. Although the

production of piglets derived from vitrified PN embryos was reported using another vitrifica-

tion method and CPA, i.e., a SSV method and EG [22], our results from the mouse indicated

that COOH-PLL is a more suitable CPA for the vitrification of oocytes and embryos, even in

the pig, compared to the other CPAs that have been used to date. We speculated that vitrifica-

tion using COOH-PLL as a CPA could thus provide a high success rate for embryo vitrification

even in pigs.

The objective of the present study was to clarify whether COOH-PLL is effective as a CPA

for the vitrification of PN porcine embryos. We also evaluated the in vitro and in vivo develop-

ment of PN porcine embryos that were vitrified using COOH-PLL.

Vitrification of PN pig embryos with COOH-PLL
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Materials and methods

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless

otherwise stated. The study was approved by the Ethical Committee for Vertebrate Experi-

ments at Azabu University (ID#140219–4) [23].

Oocyte collection and in vitro maturation (IVM)

The collection of porcine follicular oocytes and in vitro maturation (IVM) were performed as

described by Kikuchi et al [24]. In brief, porcine ovaries were collected at a local slaughterhouse

and transported to the laboratory at 37.5˚C. Cumulus oocyte complexes (COCs) were collected

from 2–6 mm in diameter follicles. Fifty COCs were cultured for 22 h in four-well dishes (Nunc™
Cell-Culture Treated Multidishes; Thermo Fisher Scientific Inc., Waltham, MA, USA), each con-

taining 500 μL of a modified North Carolina State University-37 (NCSU-37) solution [25] which

contained 10% (v/v) porcine follicular fluid, 0.6 mM cysteine, 20 μM beta-mercaptoethanol, 1

mM dibutyryl cAMP (dbcAMP), 10 IU/mL eCG (1000 units; PMS; Nippon Zenyaku Kogyo,

Fukushima, Japan), and 10 IU/mL hCG (3000 units; Puberogen; Novartis Animal Health, Tokyo).

The COCs were subsequently cultured for 22 h in NCSU-37 solution without dbcAMP, eCG or

hCG. The maturation culture was performed under 5% CO2 in air at 38.5˚C.

In vitro fertilization and in vitro culture

The in vitro fertilization (IVF) and in vitro culture (IVC) were performed as described by Kiku-

chi et al [24]. After 44 h IVM, COCs were washed three times in modified pig fertilization

medium (Pig-FM) [26] and 20–25 COCs were transferred into each 90 μL droplet of Pig-FM

covered with paraffin oil (Kanto Chemicals, Tokyo). Epididymal spermatozoa were collected

and frozen as described by Kikuchi et al [27]. Frozen-thawed epididymal spermatozoa were

washed in Medium 199 with Earle salts (Gibco) adjusted to pH 7.8 [22] and preincubated for

15 min at 38.5˚C in Pig-FM.

After preincubation, 10 μL of sperm was added to the droplets of Pig-FM containing COCs.

The final concentration of sperm was 1.0 x 106 sperm/mL. The COCs and sperm were co-cul-

tured for 3 h at 38.5˚C under 5% CO2 in air. At 3 h after the IVF, the cumulus cells and sperm

were removed from the oocytes with the use of a fine glass pipette. Denuded oocytes were cul-

tured in NCSU-37 without glucose supplemented with 50 μM beta-mercaptoethanol, 0.17 mM

sodium pyruvate, 2.73 mM sodium lactate, and 4 mg/mL albumin from bovine serum (BSA)

(IVC-PyrLac) [24] for 48 h.

The embryos were subsequently cultured in NCSU-37 supplemented with 5.55 mM glu-

cose, 50 μM beta-mercaptoethanol and 4 mg/mL BSA (IVC-Glu) [24] for 120 h. IVC was per-

formed at 38.5˚C under 5% CO2 in air. At 10 h after the IVF, the oocytes were centrifuged at

17,860 g at 38˚C for 10 min in a 1.5-mL tube for the visualization of the pronuclei. Oocytes

with two or three pronuclei (PN) were defined as porcine embryos at the PN stage and further

used for vitrification [22].

Vitrification and warming

Vitrification and warming by the Cryotop method was performed as describe [28] with some

modification. PN embryos were selected and exposed for 10 min to PB1, i.e., phosphate-buff-

ered saline (PBS) supplemented with 20% (v/v) fetal calf serum (FCS), 15% (v/v) ethylene gly-

col (EG) and COOH-PLL. Embryos were exposed to PB1 supplemented with 20% (v/v) FCS,

0.5 M sucrose, 30% (v/v) EG and COOH-PLL for 1 min before being plunged into liquid nitro-

gen on Cryotop. In each Cryotop, 10–20 embryos were loaded.

Vitrification of PN pig embryos with COOH-PLL
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The concentrations of COOH-PLL in the vitrification solution (w/v, P0, P1, P10, P20 and

P30, respectively), and the concentrations in the equilibration solution were one-half of those

in the vitrification solution (Table 1). Vitrified embryos were preserved in liquid nitrogen for

at least 1 week. Embryos that had been vitrified on the Cryotop were immersed in PB1 supple-

mented with 20% (v/v) FCS and 1.0 M sucrose for 1 min. The embryos were then transferred

to PB1 supplemented with 20% (v/v) FCS and 0.5 M sucrose for 3 min, and transferred to sup-

plemented PB1 with 20% (v/v) FCS for 5 min. After warming, the embryos were cultured at

38.5˚C under 5% CO2 in air. To investigate the effect of COOH-PLL on the developmental

ability of the embryos, some embryos were only exposed to equilibration solution, and not

vitrified.

Evaluation of survival and developmental ability in vitro

We morphologically evaluated the survival of the vitrified embryos at 1 h after warming.

The membrane integrity of vitrified-warmed embryos under a microscope according to the

method by Zeron et al [29]. Embryos with normal and spherical shape, without lysis, and not

shrunken, swollen, or blackened were regarded as surviving. To evaluate the developmental

ability of vitrified or exposed embryos in vitro, we determined the cleavage rates (at 38 h after

warming) and the rates of blastocyst formation (at 158 h after warming). Blastocysts were har-

vested and stained with orcein for the determination of the number of cells in each blastocyst

[22].

Evaluation of the permeability of COOH-PLL to embryos

COOH-PLL was prepared as reported previously [20]. To clarify the permeability of PN

embryos to COOH-PLL as a CPA, we used fluorescein isothiocyanate (FITC)-labeled

COOH-PLL. After centrifugation, PN embryos were exposed to PB1 supplemented with

FITC-labeled COOH-PLL (5% (w/v)) for 5 min. After exposure, some of the embryos were

washed 3 times with PBS. Both washed and unwashed embryos were used for the experiments

to evaluate the interaction of COOH-PLL with the embryos under confocal laser microscopy

(TCS-SP5; Leica Co. Ltd, Wetzlar, Germany). As control, mouse PN embryos were also col-

lected by in vitro fertilization as previously reported [20] and then used for the experiments as

described above.

Embryo transfer

The embryo transfer was performed as described [30]. Estrus synchronization of the recipient

nonpregnant gilts (>140 days old) was achieved by an intramuscular injection of 1,500 IU

eCG followed by an injection of 500 IU hCG 72 h later. Embryos that were vitrified with P20

Table 1. The concentrations of the cryoprotectants in the equilibration solution (ES) or vitrification

(VS).

Treatments ES1 VS2

P0 15%EG 30%EG

P1 15%EG + 0.5%COOH-PLL 30%EG + 1%COOH-PLL

P10 15%EG + 5%COOH-PLL 30%EG + 10%COOH-PLL

P20 15%EG + 10%COOH-PLL 30%EG + 20%COOH-PLL

P30 15%EG + 15%COOH-PLL 30%EG + 30%COOH-PLL

1These cryoprotectants were added into PB1 supplemented with 20% FCS.
2These cryoprotectants were added into PB1 supplemented with 20% FCS and 0.5 M sucrose.

https://doi.org/10.1371/journal.pone.0176711.t001

Vitrification of PN pig embryos with COOH-PLL

PLOS ONE | https://doi.org/10.1371/journal.pone.0176711 April 27, 2017 4 / 12

https://doi.org/10.1371/journal.pone.0176711.t001
https://doi.org/10.1371/journal.pone.0176711


and warmed were surgically transferred into the oviducts of estrus-synchronized recipient

gilts. After warming, 97–143 embryos (5–10 Cryotops) were transferred within 1h for each

experiment. On Day 28 (Day 0 was the day of transfer), pregnancy was confirmed in the recip-

ients with an ultrasound pregnancy detector (Doppler Pregtector; Rotech Livestock Equip-

ment, Chichester, England). The offspring was confirmed on Days 115–116.

Statistical analysis

Each experiment had at least five replicates. All percentage data were subjected to arcsine

transformation before the statistical analysis. Kruskal-Wallis test or Scheffe’s method was used

for the analysis. Data are shown as mean ± standard error of the mean (SEM).

Results

The developmental ability of PN embryos exposed to various

concentrations of COOH-PLL

There were no significant differences (p>0.05) in the cleavage rates of the PN embryos ex-

posed to different concentrations of COOH-PLL (P0: 59.6 ± 7.1%, P1: 52.7 ± 5.3%, P10:

56.4 ± 5.8%, P20: 67.8 ± 5.8%, and P30: 60.0 ± 6.2%, respectively) (Fig 1). There were also no

significant differences (p>0.05) in the blastocyst rates of the PN embryos exposed to different

concentrations of COOH-PLL (P0: 24.6 ± 5.6%, P1: 20.0 ± 8.0%, P10: 36.4 ± 7.7%, P20: 37.3 ±
9.6%, and P30: 41.8 ± 9.5%, respectively) (Fig 1). To confirm whether COOH-PLL enters to

the cytoplasm of embryos, we exposed mouse and pig PN embryos to FITC-tagged COOH-

PLL. The results are illustrated in Fig 2. FITC-tagged COOH-PLL was partially observed in

cytoplasm of both unwashed and washed mouse embryos (Fig 2A and 2B). On the other hand,

FITC was not observed in cytoplasm of both unwashed and washed pig embryos.

Fig 1. The developmental ability of PN porcine embryos exposed to various concentrations of

COOH-PLL. Data are mean ± SEM. Data was analyzed by Kruskal-Wallis test. There were no significant

differences in the cleavage rate or blastocyst rate among the treatments (p>0.05). Number of oocytes used in

each group were described under each treatment group.

https://doi.org/10.1371/journal.pone.0176711.g001
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The survival and developmental ability in vitro of the PN embryos vitrified

with various concentrations of COOH-PLL

Typical morphology of embryos after vitrification was shown in Fig 3A.

Embryos with normal and spherical shape, without lysis, and not shrunken, swollen, or

blackened were regarded as surviving (Fig 3A) and others were defined as non-survived

(Fig 3A).

Fig 2. The permeability of PN mouse and pig embryos to COOH-PLL. The embryos were exposed to

FITC-labeled COOH-PLL (5% (w/v)) for 5 min. After exposure, embryos with or without washing were

examined under a laser scanning microscope. Scale bars denote 50 um.

https://doi.org/10.1371/journal.pone.0176711.g002

Vitrification of PN pig embryos with COOH-PLL
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There were no significant differences (p>0.05) in the survival rates of the PN embryos vitri-

fied with different concentrations of COOH-PLL (P0: 91.8 ± 4.6%, P1: 91.7 ± 5.7%, P10:

83.2 ± 3.6%, P20: 72.7 ± 7.3%, and P30: 76.0 ± 11.8%, respectively) (Fig 3B). There were also

no significant differences (p>0.05) in the cleavage rates of the PN embryos vitrified with differ-

ent concentrations of COOH-PLL (P0: 23.1 ± 5.8%, P1: 27.5 ± 3.8%, P10: 37.8 ± 7.5%, P20:

41.8 ± 4.6% and P30: 39.7 ± 11.8%) (p>0.05) (Fig 3C).

The blastocyst rate of the PN embryos vitrified with P20 (19.4 ± 4.6%) was significantly

higher than that of the P0 (1.3 ± 1.0%) and P1 (3.8 ± 2.1%) groups (p<0.05). There were no sig-

nificant differences (p>0.05) in blastocyst rates between the P20 group and the fresh group

(28.4 ± 5.0%) (Fig 2B). The total numbers of cells in the blastocysts developed from the em-

bryos vitrified with P10 (22.7 ± 2.3 cells) were significantly lower than those of the fresh

embryos (36.1 ± 2.9 cells) (p<0.05), but there was no difference in the total numbers of cells

between the P20 group (30.2 ± 2.1 cells) and the fresh group (p>0.05) (Table 2).

Fig 3. The effects of COOH-PLL on the morphology (A), survival (B) and developmental abilities (C) of

vitrified porcine embryos at the PN stage. Data are mean ± SEM. Scheffe’s method was used for the

analysis. Different superscripts denote significant differences (p<0.05). Number of oocytes used in each

group were described under the treatment group. Scale bars denote 50 um.

https://doi.org/10.1371/journal.pone.0176711.g003

Table 2. The effect of COOH-PLL concentration on the number of cells in a blastocyst.

Blastocysts No. of total cells

Fresh 31 36.1 ± 2.9a

P10 14 22.7 ± 2.3b

P20 24 30.2 ± 2.1ab

P30 13 21.8 ± 2.2b

Data are shown as mea ns ± S.E.M. Different superscripts denote a significant difference (p<0.01) by

Scheffe’s method.

https://doi.org/10.1371/journal.pone.0176711.t002
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The in vivo developmental ability of PN embryos vitrified with COOH-PLL

In our preliminary study, 79 fresh embryos were transferred to a recipient and 13 piglets were

obtained (data not shown). The transfer of PN embryos vitrified with P20 into eight recipients

resulted in two pregnancies, which were maintained until term (Table 3). Fifteen piglets were

obtained from the two pregnant recipients; two of them were stillborn (Fig 4).

Discussion

In mammalian species, the vitrification of germ cells is an essential tool in various basic biology

and clinical areas. Since genome-editing technology has become available even for domestic

species, the vitrification of embryos at the PN stage will be more important for the efficient

production of genome-edited domestic animals. In this study, we succeeded in the production

of pig offspring derived from vitrified PN embryos.

Table 3. In vivo development of porcine embryos vitrified with P20.

Recipients No. of embryos

transferred

Pregnant

(Yes/No)

No. of piglets

(No. of stillborn)

#1 143 No 0 (0)

#2 103 No 0 (0)

#3 111 No 0 (0)

#4 105 Yes 5 (0)

#5 121 No 0 (0)

#6 121 No 0 (0)

#7 117 Yes 10 (0)

#8 97 No 0 (0)

https://doi.org/10.1371/journal.pone.0176711.t003

Fig 4. Piglets derived from PN porcine embryos vitrified with COOH-PLL.

https://doi.org/10.1371/journal.pone.0176711.g004
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Vitrification is simpler and quicker than the cryopreservation technique called the conven-

tional freezing method [31]. Successful vitrification depends on several factors. One of the fac-

tors affecting the survival and developmental ability of vitrified oocytes/embryos is how the

device or protocol is used for vitrification. An increased volume of vitrification solution inter-

feres with the survival of vitrified-warmed embryos, because a large volume decreases the cool-

ing rate [31]. The use of only a small volume of vitrification solution in the container is thus a

key to achieving vitrification at a high success rate. Many devices and methods have been

developed to decrease the total volume of vitrification solution [14]. We previously succeeded

in a more efficient production of offspring derived from vitrified-warmed mouse oocytes [17,

32], PN mouse embryos [21], rat oocytes [33], and PN rat embryos [34] using the Cryotop

method. In matured pig oocytes, the Cryotop method yielded the highest survivability com-

pared to other vitrification methods [11, 35]. These results of our present study strongly sug-

gested that the Cryotop is one of the most powerful and superior devices for vitrification, even

in PN pig embryos.

Although we previously succeeded in the generation of offspring derived from unfertilized

mouse oocytes vitrified with EG alone because EG showed lower toxicity than DMSO [17, 32],

the developmental ability of PN pig embryos vitrified with EG alone was low. Many reports

support the idea that pig oocytes are more sensitive than mouse oocytes to physiological stress

such as cooling and warming [11, 36, 37]. It was suggested that many lipids exist in the cyto-

plasm of pig oocytes, which negatively affect developmental ability after thawing [38].

Nagashima et al. [39] demonstrated that the physical removal of lipids (delipation) dramati-

cally improved the developmental ability of cryopreserved pig embryos. A latter study con-

firmed that the uneven distribution of lipids by centrifugation can improve the developmental

ability of cryopreserved embryos [22]. In the present study, we also used centrifugation for the

uneven distribution of PN pig embryos, but the developmental ability was still low. These

results suggest that additional improvements such as the use of a CPA are required for success-

ful vitrification.

In this study, we used COOH-PLL as a CPA for the first time for the vitrification of

embryos in a domestic species, and our findings demonstrated that the vitrification with EG

and COOH-PLL dramatically improved the embryonic developmental ability in vitro and suc-

ceeded in production of offspring. Our previous study showed that the vitrification of mouse

oocytes with EG and COOH-PLL was successful in mouse oocytes [20]. It has been reported

that higher concentration of CPA such as EG increases toxicity of cells after cryopreservation

but up to 20% (w/v) of COOH-PLL did not decease the survivability of frozen-thawed cells

[19]. In addition, recent studies demonstrated that COOH-PLL inhibited of ice crystallization

and recrystallization during freezing and thawing with anti-freezing protein-like activities in
vitro [40, 41]. Although detailed mechanism of how COOH-PLL works in the vitrification of

mammalian oocytes and embryos is still unclear, inhibition of growth of crystallization and

recrystallization during vitrification seems to be a benefit using COOH-PLL.

On the other hand, developmental ability of mouse oocytes vitrified with COOH-PLL

alone was very low [20] because permeability of COOH-PLL was low in mouse oocytes [20].

Higher concentration of EG had detrimental effect on survivability of the cells [19]. Therefore,

the concentration of EG can be decreased by using COOH-PLL as a CPA, results in the

improvement of developmental ability of vitrified embryos. We also demonstrated improve-

ment of embryo vitrification at PN [21], 2-cell, morulae and blastocysts in the mouse (Kawa-

saki et al., unpublished data). We reported that FITC-tagged COOH-PLL entered to mouse

oocyte cytoplasm to some extent [20]. In the present study however, FITC-tagged was ob-

served in PN embryos of mouse embryos to some extent but not pig embryos (Fig 2). It is very

difficult to explain the reason why there is a species-dependent differences in the permeability
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of COOH-PLL. However, in our previous study, vitrification solution composed of 15% EG

and 15% COOH-PLL was effective for vitrification of mouse PN embryos [21]. In case of pig

PN embryos, 30% EG and 20% COOH-PLL was required for successful vitrification. These

differences seem to be from species-dependent permeability. In addition, one of the positive

effects of COOH-PLL for vitrifcaiton of pig embryos may be to protect the membrane from

cryoinjury by binding to the membrane as other non-permeable CPAs do [42, 43] and/or by

inhibition of crystallization and recrystallization as described above.

Taken together, our present findings show for the first time that COOH-PLL is effective

as a CPA for embryo vitrification, even in the pig. Our findings will also contribute to the

improvement of oocyte/embryo vitrification in other domestic species.
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