
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Information-theoretic Approach to Origami

Folding Sequence Generation from 3D Shape Models

Author(s) Bui, Duong Ha

Citation

Issue Date 2017-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/14163

Rights

Description Supervisor:丁　洛榮, 情報科学研究科, 修士

An Information-theoretic Approach to Origami
Folding Sequence Generation from 3D Shape Models

Bui Ha Duong

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2017

Master’s Thesis

An Information-theoretic Approach to Origami
Folding Sequence Generation from 3D Shape Models

1510050 Bui Ha Duong

Supervisor : Professor Chong Nak-Young
Main Examiner : Professor Chong Nak-Young

Examiners : Professor Ryuuhei Uehara
Associate Professor Kokolo Ikeda

School of Information Science
Japan Advanced Institute of Science and Technology

February, 2017

Abstract

Folding presents in many fundamental aspects of life. Many things in universe simulate
and construct based on this operation. The wave of light and sound repeatedly fold and
unfold in space to broadcast information. We are all born with a DNA folding form.
Inheriting the properties of folding, origami - the art of paper folding, also contribute
to several technological products. With the main characteristic is creative, many works
in space technology, automobiles, medicine, robotics, and programmable matter, which
based on origami, are considered outstanding.
This thesis considers an information-theoretic approach to modeling and answering the
origami folding sequence generation from 3d shape models problem. The algorithm, as
input, receives an origami paper (flat sheet square of paper), a 3d model from a real life
object or a creative work, and a predefined crease pattern. It, then, generates some of the
possible folding sequences that will result in the desired model. By this definition, our task
is properly described as a combinatorial optimization problem (COP). A feasible solution
is a list of folding actions to create creases which are included in the input crease pattern.
The set of feasible solutions is called the search space. The objective function is finding
an optimal solution in the search space that has the minimum Hausdorff distance with the
input objective model. We present a framework to tackle this COP using particle swarm
optimization (PSO). With the observation that the problem is an NP-hard problem, and
the solutions are in discrete space, we proposed a modified discrete PSO (DPSO) method
that can be suitable for our requirements. The characteristics of the proposed algorithm
are carefully discussed. First, we introduced a discrete search space. In this space, the
positions of particles (or feasible solutions) and its velocities are vectors with integer
elements. Second, the behavior of the particles in the swarm is adjusted. We redefined
all arithmetic operators to customize the formulae in the standard PSO that are used
to move particles and change position. Based on that, the modified DPSO version can
take the advantages of the standard PSO’s characters, as well as, efficiently search in our
discrete space. Besides, a folding simulation to convert a feasible solution (or a folding
sequence) into a flat model is also adapted and developed in our work.
With this approach, some experiments are conducted for evaluation. Our system shows
that it is promising. Folding sequences of input objective models have been showed with
high precision in acceptable running time. The DPSO algorithm always keeps track of
minimizing the Hausdorff distance between an input and feasible solutions. In someway,
this work revealed the contribution to the field of origami simulator and folding multiple
objects model from a single paper sheet.

i

Acknowledgment

First and foremost, I am deeply grateful to my supervisor, Professor Chong Nak-Young for
his insightful encouragement and continuous support. His creative ideas, critical thinkings,
and professional working style are important factors that affect directly to the completion
of my master thesis.

Then, I would like to express my gratitude to Professor Yuto Lim and Professor Sung-
moon Jeong for their valuable suggestions and useful advice in my research.

Thirdly, my sincere thanks goes to my thesis committee: Professor Ryuuhei Uehara,
Professor Kokolo Ikeda and my second supervisor Professor Fumihiko Asano for their
helpful comments, interesting questions, and considerations.

Moreover, special thanks also to the teachers and staffs in Japan Advanced Institute
of Science and Technology. With their hard work and dedication, I have my chance to
achieve necessary knowledge as well as to learn in a high-level learning environment.

Last but not least, my deepest heartfelt appreciation goes to my family and my friends
for always believing in me. Like the North Star, they are the guiding light for my life’s
adventures.

ii

Table of Contents

Abstract i

Acknowledgement ii

Table of Contents iii

List of Figures v

List of Tables vi

List of Algorithms vii

1 Introduction 1
1.1 Literature Review . 2
1.2 Research Motivation . 3
1.3 Research Goal . 3
1.4 Thesis Organization . 4

2 Background 5
2.1 Origami . 5
2.2 Combinatorial Optimization . 5
2.3 Particle Swarm Optimization (PSO) . 8

2.3.1 Standard PSO (SPSO) . 10

3 Methodologies 14
3.1 Modeling as Combinatorial Optimization Problem 14

3.1.1 Problem Definition . 15
3.1.2 Feasible Solution . 16
3.1.3 Search Space . 18
3.1.4 Objective Function . 18
3.1.5 Example . 20

3.2 Discrete PSO (DPSO) . 21
3.2.1 Proposed Algorithm . 24
3.2.2 Initializing Particles . 28

3.3 Converting Feasible Solution into Origami Object 29

iii

3.3.1 Applied Algorithm . 29
3.3.2 Calculate Similarity between Object Models 32

4 Evaluation 35
4.1 Experimental Details . 35
4.2 Results and Analyses . 42

5 Conclusion 45
5.1 Future Work . 46

Bibliography 47

iv

List of Figures

2.1 Origami valley fold and mountain fold . 6
2.2 Some origami models . 6
2.3 Traditional Crane crease pattern . 7
2.4 Applications of origami in industrial . 7
2.5 A bird flock and a fish school in real life 9
2.6 Particle motion . 12

3.1 Process to solve problem . 14
3.2 Problem definition . 15
3.3 Example of origami with 2 folding actions 16
3.4 Examples of search space with n = 2, n = 3 19
3.5 Examples of function g(x) . 19
3.6 The original paper with the size 60x60 . 21
3.7 Examples of objective models . 22
3.8 Origami paper after applied a specific feasible solution 23
3.9 Example of how to convert feasible solutions into object model (1) 30
3.10 Example of how to convert feasible solutions into object model (2) 31
3.11 Hausdorff distance between 2 apples = 0.0 33
3.12 Hausdorff distance between an apple and a ball ≈ 21.31 33
3.13 Hausdorff distance between a cup and a ball ≈ 39.64 34

4.1 Crease patterns using in experiments (1) 36
4.2 Crease patterns using in experiments (2) 37
4.3 Objective models using in experiments (1) 38
4.4 Objective models using in experiments (2) 39
4.5 Objective models using in experiments (3) 40
4.6 Result of experiment E11 . 42
4.7 Result of experiment E12 . 43
4.8 Hausdorff distance through iterations of an instance running of experiment

E9 . 44

v

List of Tables

3.1 The size of the search space A with n ∈ [1, 10], n ∈ Z 19
3.2 The states of the origami model after each folding action in Figure 3.9 . . . 31
3.3 The states of the origami model after each folding action in Figure 3.10 . . 32

4.1 Results for experiments . 43

vi

List of Algorithms

1 Standard particle swarm optimization . 11
2 Proposed discrete particle swarm optimization 27
3 Initialize the particles . 28
4 Construct object model from feasible solution 29
5 Calculate the similarity between object models 32

vii

Chapter 1

Introduction

Folding presents in many fundamental aspects of life. Many things in universe simulate
and construct based on this operation. The wave of light and sound repeatedly fold and
unfold in space to broadcast information. We are all born with a DNA folding form.
Inherited the properties of folding, origami - the art of paper folding - also contribute
to several technological products. With the main characteristic is creative, many works
in space technology, automobiles, medicine, robotics, programmable matter, etc. based
on origami are considered outstanding. Naturally, people use mathematics to describe
the features of origami. From the 1930s, problems and solutions about paper folding and
unfolding have been constructed in computational ways [1].

However, until now, it is widely thought that the creation of an origami model is work
of art and most people are familiar with folding origami models which have been created
by other artists. Very few information research articles have addressed the question of
autonomous creating origami model. Furthermore, within the next few years, origami is
likely to become an important component in programmable matter.

Therefore, this research will follow the state-of-the-art origami research to design an al-
gorithm that, in the future, can support the autonomous folding systems. The algorithm,
as input, receives an origami paper (flat sheet square of paper), a 3d model from a real
life object or a creative work, and a predefined crease pattern. It, then, generates some
of the possible folding sequences that will result in the desired model.

1

1.1 Literature Review

Our research has a strong connection with mathematics and technique origami. Specially,
three main subfields that directly related to our work are,

• Origami simulator [2–6]

• Folding sequence generation [7, 8]

• Folding multiple objects from a single sheet [9]

In this section, the state-of-the-art overviews of these subjects are introduced.

Freeform Origami [5, 10–12]

This software is a well-known folding simulator in origami. By combining the functionals
of 2 tools Origamizer and Rigid Origami Simulator, it is developed by Tomohiro Tachi
from 2010 until 2016. These programs provide to users an environment to interact with
a virtual paper. The common tasks in origami such as folding paper, modifying crease
pattern are included. The author also helps people easily use his software by implemented
the animations of folding actions.

However this is not only an origami simulator, but it is also able to generate a crease
pattern of a polyhedron. By using the quadrilateral mesh information of the input, it is
first unfolding the 3D shape to get the candidate crease pattern. Then, this crease pattern
is simultaneously folded and controlled by apply affine transformation. This process is
repeated until the objective model is reached.

Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami
[8]

This is an interesting research from Hugo A. Akitaya et al. The primary purpose of this
work is find a way to generate the folding sequence of a particular flat-foldable origami
shape. To accomplish this goal, the frameworks builds a new graph-like data structure
called extended crease pattern. The researchers construct this data by using the input
crease pattern information, then with obtained graph, they unfold the input model. The
folding sequence can quickly present by invert the unfolding process. In this system,
sometimes, users are requested to decide which is the next step in the unfolding sequence
because many outcomes from the extended crease pattern are possible. So it is considered
as a semi-autonomous system.

Planning to Fold Multiple Objects from a Single Self-Folding Sheet [9]

This is a study about folding multiple objects from a single origami paper. An et al.
considers how to transform between 3D shapes by using programmable matter. In this
article, they properly defined a programmable sheet with the set of hinges. A list of

2

objective models as input is tried to construct and convert between these by using the
predefined-origami paper. With the support of another origami methods, they can find the
folding actions for a specific shape. From this information, an efficient plan to construct
the input object are provided.

1.2 Research Motivation

The important role of folding has been discussed. Today, with the broadening in many
research subjects, folding proved that it is suitable with many new ideas. Erik Demaine,
who is a professor has many studies in origami, listed some types of folding, as well as
their applications [13],

• Linkage folding: protein folding, hydraulic tube bending, robotics

• Paper folding: packaging, airbag folding, sheet-metal bending

• Unfolding polyhedrons: sheet-metal bending, manufacturing

Among the active development of science and technology, particularly in robotics, au-
tomation and materials science, this research was proposed in the hope to work with
self-folding systems and programmable matters to become a useful application [14–17].
We can create a screen that can change the size, a mobile phone that folds to transform
into a tablet or a tv, a bag that folds to hold any amount from small size to big size or
a robot that folds to adapt to the environment. Besides, this system can support the
origami artists in design and build the origami models, or maybe help people who are
inexperienced in folding. Furthermore, we have a chance to study about new origami
techniques, mathematical origami problems such as fold and cut, unfolding and folding
polyhedrons.

1.3 Research Goal

In those approaches mentioned in Section 1.1, researchers have tended to focus on the
mathematical aspects of origami problems. Consequently, the solutions are also derived
mainly from mathematical techniques. Besides that, although many types of research in
origami have been processed, but because of the difficulty of the task, a well planned,
fully-autonomous way to generate the folding sequence of an origami model is still re-
quired.

Therefore, in this thesis, we aim to present a new generic way to find answers for folding-
related issues. An information-theoretic approach will be elaborate proposed in the next
chapters. In our research, the inputs are a predefined crease pattern and an objective
model. With this information, our proposed algorithm tries to build an object model
from the predefined crease pattern that maximizes the similarity with the input shape.
With this techniques, we model our problem as a combinatorial optimization problem and
from that, we can take advantage of efficient computational methods.

3

1.4 Thesis Organization

We divided this thesis into five chapters: Introduction, Background, Methodologies, Eval-
uation and Conclusion.

In Chapter 2, we introduce various background knowledge related to our research. At
first, basic concepts about Origami and its application are mentioned. Next, combinato-
rial optimization is covered to help us understanding about this field of optimization as
well as the role of this definition in many real life problems. Then an efficient method to
solve the optimization problem is presented.

In Chapter 3, we describe in detail all the proposed methods that we use in this research.

In Chapter 4, first, we prepare all the necessary information to construct experiments.
Then, all the experimental results are figured out. Based on this, we analyze our proposed
approach.

In Chapter 5, we summarize the current results in our study and mention some future
works.

4

Chapter 2

Background

2.1 Origami

The origin of origami is still covered by unanswered questions. Where does it come from?
Who is the creator? History facts about this topic have not been recorded [18]. In the
early of 1900s, the very first works and innovations in this field are beginning properly
constructing and documenting by Akira Yoshizawa, Kosho Uchiyama, and others [19].
From the 1980s, with the development of mathematics and computing, researchers have
created many complexity origami models [20]. Today, when talking about origami - a
word in Japanese, people usually reminded about Japan, as well as the art of paper fold-
ing. In daily communication, this word is also indicated all folding practices. An origami
model is built by apply many single folds. These actions are usually simple, but their
combinations are capable of making great structures. Basic origami folds - valley fold and
mountain fold are showed in Figure 2.1 [21]. In Figure 2.2 are some famous origami models.

Technical origami is an interesting subject in origami. The main object that is re-
searched in this field is engineered crease pattern. The image of all the creases which is
obtained when unfolding an origami shape is the definition of crease pattern. When the
simple step-by-step instructions are inefficient presenting the models, then crease pattern
shows its meanings. Traditional crane crease pattern is given in Figure 2.3 [22].

Origami also has many applications in industrial and impact to many aspects of life. In
space, BYU-designed solar arrays can be compressed for launch and then set up in space
to perform works (Figure 2.4a [23]); In health care, An origami inspired device can be
transferred into a diseased artery and repair it (Figure 2.4b [24]), etc.

2.2 Combinatorial Optimization

Combinatorial optimization is a concept in mathematics and computing. In this problem,
the task is finding an optimal solution from a finite set of candidates [25]. Many famous
optimization problems are categorized in this topic. Some examples are knapsack prob-

5

(a) Valley fold

(b) Mountain fold

Figure 2.1: Origami valley fold and mountain fold

(a) Origami Dragon (De-
signed by Jo Nakashima)

(b) Origami Crane (c) Origami T-REX (De-
signed by Jo Nakashima)

Figure 2.2: Some origami models

6

Figure 2.3: Traditional Crane crease pattern

(a) (b)

Figure 2.4: Applications of origami in industrial

7

lem, traveling salesman problem, machine scheduling problem, sudoku problem, minimum
spanning tree problem, etc. The computational complexity of tasks in this field is usually
NP-complete and NP-hard. Therefore, brute-force approaches are not suitable in these
case.

Many studies and theories in computational complexity, algorithm, computational
methods related to combinatorial optimization. It has important applications in several
fields, including mathematics, computational science, and engineering, etc.

2.3 Particle Swarm Optimization (PSO)

As we defined our problem as a combinatorial optimization problem, we can apply many
possible solutions to solve the problem. Some instances are,

• Exhaustive search algorithm. In real-life combinatorial optimization, the problems
usually are exponential growth with the size of inputs. In this case, the exhaustive
search algorithm is only suitable for the small data. It will take days, years or
forever to find out a solution for large size issues.

• Simple heuristics (greedy algorithm, randomized algorithm). The simple searching
strategies are indicated in the name of this type of algorithm. With complex systems,
this method can not guarantee an acceptable optimal solution because of the lack
of elaborate in the underlying heuristic function.

• Classical optimization methods (optimization algorithms, iterative methods). With
this approach, our problem is required to be differentiable. But sometimes, It is too
difficult to differentiate a complicated function.

• Meta-heuristics

• Etc,

From these analyses, in this thesis, we choose particle swarm optimization as a meta-
heuristics algorithm that can provide an approximate solution to our problem.

In the period 1995 - 1998, from the ideas and the workings of Kennedy and Eberhart
(1995) [26–30], the Particle Swarm Optimization algorithm has been presented. Until
now, this biologically inspired algorithm contributed an efficient way to optimize and
search optimal solutions in computational science. Communication is the most important
skill in life. Members of groups or societies (bird flock and fish school in Figure 2.5, group
of people, etc.) broadcast their information, their experiences. They gain knowledge,
skills by talking and listening. In this way, each in this society can help itself, also help
others to optimize the performing specific tasks. By considering the way nature works,
PSO simulates the communication between individuals in society, and solve a particular

8

(a) Bird flock (Credit to Robert Wolstenholme) (b) Fish school (Credit to Simon Tuckett)

Figure 2.5: A bird flock and a fish school in real life

optimization problem.

Research has been reported to explain and evaluate PSO algorithm. The most popular
book about PSO is Swarm Intelligence by Kennedy and Eberhart [31]. They portray
numerous philosophical part of PSO and swarm intelligence. A broad overview of PSO
applications is made by Poli [32]. Recently, PSO has been researched in theoretical and
experimental aspects on an in-depth analysis which has been published by Bonyadi and
Michalewicz [33].

In computer science, with a given cost function, PSO iteratively trying to find a posi-
tion in the search space which optimizes the objective function. To achieve this task, this
computational method defines two main concepts are a swarm and list members of swarm
called particles. Particles, at first, are provided its position in the search space as well as
its velocity. With velocity, these objects are able to move toward between positions based
on a simple mathematical formula. In the searching process, the swarm usually find a
way to access the best position as fast as possible in search space by using information of
best-known particle and communicate with neighbors. Finally, the solution proposed by
the swarm is the position of the best particle in this set.

In optimization problems, PSO with its characteristics, have many advantages. First, it
is a problem-independent algorithm; we can easily adapt this method to any types of task.
Next, a vast search space can be analyzed with a small effort by using PSO. Compare with
simple heuristics and classical optimization problems, the number of calculation task in
PSO is lower. Furthermore, the requirement that input problem needs to be differentiable
is not necessary for this approach.

Today, PSO has proved the practical and the suitable in many continuous optimization
problems [30, 34–38]. One of the most popular computational technique for optimization
is PSO.

9

2.3.1 Standard PSO (SPSO)

As discussed in Section 2.3, a basic variant of the PSO algorithm contains a list of feasible
solutions, called particles, and are members of a swarm. These particles know their posi-
tions and velocities. Each particle applies the objective function to evaluate its position.
It also uses its velocity to moved to new positions, particle’s moving function usually
is a user-defined function which depends on the optimization problem. And to know
the direction of the movements, the particle’s current direction information, the particle’s
best-known position information, as well as the swarm’s best-known position information,
are combined to guided the particle. When a particle discovers a new best position, it
will communicate and update to the entire swarm. The process of updating and moving
of the swarm is repeated and by doing so it is hoped, but not guaranteed that an optimal
solution will eventually be explored.

Formally,

• Let x is a feasible solution as well as a particle of the swarm.

• Let A is a set of all feasible solutions (or search space).

• Let f(x) : Rn → R is the objective function. It indicates that this function evaluates
particles’ position. The gradient of f(x) is not known.

• PSO algorithm need to find a feasible solution x0 such that f(x0) ≤ f(x) (”min-
imization”) or f(x0) ≥ f(x) (”maximization”) where x, x0 ∈ A. x0 is an optimal
solution.

Let S be the number of particles in the swarm, each having a position xi ∈ Rn in the
search-space and a velocity vi ∈ Rn. Let pi be the best-known position of particle i and let
g be the best-known position of the entire swarm. A basic PSO algorithm is introduced
in Algorithm 1 [39].

The performance of optimization algorithm depends on the selection of PSO param-
eters. How to decide and choose suitable PSO parameters are reported in many arti-
cles [35, 40–43]. Some PSO parameters tuning techniques are using another overlaying
optimizer, a concept known as meta-optimization [44–46], or even fine-tuned during the
optimization, e.g., utilizing fuzzy logic [47].

As described, obviously, we can see that the most importance things in PSO algorithm
are particles. And the core parts of particles are velocity and position. The behavior of
particles is directly effected by velocity. To moving, three information are processed as
the following (Figure 2.6 [48]),

• particle’s current direction

• particle’s previous best position

10

Algorithm 1 Standard particle swarm optimization

1: Randomize the position of particles
2: Randomize the velocity of particles
3: while Termination condition not reached do
4: for Each particle i do
5: for Each dimension d do
6: Pick random numbers rp, rg ∼ U(0, 1)
7: Update the particle’s velocity vi,d ← ωvi,d +ϕprp(pi,d−xi,d)+ϕgrg(gd−xi,d)
8: end for
9: Update the position of the particle xi ← xi + vi

10: Evaluate the fitness f(xi)
11: if f(xi) > f(pi) then
12: Update the particle’s best known position pi ← xi
13: if f(pi) > f(g) then
14: Update the swarm’s best known position g ← pi
15: end if
16: end if
17: end for
18: end while
19: g is the proposed solution of the algorithm
20: The parameters ω, ϕp and ϕg are defined by the properties of the problem. And they

control the efficient and behavior of the algorithm.

11

• swarm’s best known position

Formalized by the following equations,{
vt+1
i ← ωvti + ϕprp(p

t
i − xti) + ϕgrg(g

t − xti)
xt+1
i ← xti + vt+1

i

(2.1)

Where

• vti velocity at time step t of particle i

• xti position at time step t of particle i

• pti particle i’s best known position at time step t

• gt swarm’s best known position at time step t

• ω, ϕprp, ϕgrg ∼ U(0, 1) social/cognitive confidence coefficients

Figure 2.6: Particle motion

Basically, we can modify PSO algorithm, make it more suitable, flexible and efficient
with various types of optimization problem by defining the concepts and operators in

12

Equation 2.1. Some PSO variants are Hybridization PSO; Alleviate premature PSO;
Simplifications PSO; Multi-objective Optimization PSO; Binary, discrete, and combina-
torial PSO.

13

Chapter 3

Methodologies

In order to solve our problem, we proposed a workflow process as in Figure 3.1. In this
chapter, the first three parts in this process will be discussed. The final part is talked in
Chapter 4. The way we define our subject is in Section 3.1. Also, in this section, how to
model our problem as a combinatorial optimization problem is suggested. The proposed
approach to solving the modeled problem is presented in Section 3.2. Finally, the folding
simulation that is used in this research is covered in Section 3.3. Examples are provided
through all the sections in this chapter.

Figure 3.1: Process to solve problem

3.1 Modeling as Combinatorial Optimization Prob-

lem

In this research, we provided an approach to model our problem as a combinatorial opti-
mization problem. The details of this method will be analyzed in this section. Personally,
this is the most creative work in our entire research process. Firstly, the definition of the
problem will be presented in Section 3.1.1. Secondly, the core parts of a combinatorial
optimization, are the feasible solutions, the search space, and the objective function will

14

be properly defined in Section 3.1.2, Section 3.1.3 and Section 3.1.4. Finally, to help read-
ers understanding this section and respond to it more fully, an example will be showed in
Section 3.1.5.

3.1.1 Problem Definition

We consider the problem as follows (Figure 3.2):

Input

• An origami paper (flat sheet square of paper) OriginalPaper

• A set of n predefined creases ActionSet = {Action1, Action2, ..., Actionn}

• An object model from real life or creative work as objective model InputObject

Output

• A folding sequence from the predefined crease pattern xbest

• An object model OutputObject is built by applied the folding sequence xbest to the
OriginalPaper

• The similarity of the objective model InputObject and the object modelOutputObject
must be maximize

Figure 3.2: Problem definition

15

3.1.2 Feasible Solution

Action0

We define a special folding action is called Action0. When we use the Action0 to fold
the origami paper, the current shape of this paper will not be changed. After adding the
Action0 to the ActionSet, our new ActionSet is

ActionSet = {Action0, Action1, Action2, ..., Actionn}

Folding process

A folding process is a list of actions we get from ActionSet. The meaning of a folding
process is that we will apply these actions in the list to the origami paper one by one to
make a specific shape of origami.

Figure 3.3: Example of origami with 2 folding actions

For example, in Figure 3.3, we have an origami with 2 folding actions. When we apply
the Action1, the edge AD will be moved to the edge BC. Similarly, the edge AB will be
moved to the edge DC when the Action2 be processed. And the ActionSet in this case
is,

ActionSet = {Action0, Action1, Action2}

Some folding processes are,

16

• Action0

• Action1 → Action2

• Action1 → Action1

• Action1 → Action2 → Action1 → Action2

• Action0 → Action0 → Action0 → Action0

• Etc,

But,

• Action1 → Action2 → Action3 is not a folding process (Action3 /∈ ActionSet)

• Etc,

Feasible solution

And from these description, feasible solution x (or candidate solution) is a folding
process with exact length n (n− tuples of integer).

x = (x1, x2, ..., xn)

xi ∈ ActionSet
1 ≤ i ≤ n

Consider the example in Figure 3.3, in this case n = 2. We have some feasible solutions
are,

• x = Action0 → Action0

• x = Action0 → Action1

• x = Action1 → Action2

• Etc,

But

• x = Action0 is not a feasible solution (length = 1 < 2)

• x = Action1 → Action2 → Action1 → Action2 is not a feasible solution (length =
4 > 2)

• x = Action1 → Action3 is not a folding process (Action3 /∈ ActionSet)

• Etc,

17

3.1.3 Search Space

Define search − space A (or choice set) is a set of all feasible solutions. Typically, A is
n − dimensional integer lattice, denoted Zn, is the lattice in the Euclidean space Rn.
Because each candidate solution x is a vector with n elements, and we also have n + 1
candidate for each element, then the set A has a cardinality (the total number of feasible
solutions) of (n+ 1)n. The size of the search− space A increases exponentially with the
number of folding actions. In Table 3.1 is the size of the search− space A with n from 1
to 10.

With the example in Figure 3.3, we have ActionSet = {Action0, Action1, Action2} and
n = 2. The search− space A has a cardinality of 9. All the feasible solutions are,

• x1 = Action0 → Action0

• x2 = Action0 → Action1

• x3 = Action0 → Action2

• x4 = Action1 → Action0

• x5 = Action1 → Action1

• x6 = Action1 → Action2

• x7 = Action2 → Action0

• x8 = Action2 → Action1

• x9 = Action2 → Action2

Figure 3.4 is the demonstration of the search− space A and the feasible solutions with
n = 2 and n = 3. A green point is a feasible solution.

3.1.4 Objective Function

Let g(x) is a function that converts the feasible solution x into an object. With the
ActionSet as in Figure 3.3, we have some examples of g(x) in Figure 3.5. In Fig-
ure 3.5a is the origami paper after we call g(x = Action0 → Action1). And when
g(x = Action1 → Action2) processed, the object in Figure 3.5b is the result.

Let f(x) : Zn → R is a function that compares the similarity between g(x) and InputObject.
The lower value means more similarity and the higher value means more difference. The
function f is called the objective function (or cost function).

We can accurately define our problem as an optimization problem in the following way:
Given function f : A→ R from some set A to the real numbers
Sought an element xbest in A such that f(xbest) ≤ f(x) for all x in A(”minimization”).

18

n Size of A

1 2
2 9
3 64
4 625
5 7,776
6 117,649
7 2,097,152
8 43,046,721
9 1,000,000,000
10 25,937,424,601

Table 3.1: The size of the search space A with n ∈ [1, 10], n ∈ Z

(a) With n = 2, we have 9 feasible solutions (b) With n = 3, we have 64 feasible solutions

Figure 3.4: Examples of search space with n = 2, n = 3

(a) g(x = Action0 → Action1) (b) g(x = Action1 → Action2)

Figure 3.5: Examples of function g(x)

19

3.1.5 Example

In this section, a full example of our problem will be discussed. We will present an original
paper, a set of folding actions, and some objective models. From these information, we
will provided the feasible solutions, as well as the search space. The origami model after
applied a specific feasible solution also will be showed. And finally, we optimize the
objective functions to find the optimal solutions.

• In Figure 3.6 is the back and front of the original paper. The paper has the size
60x60.

• We use the sameActionSet as in Figure 3.3. ActionSet = {Action0, Action1, Action2}
and the number of folding actions is n = 2.

• In Figure 3.7 are 4 examples of objective models.

As discussed in Section 3.1.3, we can enumerate all the feasible solutions as the following,

• x1 = Action0 → Action0

• x2 = Action0 → Action1

• x3 = Action0 → Action2

• x4 = Action1 → Action0

• x5 = Action1 → Action1

• x6 = Action1 → Action2

• x7 = Action2 → Action0

• x8 = Action2 → Action1

• x9 = Action2 → Action2

We apply the function g(x) for each feasible solution, and the origami paper after ap-
plied a specific feasible solution is presented in Figure 3.8.

To obtain the best candidate, for each objective model, we compare this model with
all object models of feasible solutions. And the object model with the most similarity
indicates the optimal solution.

• For the objective model in Figure 3.7a, the optimal solutions are x3, x7, x9.

• For the objective model in Figure 3.7b, the optimal solutions are x2, x4, x5.

• For the objective model in Figure 3.7c, the optimal solutions are x6, x8.

• For the objective model in Figure 3.7d, the optimal solutions are x2, x4, x5.

20

(a) Front of the original paper (b) Back of the original paper

Figure 3.6: The original paper with the size 60x60

3.2 Discrete PSO (DPSO)

We defined our problem as a combinatorial optimization problem in Section 3.1. In this
section, an approach to use DPSO to find an answer to our modeled problem is discussed.
At first, we provide some basic information about DPSO as well as discretization methods.
From the knowledge of SPSO (Section 2.3.1) and DPSO, our proposed DPSO algorithm
is presented in Section 3.2.1. In Section 3.2.2, a support function to generate particles,
that is used in our algorithm, is talked. Examples are also provided.

In many continuous state-space, original PSO algorithm proved its advantages are
straightforward and efficient technique. In fact, optimization problems included continu-
ous optimization problem and discrete optimization problem. Many important problems
are set in a space featuring discrete. Consequently, requesting to modify, apply PSO al-
gorithm to solve combinatorial optimization problem has been raised. It has become an
attractive subject for years. In 1997, the authors of original PSO, Kennedy and Eberhart,
proposed a discrete binary version of PSO that is called binary PSO (BPSO) [49]. From
that day, several approaches about BPSO and DPSO have been developed in the litera-
ture [48,50–53]. These modified PSO algorithms have demonstrated promising execution
on benchmark examples.

Obviously, to use PSO for discrete problems, we need a method to represent the position
of a particle in discrete space. Krause [54] characterize the codification of candidate
solutions in three encoding schemes:

• Binary codification (BC) for candidate solutions.

• Integer codification (IC) for candidate solutions.

• Using transformation methods to transform real values into a BC (real-to-binary:
RTB) or an IC (real-to-integer: RTI), where RTI represents a combination of integer
values. These transformations have to be done at each iteration loop.

21

(a
)

O
b

je
ct

iv
e

m
o
d

el
1

(b
)

O
b

je
ct

iv
e

m
o
d

el
2

(c
)

O
b

je
ct

iv
e

m
o
d

el
3

(d
)

O
b

je
ct

iv
e

m
o
d

el
4

F
ig

u
re

3.
7:

E
x
am

p
le

s
of

ob
je

ct
iv

e
m

o
d
el

s

22

(a
)

O
b

je
ct

m
o
d

el
o
f
x
1

(b
)

O
b

je
ct

m
o
d

el
of

x
2
,x

4
,x

5

(c
)

O
b

je
ct

m
o
d

el
o
f
x
3
,x

7
,x

9
(d

)
O

b
je

ct
m

o
d

el
of

x
6
,x

8

F
ig

u
re

3.
8:

O
ri

ga
m

i
p

ap
er

af
te

r
ap

p
li
ed

a
sp

ec
ifi

c
fe

as
ib

le
so

lu
ti

on

23

They also categorize the discretization methods which are used in literature as follow:

• Sigmoid Function [49]

• Random-key [55,56]

• Smallest Position Value [57]

• Modified Position Equation [58,59]

• Great Value Priority [60]

• Nearest Integer [61]

3.2.1 Proposed Algorithm

As discussed SPSO (Section 2.3.1) and DPSO (Section 3.2), we proposed a DPSO algo-
rithm to solve our problem in this section. We talked about moving function of a particle
in Section 2.3.1. Now, we will consider the equation of motion Equation 2.1 to adapt
to our problem. The important things is to be able to define the following objects and
mathematical operations,

• position of particles

• velocity of particles

• Subtraction operator position	 position→ velocity

• External multiplication operator µ⊗ velocity → velocity

• Addition operator velocity ⊕ velocty → velocity

• Displacement operator position⊕ velocity → position

Assumed we have an instances of problem with a set of n predefined creases

ActionSet = {Action1, Action2, ..., Actionn}

By modeling method in Section 3.1.2, we add Action0 to ActionSet, now

ActionSet = {Action0, Action1, Action2, ..., Actionn}
Let fs is a feasible solution,

fs = (fs1, fs2, ..., fsn)

fsi ∈ ActionSet
1 ≤ i ≤ n

Using ActionSet and fs, we define these concepts one by one as the followings,

24

position of particles

Let x is the position of particle fs. Then x is a 1− by − n vector. Each element i of x is
an integer in [0, n] that is the index of fsi in ActionSet. Formally,

x = (x1, x2, ..., xn)

xi ∈ [0, n]

xi ∈ Z
1 ≤ i ≤ n

For examples,

• fs = Action0 → Action1 ⇒ x = (0, 1)

• fs = Action0 → Action0 ⇒ x = (0, 0)

• fs = Action1 → Action1 ⇒ x = (1, 1)

• fs = Action1 → Action2 ⇒ x = (1, 2)

velocity of particles

Because velocity is applied to particles after each time step to change the position so
velocity in this case is instantaneous velocity. Let v is the velocity of particle fs. Then
v is a 1− by − n vector. Each element i of v is an integer in [Vmin, Vmax] that represents
the rate of change of element xi in dimension i. Obviously, in our problem, the farthest
distance in each dimension is n, and the nearest distance is 0. So, Vmin = 0 and Vmax = n.
Formally,

v = (v1, v2, ..., vn)

vi ∈ [0, n]

vi ∈ Z
1 ≤ i ≤ n

Subtraction operator position	 position→ velocity

Let vab = xa 	 xb where xa, xb are particle’s positions and v is velocity. We define,
vab = (vab1 , v

ab
2 , ..., v

ab
n)

vabi = (xai − xbi) mod (n+ 1)

1 ≤ i ≤ n

For examples,

• (1, 2, 3)	 (1, 2, 3) = (0, 0, 0)

• (1, 2, 3)	 (3, 2, 1) = (2, 0, 2)

• (1, 2, 3)	 (0, 0, 0) = (1, 2, 3)

25

External multiplication operator µ⊗ velocity → velocity

Let v′ = µ⊗ v where µ ∈ R, v′ and v are velocities. We have,
v′ = (v′1, v

′
2, ..., v

′
n)

v′i = dµvie mod (n+ 1)

1 ≤ i ≤ n

For examples,

• 0.5⊗ (1, 2, 3) = (1, 1, 2)

• 2.7⊗ (1, 2, 3) = (3, 2, 1)

• −0.5⊗ (1, 2, 3) = (0, 3, 3)

Addition operator velocity ⊕ velocty → velocity

Let vab = va ⊕ vb where va, vb, vab are velocities. We define,
vab = (vab1 , v

ab
2 , ..., v

ab
n)

vabi = (vai + vbi) mod (n+ 1)

1 ≤ i ≤ n

For examples,

• (0, 0, 0)⊕ (0, 0, 1) = (0, 0, 1)

• (3, 3, 3)⊕ (3, 3, 3) = (2, 2, 2)

• (1, 2, 3)⊕ (3, 2, 1) = (0, 0, 0)

Displacement operator position⊕ velocity → position

Let x′ = x⊕ v where x, x′ are positions and v is velocity. We define,
x′ = (x′1, x

′
2, ..., x

′
n)

x′i = (xi + vi) mod (n+ 1)

1 ≤ i ≤ n

For examples,

• (1, 2, 3)⊕ (0, 0, 0) = (1, 2, 3)

• (3, 3, 3)⊕ (3, 3, 3) = (2, 2, 2)

• (1, 2, 3)⊕ (3, 2, 1) = (0, 0, 0)

26

From these definitions, the equation of motion for our problem is properly modified as
in Equation 3.1, {

vt+1
i ← ω ⊗ vti ⊕ ϕprp ⊗ (pti 	 xti)⊕ ϕgrg ⊗ (gt 	 xti)
xt+1
i ← xti ⊕ vt+1

i

(3.1)

And from modified equation, we proposed the DPSO algorithm as in Algorithm 2.

Algorithm 2 Proposed discrete particle swarm optimization

1: Vmin ← 0
2: Vmax ← Number of dimensions
3: for Each particle i do
4: xi ← InitializeParticle(Number of dimensions) (Algorithm 3)
5: for Each dimension d do
6: vi,d ∼ U{Vmin, Vmax}
7: end for
8: end for
9: while Termination condition not reached do

10: for Each particle i do
11: for Each dimension d do
12: Pick random numbers rp, rg ∼ U(0, 1)
13: Update the particle’s velocity
14: vi,d ← ω ⊗ vi,d ⊕ ϕprp ⊗ (pi,d 	 xi,d)⊕ ϕgrg ⊗ (gd 	 xi,d)
15: end for
16: Update the position of the particle xi ← xi ⊕ vi
17: Evaluate the fitness f(xi)
18: if f(xi) > f(pi) then
19: Update the particle’s best known position pi ← xi
20: if f(pi) > f(g) then
21: Update the swarm’s best known position g ← pi
22: end if
23: end if
24: end for
25: end while
26: g is the proposed solution of the algorithm
27: The parameters ω, ϕp and ϕg are defined by the properties of the problem. And they

control the efficient and behavior of the algorithm.

27

3.2.2 Initializing Particles

A technique for initialize the particles are also designed. We will apply this algorithm in
the very first part of DPSO algorithm. The idea is quite simple. We first randomize a list
of folding actions. After that, for each randomized action, we continue random a index
for it in range [0, n]. We use Fisher–Yates shuffle method in our process. The detail are
presented in Algorithm 3.

Algorithm 3 Initialize the particles

Input: n← Number of dimensions
Output: x← 1− by − n vector represents a random position of particle

1: RandomLength← U{0, n}
2: RandomAction← 1− by − n vector
3: RandomIndex← 1− by − n vector
4: for Each dimension d do
5: xd ← 0
6: RandomActiond ← d
7: RandomIndexd ← d
8: end for
9: Shuffle RandomAction (Fisher–Yates shuffle algorithm)

10: Shuffle RandomIndex (Fisher–Yates shuffle algorithm)
11: for Each d ∈ [1, RandomLength], d ∈ Z do
12: k ← RandomIndexd
13: xk ← RandomActiond

14: end for
15: return x

28

3.3 Converting Feasible Solution into Origami Ob-

ject

As introduced in Section 3.1.4, we need a function g(x) to convert a feasible solution x
into a corresponding object model. This object model will be used to compare with the
objective model InputObject, from that we are able to optimize the objective function
and find the optimal solution.

In this section, one possible method to construct the function g(x) will be presented.
Section 3.3.1 covers the overall algorithm. The procedure to calculate the similarity
between object models is studied in Section 3.3.2. Throughout the sections, examples of
concepts are demonstrated to support the definitions.

3.3.1 Applied Algorithm

Algorithm 4 Construct object model from feasible solution

Input: Feasible solution x = (x1, x2, ..., xn)
Output: Origami paper after applied x

1: BinaryTree← Initialize a binary tree
2: Make the OriginalPaper into the root of BinaryTree
3: i← 0
4: while i ≤ n do
5: i← i+ 1
6: for Each Leaf ← leaf of BinaryTree do
7: if Leaf contains xi then
8: Make Leaf into a new parent node - NewParent
9: xi divides Leaf into 2 new faces

10: Make 2 new faces into 2 new children of NewParent
11: end if
12: end for
13: end while
14: Combine all the leaves of BinaryTree to make the object model
15: return Object model

In this research, we developed a virtual manipulation system for origami to build the
function g(x). This system was originally presented by Miyazaki et al. in 1996 [2]. We
can construct simple flat folding origami models with this system.

We use faces, edges and vertexes to describe the state of the folded origami paper. Each
flat of paper is presented by a face. A face contains multiple edges. Moreover, each edge
has two vertexes. The folded origami paper is a list of faces.

29

As we build the object model, the algorithm to convert the feasible solution into an
origami object are discussed in Algorithm 4. Based on the idea that each crease will sep-
arate the origami plane into two new planes. We will construct a binary tree structure.
The root is the OriginalPaper. Each node of the tree is a face and stores the information
about the relative position of the plane with the original plane. When apply a folding
action, we will traverse from the root and find all the leaves that contain the crease, make
these leaves into parent nodes, create two new children nodes (as two new faces which
are created by folding action). Obviously, two nodes with the same parent will share one
common edge. Finally, we combine all the leaves of the binary tree to get the final shape.

We have some demonstrations in Figure 3.9 and Figure 3.10. In the first example, we
apply folding process Action1 → Action2 → Action3. E1, E2, E3, E4, E5 are these com-
mon edges between faces. When we combine all the leaves F5, F6, F7, F8, F9, and F10
we can get the object model. The states of the origami model after each folding action
are showed in Table 3.2.

Figure 3.9: Example of how to convert feasible solutions into object model (1)

In the second example, we apply folding process Action1 → Action2 → Action3. E1,
E2, E3, E4, E5 are these common edges between faces. We can get the object model after

30

combine the leaves F4, F6, F7, F8, F9, and F10. The states of the origami model after
each folding action are showed in Table 3.2.

Figure 3.10: Example of how to convert feasible solutions into object model (2)

Applied action Leaf nodes Parent nodes Common edges

Begin {F0} ∅
Action1 {F1, F2} {F0} {F1 ∩ F2 = E1,
Action2 {F3, F4, F5, F6} {F0, F1, F2} F3 ∩ F4 = E2, F5 ∩ F6 = E3,
Action3 {F4, F6, F7, F8, F9, F10} {F0, F1, F2, F3, F5} F7 ∩ F8 = E4, F9 ∩ F10 = E5}

Table 3.2: The states of the origami model after each folding action in Figure 3.9

31

Applied action Leaf nodes Parent nodes Common edges

Begin {F0} ∅
Action1 {F1, F2} {F0} {F1 ∩ F2 = E1,
Action2 {F3, F4, F5, F6} {F0, F1, F2} F3 ∩ F4 = E2, F5 ∩ F6 = E3,
Action3 {F5, F6, F7, F8, F9, F10} {F0, F1, F2, F3, F4} F7 ∩ F8 = E4, F9 ∩ F10 = E5}

Table 3.3: The states of the origami model after each folding action in Figure 3.10

3.3.2 Calculate Similarity between Object Models

Algorithm 5 Calculate the similarity between object models

Input: 2 object models Object1, Object2
Output: Similarity of Object1 and Object2

1: Normalize Object1, Object2
2: ObjectPCL1 ← Convert Object1 into point cloud data
3: ObjectPCL2 ← Convert Object2 into point cloud data
4: ResultSimilarity ← Hausdorff distance of ObjectPCL1 and ObjectPCL2

5: return ResultSimilarity as the similarity of Object1 and Object2

We implemented the function to calculate the similarity between folded origami pa-
pers using point cloud data (Algorithm 5). With PCL library [62], we convert the object
models into point cloud data by using the information about faces, edges, and vertexes of
models. The Hausdorff distance [63,64] between 2 object models is calculated. The lower
Hausdorff distance means more similar between objects and higher distance means more
different. We can normalize the point cloud data in sizes and density. The similarity be-
tween object models is computed with high precision. The running time of the algorithm
is also acceptable.

We have some demonstrations in Figure 3.11, Figure 3.12 and Figure 3.13. In Fig-
ure 3.11, we compare the similarity between 2 apples, because they are the same objects
then the Hausdorff distance is 0.
In Figure 3.12, an apple and a little different object - a tennis ball are compared, the
Hausdorff distance is 21.3.
In Figure 3.13, the Hausdorff distance between an apple and a tea cup is 39.6.

32

Figure 3.11: Hausdorff distance between 2 apples = 0.0

Figure 3.12: Hausdorff distance between an apple and a ball ≈ 21.31

33

Figure 3.13: Hausdorff distance between a cup and a ball ≈ 39.64

34

Chapter 4

Evaluation

In this section, we will evaluate our proposed approach that has been used to solve our
problem. First, we will cover some information about the original origami paper, the
input predefined crease patterns, as well as the objective models, will be used in the
experiments. The selection of DPSO parameters is clarified. The system for constructing
and running experiments is also an important factor. This information is in Section 4.1.
Next, the current results of our model will be shown and analyzed in Section 4.2.

4.1 Experimental Details

Experimental Original Origami Paper

The original origami paper using in the experiments is a flat square paper with size 60x60
(same as Figure 3.6). We use this paper for all the experiments.

Experimental Predefine Crease Patterns

In this research, we use the crease patterns with vertical and horizontal creases. We define
StandardCPi is a crease pattern with i vertical creases from crease1 to creasei, and i
horizontal creases from creasei+1 to crease2i. Furthermore, the distance between these
creases is equal in horizontal and vertical corresponding. They also divide the original
paper into (i + 1) equal parts in horizontal and vertical. Each crease represents a valley
fold or a mountain fold. All the StandardCP are showed in Figure 4.1 and Figure 4.2.

Experimental Objective Models

By using the same folding simulation was introduced in Section 3.3, we make some ob-
jective models to using in experiments. They are listed in Figure 4.3, Figure 4.4 and
Figure 4.5.

35

(a
)
S
ta
n
d
a
rd
C
P
1

(b
)
S
ta
n
d
a
rd
C
P
2

(c
)
S
ta
n
d
a
rd
C
P
3

(d
)
S
ta
n
d
a
rd
C
P
4

F
ig

u
re

4.
1:

C
re

as
e

p
at

te
rn

s
u

si
n

g
in

ex
p

er
im

en
ts

(1
)

36

(a
)
S
ta
n
d
a
rd
C
P
5

(b
)
S
ta
n
d
a
rd
C
P
7

(c
)
S
ta
n
d
a
rd
C
P
9

F
ig

u
re

4.
2:

C
re

as
e

p
at

te
rn

s
u

si
n

g
in

ex
p

er
im

en
ts

(2
)

37

(a
)

O
b

je
ct

iv
e

M
o
d

el
1

(b
)

O
b

je
ct

iv
e

M
o
d

el
2

(c
)

O
b

je
ct

iv
e

M
o
d

el
3

(d
)

O
b

je
ct

iv
e

M
o
d

el
4

F
ig

u
re

4.
3:

O
b

je
ct

iv
e

m
o
d

el
s

u
si

n
g

in
ex

p
er

im
en

ts
(1

)

38

(a
)

O
b

je
ct

iv
e

M
o
d

el
5

(b
)

O
b

je
ct

iv
e

M
o
d

el
6

(c
)

O
b

je
ct

iv
e

M
o
d

el
7

(d
)

O
b

je
ct

iv
e

M
o
d

el
8

F
ig

u
re

4.
4:

O
b

je
ct

iv
e

m
o
d

el
s

u
si

n
g

in
ex

p
er

im
en

ts
(2

)

39

(a
)

O
b

je
ct

iv
e

M
o
d

el
9

(b
)

O
b

je
ct

iv
e

M
o
d

el
10

(c
)

O
b

je
ct

iv
e

M
o
d

el
11

F
ig

u
re

4.
5:

O
b

je
ct

iv
e

m
o
d

el
s

u
si

n
g

in
ex

p
er

im
en

ts
(3

)

40

DPSO Parameters

Using knowledge have been studied by Clerc in Standard Particle Swarm Optimization
[39], we choose the parameters of DPSO algorithm as following,

• The swarm size S = 35 + B(10, 0.5). B(10, 0.5) is a binomial distribution with 10
is the number of trials and 0.5 is success probability in each trial.

• The maximum number of iterations is 100

• ω ' 0.721

• ϕp = 1

• ϕg = 1

Experimental running system

• Text editor Visual Studio Code 1.9.0

• Programming language C++11

• Compiler g++ with CMake

• Operating system Ubuntu 14.04 LTS 64-bit

• Computer Intel Core i7 CPU 3.20GHz x 8 with 12 GB of RAM

41

4.2 Results and Analyses

We report the data of our approach on 12 test sets in Table 4.1.

From experiment E1-E7, we try to test how the algorithm folds the crease patterns and
make the smallest possible square that can make from this crease pattern. More specifi-
cally, the method needs to fold a square with size 1

(i+1)2
OriginalPaper from StandardCPi.

The results show that our system is capable of providing high precision outputs. All the
solutions proposed by our method are also the optimal solution in the test case. These
analyses confirm if the objective model is built from a crease pattern that is a subset of
the input predefined crease pattern then our technique can find out the optimal solution.

To evaluate the cases where the objective models are not built from folding actions of
the input ActionSet, experiments E11 and E12 have been used. In experiment E11, the
objective model in Figure 4.3a is a square with size 1

4
OriginalPaper. Obviously, we can

not construct any shape that the same as the objective model from the StandardCP4.
In Figure 4.6, the proposed solution of our algorithm for experiment E11 is showed. Be-
cause attempting to get 0.0 in Hausdorff distance is impossible, the shapes that are most
similar to the objective model are presented. Correspondingly, in experiment E12, the
objective model is a shape that is constructed from the StandardCP9 (Figure 4.5c). This
shape is also not a rectangular or a square but an octagon. We need to find a folding
sequence to build it from the StandardCP7. As usual, our approach has been succeeded
to find the minimum Hausdorff distance between the objective model and the feasible so-
lutions. The shape of the optimal solution has been obtained and introduced in Figure 4.7.

(a) Objective Model 1 (b) The output shape of program

Figure 4.6: Result of experiment E11

Furthermore, not only the objective models with a square shape but also many inter-
esting shapes are considered. In demonstrations, E8, E9 and E10, other rectangular and
square shapes are applied to evaluate our system. As expected, our experiments prove
that with a suitable predefined crease pattern, we can create many useful forms. More-
over, with the support of our system, efficient ways to transform between shapes can be

42

(a) Objective Model 11 (b) The output shape of program

Figure 4.7: Result of experiment E12

found easily.

From the test cases, we see that the running time is increase with the number of creases.
Two reasons cause it. First, the calculation time of the folding simulation is dependent
on the size of the ActionSet. The more folding action we apply to the origami paper,
the more time the program need to build the object model. Second, as we discussed
in Section 3.1.3, the search space is exponential growth with the input size. Then the
correlation between swarm’s search area and the search space is understandable. The
smaller of the rate (swarm′s search area/search space) implies the harder the particles
in the swarm need to perform its job in order to find out the best solution. Besides that,
the numbers of the optimal solution of input shapes are different from each other. Some
object models have more ways to construct it than another model. It is also a factor that
affects directly to the running time in the experiments.

Crease Pattern Objective model
Haursdoff distance Iteration Avg. runtime

(ms)Min Max Avg Min Max Avg
E1 StandardCP1 Objective Model 1 0.0 0.0 0.0 1 1 1.0 635.12
E2 StandardCP2 Objective Model 2 0.0 0.0 0.0 1 1 1.0 699.96
E3 StandardCP3 Objective Model 3 0.0 0.0 0.0 1 1 1.0 719.08
E4 StandardCP4 Objective Model 4 0.0 0.0 0.0 1 4 1.06 838.24
E5 StandardCP5 Objective Model 5 0.0 0.0 0.0 1 7 1.68 1724.32
E6 StandardCP7 Objective Model 6 0.0 0.0 0.0 1 90 18.33 35064.85
E7 StandardCP9 Objective Model 7 0.0 0.0 0.0 1 44 14.58 46526.12
E8 StandardCP9 Objective Model 8 0.0 0.0 0.0 1 16 5.06 12827.00
E9 StandardCP9 Objective Model 9 0.0 6.0 0.72 4 100 46.62 111413.44
E10 StandardCP7 Objective Model 10 0.0 3.75 0.07 1 100 20.5 33893.63
E11 StandardCP4 Objective Model 1 8.5 8.5 8.5 100 100 100 78594.77
E12 StandardCP7 Objective Model 11 3.3 16.37 6.0 100 100 100 164159.70

Table 4.1: Results for experiments

43

As seen in Figure 4.8, the particle swarm converged quickly on the optimum for objec-
tive function in experiment E9. The Hausdorff distance got the value 0.6 from the trial
17. The algorithm optimized the problem from iteration 84 and got the cost function
equal 0. The proposed solution x = (15, 16, 7, 18, 14, 7, 13, 18, 16, 7, 3, 0, 0, 17, 6, 16, 13, 17)
is also an optimal solution.

0 20 40 60 80 100

Iterations

0

2

4

6

Hausdorff distance

Figure 4.8: Hausdorff distance through iterations of an instance running of experiment
E9

Besides advantages of our method, we aware that our research may have some limi-
tations. The first is the folding action we can apply is too simple, only horizontal and
vertical valley fold. Consequently, the feasible solutions are only the square or rectangular
shapes. The objective models and the object model of candidate solutions are in 2D. The
lack of knowledge in origami as well as not able to find a suitable folding simulation are
the reasons why this problem happened.

The second is the maximum number the creases can be processed is restricted to 18
creases. When we apply an ActionSet with larger than 18 members, the consumed re-
sources of CPU and the running times are unacceptable. This is caused by the properties
of the combinatorial optimization problem and our approach, the constraints of origami,
as well as the limitation of the folding simulation algorithm.

44

Chapter 5

Conclusion

In conclusion, we presented a new generic information-theoretical approach to solving
the folding sequence generation problem. This problem was modeled as a combinatorial
optimization problem. The modified DPSO algorithm is proposed as an efficient method
to apply to the defined issue. An origami simulator has been adapted and developed to
use in our process. From these work and information in Section 4.2, our method proved
that it is an efficient technique. A high precision folding sequence can be found by using
our research. We have confirmed that, with a well-prepared predefined crease pattern,
many useful origami shapes can be obtained by call our method. Furthermore, this system
not only discuss finding suitable crease pattern but also somehow this work revealed the
contribution to the field of origami simulator and folding multiple objects model from a
single paper sheet.

Our work clearly has some limitations. The most significant limitation is a result of the
fact that the objective models are too simple. We are just able to handle the 2D square
and rectangular origami. The folding simulation only can calculate the orthogonal prede-
fined crease pattern is a disadvantage. The most common weakness of the combinatorial
optimization problem - the large search space - still exists. A way to reduce the dimension
of the search space is not proposed. Therefore, the size of the predefined crease pattern is
restricted to not larger than 18 creases. Consequently, still, some aspects of the problem
are not covered.

45

5.1 Future Work

We are currently in the process of investigating how to build or apply a better folding
simulator. More study on proposed DPSO algorithm is necessary. Another approach to
solve the combinatorial optimization problem will need to be undertaken. Further study
of the problem would be of interest. For example, we should explore how to apply the
convolutional neural network (CNN) to find the origami base of the input object and re-
duce the dimension of the search space. Alternatively, finding a predefined crease pattern,
that can construct into useful origami models, is required. Another work to be done in
the future is solving the problem with multiple origami papers, constructing into object
models and combining together to form the input object.

46

Bibliography

[1] C. H. Yi, “Origami research and applications.”

[2] S. Miyazaki, T. Yasuda, S. Yokoi, and J.-i. Toriwaki, “An origami playing simulator
in the virtual space,” Journal of Visualization and Computer Animation, vol. 7, no. 1,
pp. 25–42, 1996.

[3] J. Mitani, “Development of origami pattern editor (oripa) and a method for estimat-
ing a folded configuration of origami from the crease pattern,” IPSJ Journal, vol. 48,
no. 9, pp. 3309–3317, 2007.

[4] J. Mitani, “The folded shape restoration and the rendering method of origami from
the crease pattern,” in Proc. Int. Conf. on Geometry and Graphics, pp. 1–7, 2008.

[5] T. Tachi, “Freeform origami.” www.tsg.ne.jp/TT/software/, 2010–2016.

[6] Z. Xi, “Rigid origami folder.” http://masc.cs.gmu.edu/wiki/

RigidOrigamiFolder, 2014.

[7] E. M. Arkin, M. A. Bender, E. D. Demaine, M. L. Demaine, J. S. Mitchell, S. Sethia,
and S. S. Skiena, “When can you fold a map?,” in Workshop on Algorithms and Data
Structures, pp. 401–413, Springer, 2001.

[8] H. A. Akitaya, J. Mitani, Y. Kanamori, and Y. Fukui, “Generating folding sequences
from crease patterns of flat-foldable origami,” in ACM SIGGRAPH 2013 Posters,
SIGGRAPH ’13, (New York, NY, USA), pp. 20:1–20:1, ACM, 2013.

[9] B. An, N. Benbernou, E. d. Demaine, and D. Rus, “Planning to fold multiple objects
from a single self-folding sheet,” Robotica, vol. 29, pp. 87–102, Jan. 2011.

[10] T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami,” in Sympo-
sium of the International Association for Shell and Spatial Structures (50th. 2009.
Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and
Spatial Structures: Proceedings, Editorial Universitat Politècnica de València, 2009.

[11] T. Tachi, “Freeform variations of origami,” J. Geom. Graph, vol. 14, no. 2, pp. 203–
215, 2010.

47

www.tsg.ne.jp/TT/software/
http://masc.cs.gmu.edu/wiki/RigidOrigamiFolder
http://masc.cs.gmu.edu/wiki/RigidOrigamiFolder

[12] T. Tachi, “Freeform rigid-foldable structure using bidirectionally flat-foldable planar
quadrilateral mesh,” Advances in architectural geometry 2010, pp. 87–102, 2010.

[13] E. Demaine, “Erik demaine’s folding and unfolding page.”

[14] D. J. Balkcom and M. T. Mason, “Robotic origami folding,” The International Jour-
nal of Robotics Research, vol. 27, no. 5, pp. 613–627, 2008.

[15] E. Hawkes, B. An, N. Benbernou, H. Tanaka, S. Kim, E. Demaine, D. Rus, and
R. Wood, “Programmable matter by folding,” Proceedings of the National Academy
of Sciences, vol. 107, no. 28, pp. 12441–12445, 2010.

[16] S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood, “A method for building
self-folding machines,” Science, vol. 345, no. 6197, pp. 644–646, 2014.

[17] S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, and D. Rus, “An untethered
miniature origami robot that self-folds, walks, swims, and degrades,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pp. 1490–1496, IEEE,
2015.

[18] H. Koshiro, “History of origami.” http://origami.ousaan.com/library/

historye.html.

[19] F. Margalit, “Akira yoshizawa, 94, modern origami master,” The New York Times,
Apr 2005.

[20] L. Robert J, Origami Design Secrets. Dover Publications, 2003.

[21] Wikipedia, “Yoshizawa–Randlett system — Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/w/index.php?title=Yoshizawa%E2%80%93Randlett%

20system&oldid=730827960, 2017. [Online; accessed 08-February-2017].

[22] CREASED, “Crease pattern corner.” http://creased.com/corners/

CreasePatternCorner/creasepatternCorner.html. [Online; accessed 08-
February-2017].

[23] B. Y. University, “Origami in space: Byu-designed solar arrays inspired by origami.”
https://www.youtube.com/watch?v=3E12uju1vgQ, 2013.

[24] Z. You and K. Kuribayashi.

[25] A. Schrijver, “A course in combinatorial optimization,” 2006.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks,
1995. Proceedings., IEEE International Conference on, vol. 4, pp. 1942–1948 vol.4,
Nov 1995.

48

http://origami.ousaan.com/library/historye.html
http://origami.ousaan.com/library/historye.html
http://en.wikipedia.org/w/index.php?title=Yoshizawa%E2%80%93Randlett%20system&oldid=730827960
http://en.wikipedia.org/w/index.php?title=Yoshizawa%E2%80%93Randlett%20system&oldid=730827960
http://creased.com/corners/CreasePatternCorner/creasepatternCorner.html
http://creased.com/corners/CreasePatternCorner/creasepatternCorner.html
https://www.youtube.com/watch?v=3E12uju1vgQ

[27] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Micro
Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International
Symposium on, pp. 39–43, Oct 1995.

[28] R. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools. San
Diego, CA, USA: Academic Press Professional, Inc., 1996.

[29] J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Evolutionary
Computation, 1997., IEEE International Conference on, pp. 303–308, Apr 1997.

[30] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69–73, May 1998.

[31] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001.

[32] R. Poli, “Analysis of the publications on the applications of particle swarm optimi-
sation,” J. Artif. Evol. App., vol. 2008, pp. 4:1–4:10, Jan. 2008.

[33] M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for single objective
continuous space problems: a review,” Evolutionary computation, 2016.

[34] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Proceed-
ings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546),
vol. 1, pp. 101–106 vol. 1, 2001.

[35] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 58–73, Feb 2002.

[36] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm
optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, pp. 225–239,
June 2004.

[37] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions,” IEEE
Transactions on Evolutionary Computation, vol. 10, pp. 281–295, June 2006.

[38] J. Kennedy, Particle Swarm Optimization, pp. 760–766. Boston, MA: Springer US,
2010.

[39] M. Clerc, “Standard Particle Swarm Optimisation.” 15 pages, Sept. 2012.

[40] M. Taherkhani and R. Safabakhsh, “A novel stability-based adaptive inertia weight
for particle swarm optimization,” Appl. Soft Comput., vol. 38, pp. 281–295, Jan.
2016.

49

[41] Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization,
pp. 591–600. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[42] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in
particle swarm optimization,” in Proceedings of the 2000 Congress on Evolutionary
Computation. CEC00 (Cat. No.00TH8512), vol. 1, pp. 84–88 vol.1, 2000.

[43] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and
parameter selection,” Information Processing Letters, vol. 85, no. 6, pp. 317 – 325,
2003.

[44] M. Meissner, M. Schmuker, and G. Schneider, “Optimized particle swarm optimiza-
tion (opso) and its application to artificial neural network training,” BMC Bioinfor-
matics, vol. 7, no. 1, p. 125, 2006.

[45] M. E. H. Pedersen, Tuning & simplifying heuristical optimization. PhD thesis, Uni-
versity of Southampton, 2010.

[46] M. Pedersen and A. Chipperfield, “Simplifying particle swarm optimization,” Applied
Soft Computing, vol. 10, no. 2, pp. 618 – 628, 2010.

[47] M. S. Nobile, G. Pasi, P. Cazzaniga, D. Besozzi, R. Colombo, and G. Mauri, “Proac-
tive particles in swarm optimization: A self-tuning algorithm based on fuzzy logic,”
in 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8,
Aug 2015.

[48] M. Clerc, Discrete Particle Swarm Optimization, illustrated by the Traveling Sales-
man Problem, pp. 219–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[49] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm
algorithm,” in 1997 IEEE International Conference on Systems, Man, and Cyber-
netics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 vol.5, Oct
1997.

[50] B. Al-kazemi and C. Mohan, Discrete Multi-Phase Particle Swarm Optimization,
pp. 305–327. London: Springer London, 2005.

[51] G. Pampara, N. Franken, and A. P. Engelbrecht, “Combining particle swarm opti-
misation with angle modulation to solve binary problems,” in 2005 IEEE Congress
on Evolutionary Computation, vol. 1, pp. 89–96 Vol.1, Sept 2005.

[52] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle swarm optimization for
traveling salesman problem,” in Machine Learning and Cybernetics, 2003 Interna-
tional Conference on, vol. 3, pp. 1583–1585, IEEE, 2003.

[53] W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu, and Y. h. Shi,
“A novel set-based particle swarm optimization method for discrete optimization

50

problems,” IEEE Transactions on Evolutionary Computation, vol. 14, pp. 278–300,
April 2010.

[54] J. Krause, J. Cordeiro, R. S. Parpinelli, and H. S. Lopes, “A survey of swarm al-
gorithms applied to discrete optimization problems,” Swarm Intelligence and Bio-
Inspired Computation, vol. 4, no. 9, pp. 169–191, 2013.

[55] J. C. Bean, “Genetic algorithms and random keys for sequencing and optimization,”
ORSA Journal on Computing, vol. 6, no. 2, pp. 154–160, 1994.

[56] M. E. Kurz and R. G. Askin, “Scheduling flexible flow lines with sequence-dependent
setup times,” European Journal of Operational Research, vol. 159, no. 1, pp. 66 – 82,
2004.

[57] M. F. Tasgetiren, M. Sevkli, Y.-C. Liang, and G. Gencyilmaz, “Particle swarm opti-
mization algorithm for single machine total weighted tardiness problem,” in Proceed-
ings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753),
vol. 2, pp. 1412–1419 Vol.2, June 2004.

[58] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A discrete particle swarm optimiza-
tion algorithm for the no-wait flowshop scheduling problem,” Computers & Opera-
tions Research, vol. 35, no. 9, pp. 2807 – 2839, 2008. Part Special Issue: Bio-inspired
Methods in Combinatorial Optimization.

[59] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz, “A particle swarm
optimization algorithm for makespan and total flowtime minimization in the per-
mutation flowshop sequencing problem,” European Journal of Operational Research,
vol. 177, no. 3, pp. 1930 – 1947, 2007.

[60] L. Congying, Z. Huanping, and Y. Xinfeng, “Particle swarm optimization algorithm
for quadratic assignment problem,” in Proceedings of 2011 International Conference
on Computer Science and Network Technology, vol. 3, pp. 1728–1731, Dec 2011.

[61] S. Burnwal and S. Deb, “Scheduling optimization of flexible manufacturing system
using cuckoo search-based approach,” The International Journal of Advanced Man-
ufacturing Technology, vol. 64, no. 5, pp. 951–959, 2013.

[62] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), (Shanghai, China),
May 9-13 2011.

[63] M. M. Deza and E. Deza, “Encyclopedia of distances,” in Encyclopedia of Distances,
pp. 1–583, Springer, 2009.

[64] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317. Springer Science
& Business Media, 2009.

51

	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Literature Review
	Research Motivation
	Research Goal
	Thesis Organization

	Background
	Origami
	Combinatorial Optimization
	Particle Swarm Optimization (PSO)
	Standard PSO (SPSO)

	Methodologies
	Modeling as Combinatorial Optimization Problem
	Problem Definition
	Feasible Solution
	Search Space
	Objective Function
	Example

	Discrete PSO (DPSO)
	Proposed Algorithm
	Initializing Particles

	Converting Feasible Solution into Origami Object
	Applied Algorithm
	Calculate Similarity between Object Models

	Evaluation
	Experimental Details
	Results and Analyses

	Conclusion
	Future Work

	Bibliography

