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Abstract 

 In civilizations all over the world, music plays an important role in people's day-to-day lives. Due to music's 

universal presence, great amounts of time and money have been spent trying to uncover the underlying features and 

elements that are present in musical composition and structure. To do so, many computational theories of music have 

emerged, and these theories have been used to develop comprehensive algorithms by which music can be analyzed. While 

many theories do exist, music is not a "solved" field, and many questions still remain about music's properties. With the rise 

of machine learning and automatization, music has become a particularly popular field for researchers in such fields. More 

than ever, music is of interest, not for its composers, but for those who study it and the results they can yield and 

demonstrate.  

 Following along with these previous efforts to demystify music, the research in this paper seeks to further develop 

new theories of music and improve upon extant musical theories. This paper specifically focuses on Tonal Pitch Space, a 

musical theory that looks to represent music spatially and calculate distances in such musical space. By doing such spatial 

representation, one is able to model how listeners perceive musical similarities in a mathematical sense. While some 

musical distances are easily explained via resonances (C and G resonate well with one another), others are far more vague 

(C and D as opposed to C and B). TPS seeks to give a better understanding of such musical closeness and gives an 

apparently robust representation.. The representations and calculations performed in TPS are based on classical theories of 

music and can analyze classical music quite well. While this theory has its merits, it also has some shortcomings; among 

them, an insufficient distinction between major and minor keys. In this paper, a switch cost between major and minor keys 

is proposed so that the distances to and from major and minor keys are now unique. In order to test the switch cost and its 

merit as an addition to TPS theory, extensive testing was done using a Bebop jazz parser previously constructed by a 

colleague at JAIST. This particular parser was based on old parsers but used a TPS section and a Combinatory Categorial 

Grammar section to find cadences from input chords. CCG techniques had been taken from natural language processing, 

and were retailored to work for music. The previous version of the parser expanded upon existing CCG categories for jazz 

music and added several new ones to improve analysis. Moreover, the old parser was used to identify pivot chords – chords 

that are at the scene of a key change and could belong to either key – and gave highly accurate analysis of such pivot chords 

and their roles in chord progressions. 

 While the original version of the parser was able to analyze many pieces, it was unable to properly analyze chord 

progressions in minor keys and switches between relative keys. This problem likely stemmed from the previously 

mentioned inadequacy in TPS. To improve the parser, two changes were made: the switch cost was added, and a CCG 

constraint was also implemented. The CCG constraint was to make sure that there was DominantTonic motion in the 

analyzed cadence. If there was not, then the progression was re-analyzed in the relative key. Both additions were rigorously 

tested in order to see if the parser is improved. Should the TPS switch cost work, it would be more important than the CCG 

constraint, as it could be directly implemented into extant TPS theory. Additionally, re-harmonization, the process by which 

a chord progression is changed to have a slightly different sound, is investigated to see the musical distances that are 

covered when the original chord sequence is re-harmonized. To perform this investigation, a survey is conducted wherein 

listeners are presented with three different re-harmonizations and are asked to choose the option that they think is best. 

Their selections provide insight into whether or not TPS as a theory is sufficient for jazz music. The results of the 

experiment demonstrate that both the switch cost and the CCG constraint are effective ways of improving the parser; 

however, the TPS switch cost's success shows that it should be implemented into TPS theory. By adding the switch cost to 

TPS, major and minor keys become more differentiated, making it possible for analysis to distinguish between major and 

minor keys. The results of the re-harmonization survey show that listeners generally prefer traditional re-harmonizations, as 

opposed to jazz re-harmonizations, indicating that perhaps a different theory should be used to analyze jazz music instead of 

TPS, or that TPS should be re-tuned to better account for jazz harmonies. TPS itself is a valuable theory that could have  

wide-reaching applications to all types of music, but  at the moment may be too grounded in Western classical music. 

 Going forward, it will be important to re-tool the parser to work on more types of music, as jazz's rejection of 

classical chords and creation of its own specialized chords makes it unique among musical styles. While jazz has influenced 

many types of modern popular music, jazz chord patterns do not apply to other types of music. Therefore, a parser 

developed for the express purpose of parsing jazz music is relatively ill-suited for analyzing other types of music. 

Additionally, work should be done to analyze modal jazz, as it rejects the concept of a key signature, and instead relies on 

musical modes. In future work it may also be beneficial to shy away from such constraints as the CCG constraint introduced 

in this paper. While constraints do seem powerful, they, in many ways, reduce the power of analytical machines by placing 

rules on what the output analysis should be. In an optimal situation, the parser should always be able to give optimal 
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analysis without relying on constraints given from users. Such constraints also rely on the user to actually pass valid 

information to the machine. In the case where a machine is made for the general public, such user reliability does not 

necessarily exist and such constraints should be discarded. With no such CCG constraints, TPS alone should be able to 

handle analysis. The parser and the improvements to the parser described in this paper are presented with the goal of 

eventually yielding machines capable of automated composition and arrangement. If a machine can recognize chord 

sequences and valid re-harmonizations, then researchers are a step closer to having a machine generate valid chord 

sequences and re-harmonizations. Future researchers and future work on this topic should have the same goals in mind 

when furthering the work described in this paper
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1. Introduction 

 Music is one of humanity's greatest accomplishments, and it is present in nearly 

everyone's day-to-day lives. Every civilization that has ever existed has had music of some kind 

of music, and, while musical styles have changed over time, the love of music will certainly 

never die. As music has developed and been developed over time, great amounts of time and 

effort have been put into understanding music and its underlying elements and nuances. Such 

analysis has employed techniques from a broad range of areas, including mathematics as well as 

linguistics. With such techniques, researchers have been able to not only analyze music but to 

also develop algorithms for creating new music. The research outlined in this paper was 

performed with the goal of furthering such analysis and development. 

 As music has been developed over the centuries, stylization within music has led to the 

emergence of distinct genres that must be analyzed in different ways. Classical, jazz, rock 'n roll, 

country, and rap are all popular types of music and all have their own merits for being analyzed; 

however, the research in this paper focuses specifically on jazz. The structure of jazz differs 

greatly from that of classical music in that different types of chords and motifs are employed 

regularly. Such motifs and chords lead to the easily recognizable timbre of jazz music that is 

known worldwide. While there are many different styles of jazz, the research laid out in this 

paper focuses on Bebop jazz – a style developed in the 1940's. Bebop jazz is characterized by 

complex chord progressions, frequent key changes, and a relatively fast tempo. Bebop jazz is an 

influential style, and the chord progressions used in Bebop jazz music have now found their way 

into modern pop music. 
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 The project described in this paper was done with two goals in mind. Firstly, it was 

necessary to improve an extant parser for jazz music. The previous parser, while useful, had 

some shortcomings that needed to be corrected in order to make it more efficient and accurate. 

Secondly, it was desirable to improve upon an existing music theory so as to make said theory 

more appealing for future musical analysis. 

 This paper is broken into 6 sections.  After this introductory section, extant theories of 

music and language relevant to this research will be explained. Then, recent work on this topic, 

along with its limitations, will be given. Following that section, the current research will be 

explained. Next, experimentation methodology and results will be provided. Finally, the 

contributions of this research will be laid out, and limitations of the current project will be 

explained along with potential directions for future research and projects. 

2. Background Theories 

 In order to understand the research presented in this paper, it is crucial to understand the 

theories on which the research is based. The two main theories are Tonal Pitch Space (TPS) and 

Combinatory Categorial Grammar (CCG). Additionally, a subsection of this paper will cover the 

Implication-Realization (I-R) Model, although the ideas presented in that model were not used in 

this particular project. Of TPS and CCG, the most important one for understanding this paper is 

TPS, so more time will be devoted to its explanation rather than CCG. 

2.1 Tonal Pitch Space 

 As music is an arrangement of tones into some sort of cohesive composition, there exist 

definitive spaces and distances within music. On a piano, the note G is four white keys above C, 

and there exists a certain resonance between C and G that produces a pleasant effect for listeners 
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when the two notes are played simultaneously. For musicologists, such a relationship is known 

as a fifth, and the properties of fifths are well known. Tonal Pitch Space [1] builds upon basic 

concepts such as fifths and arranges all musical keys, chords, and scales so as to create a robust 

representation of musical space. TPS uses the basic formula 

δ(xy) = i + j + k 

where δ(xy) is the distance between two points in music and where i is regional space, j is 

chordal space, and k is basic space. Many interpretations are possible, as can be seen in future 

subsections, but the shortest path should always be taken. With this formula, all distances – 

between chords, keys, or scales – can be calculated. These three spaces will be explained in the 

following subsections. 

2.1.1 Regional Space 

In TPS, regional space is the representation of all musical keys laid out so that keys with similar 

sets of notes are closer to one another, while keys with dissimilar sets of notes are further away. 

 
Fig. 1 Regional space 

[1] p. 65 



 

6 

 

The capital letters in the grid represent the major keys, while the lowercase letters are used for 

minor keys. Each major key has its relative minor (the minor with the same set of notes) to its 

left and its parallel minor (the minor with the same starting note) to its right. Regional space is 

the most easily recognizable of the spaces as it can also be represented by the Circle of Fifths. 

 
Fig. 2 Circle of Fifths 

This space outlines the distances between keys themselves and is well-known by most, if not all 

people who have played a musical instrument with any regularity. Here, major keys are listed 

along the outside, and the relative minor of each major is listed on the inside. This pairing makes 

musical sense, as major keys and their relative minors have the same diatonic sets. Consider the 

two sets of notes given on the next page. 

C Major: {C, D, E, F, G, A, B} 

A minor: {A, B, C, D, E, F, G} 

The top set is C major, and its notes are ordered; the bottom is A minor and its notes are also 

ordered. The two sets, it should be clear, are exactly the same when not considering order. It 

should be noted that the A minor listed here is the natural minor. There exist two other minors, 

harmonic minor and melodic minor: 

Harmonic A minor: {A, B, C, D, E, F#, G} 

Melodic A minor: {A, B, C, D, E, F,  F#, G, G#} 
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The melodic minor is strange in that, when ascending, the 6
th

 and 7
th

 notes are both raised a half-

step, but when descending, the notes are that of the natural minor. 

 
Fig. 3 Melodic A minor 

In TPS, minor keys are defined as natural minors, and so they are similarly defined in this 

research. 

 Calculating distances in regional space is a matter of finding the shortest path. For 

example, moving from C to D is a distance of 2. The path will be CGD. The Circle of Fifths 

is potentially easier to understand, but the principle is the same for both the grid and the circle. 

When calculating distances to or from minor keys, movement between major keys and minor 

keys incurs no cost. When moving from A minor to D Major the path is aCGD, but the 

distance is still 2. This calculation will be considered in more detail further into this paper. For 

now, there is no distinction between a major key and a minor key when calculating regional 

distance. From this simple calculation, the identity of i in the distance formula is determined. 

2.1.2 Chordal Space 

The next distance to be calculated is the distance that exists between chords. In any scale, there 

are 7 unique tones and thus 7 basic diatonic triads that are built upon those tones. 

 
Fig. 4 C Major Triads 
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For major keys, the set of diatonic triads is {I, ii, iii, IV, V, vi, vii}. For minor keys, the set of 

diatonic triads is {i, II, III, iv, v, VI, VII}. Similarly, tetrads can be constructed from the notes of 

each scale. For the purposes of simplicity, triads will be considered for now, but the calculations 

are the same for tetrads. 

 
Fig. 5 Chordal circle of fifths 

[1] p. 55 

Figure 4 shows the arrangement of all the diatonic chords of a major scale (minor scales have the 

same arrangement, but the capitalization is inverted). The Roman numerals in parentheses are the  

degree of each chord, and the numbers outside the parentheses are the indices of the notes within 

the scale – in D Major, for example, 0 would be D. When calculating distances between two 

chords, take the shortest path along the circle. For example, in C Major, moving from the Tonic I 

chord to the vi chord is a distance of 3. Calculations here are performed in the same manner as 

those in regional space. Chords not listed on this circle involve a more complicated method of 

calculation that will be explained later. With this, the quantity j in the formula is calculated. 

2.1.3 Basic Space 

The final space in TPS is basic space, and it is the most complicated to calculate. The basic 

concept is that the tones of any scale can be arranged in a hierarchy, with tones appearing earlier 

being more resonant and closer to the root of the scale. 
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Fig. 6 C Major Basic Space 

[1] p. 47 

In Figure 6, level e is all possible notes, while d is the diatonic notes of a given scale. Levels a-c 

are the root, fifth, and triadic levels respectively, and they appear in the given order because of 

the resonances formed with the root (i.e. the root and the fifth at level b have better resonance 

than the root and the third at level c). Basic spaces can also be created over a particular tone 

within a scale. To create another basic space once one space has already been made, the rule is 

quite simple: 

Shift the elements at levels a-c either four steps to the left or four steps to the right 

(mod 7) [1]. 

With this rule, all of the basic spaces of a given key can be constructed, and the order of 

construction will match that of the chordal circle of fifths. Thus, the basic space of V/I (G in C 

Major) will be different from the basic space of I/V (G in G Major). 

 
Fig. 7 V/I basic space 

[1] p. 54 

Calculating distances between basic spaces is a complicated process involving multiple steps. 

First, the start and end tones must be compared to see if they exist in the same scale. For 
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example, calculating the distance from C to G is viable because G appears in C's diatonic set. If 

the start and end tones are not in the same scale, the calculation requires extra spaces to be 

constructed. This will be discussed in a future sub-section. Once the basic spaces have been 

constructed, distance is calculated by taking the positive differences in the "heights" of the 

columns of tones. 

 
Fig. 8 Basic Space Calculation 

[1] p. 54 

In Figure 8, the basic space of the dominant of C and the minor ii are displayed. The distance 

between  the two is 4. From ii/I, the "height" of the column of 2's is 5, whereas it is only 4 in V/I. 

Similarly, the 5 column is 1 higher, and the 9 column is 2 higher. The distance is therefore 

1+2+1=4. It is important to note that, since the calculation only involves the positive heights, the 

reverse distance is also 4. This symmetry of distance does not hold when the same chords are 

interpreted as being of different keys. 

 
Fig. 9 Distance calculation from C Major tonic to G in two different keys 

[1] p. 61 
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Figure 9 shows the distance from the tonic of C Major to the G Major chord. In the left-hand 

calculation, all distance calculations are performed in C Major. The right-hand side, however, 

switches from C Major to G Major, so that the basic space shown is the tonic of G Major. 

Therefore, the distances are different, as the figure shows. 

 
Fig.10 Summary of Distances from I to other Chords of the same key 

[1] p. 56 

These calculations finalizes the k quantity in the original equation, so all 3 quantities can be 

determined and the formula δ(xy) = i + j + k can be computed. Unfortunately, real 

computation of this equation is not as simple as the basic formula and relies on other important 

concepts. 

2.1.4 Pivot Regions 

Up until now, the concept of distance has relied on the assumption that the chords in question 

occur in the same, or nearby, keys. There are, however, many scenarios where this is not the 

case. When this happens, pivot regions must be used. Pivot regions allow one to switch to a 

distant chord via nearby chords. 



 

12 

 

 
Fig. 11 Spatial representation of all chord locations 

[1] p. 65 

As shown in Figure 11, great distances must be traversed to reach all possible chord from the I 

chord. If the representation is re-centered on a different chord, the same distances must still be 

crossed to reach all other chords. Therefore, the concept of pivot regions is crucial in order to 

actually calculate distances between all chords and basic spaces. 

 
Fig. 12 Pivot Region Example 

[1] p. 68 

In Figure 12, the major ♭III chord can be reached from I by pivoting through the minor i chord. 

By using these pivot regions, the computations become more complicated, but it is possible to 

reach any chord of any key from any chord of any key by shifting repeatedly. For each shift 

through pivots, a new basic space must be constructed so that the differences in heights can be 

calculated. As with the basic distance formula, the shortest path should always be taken. By 
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hand, this is a very time-consuming task; however, computers can perform this calculation very 

quickly. Thus, pivot regions are an essential part of the distance calculation. In the following 

figure, all distances from the I chord are shown. These can all be recalculated if the figure is re-

centered on a different chord. 

 
Fig. 13 Summary of distances from I to all other chords 

[1] p. 69 

Figure 13 is a modification of Figure 11 with distances appended to chord names. In 13, I is the 

center, but the representation can be re-centered to any chord if the distances are recalculated. 

2.2 Combinatory Categorial Grammar 

 In Natural Language Processing, CCG is used to parse and construct sentences. Core to 

this technique is the idea that language is made up of elements that have features. These elements 

must be paired with other elements expecting the same features. 
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Fig. 14 Sentence parsing in CCG 

Figure 14 uses the simple sentence the dog bit John to demonstrate these features. Dog has the 

feature N because it is a noun. The can form an NP if it finds the feature N in the adjacent word. 

The two match, so NP is formed using the application combinator >. Using a type-raising 

combinator, T>, NP yields S/(S\NP). Since bit yields (S\NP)/NP, the composition combinator B> 

allows (S\NP) to be removed since it is present from both NP and bit. Lastly, another > 

combinator is used, so S is derived. 

 Given that music is a series of elements that are combined according to a series of rules, 

researchers have sought to apply CCG rules to musical analysis. These rules come in the form of 

CCG cadence rules. In music, cadence is the melodic flow throughout the composition. A 

standard cadence is IIVVI, or TonicSub-DominantDominantTonic. This particular 

cadence is essentially an establishment of the key, heightened tension in the middle, and a return 

to the key at the end. There exist many different variations of cadences, so researchers posit that 

it should be possible to develop CCG-esque rules that apply to music. 

 For the original parser, much time was spent developing a robust CCG system so as to 

parse chord sequences. While some work was done on CCG during the course of this research, 

the main focus was on TPS. The CCG algorithm was improved upon, but most time was spent on 

TPS and contributing to that theory. The upcoming main section will give an overview on TPS 

and CCG parsers for music. 
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2.3 Implication-Realization Model 

 Although it is not directly present in this research, the I-R Model [2] may be an important 

concept for future work on music parsing and generation. At its basis is the idea that music 

establishes certain implications during the course of a composition. These implications are later 

concluded at some point during the composition. Such implications throughout the piece create a 

sense of tension that should be resolved further along. These implications follow two basic 

patterns: A + B  C, and A + A  A. Here "" is used to mean implies. At their bases, these 

two patterns mean two different elements imply a third, different element; and, repetition of the 

two same elements implies a third repetition of the same element. For these two patterns, 

Narmour claims that there exist five archetypes for melodies. These five archetypes will be 

explained in the following subsections. 

2.3.1 Process and Duplication 

Process, symbolized as [P], is a concept which encapsulates both intervallic motion and registral 

direction within the A + A pattern. The musical sequence C-D-E creates an upward-moving 

process where each element is equally separated. Moving from C to D creates an expectation of 

further upward movement which is later resolved by E. Also existing within the concept of 

processes is duplication, symbolized as [D]. As can be assumed from its name, duplication is a 

process in which an element is repeated. Thus, C-C-C is a duplicated pattern that fulfills the 

initial implications stemming from C-C. 

2.3.2 Reversal 

As process and duplication are within the A + A pattern, reversal belongs in the A + B pattern. A 

reversal occurs when "register changes direction as a minor third or more" [2].Therefore, G-E-
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D(where the middle E is higher than the initial G and where the final D is lower than the middle 

E) forms a reversal. As the movement from G to E moves upward on the register, implications 

are generated so that listeners may expect continued upward movement. Said implications are 

later reversed with the lower D. Reversal, unlike process and duplication which can create 

further continued implications, can create a sense of melodic closure. The change of direction 

can serve to finalize and seal the set of elements. 

2.3.3 Registral Return 

Similar to reversal, but still distinct, registral return is a principle that applies directly to pitches 

themselves. Registral return describes an exact pitch pattern where a set of notes starts and ends 

at or near the starting pitch. G-D-A, for example, is a case of near registral return where the 

ending pitch is almost the same as the starting pitch. G-E-G, therefore, is exact registral return, as 

the starting and ending pitches are the same. Registral return is written as [aba] in cases of exact 

return, and [aba
1
] in cases of near return. 

2.3.4 Dyads and Monads 

The final two archetypes are dyads and monads. Dyads are two items that are grouped together 

that form implications but do not have realizations. When dyads occur, they are symbolized by 

the interval between the two elements of the dyad. Thus, [3], represents an interval of a third 

between the two notes. Monads are singular elements that form no implications. Said elements 

are in some way separated from other elements at the level where they occur. Often, such 

separation is literal (e.g. the monad appears in a different measure from its preceding notes). 

While monads and dyads do not resolve implications, identifying them is crucial to 

understanding music as a set of consistent elements. 
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2.3.5 Using the I-R Model 

While the summary of the I-R Model given here is brief, a full understanding could potentially 

be beneficial for future efforts to automate re-harmonization. The I-R Model gives a complex 

method for analyzing all types of music. The concepts outlined in the I-R Model are applicable 

in any genre and, when applied properly, give a robust analysis of the inner workings of a 

musical composition. Once a piece has been analyzed via the I-R Model, it may be useful to 

follow the analytical skeleton given when re-harmonizing the same piece. Re-harmonizing or re-

writing a piece so that it follows the same processes and registral returns but with different notes 

may lead to the composition of an equally aurally pleasing work of music. On the other hand, 

perhaps violating I-R analysis when re-harmonizing may lead to more pleasing music. 

Regardless, further investigation into the merits and inner workings of the I-R Model would not 

only be beneficial from an academic standpoint, but may also lead to serious breakthroughs in 

the field of automated composition and arrangement. While it was not in the scope of this 

research to do such investigation, future papers and projects may wish to devote more time to 

understanding the concepts laid out in the two books written on the I-R Model. 

3. Existing Parsers and Revisions to TPS 

 Using the theories explained in the previous section, much work has been done to 

construct a parser that can analyze music. While musicologists can usually identify a piece's key 

very easily, it can take both time and effort. Developing a parser that can not only identify the 

key but can also find the harmonic cadences would save time and would open the door for future 

generative machines. A machine that could analyze music would hypothetically be able to later 

take its analysis and use it to construct entirely new works of music. Additionally, with the help 
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of powerful machines, the possibility to complete previously unfinished works (e.g. Mozart's 

Requiem) via computer algorithm is quite tempting. 

3.1 Granroth-Wilding's Jazz Parser 

 The basis for the current parser comes from a jazz parser developed in 2014 that used 

Probabilistic CCG (PCCG) and was written in Python [3]. In this particular parser, a set of CCG 

rules were developed for jazz music and probabilities were assigned to each rule category. This 

parser focused on CCG only and featured no TPS calculations. This parser performed better than 

a hidden Markov model that was used as a baseline because of the constraints imposed by the 

CCG rules. This parser and the results it yielded set the basis for the rest of the work described in 

this paper. 

3.1.1 Limitations of the PCCG Parser 

The original PCCG parser, although a step forward, had some limitations. Chief among these 

were a significant number of incorrect parse trees. The following example, when passed to the 

PCCG parser as input, yields a cadence composed entirely of tonics. In this case, the better 

analysis would be TonicTonicSub-DominantDominantTonic. 

 

Fig. 15 Incorrect analysis from the PCCG parser 
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 It is important to rectify such mistakes to make a better parser. Generally, sequences of only 

tonics are not particularly interesting or pleasing to the listener. Giving only tonics as a cadential 

output therefore cannot be correct and the algorithm leading to such incorrect analysis should be 

re-examined and corrected. 

 Furthermore, jazz music uses a wide variety of chords that have their own specific 

cadential rules (e.g. Sub-Dominant Minor). The Granroth-Wilding parser included a relatively 

limited number of categories, so expanding the parser to contain more categories would increase 

its analytical power. Additionally, although PCCG alone worked well in the parser, adding a TPS 

section to the parser to communicate with the CCG section was seen as a way to increase parser 

accuracy. TPS would be used to handle key-finding, and CCG would be used to finalize 

cadential analysis in the key identified by the TPS section. These two sections would, together, 

improve accuracy and give better outputs when compared to the original parser. 

3.2 Sakamoto's Harmonic Parser 

As TPS is a useful method by which one can calculate distances in musical space, researchers 

wanted to create an implementation by which harmonies in music could be identified. One such 

researcher modified the original TPS pivot formula so as to improve the calculation for very 

distant keys [4]. 

 

The upper formula is the original, basic TPS formula when chords' keys are close. These close 

keys can be accessed directly without having to use pivot regions. The lower formula is for 

calculating distances between chords when pivot regions are necessary. Here, the computation is 
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done in 3 parts. First, the starting chord x's distance from the I chord in region R1 is calculated. 

Then, the distance between the regions R1 and R2 (chord y's region) is calculated. Lastly, the 

distance from the I chord of R2 to y is calculated. There are many possible calculations that must 

be performed because R1 and R2 are regions along the possible paths between x and y. Lastly, 

the path with the minimum distance from all calculations is selected and given as output. 

 By using this formula, Sakamoto was able to develop and implement an algorithm by 

which harmonies could be identified from input chords. First, chords were given and candidate 

degrees and keys for each chord were listed. Then, using the formula given above, the distances 

between all candidates were calculated. Lastly, the shortest distance was selected, and the 

harmony was identified. This algorithm was then used to create a parser that could identify 

harmonies when given sequences of chords. 

 
Fig. 16 Example of Sakamoto's algorithm 

In Figure 16, the input chord sequence is CFGC. The key is unknown, so each chord has 

multiple interpretations. These interpretations are enumerated below each chord (e.g. I/C, V/F). 

After the enumeration, the distances from all nodes to all following nodes are calculated. Here, 

the correct interpretation of the harmony is I/CIV/CV/CI/C. This algorithm is currently 

implemented in the current parser which will be described later in this paper. 
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3.3  Yamaguchi's Addition 

Another important revision to TPS is the adding of another layer to the basic space hierarchy [5]. 

In music, non-diatonic notes are often incorporated into compositions. A popular non-diatonic 

note to include is the one that completes the dominant I7 chord. Yamaguchi proposes adding an 

extra layer before the diatonic layer in order to include this non-diatonic note. 

 
Fig. 17 Yamaguchi's extra non-diatonic level 

In Figure 17, level d is an addition to the original TPS theory. In C Major, B♭ is the non-

diatonic note that completes the I7 tetrad. With Yamaguchi's contribution, it is now possible to 

consider the I7 chord as a diatonic chord, meaning that B♭ is included at the diatonic level, 

simplifying TPS calculations for chord sequences involving this originally non-diatonic note. 

When the non-diatonic note is not included in a chord, the basic space remains unchanged. 

Yamaguchi's contribution is included in the parser described in this paper. 

3.4 Fukunari's Parser 

 To address the limitations of the Granroth-Wilding parser, a new parser was developed 

by a JAIST student, Takeshi Fukunari [6]. The new parser was written in Java and comprises 

more than 2000 lines of code. This parser, as implied previously, contained both a TPS and a 

CCG section. A sequence of chords was given as input, and degree and function were given as 

output. Moreover, the new parser expanded upon the original CCG rules given in the Granroth-
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Wilding parser and added 3 new categories: Sub-Dominant Minor, Passing Diminish, and 

Related II Minor Seventh. 

 

 
Fig.18 CCG Cadence Rules 

Figure 18 displays all the rules in the new parser. The blue letters show non-diatonic chords, 

which is an important improvement over the Granroth-Wilding parser. Jazz music often features 

such chords, so it is crucial to have a way to analyze these types of chords. 
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 Additionally, Fukunari's parser sought to identify pivot chords. In music, sometimes a 

chord could be a member of two different keys. In these cases, one interpretation will be better 

than the other cadentially. The updated parser can successfully find and interpret pivot chords. 

 
Fig. 19 Pivot chord in a cadence 

In Figure 19, G could be I in G Major or IV in D Major. The parser finds both interpretations and 

lists both as possible degrees of the chord; however, for its final output it chooses the I 

interpretation as better and shows that. This is an improvement over the Granroth-Wilding parser 

as, before, there had been no function for identifying pivot chords. The ability to identify pivot 

chords is important for a jazz parser, as jazz involves frequent key changes. Showing where the 

change occurs as well as what the correct analysis is makes the parser a powerful analytical tool. 

In modern music, as well, key changes serve to keep the listener interested in the music, so 

having the ability to show key changes and the pivoting chords is highly useful. 

 The parser was tested using roughly 20 jazz compositions, and the outputs were 

compared to previous analyses that had been done by hand [7]. With the additions made to the 

CCG section as well as the creation of the entirely new TPS section, the parser was improved 

greatly. The value of the function to identify pivot chords also made the parser more useful than 

the original parser made by Granroth-Wilding. 
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3.4.1 Limitations of the Upgraded Parser 

While the new parser was more powerful than the original PCCG parser, some serious problems 

still remained. Firstly, the parser was generally unable to identify cadences in minor keys. Since 

major keys and their relative minors share the same diatonic sets, there is no difference in 

distance when considering one over the other. The cadential output, however, will only make 

sense for one interpretation. A cadence in a minor key will have no DominantTonic motion 

when analyzed from the perspective of a major key. The cadence AmDmEAm is 

iivV i in A minor; however it is viiiIIIvi in C Major. The latter cadence is 

nonsensical and should not be given as output. The original parser, while not giving output quite 

as wrong as the second cadence, analyzes this particular input as viivVvi, which is 

incorrect. This shortfall needed to be corrected in future revisions to the parser. 

 Moreover, the parser's input method is not intuitive. For example, to give the C Major 

triad C-E-G as input, the exact input is { "0", "M"}. While this is not difficult for musicologists 

or those familiar with the parser, it is not easy for first-time users. Additionally, output is only in 

text format, so it is not particularly visually appealing.  

input(Chord progression) [ C F G7 C ] 

 

output: Ⅰ in CMajor Tonic 

output: Ⅳ in CMajor Sub Dominant 

output: Ⅴ7 in CMajor Dominant 

output: Ⅰ in CMajor Tonic 

Fig. 20 Example output 

As can be seen in Figure 20, while the output is fairly easy to read, it is not truly eye-pleasing. 

Moreover, when cadences become more complicated, there are many analyses given, so it 

becomes even harder to read the output. A potentially better output format would be musicXML 
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so that analysis could be put directly onto analyzed sheet music. These aesthetic changes were 

not attempted in the course of this research, so it remains to be done in future upgrades. 

 In all, the parser still requires improvements in order to be both more powerful and more 

accurate. Fukunari's parser is a significant improvement over the original PCCG parser, but it is 

not the analytical device it could be. A direct contribution of the work described in this paper is 

the improvement of Fukunari's parser. The parser itself becomes a means by which more 

theoretical contributions can be tested. The ways in which the parser was improved will be 

described in the upcoming sections. 

4. Revisions to the Parser and TPS 

 It has been noted that the parser developed by Fukunari, while useful, has significant 

problems with progressions in minor keys. When such a progression is passed as input to the 

parser, the parser will say that at least part of the input is in the relative major. 

input(Chord progression) [ Am7 Dm7 E7 Am7 ] 

 

output: Ⅵm7 in CMajor Tonic 

output: Ⅳm7 in AMinor Sub Dominant Minor 

output: Ⅴ7 in AMinor Dominant 

output: Ⅵm7 in CMajor Tonic 

Fig. 21 Incorrect analysis of a minor chord progression 

 The chord progression in Figure 21 should be analyzed as being entirely in A minor. Instead, the 

parser determines that the beginning and ending tonics are of C Major while the middle two 

chords belong to A minor. While this cadentially is not wrong – viivVvi can be a valid 

cadence – there is no modulation here, and the sound of the progression is clearly minor in its 

entirety. This incorrect analysis is output when a minor key is passed as input. Similarly, when 

there is modulation between major and minor keys, analysis fails. 



 

26 

 

input(Chord progression) [ Cm7 F7 B♭M7 E♭M7 Am7(♭5) D7 Gm ] 

 

output: Ⅱm7 in B♭Major Sub Dominant 

output: Ⅴ7 in B♭Major Dominant 

output: ⅠM7 in B♭Major Tonic 

output: ⅣM7 in B♭Major Sub Dominant 

output: Ⅶm7(♭5) in B♭Major Dominant 

output: Ⅴ7 in GMinor Dominant 

output: Ⅵm in B♭Major Tonic 

Fig. 22 Incorrect analysis of Major-minor modulation 

For this progression, the last four chords are actually in G minor, but the parser cannot analyze 

them correctly. In order to correct these errors, changes were made to both the TPS and the CCG 

sections. 

 The goal of this research, however, is not solely parser-based. While the parser is an 

important part of this project, the more important goal is to modify TPS theory itself. While TPS 

is a useful theory, it suffers from the serious drawback of not being able to properly analyze 

minor keys. Major keys and minor keys are treated as being essentially the same (i.e. there is no 

regional distance between a major key and its relative minor). It therefore became necessary to 

give strong consideration to what exactly was wrong with TPS itself. Modifying TPS is thus the 

main focus of this research, and the changes to TPS will be described in a subsection 4.2. First, 

the CCG revision to the parser will be covered.  

4.1 CCG Revision 

 In the parser, the TPS and CCG sections have almost no communication with one 

another. The TPS section identifies the key, passes it to the CCG section, and then is finished 

working. Once the CCG section gets the key information from the TPS section, it checks to see if 

there is a valid cadence, outputs the valid cadences, and then stops working. It was decided that 

adding some sort of checking to the process would greatly help analytical accuracy. Therefore, a 
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feedback loop was added to the output process. The problem with Fukunari's upgraded parser 

was that it identified minor key cadences as belonging to a major key. This meant that the 

cadence was nonsensical when given as output. Therefore, it was important to check that the 

cadence made sense via constraints imposed on the parser. Thus, the feedback loop checks the 

analyzed cadence to see if a DominantTonic or Sub-Dominant Tonic condition is met. If the 

condition is not met, then analysis switches to the relative key (i.e. if initial analysis was in the 

major, it switches to the minor, and vice versa) and re-analyzes. If no valid cadence is found after 

the switch, analysis has failed and no output is given. 

 In order to do this checking, once the CCG section has been given the key from the TPS 

section, the input is broken up by tonics. This method assumes that if there is a valid cadence 

within the subsections of the progression, then there is a valid cadence when all the subsections 

are taken together. Input is broken into phrases ending in tonics and CCG analysis is performed  

Each subsection ending in a tonic is analyzed under the constraints mentioned earlier. If none of 

the subsections passes, no output is given. If the beginning of the progression can be analyzed, 

output is given up until the CCG section cannot find a valid cadence. 

input(Chord progression) [ CM7 G7 CM7 CM7 B♭m B ] 

 

output: ⅠM7 in CMajor Tonic 

output: Ⅴ7 in CMajor Dominant 

output: ⅠM7 in CMajor Tonic 

output: ⅠM7 in CMajor Tonic 

Fig. 23 Partially successful analysis 

In the example given, analysis succeeds initially, but the last two chords (added to illustrate the 

point being made) cannot form a licit cadence and are thus excluded. The same exclusion also 

occurred in the previous version of the parser; however, the current version, with the CCG 

constraint, now stringently checks to make sure that all output is actually valid. The exact code 
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for the CCG feedback can be found in the appendix. With only the CCG feedback active, the 

parser works as shown in the following diagram. 

 

 

 

 

 

 

 

Fig. 24 Diagram of parsing with CCG constraint 

 While the CCG revision certainly helps make the parser more accurate and powerful, it is 

not the main focus of this paper. As it improved the original Granroth-Wilding PCCG parser, the 

union of CCG and TPS was the main feature of Fukunari's parser. With CCG working accurately 

with such a small modification, it came time to examine the TPS section and see if it was 

responsible for previous inaccuracies in the parser. 

4.2 TPS Revision 

 Being unable to identify pieces written in minor keys is a problem because it limits the 

analytical power of the parser. Obviously, increasing said power would be beneficial; however, 

the problem seems to come from an underlying problem in TPS: major keys and minor keys are 
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treated as being the same at the regional level. Movement between A minor and C Major has a 

distance of 0 at the regional level. While C Major and natural A minor have the same diatonic 

sets, the sound produced by the two keys is distinct, and listeners can usually recognize switches 

between the two. As implemented in the original parser, TPS cannot yield the correct key 

analysis when pieces are in minor keys. 

 To remedy this problem, it was proposed that an extra cost of 0.5 be added to TPS 

calculations when switches between major and minor keys occurred. The 0.5 value was decided 

upon because it was thought that, given the overlapping diatonic sets between major keys and 

their relative minors, movement between major and minor is smaller than movement between 

two major keys. As was discussed in the TPS theory section of this paper, movement from one 

major to another major incurs a cost of at least 1 (e.g. CG is 1). Each full cost of 1 essentially 

occurs because the diatonic set is slightly changing. Thus, the switch from major to minor and 

vice versa, as it is a change in tone with no change in diatonic sets, should be of smaller 

magnitude than a full shift at the regional level. Thus, the original TPS formula: 

δ(xy) = i + j + k 

becomes slightly modified. The quantity i can now have 0.5 added to it every time there is a 

switch between major and minor keys. This means that all other TPS calculations will also be 

slightly changed. Pivot regions, when the pivot is between major and minor keys, will also be 

increased by 0.5 per major-minor switch. For example, in Figure 13, going from I (which is in C 

Major) to ii (in D minor) will now have a cost of 10.5 as opposed to its previous cost of 10. 

 As Fukunari's parser already included TPS distance calculations, only minor 

modifications needed to be made to the parser's code to implement the 0.5 switch cost. To make 
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this change in Java, the value of the distance calculation was changed from an integer to a float. 

Previous TPS calculations only involved integer values, so adding 0.5 to the calculation requires 

a different variable type. A condition was added such that when the start key's mode (major or 

minor) doesn't match the end key's mode, 0.5 is added to the calculation. The code for said 

condition is as follows: 

if(!fromMode.equals(toMode)) 

regiondistance = (float)0.5; 

As mentioned before, the "modes" referred to here are major and minor. The above calculation 

will take place multiple times when the starting chord and ending chord are far away from one 

another. The following diagram outlines how the parser works with only the switch cost added. 

 

 

 

 

 

 

 

Fig. 25 Diagram of parsing with TPS switch cost 

With the switch cost in place, any time there is movement from one key to another, a check is 

performed to see if the two keys are of the same mode. Thus, in the formula originally given by 
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Sakamoto, an extra 0.5 will always be added when R1 and R2 are not both minor or both major. 

Sakamoto's formula has been re-printed here so as to be more easily accessible. 

 

Since all movement when working with remote keys goes through the tonic chords of pivot 

regions, it now becomes crucial to check if the pivot region R2 is major or minor based on what 

R1 is. Thus, the small 0.5 cost can actually become quite large if movement is between very 

distant chords that requires many switches between major and minor keys. 

 The merits of the CCG feedback loop and TPS switch cost needed to be tested. As the 

goal of this project was to modify TPS, the TPS switch cost was tested more rigorously than the 

CCG condition. 

5. Experiment Methodology and Results 

 As was mentioned earlier in this paper, the most important facet of this research is the 

addition of the major-minor switch cost to TPS theory. A CCG feedback mechanism was added 

to the parser, but this addition was more minor than the theoretical contribution of the switch 

cost. Therefore, the CCG testing will be described first, and the TPS testing will be described 

later. As the parser is tailored to jazz music and was tested using a set of jazz compositions, 

testing for this project was done in a similar fashion. Some non-jazz pieces were used, but the 

main genre for testing was jazz. While the previous tested pieces came from a jazz workshop 

book [7], the current project took songs from the Weimar Jazz Database, known as Jazzomat [8]. 

20 songs were taken from the database, and a handful of other songs from popular music were 

chosen for testing the parser and the switch cost. 
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5.1 Experiment 

 Initially, the experiment was to involve all 299 songs given on the Jazzomat website, as 

this would give sufficient robustness to testing the switch cost. However, as mentioned 

previously, the input method in the parser is neither intuitive nor convenient, so improving upon 

the method would be highly beneficial for both this research as well as future projects using 

Fukunari's parser. At first, it was decided that the MIDI files given on the Jazzomat database 

would be perfect inputs for a new system; however, said MIDI files were only the melody lines 

with no chords present. As chords serve as the basic unit for analysis in the current parser, a 

melody line alone cannot be analyzed as it does not provide sufficient data. 

 Following this problem, it was decided that the PDF files given on the Jazzomat Database 

website could be converted into MusicXML files and could then be passed to a modified parser. 

The same problem as with the MIDI files again presented itself due to the fact that the PDF files 

have no written chords, only annotations. 

 
Fig. 26 Excerpt from "Anthropology" by Art Pepper as given on Jazzomat 

As can be seen in Figure 26, only the melody is directly printed, with chords being given above 

the clefs. After noting this setback with both the Jazzomat MIDI and PDF files, it was decided 

that the input method would remain the same and the scope of experimentation would be reduced 

from all 299 songs to 20 or 30 songs. Giving chord input from all 299 songs by hand was 
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determined to be too inefficient, while 20 or 30 songs with chords entered by hand was decided 

to be powerful enough as a dataset. 

 The 0.5 switch cost, at this point into the project, functioned as a "magic number", 

essentially, so it was necessary to test to see if the exact value of the switch cost or merely the 

existence of the switch cost itself truly mattered. At first, machine learning appeared to be a 

promising method by which the precise value of the switch cost could be quantified. 

Unfortunately, due to both time constraints as well as the lack of a setup for machine learning, 

this idea was set aside, and a different method of testing was decided upon. In order to test the 

switch cost, pieces in minor keys with pivot chords were to be tested, and the value of the switch 

cost was to be adjusted while testing. The tested values were set at 0.1, 0.4, 0.5, 0.6, and 0.9. If 

the value of the switch cost has an impact on the analysis, then pivot chords between major and 

minor keys should be analyzed differently, and the switch from major to minor (or vice versa) 

should be analyzed as occurring in a different place. If, on the other hand, the existence of the 

switch cost is the only important factor for analysis, then parser performance should be more 

accurate without changing the location of pivots when the switch value is changed. If the switch 

cost's existence alone matters, then this would potentially resolve the problem in TPS. Testing 

commenced thusly, and its results shall be provided in the following pages. Sheet music will be 

provided with the parser input and output. So as to save space, only some of the tested pieces and 

their analyses will be shown. 
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Autumn Leaves by Johnny Mercer 

 

input(Chord progression) [ Am7 D7 GM7 CM7 G♭m7(♭5) B7 Em7 ] 

 

output: Ⅱm7 in GMajor Sub Dominant 

output: Ⅴ7 in GMajor Dominant 

output: ⅠM7 in GMajor Tonic 

output: ♭ⅥM7 in EMinor Sub Dominant Minor 

output: Ⅱm7(♭5) in EMinor Sub Dominant Minor 

output: Ⅴ7 in EMinor Dominant 

output: Ⅰm7 in EMinor Tonic 

 

output: Ⅱm7 in GMajor Sub Dominant 

output: Ⅴ7 in GMajor Dominant 

output: ⅠM7 in GMajor Tonic 

output: ♭ⅥM7 in EMinor Sub Dominant Minor 

output: Ⅱm7(♭5) in EMinor Related Second 7th 

output: Ⅴ7 in EMinor Dominant 

output: Ⅰm7 in EMinor Tonic 

 

output: Ⅱm7 in GMajor Related Second 7th 

output: Ⅴ7 in GMajor Dominant 

output: ⅠM7 in GMajor Tonic 

output: ♭ⅥM7 in EMinor Sub Dominant Minor 

output: Ⅱm7(♭5) in EMinor Sub Dominant Minor 

output: Ⅴ7 in EMinor Dominant 

output: Ⅰm7 in EMinor Tonic 

 

Before the switch cost and CCG feedback modifications were implemented, the parser analyzed 

the entire sequence except the B7 chord as being in G Major. Now, the parser correctly analyzes 

the cadence. 
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Airegin by Miles Davis 

 

 

 

 

 

input(Chord progression) [ Fm7 C7 Fm7 F7 B♭m7 F7 B♭m7 ] 

 

output: Ⅰm7 in FMinor Tonic 

output: Ⅴ7 in FMinor Dominant 

output: Ⅰm7 in FMinor Tonic 

output: Ⅴ7 in B♭Minor Dominant 

output: Ⅰm7 in B♭Minor Tonic 

output: Ⅴ7 in B♭Minor Dominant 

output: Ⅰm7 in B♭Minor Tonic 

 

 

Here, analysis again picks up the minor keys. Also, it detects the pivot F7 chord to shift the key 

from F minor to B♭ minor. The parser originally only could analyze the first 3 chords as being 

in F minor, but could not analyze the remaining chords, missing the key switch entirely. 
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Blue Mode by J.J. Johnson 

For this piece, no sheet music will be given as the progression is long, and the analysis only 

partially succeeds. 

input(Chord progression) [ B♭7 Am7 D7 Gm7 Fm7 B♭7 E♭7 D♭7 G7 Cm7 C7 F7 B♭7 

G7 Cm7 F7 ] 

 

output: Ⅴ7 in E♭Major Dominant 

output: ♭Ⅴm7 in E♭Major Related Second 7th 

output: Ⅶ7 in E♭Major Secondary Dominant 

output: Ⅲm7 in E♭Major Tonic 

output: Ⅱm7 in E♭Major Sub Dominant 

output: Ⅴ7 in E♭Major Dominant 

output: Ⅰ7 in E♭Major Tonic 

output: ♭Ⅱ7 in CMinor Dominant 

output: Ⅴ7 in CMinor Dominant 

output: Ⅰm7 in CMinor Tonic 

 

output: Ⅴ7 in E♭Major Dominant 

output: ♭Ⅴm7 in E♭Major Related Second 7th 

output: Ⅶ7 in E♭Major Secondary Dominant 

output: Ⅲm7 in E♭Major Tonic 

output: Ⅱm7 in E♭Major Sub Dominant 

output: Ⅴ7 in E♭Major Dominant 

output: Ⅰ7 in E♭Major Tonic 

 

output: Ⅴ7 in E♭Major Dominant 

output: ♭Ⅴm7 in E♭Major Related Second 7th 

output: Ⅶ7 in E♭Major Secondary Dominant 

output: Ⅲm7 in E♭Major Tonic 

output: Ⅱm7 in E♭Major Related Second 7th 

output: Ⅴ7 in E♭Major Dominant 

output: Ⅰ7 in E♭Major Tonic 

 

For this cadence, the parser can analyze the first part successfully, but cannot go any further. The 

CCG rules cannot find a valid cadence, nor can the TPS calculations find a reliable path between 

the remaining chords. 
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 As testing continued, it became clear that the CCG conditions that had been implemented 

previously were very strong and could possibly be hindering real analysis of the TPS switch cost. 

The fact that CCG can call for a switch to the relative major or minor after the TPS section could 

mean that the TPS switch cost is unnecessary with the CCG constraint turned on. Therefore, it 

was important to separate the effects of the two sections. 

 With the TPS cost off and the CCG constraint on, the parser performed as described 

previously. With the CCG constraint off and the TPS cost on, the previous results were 

replicated.  As will be seen in the following pages, however, some discrepancies occurred when 

the parser's analyses were compared to musicological analyses . These discrepancies meant that 

certain outputs were not perfectly correct, but the parser was still able to detect keys correctly. 

Since it was suspected that the CCG constraint was too powerful, more focus was now directed 

towards the TPS switch cost changes and the outputs yielded from the varying costs. 
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Here, There, and Everywhere by The Beatles 

 

 
The analysis below is the correct output. The melody switches from G Major to E minor, and the 

C Major chord is the pivot chord. 

input(Chord progression) [ G Am7 Bm C G♭m7(♭5) B7 G♭m7(♭5) B7 Em ] 

 

output: Ⅰ in GMajor Tonic 

output: Ⅱm7 in GMajor Sub Dominant 

output: Ⅲm in GMajor Tonic 

output: Ⅳ in GMajor Sub Dominant 

output: Ⅶm7(♭5) in GMajor Dominant 

output: Ⅴ7 in EMinor Dominant 

output: Ⅱm7(♭5) in EMinor Sub Dominant Minor 

output: Ⅴ7 in EMinor Dominant 

output: Ⅰm in EMinor Tonic 

 

output: Ⅰ in GMajor Tonic 

output: Ⅱm7 in GMajor Sub Dominant 

output: Ⅲm in GMajor Tonic 

output: Ⅳ in GMajor Sub Dominant 

output: Ⅶm7(♭5) in GMajor Dominant 

output: Ⅴ7 in EMinor Dominant 

output: Ⅱm7(♭5) in EMinor Related Second 7th 

output: Ⅴ7 in EMinor Dominant 

output: Ⅰm in EMinor Tonic 

 

 

Here, the parser slightly misses the correct pivot chord, and instead detects the F#♭5 chord as 

being the pivot. The parser does, however, detect the keys correctly. With the CCG constraint on, 

the output matches the true analysis. 
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5.2 Re-Harmonization Testing 

 After this round of testing, focus was shifted to re-harmonizing tested pieces to see if the 

parser would be able to recognize valid reconfigurations of input chord progressions. In music, 

re-harmonization is an important technique whereby an existing harmonic line – the chord 

progression – is changed while the melody itself remains untouched. Through these changes, the 

"flavor" of the music changes in turn. In jazz, re-harmonization is a particularly important 

concept. In live jazz performances, artists will often perform one of a number of jazz standards – 

jazz compositions that are well known and frequently performed by jazz musicians – and change 

the chord progressions. Oftentimes, these changes are done as improvisations and serve to show 

that the musician who is performing is a true jazz virtuoso. To re-harmonize a piece, chords of a 

certain function are exchanged with different chords fulfilling the same function. For example, in 

C Major, the C7 chord has a tonic function, so Amin7, which also has a tonic function, can be 

used as a substitute. While this sort of substitution does not drastically change the piece being 

performed, it does slightly change how the piece sounds; the melody remains intact, while the 

chord harmonies are altered. 

 In jazz specifically, tritone substitution is frequently employed to re-harmonize pieces. 

Tritone substitution involves substituting the dominant V7 chord with another chord that is three 

whole steps above the root of the V7. In C Major, G7 is the dominant 7
th

, so the tritone 

substitution is C#7 (D♭7). This particular substitution is shown in Figure 27. 

 
Fig. 27 Tritone substitution  
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As re-harmonization is such an important part of jazz performance and composition, 

understanding the process of re-harmonization is crucial to analysis. Given that re-harmonization 

is only a "re-flavoring" of a given piece rather than a complete re-writing, then pieces that have 

been re-harmonized with new chords should still be recognized as having valid cadences if the 

switch cost works properly. For this testing, the CCG constraint was mainly left off, although it 

was checked to make sure that analysis was correct with the CCG constraint on. For testing, the 

same pieces as used previously were used again and were re-harmonized. Re-harmonization was 

performed manually using the techniques of chord substitution, key changing, and tritone 

substitution. These techniques were also combined so that a piece was re-harmonized and 

transposed into a different key. As with the previous testing, only some examples are shown in 

the following pages. 
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Here, There, and Everywhere Re-harmonization 

 

Here, the 1
st
, 2

nd
, and 7

th
 chords have been changed to Bm, C7, and Am7, respectively. 

 

 

input(Chord progression) [ Bm C7 Bm C G♭m7(♭5) B7 Am7 B7 Em ] 

 

output: Ⅲm in GMajor Tonic 

output: Ⅳ7 in GMajor Sub Dominant 

output: Ⅲm in GMajor Tonic 

output: Ⅳ in GMajor Sub Dominant 

output: Ⅶm7(♭5) in GMajor Dominant 

output: Ⅴ7 in EMinor Dominant 

output: Ⅳm7 in EMinor Sub Dominant Minor 

output: Ⅴ7 in EMinor Dominant 

output: Ⅰm in EMinor Tonic 

 

 

When compared to the original harmony, the analysis should look familiar. While the pivot is 

still slightly incorrect, it is clear that the parser found the same general cadence. This shows that 

the switch cost is working correctly for both the original and the re-harmonized melody. 
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Tritone re-harmonization, however, is not recognized. 

Consider the example cadence given: 

 

This is a classic ii-V-I turnaround, and the parser analyzes it as such. 

input(Chord progression) [ Dm G7 C ] 

 

output: Ⅱm in CMajor Sub Dominant 

output: Ⅴ7 in CMajor Dominant 

output: Ⅰ in CMajor Tonic 

 

When the piece is re-harmonized using a tritone substitution, the cadence becomes: 

 

While not necessarily common, such a cadence is utilized in jazz music and should be analyzed 

as being a valid cadence. The parser, however, does not recognize it and gives no output. 

Chord progression [ Dm D♭7 C ] 

 

input: Dm 

 

input: D♭7 

 

input: C 
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Additionally, it became desirable to quantify the distances generated by re-harmonizations and 

invalid re-harmonizations. In the following modulation 

 

the distance from the 3
rd

 chord to the 5
th

 is 19.5. 

When re-harmonizing the cadence in the following manner 

 

the distance becomes 26. 

When incorrectly re-harmonizing the cadence to include a completely unrelated chord 

 

the distance from the 3
rd

 chord to the 5
th

 becomes 44. 

Similar incorrect re-harmonizations also incur such large distances, explaining why the parser, 

and also the key finding algorithm, will not recognize them. When re-harmonized distances are 

closer to the original distances, re-harmonization will be successfully analyzed. When the new 

distance is not close to the old distance, analysis will fail and the resulting music will not be 
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aesthetically pleasing for the listener. Similarly, when comparing the distances in the re-

harmonization of Here, There, and Everywhere, the first three chords in the original progression 

cover a distance of 16, while the distance covered by the three in the re-harmonization is 14. As 

re-harmonization is a changing of the chord progression without entirely changing the piece, it is 

reasonable to think that re-harmonized distances should be close to the original distances. The 

parser with the switch cost implemented is able to find these new distances, re-analyze the piece, 

and then give the analysis as output. Without the switch cost, both analysis of the original 

progression and the re-harmonization would be incorrect. 

 With this work on re-harmonization, it became necessary to know if TPS distances 

matched listener's perceptions of musical quality. Thus, a survey was conducted to determine if 

close distances were more preferable from listeners' points of view. 15 MIDI files were 

constructed consisting of three re-harmonizations of different chord progressions. Two of the re-

harmonizations were close to the original progression, while the third was very far. If listeners 

are able to discern musical distances in the manner listed in TPS, then they should prefer one of 

the close re-harmonizations. Additionally, within the two close re-harmonizations, they should 

prefer the closest one. 

5.3 Results 

 For the first set of testing on the parser, the results were clear: both the CCG constraint 

and the TPS switch cost improved parser accuracy and power. Where once the parser was unable 

to identify cadences in minor keys, it now can. Both the CCG constraint and the TPS switch cost 

improve accuracy, but the CCG constraint is more accurate. As was demonstrated with the Here, 

There, and Everywhere example, the CCG constraint leads to more accurate pivot chord 

locations. The TPS switch cost still finds the correct keys but has slightly more trouble with the 
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pivot chord analysis. This inaccuracy is unfortunate, but it still is a marked improvement over 

both the previous parser as well as the Granroth-Wilding parser mentioned earlier in this paper. 

 Additionally, the results of the re-harmonization investigation showed that the parser can 

recognize licit re-harmonizations. While the re-harmonizations constructed in this paper were not 

created by a professional musician or musicologist, the calculations performed on the re-

harmonization distances were done in accordance with TPS theory. In terms of TPS theory, re-

hmaronized cadences should cover similar distances to those in the original harmony. From the 

survey used to test this, the following table was made using the participants' responses. The 

columns are the re-harmonizations, with the "Far Cadence" column being the most distant re-

harmonization in terms of TPS calculations. The "Tritone" column marks re-harmonizations that 

were performed substituting the dominant V chord for a tritone. The "Close Cadence" column 

marks re-harmonizations that had minimal distance changes when TPS distances were 

calculated. In each row, the number of participants choosing a particular cadence is marked. 

 Tritone Close Cadence Far Cadence 

Melody 1 1 3 0 

Melody 2 2 2 0 

Melody 3 2 1 1 

Melody 4 2 2 0 

Melody 5 0 2 2 

Melody 6 1 3 0 

Melody 7 3 1 0 

Melody 8 2 2 0 

Melody 9 0 3 1 

Melody 10 0 3 1 

Melody 11 1 2 1 

Melody 12 1 3 0 

Melody 13 1 3 0 

Melody 14 0 2 2 

Melody 15 4 0 0 

Total 20 32 8 
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As can be seen, participants almost never chose the far cadence and favored the close cadence 

over the tritone. These results match TPS distances and show that listeners' perceptions of 

musical space functions similarly to how TPS describes. The size of this survey was fairly 

limited, so it may be prudent in the future to increase the number of participants. In this project, 

time was fairly limited, so a large number of listeners could not be surveyed. 

6. Discussion and Future Directions 

 As the results have been laid out in the previous section, it is now important to discuss 

their meaning as well as the importance of the research that has been detailed throughout this 

paper. Since a survey was taken, it is also important to discuss the possible meanings of the 

collected answers. These subjects will be covered in the following subsections. 

6.1 Discussion of Results 

 For the most part, the results yielded by this research are self-explanatory. The CCG 

constraint and TPS switch cost both fulfilled their intended purposes and greatly improved the 

parser. The parser can now recognize minor chord progressions more successfully and can 

recognize re-harmonizations of such minor progressions. The parser is also able to discriminate 

"good" re-harmonizations from "bad" re-harmonizations and will not give output for 

substitutions that are musically implausible. The switch cost does not fully resolve the problems 

with the parser, nor the problems with TPS as a theory. As was shown above, analysis with the 

switch cost can contain inaccuracies, so these need to be improved. 

 The calculation of the spatial distances covered in re-harmonization shows that re-

harmonizations that are closer spatially to the original melody are preferable to those that are 

distant. This matches the hypothesis outlined earlier and, in a way, continues to validate TPS as 

an accurate model for representing how listeners perceive music. The survey reinforces this 
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finding, as listeners almost never chose very distant re-harmonizations, and preferred the closest 

re-harmonization provided. The 8 selections of the far cadence could be due to the 

experimenter's lack of expertise in re-harmonization: it was mentioned by a listener that the 

voice-leading in the re-harmonized progressions could confuse perceptions. Future similar 

investigations should try to use better re-harmonizations that are constructed by those more 

familiar with re-harmonization processes. Regardless, the results do support the hypothesis 

proposed earlier and show that listeners are certainly able to recognize the distances present in 

TPS. The fact that tritones were chosen relatively frequently (20 times out of 60 possibilities), is 

interesting due to the fact that tritone substitution is frequently employed in jazz music. In TPS, 

tritone substitution is somewhat distant (but not as distant as the far cadences constructed in this 

survey), so it could be the case that TPS is not particularly suitable for jazz music. Indeed, TPS is 

designed around classic music and classical music theories. As jazz changes many features of 

classic music, TPS may need to be further modified to better suit jazz music. 

 Furthermore, the CCG constraint proved to be slightly too strong. The constraint looking 

for DominantTonic motion seems good at first, but it may actually be post hoc in nature. In an 

ideal world, the parser should be able to find the cadences of all pieces without being forced to 

find certain types of motion. The DominantTonic rule was written after observing that many 

pieces followed such a rule. Applying this constraint is not optimal and merely represents a sort 

of stop-gap measure to temporarily improve the parser's accuracy. While adding these constraints 

may seem to be useful, addition can actually decreases the parser's analytical power, as 

eventually the parser will just regurgitate a constraint rather than actually analyzing the given 

chord progression.  
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6.2 Contribution 

 The research described in this paper has thus contributed to TPS as a theory directly, the 

parser itself, and future work on re-harmonization. The addition of a switch cost has proven 

valuable for analysis of progressions in minor keys, and therefore holds merit as a theoretical 

contribution to TPS. By using the switch cost, TPS itself can now better distinguish between 

major and minor keys. As was mentioned in Section 2 on TPS, there was previously no 

distinction between major and minor keys in terms of regional distance due to the fact that the 

diatonic sets of relative major and minor keys were the same. Now, with the switch cost, such 

distinctions can be made, and these distinctions assist distance calculations, thus leading to more 

accurate and efficient analysis of musical compositions. With these improvements also comes an 

extra, more abstract contribution to work on automated musical arrangement. As of now, the 

parser is only able to analyze and give output relating to input chord progressions. This step, 

however, is quite important. Work on the parser has proved that the parser can recognize valid 

cadences and re-harmonizations of said cadences, so the next logical step is generating new 

progressions. When generation is automated, it is desirable to have the output be aesthetically 

pleasing in a musical sense. By creating a robust parser that can find valid progressions and 

reject invalid progressions, the step to automated arrangement becomes much smaller. Moreover, 

the addition of the switch cost means that valid minor arrangements can now be recognized, 

opening the door to future generation of such chord progressions in minor keys. While 

automated arrangement and composition was not the direct focus or contribution of this 

particular research, the implications of the results yielded by this research contribute 

significantly to future work on this subject. It would be beneficial, in fact, to develop another 
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addition to the parser that could start generating musical output in addition to the already-

developed analytical section. 

 While this research was successful in achieving its goals and contributing to the 

established body of musical research, there were some limitations and there remain many tasks 

that should be done in the future. The following two subsections go into further detail about 

these two topics. 

6.3 Limitations 

 In its current state, the parser is not perfect. The slight inaccuracies in locating pivot 

chords when the CCG constraint is turned off is not desirable and should be fixed as soon as 

possible. The cause of this inaccuracy seems to stem directly from TPS itself, so more changes to 

TPS should be made in the future. Additionally, testing was done via hand-entered chord 

progressions. The parser's strength has been demonstrated at this point, but it would be good, for 

the purpose of replicating the results presented here, to do further testing on a larger set of data. 

To do this, remodeling the parser's input system to allow MusicXML or MIDI files as input 

would be highly beneficial. This would not only allow for easier input, but would also simplify 

the system so that entering chords is less error-prone for future users. 

 The work on re-harmonization was also useful in that it gives more mathematical insight 

into what a valid re-harmonization truly is, but the re-harmonizer in this case was a researcher, 

not a musicologist. Thus, the quality of the re-harmonizations cannot be verified and may be 

unsound. While the survey did show a listener preference matching the hypothetical preference 

for re-harmonizations which are close in TPS, the survey was quite small. Only having time to 

survey four people means that the results yielded by the survey conducted in this project are not 

as powerful as would be preferable. To rectify these issues, further testing using a more highly 
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trained re-harmonizer and a larger subject pool for the survey would yield more significant 

results. The current parser is also set up to analyze jazz music. While this certainly pleases jazz 

aficionados, there are many other types of music that people listen to, so expanding the parser to 

allow analysis of other genres of music would remove another one of this parser's limitations. If 

these limitations can all be fixed, the parser would be greatly improved, as would TPS. It would 

greatly behoove future researchers in this area to make the changes listed here so as to further 

develop this field of musical analysis and composition. 

6.4 Future Work 

 Keeping in line with the limitations mentioned in the preceding subsection, there exist a 

variety of directions that those who are interested in this current research can undertake. Perhaps 

the most fashionable at the moment would be the addition of a generative section to the parser. 

As has been demonstrated throughout this paper and in the previous paper regarding this 

particular parser, the current version of the parser can only analyze, not generate. As technology 

moves ever closer to developing sentient artificial intelligence, it is also sensible to make musical 

AI that can compose and arrange music. Being able to recognize validity in music is an 

important first step, so using the parser developed here would be a logical way to start the 

process of building a generative system. This work would not be easy, but it would make a large 

contribution to both the field of AI and musical science. Along these lines, it would be useful to 

also consider modal jazz. Unlike Bebop jazz, modal jazz does not rely heavily on the concept of 

a key – the music switches through the modes of a given scale. This style became popular after 

bebop jazz and was pioneered by such artists as Miles Davis and John Coltrane. Since this type 

of music does not focus on keys, TPS and the TPS switch cost developed in this paper may not 
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apply to analysis of modal jazz. It would be interesting to see how such music could be analyzed 

and arranged via machine. 

 Another interesting topic for further research is automated re-harmonization. Initially, it 

was the goal of this project to developed an automated re-harmonization function and add it to 

the parser, but the aim changed as time was limited. Using the I-R Model, it would be interesting 

to construct re-harmonizations that match and do not match the structure of the original piece as 

analyzed by the I-R Model. Moreover, this would allow the theory that closer re-harmonizations 

are preferable to more distant re-harmonizations to be tested more rigorously. For this research, 

manually re-harmonizing was time-consuming, so automated re-harmonization would expedite 

the process greatly. 

 The future works proposed here are only some of the projects that can be undertaken to 

continue the research established here. It will be interesting to see what direction is taken by 

future researchers and investigators. The contributions established in this paper by this research 

should greatly benefit future musical research and will hopefully lead to revision of and additions 

to extant musical theories. Music has by no means been solved or figured out, so all research 

with the purpose of demystifying music is both beneficial and highly interesting. 
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Appendix 

The code used to modify the parser's CCG section is given below. 

 private static void toRelative(int s, int g){ 

  for(int i=s;i<g+1;i++) 

  { 

   if(AnalyzeTPS.ChordOutput[i][3].equals("M")) 

   { 

    AnalyzeTPS.ChordOutput[i][2] = 

(Integer.parseInt(AnalyzeTPS.ChordOutput[i][2])+9)+""; 

    if(Integer.parseInt(AnalyzeTPS.ChordOutput[i][2])>11) 

    

 AnalyzeTPS.ChordOutput[i][2]=(Integer.parseInt(AnalyzeTPS.ChordOutput[i

][2])-12)+""; 

    AnalyzeTPS.ChordOutput[i][3] = "m"; 

   } 

   else 

   { 

    AnalyzeTPS.ChordOutput[i][2] = 

(Integer.parseInt(AnalyzeTPS.ChordOutput[i][2])+3)+""; 

    if(Integer.parseInt(AnalyzeTPS.ChordOutput[i][2])>11) 

    

 AnalyzeTPS.ChordOutput[i][2]=(Integer.parseInt(AnalyzeTPS.ChordOutput[i

][2])-12)+""; 

    AnalyzeTPS.ChordOutput[i][3] = "M"; 

   } 

  } 

 } 

 

 private static void unify(int s, int g)//btwn s & g everything can be 

relative major/minor, make everything the major 

 { 

  for(int i=s;i<g+1;i++) 

  { 

   if(AnalyzeTPS.ChordOutput[i][3].equals("m")) 

   { 

    AnalyzeTPS.ChordOutput[i][2] = 

(Integer.parseInt(AnalyzeTPS.ChordOutput[i][2])+3)+""; 

    if(Integer.parseInt(AnalyzeTPS.ChordOutput[i][2])>11) 

    

 AnalyzeTPS.ChordOutput[i][2]=(Integer.parseInt(AnalyzeTPS.ChordOutput[i

][2])-12)+""; 

    AnalyzeTPS.ChordOutput[i][3] = "M";     

   } 

  } 

 } 
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private static void chunkCCG(int s, int g, String[][] LM, String[][] Lm) 

 { 

 

 //with pivots 1st & last key may be different. 

 //keep them in a corner and change them to the same as the rest for the 

analysis. 

  String firstkey = AnalyzeTPS.ChordOutput[s][2]; 

  String firstmode = AnalyzeTPS.ChordOutput[s][3]; 

  String lastkey = AnalyzeTPS.ChordOutput[g][2]; 

  String lastmode = AnalyzeTPS.ChordOutput[g][3]; 

 

  AnalyzeTPS.ChordOutput[s][2] = AnalyzeTPS.ChordOutput[s+1][2]; 

  AnalyzeTPS.ChordOutput[s][3] = AnalyzeTPS.ChordOutput[s+1][3]; 

  AnalyzeTPS.ChordOutput[g][2] = AnalyzeTPS.ChordOutput[g-1][2]; 

  AnalyzeTPS.ChordOutput[g][3] = AnalyzeTPS.ChordOutput[g-1][3]; 

   

   

//   if(AnalyzeTPS.ChordOutput[s][3].equals("m")) 

//    toRelative(s,g); 

  unify(s,g); 

   

   

  int froms = s; 

  int fromM = lastTonic(s,g,LM)+1; 

   

  toRelative(s,g); 

  int fromm = lastTonic(s,g,Lm)+1; 

  toRelative(s,g); 

   

  while(froms<g) 

  { 

   if(fromM == g+1 && fromm == g+1) 

    flag = false; 

    

   int next = nextTonic(froms,fromm,fromM,g,LM,Lm); 

    

   if(next==g+1) 

   { 

    froms = g+1; 

    flag = false; 

   } 

   else 

   { 

    if(AnalyzeTPS.ChordOutput[froms][3].equals("M")) 

    { 

     int last=lastTonic(next,g,LM); 

     innerCCG(froms,last,LM); 

      

     if(flag) 

     { 

      froms = last+1; 

      fromM = last+1; 

      fromm = last+1; 

     } 

     else 

     { 

      if(fromm<fromM) 
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       fromm = fromM; 

      fromM = last+1; 

     } 

    } 

  

    else 

    { 

     int last = lastTonic(next,g,Lm); 

     innerCCG(froms,last,Lm); 

     

     if(flag) 

     { 

      froms = last+1; 

      fromM = last+1; 

      fromm = last+1; 

      if(last<g) 

       toRelative(last+1,g); 

     } 

     else 

     { 

      if(fromM<fromm+1) 

       fromM = fromm+1; 

      fromm = last+1; 

      toRelative(froms,g); 

     } 

    } 

   } 

  } 

   

  AnalyzeTPS.ChordOutput[s][2] = firstkey; 

  AnalyzeTPS.ChordOutput[s][3] = firstmode; 

  AnalyzeTPS.ChordOutput[g][2] = lastkey; 

  AnalyzeTPS.ChordOutput[g][3] = lastmode; 

   

 } 
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 //returns last consecutive tonic starting at fromT (fromT-1 if fromT 

isn't a tonic) 

 private static int lastTonic(int fromT, int g, String[][]L) 

 { 

  String[][] Degree = degreeNameConversion(fromT,g); 

  boolean tonic_flag = isTonic(fromT,fromT, Degree, L); 

  int last=fromT; 

  while(last<g && tonic_flag) 

  { 

   last++; 

   tonic_flag = isTonic(fromT,last, Degree, L); 

  } 

  if(!tonic_flag) 

   return last-1; 

  else 

   return g; 

 } 
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 //returns first tonic in major or minor. if minor, turns s->g into 

minor. 

 private static int nextTonic(int s, int fromMin, int fromMaj, int g, 

String[][]LM, String[][]Lm) 

 { 

  int next=g+1; 

  int nextm = 0; 

  if(fromMaj<g+1) 

   next = firstTonic(fromMaj,g,LM); 

 

  if(fromMin<g+1) 

  { 

   toRelative(s,g); 

   if(next<g+1) 

    nextm = firstTonic(fromMin,next,Lm); 

   else 

    nextm = firstTonic(fromMin,g,Lm); 

   if(nextm<next) 

    next=nextm; 

   else 

    toRelative(s,g); 

  } 

  return next; 

 } 

  

 //returns first tonic according to L (LM or Lm) between fromT and g. if 

none, returns g+1. 

 private static int firstTonic(int fromT, int g, String[][] L) 

 { 

  String[][] Degree = degreeNameConversion(fromT,g); 

  int tonic = fromT; 

  boolean tonic_flag = false;  

  //look for first tonic in major 

  while(!tonic_flag && tonic<g+1) 

  { 

   tonic_flag = isTonic(fromT, tonic, Degree, L); 

   tonic++; 

  } 

  if(tonic_flag) 

   tonic--; 

  return tonic; 

 } 

 

 //is chord (#chord in Degree) a tonic ? 

 private static boolean isTonic(int s, int chord, String[][] Degree, 

String[][] L) 

 { 

  boolean tonic_flag = false; 

  int i = 0; 

  //check if it's a tonic 

  while(L[i][4].equals("Tonic") && !tonic_flag) 

  { 

   if(Comparison(chord-s,i,Degree,L)) 

    tonic_flag = true; 

   else 

    i++; 

  } 
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  return tonic_flag; 

 } 

  

 private static boolean isValid(String[][] Annotation) 

 { 

  boolean cadence_flag = false; 

  int i = 0; 

  while(i<Annotation.length-1 && !cadence_flag) 

  { 

   cadence_flag = ((Annotation[i][4].equals("Dominant")) || 

Annotation[i][4].equals("Sub Dominant")) 

       && 

Annotation[i+1][4].equals("Tonic"); 

   i++; 

  } 

  return cadence_flag; 

 } 

 


