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Abstract

AI has become important for human life since its application can help human in problem-

solving. Imaging a world, when workers in dangerous environment are replaced by

Robot, oldsters are taken care by automated and comfortable services, self-driving cars

reduce the number of accidents etc. That wonderful world is a big dream but not im-

possible. Step by step, human improve AI and achieve many positive signals.

One of the early successes of human is creating AI that can defeat human player in

some simple games. This success is meaningful because from the beginning of mankind

history, game has been selected as a testbed of intelligence. For example in Japan, strong

board game players are respected as intelligent people, about tens percent people may

think “Habu Yoshiharu” is one of the most intelligent men in Japan. Furthermore, game

is simple and easy to understand. In game, rules are clearly defined so we can evaluate

human player or AI easily by matches. Therefore, when an AI can defeat human player,

even in a very simple game, we can confirm this AI is quite “smart”.

In 2016, Google has acquired DeepMind and tried to attack the hardest problem in

board games: the Game of Go. Finally, an AI named AlphaGo was created based on

Deep Q-network, self-playing method which allowed AlphaGo to improve itself, and

Monte Carlo tree search. This powerful AI, which combined two cores of AI for games:

tree search and machine learning, defeated human champion Lee Sedol in March 2016,

opens a new era for Deep Learning.

Deep Learning has become most popular research topic because of its ability to learn

from a huge amount of data. In recent research such as Atari 2600 games, they show

that Deep Convolutional Neural Network (Deep CNN) can learn abstract information

from pixel 2D data. After that, in VizDoom, we can also see the effect of pixel 3D data

in learning to play games. But in all the cases above, the games are perfect-information

games, and these images are available. For imperfect-information games, we do not

have such bit-map and moreover, if we want to optimize our model by using only im-

portant features, then will Deep CNN still work?

In this report, a method has been described to successfully incorporate Deep CNN

with optimized non-visual information. We investigated the allocation of features are
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important and valuable for improving its performance. By intentionally arranging fea-

tures as an 2D grid, with some duplication of features and well-considered allocation,

Deep CNN achieves 54.24% accuracy when predicting the next moves of AIs in the

experiment. Meanwhile, the normal neural network can only reach 25.38% accuracy.

With the promising result, we can expect Deep CNN to be applied in even more type of

problems where visual or similar information is not available.

The network structure above was used as a policy of our agent in Fighting ICE en-

vironment. Thereby, our agent could get an average point 200 in matches against the

AI champion of 2015. By applying reinforcement learning method to improve this pol-

icy, our agent could get an average point 250-300. By modifying the design of reward

function, we increased the point to 350-400. This result was not enough to defeat the

AI champion of 2015 ,since an agent can win when achieving 500 points, but it helped

us have more knowledge about delay-reward in reinforcement learning.
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Chapter 1

Introduction

AI has become important for human life since its application can help human in problem-

solving. Imaging a world, when workers in dangerous environment are replaced by

Robot, oldsters are taken care by automated and comfortable services, self-driving cars

reduce the number of accidents etc. That wonderful world is a big dream but not im-

possible. Step by step, human improve AI and achieve many positive signals.

One of the early successes of human is creating AI that can defeat human player in

some simple games. This success is meaningful because from the beginning of mankind

history, game has been selected as a testbed of intelligence. For example in Japan, strong

board game players are respected as intelligent people, about tens percent people think

“Habu Yoshiharu” is one of the most intelligent men in Japan. Furthermore, game is

simple and easy to understand. In game, rules are clearly defined so we can evaluate

human player or AI easily by matches. Therefore, when an AI can defeat human player,

even in a very simple game, we can confirm this AI is quite “smart”.

As time passes, the strength of AI is increased, and it can achieve more difficult

tasks. In 1997, when most of people believed that AI cannot defeat human player in

chess, IBM’s Deep Blue won against chess human champion Garry Kasparov [3]. Deep

Blue is built based on tree search algorithm, with the computational power of computer,

it can look deeper in the strategy and find a better move than human player’s move.

1
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This result is impressive because it confirms the abstract thinking of human player can

be replaced by tree search.

In 2010, DeepMind, an artificial intelligence company, was founded to “solve intel-

ligence” [4] based on machine learning. In 2013, they succeeded in training an AI to

play Atari games [5] better than human player. From the beginning of the project, Deep-

Mind thinks reinforcement learning is a good approach for AI in Atari games. Because

in Atari games, every rule are fixed, the transitions between the states are unchanged.

Then a game environment can be represented as a Markov Decision Process and a good

agent might be made after many training step. The key of their approach is that rein-

forcement learning requires too much time to learn if the number of game states are

huge, then some abstraction is needed to reduce the training time. They invented an

algorithm named Deep Q-Network to use a deep convolutional neural network as a Q-

function. And this network can represent the “good abstraction” from the game states.

As the results, DeepMind’s AI can learn how to play the game based on given images

from environment even it does not know the rules.

With that promising results, Google has acquired DeepMind and tried to attack the

hardest problem in board games: the Game of Go. Finally, an AI named AlphaGo

was created based on the same techniques of Atari AI, and self-playing method which

allowed AlphaGo to improve itself, and Monte Carlo tree search. This powerful AI,

which combined two cores of AI for games: tree search and machine learning, defeated

human champion Lee Sedol in March 2016 [6], opens a new era for Deep Learning.

Nowadays with the explosion of data, Deep Learning has become one of the most

popular research fields with its efficiency in modeling and learning from data. When

we talk about Deep Learning, it means we talk about the neural network with many

layers and their structure (how neurons in one layer connect to the ones in other lay-

ers). Depending on the problem, we have to choose the fittest structure to solve it. For

example, in image processing, for MNIST dataset-digit number from ‘0’ to ‘9’ [1] and

CIFAR 10-subset of tiny image dataset [7], Deep Convolutional Neural Network (Deep

CNN) are chosen because of its ability in representing abstract feature. The convolu-

tional layers and the connections are also designed to deal with images.
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In recent years, the effect of DeepMind’s impressive results makes many researchers

try to apply Deep CNN in their supervised learning and reinforcement learning model.

For example, in research with Doom game, Micha Kempka and his team confirm that

Deep CNN also works well in 3D games [8]. In the cases above, the games are perfect-

information games, and these images are available. Therefore, applying Deep CNN in

such games is reasonable. But we want to apply Deep CNN to more and more target

problems, so we have some research questions: In case that we don’t have images input,

can Deep CNN be used for all extracted-features? or just related-feature? In which way

we should allocate features to achieve good performance? If we can answer all research

questions above, it will be very useful to solve other problems.

In this report, we do our experiment with the fighting video game and we select

Fighting ICE, an environment developed and maintained by Intelligent Computer En-

tertainment Lab, Ritsumeikan University [9]. In Fighting ICE environment, images of

the game are not available. Instead, AIs will receive features such as hitpoint, energy

level, or in-game locations as input. That information is necessary for our experimental

purposes. In the first goal, we want to verify the effective of allocation of features when

they are used as input in a convolutional neural network. The second goal is creating

a strong AI that can win ICE competition and furthermore, defeat human champion in

fighting video game.

This report has 7 chapters. In chapter 2, the basic knowledge of neural network and

some related works when using supervised learning to modeling strong AI is introduced.

In chapter 3, categories of Reinforcement Learning and its applications are summarized.

After that, our target fighting video game and the competition ICE are shown in chapter

4. Chapter 5 introduces our approach and chapter 6 shows the detals of experimental

setup and results. We also have the conclusion and plan to improve our work in chapter

7.



Chapter 2

Supervised Learning with Neural

Networks

2.1 Classical Artificial Neural Network

The idea of classical artificial neural network was proposed in 1950s by Frank Rosen-

blatt. The first version had only feed-forward step and did not have so much meaningful.

In 1980s, Paul Werbos introduced a method to train neural network with backpropaga-

tion step. Let’s look more details:

2.1.1 Feed-forward

We start with the simplest example: a perceptron [10]. It takes a vector input and returns

a result that help us to answer some questions or to predict something (Figure 2.1).

FIGURE 2.1: A perceptron with 3 inputs [1]

4
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TABLE 2.1: Information of houses

Name Size Near hospital Near school Value
House A 500 0 0 5000
House B 400 0 1 4004
House C 200 1 1 2011
House D 300 1 0 3007

For example, we have the information of houses such as size of the house, near hos-

pital or not, near school or not, and we want to predict the values of those houses.

To do that, we have to estimates the effect of each information to the value. As-

sume that the size has strong effect about ‘10’, near hospital has less effect about

‘7’ and near school has ‘4’. From Table 2.1, in column “Near hospital” and “Near

school”, 1 means yes and 0 means no, so we can calculate the value of house B as:

(400× 10)+ (0× 7)+ (1× 4) = 4004. Similarity, the value of house A is 5000, the

value of house C is 2011 and the value of house D is 3007. With those results, we can

compare the values between many houses easily.

To answer a binary question: the house is comfortable or not, a threshold value is

used to determine. If the house’s value is greater than the threshold, output will be 1,

it means that the house is comfortable. Otherwise, the house is uncomfortable. This

threshold is a parameter and can be tuned. For the middle class people, they can accept

the value at 3000, then 3 of 4 houses are comfortable. But for some choosy people, they

can only accept the value at 7000, then none of 4 houses are comfortable.

Output =


1, if ∑iWi× xi > threshold

0, if ∑iWi× xi ≤ threshold
(2.1)

Suppose that some people have children and they want to get comfortable health

care and good education for them. So, “Near hospital” and “Near school” attributes

will effect so much to their decisions. Thereby, the value of weights: W2 W3 should

be increased. By changing these parameters, many different decision-making models

can be made [1]. In other words, in feed-forward step, a perceptron learns nothing, the

weights are decided by users.
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In the case of a single perceptron, only weighted-sum can be represented. For more

complicated example, a XOR function cannot be represented. But by combining many

perceptrons, it can be. Therefore, it seems better to use a network of perceptrons to

build a decision-making model. This network has 3 columns of perceptrons (Figure

2.2). The first column takes information from input features and return 3 decisions, so

we call it input layer. The second columns takes information from the results of input

layer, therefore it can make more abstract decisions than the input layer. And we call

this layer hidden layer. The last column has one output perceptron is called output layer.

Some people will be confused because in the example of perceptron in Figure 2.1, one

perceptron returns only one decision - one output. But in Figure 2.2, each perceptron in

input layer look like it returns many output. And the correct answer is that one percep-

tron returns one output, but this output will be used as an input of many perceptrons in

the next layer [1].

FIGURE 2.2: A simple network of perceptrons [1]

Now, we understand the concept of network of perceptrons. And the next important

point is network of perceptrons with sigmoid activation function (we also call it neural

network). Firstly, we start with some simple mathematics, move the threshold from

right-hand side of equation 2.1 to left-hand side and names it bias: b = −threshold.

This bias allows us to move the decision line to make a better decision. The equation

2.1 becomes:

Output =


1, if ∑iWi× xi +b > 0

0, if ∑iWi× xi +b ≤ 0
(2.2)
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From the equation 2.2, by changing the weights just a little, the final decision may be

change or may be not. It’s up to the value of the bias, if bias’s value is too large it’s very

hard to change the final decision. So, we add a sigmoid function to make the network

can be changed smoothly. The equation 2.2 becomes:

Out put = σ(∑
i

Wi× xi +b) (2.3)

In the equation 2.3, σ is the sigmoid function, which is defined by equation 2.4. By

using a sigmoid activation function, when we make a small change in the weights, it will

cause a small change in the output too. When ∑iWi× xi + b is positive and large, the

output will be approximately 1. When ∑iWi×xi+b is negative and too large, the output

will be approximately 0. Therefore, a sigmoid neuron has decision approximately a

perceptron [1].

σ(z) =
1

1+ e−z (2.4)

2.1.2 Backpropagation

As we discussed in section 2.1.1, a neural network is useful for decision-making. But it

has limitation: the weights can not be tuned automatically. The solution for this problem

is “backpropagation” which allow the network can be updated to improve itself [11].

The whole system (neural network with “feed-forward” and “backpropagation”) can

be viewed as a black box, doing trial and error. It takes an input, makes a decision, and

receives the feedback from a supervisor (who has already known the correct answer) to

tell it whether its decision is true or not. The supervisor also forces the system update

to get the correct answer. That circle continues for a while, finally the system can make

a same decision as its supervisor. This framework is called supervised learning.

From the viewpoint of math, we build a cost function which measures the difference

between the current decision and the expected decision. After that, we try to minimize

the difference by calculating the derivative of cost function at the current weight’s value

and updating the weights with a small part of the derivative. This method is called
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Gradient Descent. The weights are updated as follow:

Wi =Wi−α · ∂C
∂Wi

(2.5)

In the formula 2.5, C is the cost function that we want to minimize, α is a parameter

(is usually called learning rate),
∂C
∂Wi

is the gradient. If the gradient is positive, it tries to

tell us decrease the weight to get the minimum. If the gradient is negative, it tries to tell

us increase the weight to get the minimum [12]. Therefore, in the update formula, we

subtract the current weights with a small part of the gradient to expect out cost function

is decreasing in each step.

In summary, a dataset with input features and “true output” (we usually call it label)

are given. With feed-forward step, a network can create an output based on the input

features. To make the output of network look like the “true output” we have to tune the

parameter by hand. The backpropagation technique is created to make a neural network

update its weights automatically by calculating the error between its current output and

“true output” then tuning its parameters to minimize this error.
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2.2 Modern Artificial Neural Network

Training a classical artificial neural network has many problems. As time passes, we

have many knowledge and improve neural network a lot. During practices, one of the

early part was improved is activation function.

2.2.1 Activation Function

As we introduced in section “feed-forward”, sigmoid function (Figure 2.3) is a standard

of activation function for classical neural network. But it has weakness which is called

“kill gradient” [13]. If the input value is too large or the weights are initialized too

large or after some learning step, the weights become too large etc... then the output is

approximately 0 or 1 and the current gradient is very small. There is almost no useful

information for updating and the neurons will become “saturated”.

FIGURE 2.3: Sigmoid activation function

The second activation function is tanh function (Figure 2.4) which is defined by:

tanh(x) = 2×sigmoid(2x)−1. This activation function also has “kill gradient” problem

when the weights are too large, the neuron will saturate to 1 or -1. In practice, people

usually prefer tanh function to sigmoid function.

The third activation function is ReLU function (Figure 2.5) which is defined as:

ReLU(x) = max(0,x). It involves cheap operations when compare with sigmoid or

tanh. Furthermore, this function does not saturate to 0, 1 or -1. In recent years, ReLU

is a popular choice for hidden layers because many researchers tried it and get good

results. For example, Andrew Ng and his teammates [14] compare the performance of
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FIGURE 2.4: Tanh activation function

tanh and ReLU in a speech recognition task. They try many experiments, and in all of

the experiments, the accuracy of the model with ReLU function is always better than

the accuracy of the model with tanh function.

FIGURE 2.5: ReLU activation function

2.2.2 Avoid Overfitting

It is called overfitting when the model is quite fitted with training data but it can not

predict well because the representation ability is too rich, the parameters are too many or

the number of training data is too few etc... In other words, the model try to “memorize

training data, rather than learn from it” [12]. To solve this problem, a technique called

“regularization” is used. It’s a penalty part added to cost function. There are 2 kinds of

regularization term: L1 and L2.

L1 is defined by: λ ·∑Wi|Wi| and L2 is defined by: λ ·∑Wi W
2
i . In those formulas, λ is

a hyper parameter representing how important the regularization part means to the cost

function. When we look at the formulas, we can see that those terms are not so different,

L1 is the sum of absolute value of the weights and L2 is the sum of square value of the
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weights. But the meaning of each term is so different. When the representation ability

is too rich and the parameters are too many, a L1 term tries to sparse our model thereby

it reduces overfitting. In the case of L2, it tries to use small weights to optimize our

network. For example, we have an input x = [2,2,2,2,2] and two sets of weight W1 =

[1,0,0,0,0], W2 = [0.2,0.2,0.2,0.2,0.2]. The output of 2 models are equal: W1
T x =

W2
T x = 2, but L2 value of them are different. The L2 value of W1 is 1 and the L2 value

of W2 is 0.2, it mean the first weights will be penalized more than the second weights.

FIGURE 2.6: A network with dropout rate 50% at hidden layer [1]

One recent popular technique is “dropout”. The idea of dropout is quite simple: in

every step (feed-forward and backpropagation), some neurons are randomly selected

and temporarily removed from the network (Figure2.6). Suppose that we have a net-

work with 3 layers: input layers with 3 neurons, hidden layer with 6 neurons, output

layer with 2 neurons. We train this network with dropout rate = 0.5 to avoid overfit-

ting. It means that, during training process, 50% of neurons in hidden layer is randomly

selected and temporarily removed. Finally, when we finish training, we have a big net-

work contained 6!
3!(6−3)! = 20 sub-networks. When making a decision, our big network

does a voting task: collecting decisions from 20 sub-networks and choosing the most

popular decision. This process reduces overfitting because if some sub-networks are

overfitting, their decisions might be refused in voting step. For example, we train a net-

work to classify a digit number from ‘0’ to ‘9’. The big network have 5 sub-networks

and 2 of them are overfitting with dataset. We test this big network with a new input, 2
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overfitting sub-networks return ‘1’ but the other sub-networks return ‘7’. Thereby, our

big network return a correct answer ‘7’.

2.2.3 Deep Convolutional Neural Networks

One of the disadvantages of classical neural network is that we have to represent input

information as a vector. For some characteristic datasets such as image, text etc. this

disadvantage is a big problem. Fukushima (1980) introduced a concept of convolutional

neural network (CNN) and many researchers in Computer Vision have improved it. In

this section, we introduce some basic background of CNN:

FIGURE 2.7: A window size 3x3, stride length 1, sliding through input grid (blue grid)
and connect to next feature map (green grid) [2]

Firstly, we represent input layer as a 2D grid input not a vector input. This structure

is useful to accept a whole image as an input without any extract feature step. Using a

window slide from left to right, from top to down, with a fix stride length, we can group

a number of neurons in grid input to another neurons in the next layer (Figure 2.7). The

most characteristic of this window is that it uses the same weights and bias while sliding

through the grid. So, all the neurons in next layer will get the same information from the

previous grid, just at different locations. For this reason, the next grid is usually called

a feature map. We also call the weights and bias in one window is shared-weights and

shared-bias. And a pair of (shared-weights, shared-bias, stride length) is called a filter.

When we change the filter, we will get a different feature map. A set of filters will
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create a set of feature maps. The mapping from grids to a set of feature maps using

a set of filter is the structure of convolutional layer. This design (using share-weights

and share-bias) reduces the number of parameters and makes a convolutional layer has

ability to avoid overfitting itself.

FIGURE 2.8: A max pool example with window size 2x2, stride length 2

The output of convolutional layer contains so much abstract information. If we want

to simplify it, a pooling layer will be used. A pooling layer is usually put right after a

convolutional layer, it does not have weights or bias. It takes a feature map as an input

and simplifies this feature map by pooling technique likes max-pooling or average-

pooling (Figure 2.8).

FIGURE 2.9: A complete CNN, take an image of digit number size 28x28 as an input,
use 3 filters size 5x5 stride length 1, follow by one max-pooling layer and one fully-

connected layer [1]

To have a complete convolutional neural networks (Figure 2.9), we put a fully-

connected layer at the last to learn all abstract information from previous layer. This

fully-connected layer is exactly the same as the hidden layer in classical neural network.

To train a Deep CNN, the same process is used: feed-forward and then backpropagation.
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2.3 Related Works

In this section, we introduce some promising results that humans have achieved by

using CNN model. We start with 2 famous datasets in Computer Vision: MNIST and

CIFAR-10, and continue with some related works in modeling strong AI.

2.3.1 Convolutional Neural Networks in Image Processing

The MNIST (database of handwritten digits number, has a training set of 60,000 ex-

amples, and a test set of 10,000 examples [15]) was created to call for competition

from other researchers in Computer Vision. Many approaches were given: support

vector machine (SVM), K-Nearest Neighbors, classical neural network etc. But CNN

defeated them all when achieving a very good error rate 0.21%. And this result might

be the best result because it’s impossible even for human to recognize image from this

datasets at 100% accuracy (a handwritten digits number from a style can be recognized

as ‘7’ might be recognized as ‘1’ in other styles). But the success in MNIST is not the

significant result of CNN in Computer Vision while other approaches can achieve an

error rate 0.56%.

The CIFAR-10 dataset consists of 60,000 32× 32 colour images, it is divided into

training set with 50,000 images and test set with 10,000 images [16]. There are 10

classes, with 6000 images per class, and we have to build a model to achieve a good

accuracy in classifying the test set. This task is similar to MNIST’s task but using the

same structure in MNIST cannot get a good accuracy with CIFAR-10. Because images

from MNIST are black-and-white images which contained less information than colour

images in CIFAR-10. Therefore, researchers reach an accuracy about 75.86% when

applying naive Deep CNN model [17]. By optimizing the structure (using more hidden

layers) and pre-processing the input images, they can improve the model and get a good

accuracy 96.53% [17].
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2.3.2 Convolutional Neural Networks in Modeling Strong AI Game

Player

Modeling a strong AI game player is a hard task because it requires a huge dataset and

careful optimization of many parameters. The more actions that AI can perform the

more difficulty we get. In particular, in the game Go, it is very hard for researchers to

model and predict the next move of the opponent. But, with Deep CNN, finally, re-

searchers are succeeded in that hard task. Christopher Clark used 81,000 professional

games dataset (about 16.5 million samples) and an average network structure (four con-

volutional layers, one fully-connected layer) and he gets a good accuracy 41% in predict

the next move [18]. After that, DeepMind did a better work when creating the strong AI

AlphaGo that defeat the human champion. In supervised learning step, AlphaGo used

13 layers, 30 million samples, training by 200 GPUs in 2 weeks and get a very good

accuracy 57% [6].



Chapter 3

Reinforcement Learning

3.1 Introduction to Reinforcement Learning

Reinforcement Learning is a framework of learning policy for decision making, through

trials and errors in dynamic environment. In reinforcement learning, “the learner is

not told which actions to take, but instead must discover which actions yield the most

reward by trying them” [19]. In other words, an agent has to interact with environment

and learns from its own experience (Figure 3.1).

FIGURE 3.1: The agent makes a decision based on the observation that it received
from the environment. After that, the environment calculates reward and feedback to

the agent

16
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3.1.1 Categorization of Reinforcement Learning Agents

A Reinforcement Learning agent may include one or more of these components: policy,

value function and predictive model of transition function and reward function (we sim-

ply call it a model). A policy is the agent’s behaviour function, mapping from state to

action. For example, in simple maze game size 6×5 (Figure 3.2), when the agent start

at the allocation maze[5,0], a good policy will tell it go Right to get closed to the Goal.

This kind of policy is called deterministic policy. It takes a state as input and returns an

output action: a = π(s). In more difficult maze game, people can design a wind which

blow from right to left. When the agent decides to go Right, it has 70% possibility to

stay in next location and 30% to stay in the same location. In this case, the wind is a

factor of environment: stochastic transition, and the policy is still deterministic.

FIGURE 3.2: A simple maze game size 6× 5, the agent can perform 4 actions: Up,
Down, Left and Right. It start from allocation maze[5,0] (coloured by green) and try to
go to the Goal (coloured by red). Inside the maze, there are some allocations that the

agent cannot go through, which is called Wall (coloured by grey).

Value function is a prediction of future reward. It is used to evaluate the good-

ness/badness of the state [20]. In maze game, if we design a reward is -1 for every

action we take, then the nearest allocations to the Goal will have highest value, and the

farthest allocations will have lowest value (Figure 3.3).

A model predicts what the environment will do next [20]. It can be used to predict the

next state or the next (immediate) reward. In maze game example, if the agent stay in the

state maze[1,1], the model can predict the next state is maze[0,1] or maze[1,0] or maze[1,2],

and the agent cannot stay in state maze[2,1] because this is a Wall. As we design reward
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FIGURE 3.3: Designing a reward -1 per action, then the value function can evaluate
the distance from each state to the Goal.

-1 for every action we take, the model can easily predict the next immediate reward is

always -1 (Figure 3.4).

FIGURE 3.4: Designing a reward -1 per action, then the model can predict the next
immediate reward is always -1. If the agent stay at maze[1,1] the model can predict the

next state is maze[0,1] or maze[1,0] or maze[1,2]
.

Based on 3 components: policy, value function and model, a RL agent can be cate-

gorized as [20]:

• Model-free: policy and/or value function

• Model-based: policy and/or value function and model

• Value-based: value function

• Policy-based: policy
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• Actor-Critic: policy and value function

3.1.2 Markov Decision Processes

In some environments, a state, which is responded at time t+1, depends on everything

that happen before. Therefore the probability of that state can be defined by the com-

plete probability distribution in formula 3.1.

Pr[St+1 = s′|S0,S1...St−1,St ] (3.1)

In other environments, when “the future is independent of the past given the present”

[20] (we call it Markov property), the states capture all relevant information from the

history. Therefore the probability of a future state can be defined by the give present

state as formula 3.2

Pr[St+1 = s′|St = s] (3.2)

For a Markov state s and a successful transition state s′, the transition probability is

defined by formula 3.3. And a Markov Process (or Markov Chain) is a memoryless

process, consists a set of states S and a state transition Tss′ .

Tss′ = Pr[St+1 = s′|St = s] (3.3)

In reinforcement learning, the agent makes its decisions as a function of the envi-

ronment’s state: A(s) [19]. If all states in the environment are Markov, we call this

environment Markov Decision Process, and we have a tuple < S,A,T,R,γ > like this:

• S: finite set of states

• A: finite set of actions

• T: state transition probability Pa
ss′ = Pr[St+1 = s′|St = s,At = a]

• R: reward function Ra
s = E[Rt+1|St = s,At = a]
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• γ: discount factor γ ∈ [0,1]. This value represent for the fact that future is unpre-

dictable.

For example, the maze game with random wind blows from right to left, is a Markov

Decision Process:

• S: set of allocations {maze[0,0], maze[0,1]..., wall, goal}

• A: Up, Down, Left, Right

• T: from maze[1,1], the agent decides to go Right and it has 70% possibility to stay

at maze[1,2], 30% possibility to stay at maze[1,1]...etc.

• R: -1 for every action

• γ: 1

3.1.3 Q-learning

Q-learning is a model-free technique. It is used to find an optimal action-value function

for a given Markov Decision Process. From definition of [20] “the action-value function

qπ(s,a) is the expected value return starting from the state s, taking action a, and then

following policy π” (Formula 3.4).

qπ(s,a) = Eπ[Rt+1 + γRt+2 + ...+ γ
kRt+k+1|St = s,At = a] (3.4)

And this function can be decomposed into immediate reward plus discounted of suc-

cessor state as formula 3.5. This formula is called Bellman Expectation Equation.

qπ(s,a) = Eπ[Rt+1 + γ qπ(St+1,At+1)|St = s,At = a] (3.5)

To solve the Bellman Expectation Equation and find the optimal action-value function

q∗(s,a), the following method (Q-learning) in formula 3.6 is used. The α value is called
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learning rate and α ∈ [0,1]. In practices, small α (about 0.1 or 0.01) is usually used.

Q(St ,At)← Q(St ,At)+α× (Rt+1 + γ max
At+1

Q(St+1,At+1)−Q(St ,At)) (3.6)

For any Markov Decision Process, all optimal policies achieve the optimal action-

value function qπ∗(s,a) = q∗(s,a) (theorem from [20]). Using Q-learning, the optimal

action-value function might be found, and the agent just selects the action with the

optimal q-value to achieve the expected goal.

The most important point in Q-learning algorithm is the convergence of the action-

value function. To solve the formula 3.6, the agent must try some trials and errors

for all pairs (state,action). If the environment is a finite and discrete Markov Decision

Process, the optimal action-value function can be found. In case the environment is a

continuous Markov Decision Process, Q-learning cannot guarantee action-value func-

tion to converge. To solve this problem, a new algorithm named Deep Q-Network is

invented. Using the ability of CNN to learn some abstraction, action-value function can

converge in some specific games. In general, Deep Q-Network also cannot guarantee

the convergence.
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3.2 Related Works

3.2.1 Deep Q-network in Atari and Doom Games

In 2013, DeepMind used a Deep CNN with weights w to represent an action-value

function: q(s,a,w) ≈ qπ(s,a) to train their agent [5]. The results in Atari 2600 games

show that Deep CNN works quite well in 2D games. Taking an 84×84×4 color image

as an input, the agent can learn to distinguish many different states. It also has the ability

to evaluate how good a state is. As it is successful, DeepMind copyrights the algorithm

as the name Deep Q-Network.

After that, in research with Doom game, Micha Kempka and his team confirm that

Deep CNN also works well in 3D games. Using the same algorithm, the agent can

be trained from an input image that contains depth information, and it can clear many

scenarios from easy to hard smoothly [8].



Chapter 4

Fighting ICE environment

Our target is fighting video game, and we select Fighting ICE, an environment devel-

oped and maintained by Intelligent Computer Entertainment Lab, Ritsumeikan Univer-

sity [9].

4.1 Game Details

The competition in Fighting ICE is held annually from 2013 and attracts many com-

petitors from other laboratories [21]. Like other fighting video games, Fighting ICE has

2 players making close-combat in a 2D arena. Each player tries to attack, avoids the

skill or blocks the hit from the opponent. The game starts with player 1 (P1) from the

left and player 2 (P2) from the right. In the top-left and top-right corner are their hit

point (HP) and energy information. In the top-middle, there is a countdown clock from

60000 (the maximum frame) to 0 (Figure 4.1)

The fighting’s rules are quite simple. Each game consists of 3 rounds, each round

last 60 seconds. At the end of one round, the score will be calculated as formula 4.1.

This formula is quite strange because the hit point of character is a negative number.

Anyways, the organizers chose it. Winner of the round is the one who has higher score,

and the player who wins more than 2 rounds is the winner of the match.

23
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FIGURE 4.1: A screenshot taken from a match between 2 characters in a game of
Fighting ICE

There are 3 kinds of character in Fighting ICE: Zen, Garnet and Lud. Each character

has different interface, size and skills. But they have the same kinds of action: move,

attack and guard. Each kind of actions has many sub-classes, for example: attack-air,

attack-ground, guard-kick, guard-punch etc... Therefore, the total number of actions

that one character can perform is 56. Some actions take short time to perform (about

3-5 frames), a few special actions take long time (about 10 frames). This setting makes

the Fighting ICE more interesting and diverse.

Score =
opponent ′s HP

player′s HP+opponent ′s HP
×1000 (4.1)

To simulate a real time environment, Fighting ICE use 60 frames per second. In

other words, one frame lasts 16.67ms. And both players will receive a delay 15-frame

information. Because the organizers want to avoid the case that the player uses simple

counter actions to opponent’s move in previous frame. This design is also helpful for

evaluating the strength of the AI in matches with human player. Because human players

can receive only 24 frames per second. During the process of receiving and feedback

information, human players spend more time than AIs and they have to press the button.

So, delaying 15-frame makes the AI more human-like and help balancing the game play.
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4.2 Recent Approaches for Competition

The first popular approach is rule-based AI. The advantage of this approach is easily for

programming. With some simple conditions, you can make your fighting AI (as formula

4.2). Based on the experience of the programmer, the rules can be strong or not. In the

case the programmer is also a good player in fighting game, s/he understands well about

the game, and s/he knows some ’tricks’ to get an advantage state. Her/his rule-based

AI may be very strong. Machete, a rule-based AI and the champion of competition in

2015, is an impressive example [21].

throw energy, if distance >300 & energy >60

normal kick, if distance <300 & energy <60

hard kick, if distance <300 & energy >60

jump, otherwise

(4.2)

But rule-based AI has a very serious weakness. It’s easy to be countered if its rules

are shown. For example, if Machete’s opponent is closed to him, he always performs a

hard kick. And we know that information, so when our AI is closed to Machete, it can

counter Machete’s hard kick by jumping and kick.

The second popular approach is online-learning. This kind of AI has ability to update

after each game to adapt with new opponents. So, it is hardly countered. But the most

disadvantage is that the number of games in a competition is limited. Then online-

learning AI does not has enough time to learn and adapt. Therefore, all of the online-

learning AIs are not strong enough to win Fighting ICE competition since it was held

in 2013.

The third approach is tree search algorithm. This approach is very promising, by

looking deeper in the strategy, a tree search AI can get a good move and a good strat-

egy. This kind of AI are usually strong and hardly countered. But in Fighting ICE

competition, the organizers want to balance the game by providing limited memory and
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limited computational time. So, a tree search AI cannot look deeper in the strategy any-

more. However, in 2016 competition, a group of researchers tries to apply heuristics to

build a Monte Carlo tree search AI [21]. Those heuristics help they cut some unneces-

sary branches and their AI can searches deeper in the tree. Finally, this AI is ranked 2

in the competition.

For our research, we choose the approach offline-learning based on supervised learn-

ing and reinforcement learning. We plan to use a Deep Convolutional Neural Network

as a policy of the agent. If we optimize this network carefully, we could have a good

AI which is more powerful than rule-based AI. This kind of AI is also hardly to be

countered, and can adapt with new opponents. Comparing with a tree search AI, this

offline-learning AI can be created with less memory. For all above reasons, we think

this approach is very promising.



Chapter 5

Approach

Our approach is offline-learning based on machine learning. It has 2 steps: in the first

step, a Deep CNN is used to modeling the actions of strong AIs player. By changing the

way to represent input features and the structure of the network, a best network may be

found. In the second step, the best network in previous step is used to initialize for the

policy network. After that, a policy optimization method is used to update the policy to

get the goal: win the game.

This approach is employed because of many reasons. Firstly, an offline-learning AI

can be stronger than other AIs if we optimize the model carefully and this kind of AI

requires an acceptable memory. Secondly, among many machine learning algorithm,

reinforcement learning is a conventional way to create a strong game AI. We plan to

use a policy-based method because the number of actions in Fighting ICE is high. It

makes a value function hard to converge. So it’s easier to optimize a policy than a value

function in Fighting ICE. Thirdly, the best way to represent a policy is a neural network.

But the performance of a classical neural network is not high enough, then we try to use

Deep CNN to modeling the actions of strong AI.
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5.1 Creating a Good Model by Supervised Learning

In the fighting game, we have stand-alone features which contain fixed information. For

example, ‘hit point’ indicates the health of characters, ‘energy’ indicates the ability to

use special skills, ‘distance’ may indicate safety level (the further the distance between

our character and opponent’s, the safer our character gets) etc. When we combine some

of these features, they can be described as a strong effective in decision making. For

example, if we combine ‘distance’ and ‘energy’ we can get some rules like this:

throw energy, if distance >300 & energy >60

normal kick, if distance <300 & energy <60

hard kick, if distance <300 & energy >60

jump, otherwise

Such combinations as the example in Figure 5.1 are very popular in rule-based AIs.

In order to make strong rules, the relationship of two (or more) features is important. If

the employed rules are not so related, like “energy” and “size of character”, they would

make the agent act clumsily.

FIGURE 5.1: Player 2 (P2) is a rule-based AI, when all conditions are satisfied, it throw
a energy ball to player 1 (P1).

We hypothesize that the connection between relative features in Fighting game is

similar to the relation of neighboring pixels in an image. The nearer neighboring pix-

els have strong connections, while the further neighboring pixels have weaker or no
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connection to others. If grouping pixels help to improve the performance of modeling

strong AI then grouping relative features could also work. Although usual neural net-

work has the ability to combine these features if we use multiple layers, we can not

control which feature would combine with others because all neurons in one layer are

fully-connected with next layer. In those networks, strange connections like ’energy’

and ’size of character’ in the previous example are redundant.

By using CNN, we can reduce the numbers of ineffective connections, and put fea-

tures that we need to a group. This idea can be implemented simply by:

• Represent input feature as a 2D grid

• Find some important features and put them in a group by using a window

• When sliding the window, make sure the window always contain such important

feature. This leads us to duplicate the important feature.

Many experiments has been tried (in section 6.1), and an optimal network structure

is found. This network can model the next moves of strong AIs with a good accuracy

54.24% and it is used to initialize a policy for next step.
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5.2 Improving the Policy by Reinforcement Learning

When a good network structure is created, it can be used as a policy of the agent. But

this policy is not good enough to make the agent win the fighting ICE competition.

Therefore, we have to improve it to find an optimal policy by Reinforcement Learning.

The policy samples actions from a initialized distribution, and then actions taken that

lead to good outcomes get encouraged, actions taken that lead to bad outcomes get

discouraged. To evaluate the outcomes, a reward function f is used, it takes a input

sample and returns a scalar value. Finally, we update the policy network to maximize

the expected of good outcomes via Gradient Descent. This method is a policy-based

method named Policy Gradients.

From the view point of math, we have sampling actions x taken from a distribution

p(x|θ) parameterized by the weights θ and we want to maximize the expected of the

reward function E[ f (x)]. So, we have to “shift the distribution (through its parameters

θ) to increase the scores of its samples” [22]. To do that, the derivative of the expected

reward is calculated by the following process [23]:

5θEx[ f (x)] =5θ ∑
x

p(x) f (x) definition of expectation

= ∑
x
5θ p(x) f (x) swap sum and gradient

= ∑
x

p(x)
5θ p(x)

p(x)
f (x) both multiply and divide by p(x)

= ∑
x

p(x)5θ log p(x) f (x)

= Ex[ f (x)5θ log p(x)] definition of expectation

Once the gradient is calculated, the parameters (the weights) can be updated by Gra-

dient Descent (Formula 5.1). In this formula, we do not subtract the current weights

as formula 2.5, instead we add a small part of the gradient to the current weights. This

gradient forces the distribution shift to a better region.

θ = θ+α ·5θEx[ f (x)] (5.1)
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For example, we have a distribution p(x) and a reward function f (x) in the Figure

5.2. When x is increased, the score of f (x) is also increased. Then the gradient and the

reward function try to tell us shift the distribution p(x) to the right-hand side to have

higher possibility to get good x when sampling.

FIGURE 5.2: the gradient and reward function try to tell us shift the distribution p(x)
to right-hand side to have higher possibility to get good x.

The most important part is the design of reward function. In board games and Atari

games, a reward function returns a scalar value +1 if the agent win, otherwise, it returns

−1. But that design might not work well in fighting video game because the connections

between states of fighting game are not strong. For example, every pair (state,action)

at time t in board game effects a lot to the end-game result. If you play badly at time

t, it’s hard to win the game. But in a fighting game, in the first half of the match, the

AI plays badly and in the second half, it plays well, so in the end-game it win. In other

words, the reward in board game has long delayed-time and the one in fighting game

has short delayed-time. Therefore, if we wait until the end-game to evaluate a action,

this evaluation might be not good. Instead we evaluate actions after a short period of

time (about 7 second). If the agent’s points are increased by r in a short period of time,

it means the agent plays well in this period, reward function will return positive scalar

+r, otherwise it will return negative scalar −r.



Chapter 6

Experiments

6.1 Experiments with Supervised Learning

The contents of this section has been published in our paper “Optimized Non-Visual

Information for Deep Neural Network in Fighting Game” [24].

6.1.1 Dataset

We collect 560 games between top 3 players of Fighting AI Competition in 2015. Each

game contains 3 rounds, each round last 60 seconds, and there are 60 frames per second.

In other words, we have 560×3×60×60 = 6,048,000 pairs of state-action. We use 70%

for training and 30% for validating. From FightingICE environment, we get information

from our character and the opponent’s character such as hitpoint, energy, the location

of characters, size of characters, etc. Totally, we have 15 features from our character

and 15 features from the opponent, then we compute 5 more important relative features

such as distance, difference in hitpoint, difference in energy and 2 relative positions.

Using this dataset, we try to model the next move of the top 3 strong AIs.
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TABLE 6.1: Summary of our experimental results. The optimized CNN structure is
clearly better than others and significantly better than a usual neural network.

input structure training time (min) accuracy

usual NN one-layer

35 features 1 fully connected-100 neurons 26.61 19.45%
35 features 1 fully connected-200 neurons 30.91 18.80%
35 features 1 fully connected-400 neurons 45.24 20.86%
35 features 1 fully connected-1000 neurons 83.36 22.42%

usual NN two-layer

35 features 2 fully connected-100 neurons 36.92 20.97%
35 features 2 fully connected-200 neurons 48.68 22.08%
35 features 2 fully connected-400 neurons 51.32 23.38%
35 features 2 fully connected-1000 neurons 167.84 25.38%

naive CNN
5x7 grid 5 filters size 2x2-1 fully connected 54.08 29.39%
5x7 grid 10 filters size 2x2-1 fully connected 81.66 33.93%
5x7 grid 20 filters size 2x2-1 fully connected 123.65 33.59%

CNN with 2x35 grid
2x35 grid 5 filters size 2x10-1 fully connected 43.62 33.70%
2x35 grid 10 filters size 2x10-1 fully connected 54.76 38.32%
2x35 grid 20 filters size 2x10-1 fully connected 77.12 37.98%

optimized CNN
4x15 grid 5 filters size 2x5-1 fully connected 77.10 49.20%
4x15 grid 10 filters size 2x5-1 fully connected 116.16 54.14%
4x15 grid 20 filters size 2x5-1 fully connected 182.22 54.24%

CNN with 3x5 filter

3x15 grid 5 filters size 3x5-1 fully connected 44.58 46.29%
3x15 grid 10 filters size 3x5-1 fully connected 55.38 49.09%
4x15 grid 5 filters size 3x5-1 fully connected 61.5 46.22%
4x15 grid 10 filters size 3x5-1 fully connected 86.64 49.26%
4x15 grid 20 filters size 3x5-1 fully connected 150.16 49.95%

6.1.2 Experimental Setup and Results

Since FightingICE is written in Java, we have to write a short description in Java to get

the dataset and save it in CSV format. After that, we build our neural networks in Python

with supported from two famous libraries: Numpy and Theano [25]. We also use GPU

GTX970 to run experiments. Table 6.1 summarizes the result of our experiments.

In the first experiment, we use a usual neural network setting with 3 layers: one input

layer, one hidden layer, and one output layer. The input layer has 35 neurons (because

we have 35 features), hidden layer has 100 neurons and output layer has 56 neurons

(because our agent can perform 56 actions). Training this network, we get a model

which can archive an accuracy of 19.45% when predicting the next move. Tuning the

number of neuron in hidden layer, we get the highest accuracy is 22.42% with 1000

neurons.

In the second experiment, we use a usual neural network setting with 4 layers: one

input layer, two hidden layers, and one output layer. This setting based on the well-

known fact that usual two hidden layer networks have higher expressiveness than one
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hidden layer. Training this network, we get a model which can archive an accuracy of

25.38% (with 1000 neurons per hidden layer).

FIGURE 6.1: Naive CNN structure with 5x7 grid input, follow by one convolutional
layer, one fully-connected layer and one softmax layer

In the third experiment, we use a naive Deep CNN setting: represent 35 features as

a 5x7 grid input, one convolutional layer with 20 filters size 2x2 stride length 1, one

fully-connected layer and one softmax layer (Figure 6.1). Training this network, we get

a model which can archive an accuracy of 33.59%. It is reasonable because the location

of features are select at random. Some features which are grouped together may have

strong relationships. As a result, our model increased performance slightly compare

with usual NN in Table 6.1

FIGURE 6.2: The structure of CNN in experiment 4. Information of our character and
opponent’s are separated: our information is at the top row, opponent’s information is

at the bottom row.

In the fourth experiment, we improve our model by separating information of our

character and opponent’s character (Figure 6.2). We duplicate all the features, so we

have total 70 features and represent them as 2x35 grid input. The first row of the grid

has 15 features from our character, 5 important features and 15 features from our char-

acter again, in this order. The second row has 15 features from opponent’s character,

5 important features and 15 features from opponent’s character again. We also use one

convolutional layer with 20 filters size 2x10 and stride length 1, one fully-connected
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layer and one softmax layer. This setting lets the network compare the relationship

between our information and opponent’s information. It also shows that the location

of features in the input grid has positive effects. When we sliding the window from

left to right, the same features of both characters are accessible, allows the network to

make comparisons between the states of the two characters. This structure improves the

performance of our model to 37.98%.

FIGURE 6.3: The input grid of the optimized CNN. Important features are duplicated
2 times and put between information of the 2 players. Opponent information is also

duplicated and put at the bottom of the input grid.

In the fifth experiment, the input grid is expanded to preserve characteristic of the pre-

vious experiment while adding new potential combination. We duplicate 5 important

features 2 times and the opponent’s features 1 time. Totally, we have 60 features, which

were represented as a 4x15 grid input. Information of our character and opponent’s

character are also separated in different row and the duplicated opponent’s features are

put at the bottom of the input grid, so that information of both characters can be com-

bined similar to previous experiment (Figure 6.3). We use one convolutional layer with

20 filters size 2x5 and stride length 1, one fully-connected layer and one softmax layer.

By using a 2x5 filter and duplicating the important features, it is possible for every filter

in our CNN to have access to all 5 important features in any position in the input grid.

This structure improves the performance of our model significantly to 54.24%.

In the last experiment, we try to confirm that if a bigger window can improve accu-

racy. First, we try a 3x15 grid input which contains the same information as the 4x15

grid input in previous experiment without the last duplicated row. Then, we paired it

with a 3x5 filter which will capture information of our character, opponent and mu-

tual information at the same time. However, the accuracy is reduced to 49.09%. Even

when we duplicate the opponent’s feature again, the result is only slightly improved to

49.95%.
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Many allocations are tested, especially about the relationship between characters and

important features, in other words about Y-axis. However, no test is shown about the

relationship between features of a character, in other words about X-axis. Because

changing the locations in Y-axis can increase the performance, so changing the locations

in X-axis can increase the performance too. But the number of cases in Y-axis is much

smaller than the number of cases in X-axis. If we focus in X-axis, it’s hard to found an

optimal structure. Therefore, we fixed the locations in X-axis and did many experiments

in Y-axis.
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6.2 Experiments with Reinforcement Learning

6.2.1 Sharing Full-Reward

As we discussed in section 5.2, the reward function evaluate actions after a short period

of time, if the agent’s points are increased, it will return positive scalar, otherwise, it

will return negative scalar. All the actions in the sequence will be given a same reward

(Figure 6.4). This reward is categorized as “full-reward” to distinguish with the one in

section 6.2.2

FIGURE 6.4: All the actions in a short period of time: ‘throw energy’, ‘run’, ‘run’ and
‘kick’ are received a same reward.

FIGURE 6.5: The x-axis shows the number of training rounds, the y-axis shows the
points of our AI at the end of each round (if our points are greater than 500, we win
the round). The agent learns almost nothing, and keeps running or jumping during the

game. It get average points about 250 300 against the champion AI of 2015.
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Training the agent with the champion AI of 2015 (Machete) for 877 games takes us

about 40 hours. The policy network converges to some bad behaviors, the agent keeps

running or jumping most of the time. The results are shown in Figure 6.5.

6.2.2 Sharing Decreased-Reward

In a fighting match, the number of non-damage actions are usually greater than the

number of damage actions. If we share the same “full-reward” to all actions, the policy

will be updated by the effect of non-damage actions. To solve this problem, a penalty

is given to non-damage actions (Figure 6.6). This kind of reward is categorized as

“decreased-reward”.

FIGURE 6.6: In a short period of time, all damage actions: ‘throw’ and ‘kick’ are re-
ceived a full reward, all non-damage actions: ‘run’ and ‘run’ are received a decreased-

reward.

Training the agent with the champion AI of 2015 for 1247 games takes us about

62.5 hours. The agent tried to learn many actions and get better results than previous

experiment in section 6.2.1. The results are shown in Figure 6.7.
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FIGURE 6.7: The x-axis shows the number of training rounds, the y-axis shows the
points of our AI at the end of each round. The agent tries to learn many skill. It gets
average points about 350 400 against the champion AI of 2015. This result is better

than experiment with “full-reward” but still not sufficient to win the game.



Chapter 7

Conclusion

In this report, supervised and reinforcement learning with convolutional neural network

(CNN) are applied to the domain of fighting game, where several features instead of

image are given as input.

In supervised learning step, a method has been described to successfully incorporate

Deep CNN with optimized non-visual information. We investigated the allocation of

features are important and valuable for improving its performance. By intentionally

arranging features as an 2D grid, with some duplication of features and well-considered

allocation, Deep CNN achieves 54.24% accuracy when predicting the next moves of

AIs in the experiment. Meanwhile, the normal neural network can only reach 25.38%

accuracy. With the promising result, we can expect Deep CNN to be applied in even

more type of problems where visual or similar information is not available.

In reinforcement learning step, some ideas have been tried to improve the design of

reward function. The agent’s point is increased but it’s still not enough to win the cham-

pion of 2015. The first reason is that the number of training games is too small (877

games for “full-reward” experiment and 1247 games for “decreased-reward” experi-

ment). Usually, for training an agent via reinforcement learning, thousand games are

used. In case of Pong game, a simple game with 2 actions, the agent has been trained

for 7,000 games [22]. In our situation, it’s very hard to train our AI with a large number

of games. Because the number of actions in Fighting ICE is 26 times compare with
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Pong game, and each game in Fighting ICE last 3 minutes, so we need at least 145 days

to make a good AI.

The second reason is that the organizers of ICE design the delay-frames (we discussed

about it in section 4.1). At this time, we do not have much knowledge about the effect

of delay information to the learning process of reinforcement learning. It might be a big

problem.

For future work, we plan to create an similar environment with Fighting ICE and

add a speed-up mode to the environment. This additional mode will help us decrease

the learning time. We will also implement a new ruled-based AI which has the same

strength with the champion of 2015. After training in new environment with new oppo-

nent, the agent will be evaluated in Fighting ICE competition.



Appendix A

Features are used in Fighting ICE

In this appendix section, we show more details of our experiments. Each character will

be represented in our network by 15 features:

• Hitpoint

• Energy

• Character’s size: width and height

• Character’s hitbox coordinates: left, right, bottom and top

• Remaining frame of current action

• Type of current action

• Current speed of character: in x-axis and in y-axis

• Character’s current facing direction

• Character’s current state: can be controlled or not

• Information about projectiles in current state: quantity and relative position to the

character (in front or behind)

The 5 important relative features:

42
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• Distance between 2 characters

• Difference in hit point

• Difference in energy

• Difference of position in x-axis

• Difference of position in y-axis
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