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Performance Analysis of OSTBC Transmission in
Lossy Forward MIMO Relay Networks

Jiguang He, Valtteri Tervo, Shen Qian, Markku Juntti, and Tad Matsumoto

Abstract—We analyze the outage probability for the orthogo-
nal space-time block code-based multiple-input multiple-output
(MIMO) relay networks, composed of one source, one relay, and
one destination. The relay forwards the decoded and interleaved
information sequence even though the information part may
contain error(s), according to the lossy forward strategy. In
spatially independent MIMO channels, we find that the diversity
order of the relay network can be interpreted and formulated by
the well-known max-flow min-cut theorem. Moreover, we extend
the analysis to the case of spatially correlated MIMO channels.
Approximated explicit expressions for the outage probabilities
are obtained in high signal-to-noise ratio regime.

Index Terms—Diversity order, Kronecker model, lossy for-
ward, multiple-input multiple-output (MIMO), orthogonal space-
time block code (OSTBC), outage probability

I. INTRODUCTION

IN the conventional decode-and-forward (DF) relaying pro-
tocol [1], [2], the relay forwards the decoded information

sequence to its neighboring nodes or the destination only
when no errors are detected. A state-of-the-art protocol called
lossy forward (LF) was developed in [3], [4], where the
relay forwards also erroneous packets or frames. Therefore,
better outage performance can be obtained compared to the
conventional DF relaying [4].

To the best of the authors’ knowledge, the extension of
LF concept to the relay network with spatially independent
or correlated multiple-input multiple-output (MIMO) chan-
nels has not been investigated. Therefore, we consider an
LF MIMO transmission system where orthogonal space-time
block code (OSTBC) is used for achieving the full diversity or-
der with maximum ratio combining (MRC) in MIMO configu-
rations [5], [6]. It should be noted that the technique to achieve
the full diversity order with MRC should not necessarily be
restricted to OSTBC when applying the results of this letter
and achieving the spatial multiplexing gain is not the aim of
this work. The major contributions of the letter are two-fold:
(1) Both the transmit and receive correlation of the MIMO
channels are taken into consideration for the calculation of
outage probability. (2) Approximated explicit expression of
the outage probability for the independent MIMO channels,
which reveals the diversity order of the OSTBC based MIMO
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relay networks, and that for correlated MIMO channels are
obtained in high signal-to-noise ratio (SNR) regime.

Notations: A bold capital letter A is a matrix, a bold
lower case letter a is a vector, and a is a scalar. We use
‖A‖F , AH , and AT to denote the Frobenius norm, the
complex conjugate transpose, and the transpose of A, re-
spectively. [a]m is the mth entry of a, and [A]mn is the
(m,n) entry of A. vec(A) reshapes A into a vector by
stacking A columnwise. ⊗ denotes the Kronecker product.
CN (0, 1) represents the complex Gaussian distribution where
the real and imaginary parts are independent and identically
distributed (i.i.d) N (0, 1/2), and Γ(·) denotes the Gamma
function. a∗ b = a(1− b)+ b(1−a) is the binary convolution.
H(·|·) and I(·; ·) denote the conditional entropy and the
mutual information between the arguments, respectively.

II. SYSTEM MODEL

We consider the classical dual-hop MIMO one-way relay
network [4], which consists of one source (S), one relay (R),
and a single destination (D) equipped with Ns, Nr, and
Nd antennas, respectively. The three MIMO channels, i.e.,
source-to-relay (S-R), relay-to-destination (R-D), and source-
to-destination (S-D), regardless of either spatially independent
or correlated, are denoted by Hsr, Hrd, and Hsd, respectively.
The probability mass function (pmf) of the binary information
sequence Us, generated by the source, is Pr(Us = 1) =
Pr(Us = 0) = 0.5. The entire transmission round requires two
time slots. In the first time slot, the information sequence is
generated, encoded, modulated, and broadcast to the relay and
the destination. Under the assumption of the LF relaying, the
relay decodes, re-encodes, and always forwards the received
signal to the destination in the second time slot. At the
destination, joint decoding is conducted to recover the data
from the source.

The capacity1 of the OSTBC based spatially independent
point-to-point MIMO channel is expressed as [6]–[8]

C(ρij) = Θ log2(1 + ρij
‖Hij‖2F
NiΘ

) bits/s/Hz,

i ∈ {s, r}, j ∈ {r, d}, and i 6= j, (1)

where ρij
2 is the average SNR at the receiver side, Θ is

the information code rate of the OSTBC, and here each
entry of Hij follows CN (0, 1). The squared Frobenius norm
of Hij , i.e., ‖Hij‖2F , follows chi-square distribution with
kij = 2NiNj being degrees of freedom. Without loss of

1We use the term “capacity” in order to make it consistent with the
references [6]–[8]. More precisely, the term “capacity” should be replaced
by “mutual information” instead.

2Note that the subscripts i and j satisfy the following condition: i ∈ {s, r},
j ∈ {r, d}, and i 6= j throughout the paper.
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generality, we set Θ = 1 throughout the paper. The distribution
of γij = ρij‖Hij‖2F /Ni can be written as [9]

f(γij ; kij) =
Ni(

γijNi
ρij

)(kij/2−1)e
−
γijNi
ρij

ρijΓ(kij/2)
, γij ≥ 0. (2)

Full channel state information (CSI) is assumed to be only
available at the receiver side. Each link is assumed to suffer
from temporally i.i.d block fading and all the nodes are
assumed to be implemented in a half-duplex mode.

III. ACHIEVABLE RATE REGION AND OUTAGE
PROBABILITY

The outage performance analysis can be classified into two
distinct cases depending on the decoding outcomes at the
relay: It either succeeds or fails in perfectly recovering the
information sequence sent from the source.

Due to the transmission orthogonality, the lossy source
channel separation theorem3 holds for the S-R link [4], [11],

R(psr)Rc,s ≤ C(γsr), (3)

where R(·) is the rate-distortion function [11], Rc,s is the
transmission rate of the source, psr is the Hamming distortion
of the S-R link. The Hamming distortion psr is expressed
as [4]

psr=

{
H−1
b [1−Φ(γsr)], for Φ−1(0)≤γsr≤Φ−1(1),

0, for γsr ≥ Φ−1(1),
(4)

where Φ(x) = C(x)/Rc,s = log2(1 + x)/Rc,s and its inverse
function Φ−1(x) = 2Rc,sx − 1, Hb(x) = −x log2(x) − (1 −
x) log2(1− x), x ∈ (0, 0.5] is the binary entropy function and
its inverse function H−1b (·) can be found in [4].

A. Case 1: psr = 0

Ur = Us with Ur representing the estimate of Us at
the relay. According to (4), γsr should satisfy the following
condition: γsr ≥ Φ−1(1). The achievable rate region for the
fully correlated Ur and Us is determined by the Slepian-Wolf
theorem, i.e., Rs ≥ H(Us|Ur) = 0, Rr ≥ H(Ur|Us) = 0, and
Rs +Rr ≥ H(Us, Ur) = 1, where Rs and Rr are the source
coding rates for the source and relay, respectively.

B. Case 2: 0 < psr ≤ 0.5

Ur 6= Us. Based on (4), γsr should satisfy the follow-
ing condition: Φ−1(0) ≤ γsr ≤ Φ−1(1). A virtual binary
symmetric channel (BSC) is utilized to model the relation-
ship between Us and Ur with crossover probability psr, i.e.,
Pr(Ur = 1|Us = 0) = Pr(Ur = 0|Us = 1) = psr and
Pr(Ur = 0|Us = 0) = Pr(Ur = 1|Us = 1) = 1 − psr. It is
relatively straightforward to find the pmf of Ur, which is in the
form of Pr(Ur = 1) = 0.5 ∗ psr = 0.5 and Pr(Ur = 0) = 0.5.

The achievable rate region for the correlated Ur and Us is
determined by the theorem of source coding with a helper
[11], which is expressed as

Rs ≥ H(Us|Ûr), (5)

Rr ≥ I(Ur; Ûr), (6)

3In principle, we should use constellation constrained capacity (CCC) here.
However, if the instantaneous SNR is low, the Gaussian capacity is almost
equal to CCC [10]. If the instantaneous SNR is large, the Hamming distortion
would be 0 under the assumption of Gaussian capacity and CCC as long as
the fixed transmission rate is less than the CCC. Hence, the use of the binary
rate distortion function and the Gaussian capacity is reasonable when using
the lossy source channel separation theorem [4].

where Ûr is the estimate of Ur at the destination.
Similar to (4), the Hamming distortion of the R-D link is

in the form of

prd=

{
H−1
b [1−Φ(γrd)], for Φ−1(0)≤γrd≤Φ−1(1),

0, for γrd ≥ Φ−1(1).
(7)

By exploiting (7), (5) and (6) can be further interpreted as

Rs ≥
{
Hb(psr), for Rr ≥ 1,

Hb(psr ∗ prd), for 0 ≤ Rr ≤ 1.
(8)

C. Outage Probability
The lossless source-channel separation theorem holds for

the S-D and R-D links. Arbitrarily small error probability can
be achieved for these two links [4], if

RsRc,s ≤ C(γsd), (9)
RrRc,r ≤ C(γrd), (10)

where Rc,r
4 is the transmission rate of the relay.

In the outage probability analysis, we consider the equality
in (9) and (10). The outage happens when rate pair (Rs, Rr)
falls outside the achievable rate region. For Case 1, the outage
occurs if

Φ(γsd) + Φ(γrd) < 1. (11)

According to (8)-(10), the outage happens for Case 2 if

Φ(γsd)<

{
Hb(psr), for Φ(γrd)≥1,

Hb(psr ∗ prd), for 0≤Φ(γrd)≤1.
(12)

Since the two cases are independent, the overall outage prob-
ability is in the form of

Pout = Pout(Case 1) + Pout(Case 2), (13)

where Pout(Case 1) and Pout(Case 2) represent the outage
probability for Cases 1 and 2, respectively.

The outage probability for Case 1 in (13) can be calculated
by taking (11) into consideration along with the precondition
{γsr ≥ Φ−1(1)},

Pout(Case 1) =

∫ ∞
Φ−1(1)

f(γsr; ksr)dγsr

∫ Φ−1(1)

γsd=0∫ Φ−1[1−Φ(γsd)]

γrd=0

f(γsd; ksd)f(γrd; krd)dγsddγrd. (14)

According to (12), the outage probability for Case 2 in (13)
can be expressed as

Pout(Case 2) = Pr(S1) + Pr(S2), (15)

where events S1 = {0 < psr ≤ 0.5,Φ(γrd) ≥ 1, 0 ≤
Φ(γsd) ≤ Hb(psr)} and S2 = {0 < psr ≤ 0.5, 0 ≤ Φ(γrd) ≤
1, 0 ≤ Φ(γsd) ≤ Hb(psr ∗ prd)}. More specifically, the
components in (15) can be further expressed as

Pr(S1) =

∫ Φ−1(1)

Φ−1(0)

f(γsr; ksr)dγsr

∫ ∞
Φ−1(1)

f(γrd; krd)dγrd∫ Φ−1[1−Φ(γsr)]

Φ−1(0)

f(γsd; ksd)dγsd, (16)

Pr(S2) =

∫ Φ−1(1)

Φ−1(0)

f(γsr; ksr)dγsr

∫ Φ−1(1)

Φ−1(0)

f(γrd; krd)dγrd∫ Φ−1{Hb(Ψ(γsr)∗H−1
b

[1−Φ(γrd)])}

Φ−1(0)

f(γsd; ksd)dγsd, (17)

4We assume that the transmission rates are the same for all the links, i.e.,
Rc,r = Rc,s = Rc. Therefore, Φ(x) is also the same for all the links.
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where Ψ(γsr) = H−1b [1− Φ(γsr)].

IV. SPATIALLY CORRELATED MIMO CHANNEL

The spatially correlated MIMO channel can be modeled
by the Kronecker correlation model [5], [12], [13], which is
described as

Hij = R
1/2
j HindR

1/2
i , (18)

where Ri and Rj are the deterministic transmit and receive
correlation matrices that characterize the spatial correlation
among the transmit antenna elements and receive antenna
elements, respectively, for MIMO antennas having equal el-
ement spacing, [Ri]mn = θ

|m−n|
i and [Rj ]mn = θ

|m−n|
j

with θi and θj denoting the transmit and receive correlation
coefficients, respectively, and Hind is a spatially independent
MIMO channel with each entry following CN (0, 1).

The singular value decomposition (SVD) of Ri and Rj is in
the form of Ri = UiDiV

H
i and Rj = UjDjV

H
j , where Ui,

Vi, Uj , and Vj are singular (unitary) matrices, and Di and
Dj are diagonal matrices with singular values on the diagonal.
The term ‖Hij‖2F in (18) is in the form of

‖Hij‖2F = ‖D1/2
j H̃D

1/2
i ‖

2
F =

Nj∑
m=1

Ni∑
n=1

(
√

[Di]nn[Dj ]mm[H̃]mn)2,

(19)
where H̃ = VH

j HindUi. vec(H̃) = (UT
i ⊗ VH

j )vec(Hind)

with UT
i ⊗VH

j being a unitary matrix. The entries of vec(H̃)
are also i.i.d. CN (0, 1) because of the properties of the unitary
matrix UT

i ⊗VH
j .

Remark. Note that we only focus on the scenarios where Ri

and Rj are full rank. In other words, the cases where θi = 1
or θj = 1 are excluded.

Lemma 1 [13]–[15]. If Z1, · · · , Zk are k i.i.d. complex
Gaussian random variables with zero mean and variance σ2

m,
m = 1, 2, · · · , k, σ2

m 6= σ2
n if m 6= n, then the random

variable X =
∑k

m=1 |Zm|2, which is a sum of independent
exponentially distributed random variables, has the following
generalized chi-square distribution

f(x; k, σ2
1 , · · · , σ2

k) =

k∑
m=1

exp(− x
σ2
m

)

σ2
m

∏k

n=1,n6=m(1− σ2
n

σ2
m

)
. (20)

According to Lemma 1, ‖Hij‖2F in (19) is a sum of
independent exponentially distributed random variables, and
the probability density function (pdf) of γij = ρij‖Hij‖2F /Ni
is given by

f(γij ;
kij
2
, [σij ]

2
1, · · · , [σij ]2kij/2)

=
Ni
ρij

kij/2∑
m=1

exp(− Niγij
ρij [σij ]

2
m

)

[σij ]2m
∏kij/2

n=1,n6=m(1− [σij ]
2
n

[σij ]
2
m

)
, (21)

where [σij ]m is the mth element of σij =
[
√

[Dj ]11[Di]11,
√

[Dj ]11[Di]22, · · · ,
√

[Dj ]NjNj [Di]NiNi ]
T .

Remark. It is straightforward to extend Lemma 1 to the spe-
cial case when some of the Zm’s have identical distribution.
Combining Zm’s having identical distributions creates a new
random variable group, each having different distributions.
The elements of the created set of distributions satisfy the
precondition of Lemma 1. Then, we can use (20) to calculate

the pdf of X with a smaller k number. Similarly, the pdf of γij
can be calculated even if some entries of σij are identically
distributed.

The outage probability for the correlated MIMO case can
be calculated in the same manner as that for the independent
MIMO case in Section III.

V. HIGH SNR APPROXIMATION

We exploit the following three approximations: (1)
exp(−x) ≈ 1−x, (2) log2(1+x) ≈ x

ln(2) , (3) 2x−1 ≈ ln(2)x

when |x| ≈ 0. Substituting (2) into (14), (16), and (17),
and calculating the integrals using these approximations, the
components of the outage probability for the independent
MIMO case in (13) can be further approximated as

Pout,ind(Case 1) ≈ 2

krd
(Nr)

krd
2 (Ns)

ksd
2 [ln(2)Rc]

ksd+krd
2

[
Γ(
ksd
2

)Γ(
krd
2

)
]−1
[
krd/2∑
m=0

(
krd/2

m

)
(−1)m

2

krd + 2m

]
ρ
− ksd

2
sd ρ

− krd
2

rd ,

(22)

Pout,ind(Case 2)≈ 2

ksd
[ln(2)NsRc]

ksd+ksr
2

[
Γ(
ksd
2

)Γ(
ksr
2

)
]−1

[
ksd/2∑
m=0

(
ksd/2

m

)
(−1)m

2

ksd + 2m

]
ρ
− ksd

2
sd ρ

− ksr
2

sr + o(ρ
− ksd

2
sd ρ

− ksr
2

sr ),

(23)

where o(ρ
− ksd2
sd ρ

− ksr2
sr ) is the higher-order infinitesimal of

ρ
− ksd2
sd ρ

− ksr2
sr as ρsd and ρsr approach infinity.

For the spatially correlated MIMO case, the approximations
for the outage probability of Cases 1 and 2 are

Pout,cor(Case 1) ≈
ksd/2∑
p=1

krd/2∑
m=1

{
1− exp

(
− ln(2)NsRc
ρsd[σsd]2p

)
− Nsρrd[σrd]

2
m

Nrρsd[σsd]2p −Nsρrd[σrd]2m
exp

(
− ln(2)NrRc
ρrd[σrd]2m

)
×
[

exp

(
(Nrρsd[σsd]

2
p −Nsρrd[σrd]2m) ln(2)Rc

ρsdρrd[σsd]2p[σrd]2m

)
− 1

]}

/

{
ksd/2∏
q=1,q 6=p

(
1−

[σsd]
2
q

[σsd]2p

) krd/2∏
n=1,n6=m

(
1− [σrd]

2
n

[σrd]2m

)}
, (24)

Pout,cor(Case 2) ≈
ksr/2∑
p=1

ksd/2∑
m=1

{
1− exp

(
− ln(2)NsRc
ρsr[σsr]2p

)
− ρsd[σsd]

2
m

ρsr[σsr]2p − ρsd[σsd]2m
exp

(
− ln(2)NsRc
ρsd[σsd]2m

)
×
[

exp

(
(ρsr[σsr]

2
p − ρsd[σsd]2m) ln(2)NsRc

ρsdρsr[σsr]2p[σsd]2m

)
− 1

]}

/

{
ksr/2∏
q=1,q 6=p

(
1−

[σsr]
2
q

[σsr]2p

) ksd/2∏
n=1,n6=m

(
1− [σsd]

2
n

[σsd]2m

)}
. (25)

A. Diversity Order and Spatial Correlation

The diversity orders of the S-R, R-D, and S-D links
are NsNr, NrNd, and NsNd, respectively. Referring to the
summation of (22) and (23), the detailed expression for the
diversity order d is in the form of

d = NsNd + min{NsNr, NrNd}. (26)
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Fig. 1. Diversity order of the outage probability of the spatially independent
MIMO relay network.

The diversity order of the relay network is formulated by the
max-flow min-cut theorem [16], which can be applied to more
general MIMO multi-source multi-relay networks.

Due to the existence of the spatial correlation, the capacity
of each link reduces accordingly. Therefore, the outage perfor-
mance decreases as the increase of the correlation coefficients.

VI. SIMULATION RESULTS

In this section, we provide a bunch of experiments to
verify our theoretical derivations. The conventional DF is
offered as a benchmark scheme. For all the simulations, we
set ρsr = ρrd = ρsd + 5 dB and Rc,s = Rc,r = 0.5. In
the first experiment, we set different values for the number
of antennas, e.g., (Ns, Nr, Nd) = {(2, 2, 2), (2, 3, 3)}. The
simulation results (including Monte-Carlo (MC) simulation
results) for the spatially independent MIMO case are provided
in Fig. 1. It can be observed that the diversity order of the
LF relay network follows (26). The MC simulation results
are closely matched with the theoretical curves. In the second
experiment, we take into account the correlation of the MIMO
channels while setting (Ns, Nr, Nd) = (2, 2, 2). Different
setups for the correlation coefficients, e.g., (θs, θr, θd) =
{(0.9, 0.93, 0.95), (0.8, 0.7, 0.75)}, are taken into considera-
tion. The simulation results, including the results for the spa-
tially independent MIMO case (i.e., (θs, θr, θd) = (0, 0, 0)),
are provided in Fig. 2. The diversity order of the correlated
MIMO case is the same as that of independent MIMO case
owing to the full rank of the correlation matrices.

VII. CONCLUSION

We studied the impact of spatial correlation of the MIMO
channel on the outage probability of the relay networks
using OSTBC, where the LF relaying strategy is applied.
The explicit approximations of the outage probabilities were
obtained using high SNR approximation. The diversity order
has been interpreted and formulated by the classical max-flow
min-cut theorem, which is applicable to more general MIMO
multi-source multi-relay networks. Spatial correlation does not
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Fig. 2. Comparison between spatially independent and correlated MIMO relay
networks.

change the diversity order as long as correlation matrices are
full rank.
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