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Hydrogen in metals has attracted much attention for a long time from both basic scientific and technological
points of view. Its electronic state has been investigated in terms of a proton embedded in the electron gas mostly
by the local density approximation (LDA) to the density functional theory. At high electronic densities, it is
well described by a bare proton H+ screened by metallic electrons (charge resonance), while at low densities
two electrons are localized at the proton site to form a closed-shell negative ion H− protected from surrounding
metallic electrons by the Pauli exclusion principle. However, no details are known about the transition from H+

to H− in the intermediate-density region. Here, by accurately determining the ground-state electron distribution
n(r) by the use of LDA and diffusion Monte Carlo simulations with the total electron number up to 170,
we obtain a complete picture of the transition, in particular, a sharp transition from short-range H+ screening
charge resonance to long-range Kondo-type spin-singlet resonance, the emergence of which is confirmed by the
presence of an anomalous Friedel oscillation characteristic to the Kondo singlet state with the Kondo temperature
TK well beyond 1000 K. This study not only reveals interesting competition between charge and spin resonances,
enriching the century-old paradigm of metallic screening to a point charge, but also discovers a high-TK system
long sought in relation to the development of exotic superconductivity in the quantum critical regime.

DOI: 10.1103/PhysRevB.92.155140 PACS number(s): 71.10.Ca, 71.15.Mb, 71.45.Gm, 75.20.Hr

I. INTRODUCTION

Physics in the heavy-fermion superconductors has been
understood by the concept of quantum criticality in a system
of regularly arrayed dense Kondo impurities (Kondo lattice)
[1–3] and the spin-fluctuation mechanism is believed to be
responsible for superconductivity, as inferred from the strong
correlation between the superconducting transition tempera-
ture Tc and the Kondo temperature TK [4–7]. More specifically,
Tc is of the order of 0.1TK, as shown in Fig. 1 plotted based
on the information available in the literature, from which we
can conceive an idea that high-Tc superconductivity will be
obtained if we can discover a Kondo system with very high
TK. In fact, the recently discovered plutonium compounds such
as PuCoGa5 with Tc = 18.5 K and TK ≈ 260 K [8,9] may be
regarded as the successful realization of this idea. Thus, we
should make further pursuit of this idea by searching for a
new class of Kondo systems with TK higher than 1000 K.
Theoretically, this search can be done by the first-principles
quantitative determination of TK for the composite system of
an impurity atom embedded in a metal.

As first suggested by Debye and Hückel [10], an atomic
nucleus charge +Ze in a metal is screened by accumulation
of metallic electrons which is regarded as a charge resonance
and well described by the linear-response theory. This concept
of metallic screening is prevailing for a century, but because
Z is not infinitesimally small, we need to consider nonlinear
effects in the screening, including the contribution from spin
fluctuations. The spin contribution will be enhanced, if Z is
an odd integer, such as Z = 1 (case of a proton), in which a
spin-polarized bound state might appear at the impurity atom.

With the above basic scientific issues in mind, we have
concerned with the problem of hydrogen impurity in metals
which attracts long attention from a technological point of view
[11], such as hydrogen storage in solids, sensor applications,
and catalysis. Its electronic state has been investigated in

terms of a proton immersed into an interacting many-electron
system plus a compensating background (electron gas: EG)
since 1970s because this is an ideal system to study important
topics related to an impurity in metals, such as the embedding
energy, a key quantity in the effective-medium theory [12–14].
It is also studied from a motivation to improve on the local
density approximation (LDA) to the density functional theory
(DFT) by using the electron distribution n(r) obtained by
quantum Monte Carlo methods [15–17]. Nonlinear metallic
screening is another extensively examined topic in this system
[18–20], but no serious attention has been paid so far to the
spin resonance effect.

The homogeneous EG with the average density n0 is
specified by a single parameter rs , defined by rs = (3/4πn0)1/3

in units of the Bohr radius aB. (We use atomic units hereafter.)
Its characteristic energy is the Fermi energy εF, given by
k2

F/2 (= 1.84r−2
s ) with kF(= 1.92r−1

s ) the Fermi momentum
[Fig. 2(a)]. Hydrogen, on the other hand, has two typical
energies [Fig. 2(b)], the 1s level ε1s(= 0.5) and the electron
affinity εA(= 0.0278). Ratio of εF to ε1s or εA determines the
character of the ground state in the proton-embedded EG; for
high n0 corresponding to εF � ε1s (or rs � 2), the 1s level
is buried in the continuum of EG and thus no electrons are
bound to a bare proton H+, leading to a charge resonance (CR)
state in which H+ is dielectrically screened by accumulation of
itinerant electrons near the Fermi level μ [Fig. 2(c)]. For low n0

with εF � εA (or rs � 10), H+ captures two antiparallel-spin
electrons to form H−. This closed-shell negative ion resides in
EG with repelling other electrons owing to the Pauli exclusion
principle [Fig. 2(d)], but if εF increases and reaches as high as
εA, the Fermi pressure from EG to the ion becomes so large
that the localized electrons in H− begin to spill out into EG.
Then, a crucial question is whether this state at εF ≈ εA is the
same as that in Fig. 2(c) or not.

Intuitively, for εA � εF � ε1s , we can imagine a spin-
polarized state made of a single electron with either up or
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FIG. 1. (Color online) Superconducting transition temperature
Tc versus Kondo temperature TK (a characteristic energy scale for
spin fluctuations) in heavy-fermion superconductors.

down spin captured by H+, but in view of the concept of
spin screening to form a Kondo singlet [1,21] in the impurity
Anderson model (IAM) [22], we anticipate the emergence of
not a spin-polarized but a Kondo-type spin-singlet resonance
(SSR) state �SSR [Fig. 2(e)]. Because there is no clear
distinction between conduction and localized electrons, this
SSR state is composed of only itinerant electrons near μ

without a local spin moment, similar to CR, but an important
difference exists in the screening length; for CR, it is the
Thomas-Fermi length λTF ≈ k−1

F , but for SSR, the Kondo-
screening length ξK is much longer than k−1

F , leading to an
anomalous Friedel oscillation [23–26]. Then, the main aim of
this paper is to confirm this conjecture about the emergence of
SSR in the proton-embedded electron gas with determining TK

from first principles, but this confirmation is not an easy task
due to the existence of various difficulties, as we shall explain
in the following in some detail.
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FIG. 2. (Color online) Proton-embedded EG with characteristic
energies in (a) and (b). Three possible ground states are schematically
illustrated in (c)–(e) corresponding, respectively, to a bare proton H+

screened by metallic electrons with the screening length ≈k−1
F (a CR

state), a closed-shell ion H− confined in EG, and an SSR state in which
if the 1s (virtual) level of H is temporarily occupied by a single up-
(down-) spin electron, down- (up-) spin clouds of itinerant electrons
are formed around H for spin screening with the screening length
ξK � k−1

F . These temporary states are superposed with interchanging
the roles of spins to make a resonance state �SSR.

The Hamiltonian for IAM, HA, is written as [22]

HA =
∑
kσ

εkc
†
kσ ckσ + Ed

∑
σ

c
†
dσ cdσ + Uc

†
d↑cd↑c

†
d↓cd↓

+
∑
kσ

Vdk(c†dσ ckσ + c
†
kσ cdσ ), (1)

in second quantization with use of the annihilation operator
ckσ for a conduction electron with wave vector k, spin σ , and
one-body band energy εk, while cdσ is an operator to destroy
a localized d electron with spin σ at the energy level Ed . The
d electrons not only interact to each other at the localized site
with the strength U , but also hybridize with the conduction
electrons with the strength Vdk. Based on HA, �SSR is given
as [27,28]

�SSR = a0�0 +
∑

k

ak(c†d↑ck↑ + c
†
d↓ck↓)�0, (2)

where �0 is the Slater determinant made of conduction-
electron orbitals and the parameters a0 and ak are to be
determined variationally. As Eq. (2) clearly shows, �SSR is
not described by a single Slater determinant but is a correlated
many-body state. It must also be noted that continuum
conduction states around the Fermi level μ are indispensable
for the construction of this �SSR.

In our work, we are not allowed to employ this simple
model HA. Instead, we have to start with the first-principles
Hamiltonian H , described in atomic units as

H = −
∑

i

∇2
i

2
+ 1

2

∑
i �=j

1

|r i − rj | +
∑

i

vext(r i) + CZ
N, (3)

in first quantization. Here, we have considered a neutral atom
of atomic number Z at the origin of coordinates immersed
into the jellium sphere of radius R and average density n0.
The number of electrons contained in the jellium sphere is
4πR3n0/3 = (R/rs)3, so that the total electron number N is
equal to Z + (R/rs)3, satisfying global neutrality, from which
we obtain R = (N − Z)1/3rs . In Eq. (3), the external potential
working on an electron vext(r) is composed of the potential
from the nucleus and that from the positive background,
written as

vext(r) = − Z

|r| − N − Z

2

3R2 − r2

R3
θ (R − |r|)

− N − Z

|r| θ (|r| − R), (4)

with θ (x) the Heaviside function and CZ
N represents

the Coulomb self-energy stemming from both nucleus-
background and intrabackground interactions, given by

CZ
N = 3

2

Z(N − Z)2/3

rs

+ 3

5

(N − Z)5/3

rs

. (5)

In solving Eq. (3), we impose the fixed boundary condition
to make the wave function vanish at |r i | = R. Irrespective of
whether we include the constant term CZ

N in H or not, there
is no problem of divergence in this finite-N system, but CZ

N is
needed in order to achieve the mutual global cancellation in
energies between the electron-background attractive potentials
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and the repulsive potentials of both electron-electron and intra-
background interactions for the bulk (N → ∞) system [29].

By comparing H in Eq. (3) with HA, we readily see their
differences; first, there is no predetermined localized state
in H and thus a (virtual) localized state, if any, must be
determined in the first place in constructing �SSR with related
parameters such as Ed , U , and Vdk, if necessary. Second and
more importantly, the long-range Coulomb interaction, which
is completely neglected in HA, works among metallic electrons
in H , making solution of the problem quite difficult. In fact,
even in the homogeneous EG without the embedded atom, the
problem is sufficiently complicated in both variational [30–32]
and Green’s-function [33,34] approaches. Incidentally, this
long-range Coulomb interaction is the source to bring about
CR and therefore it is indispensable for discussing competition
between CR and SSR. Since this discussion constitutes another
important aim of this paper, we can never neglect this long-
range Coulomb interaction, making all theoretical and com-
putational techniques developed so far for HA useless to H .

Usually, the first-principles Hamiltonian is solved by either
diffusion Monte Carlo (DMC) simulations or DFT-based meth-
ods. The former is an excellent method to obtain fairly accurate
results for the ground state, but it can never directly treat
�SSR, because DMC simulations can be done only for finite-N
systems in which all levels are discrete, while in constructing
�SSR, we need continuum conduction states which are allowed
only in the bulk (N → ∞) system. The latter methods can
easily treat the bulk system, but the ground-state physical
quantities are calculated in terms of a single Slater determinant
made of Kohn-Sham (KS) orbitals introduced in DFT, so that it
is not clear at all as to how much the obtained quantities reflect
the highly correlated many-body nature of �SSR and how
accurate they are, especially because in actual calculations we
always have to resort to some approximation to the exchange-
correlation energy functional Exc[n(r)] such as LDA.

Faced with those difficulties, we have decided to focus
on n(r) rather than the wave function �SSR itself, mainly
because DFT can, in principle, provide exact n(r) and
the corresponding ground-state energy E0 by projecting the
real interacting many-body system to a fictitious auxiliary
noninteracting system in which n(r) can be calculated with use
of a single Slater determinant made of KS orbitals, even if we
know nothing about �SSR in the real system. This nontrivial
assertion, one of the central theorems in DFT, is rigorously
proved as long as the ground state is nondegenerate [35], as is
the case for SSR. Of course, information obtained only through
n(r) and E0 is limited and useless for discussing transport [36]
and excited-state properties, but we claim that it is still plenty
enough for our purpose of distinguishing between CR and
SSR states and determining TK in SSR. In the context of DFT,
given exact n(r), it is also an interesting issue to clarify how
KS orbitals, which are defined in the fictitious system and thus
have basically no physical relevance, behave so as to correctly
provide n(r) in a strongly correlated state such as SSR. Thus,
this clarification constitutes an additional aim of this paper.

In implementing calculations of n(r), we adopt the fol-
lowing strategies: (i) In actual LDA calculations, we employ
the local spin-density approximation (LSDA) [37] by choos-
ing a spin-dependent exchange-correlation energy functional
Exc[nσ (r)] written in terms of the spin-resolved electron

distribution nσ (r), so that we can check a possibility of the
spin-polarized (i.e., non-spin-singlet) ground state by detecting
the difference between n↑(r) and n↓(r). (ii) We assess the
results in LSDA at finite-N systems in comparison with
those in fixed-node DMC [38] with taking N up to 170, a
much larger size than those in previous variational Monte
Carlo (VMC) calculations [16,17]. (iii) We obtain n(r) in
the bulk system by the calculation in LSDA and also by
extrapolation of DMC data to N → ∞. The extrapolated
results for n(r) in DMC are independent of N and thus we can
assume that they will be free from any restrictions incurred
from the fixed-node approximation, the only approximation
adopted in DMC simulations, because the fixed-node positions
in DMC are prescribed by R [and consequently by N for
given rs due to R = (N − Z)1/3rs] in the fixed boundary
condition, indicating that independence of N also suggests
independence of the postulated node positions. (iv) We check
whether the obtained n(r) at N → ∞ exhibits the behavior
characteristic to the Kondo SSR state or not. More specifically,
we look for modulation of the Friedel-oscillation period, a
very important inherent property of the anomalous Friedel
oscillation, to which we call serious attention for the first time
in quantitatively determining ξK and consequently TK from
first principles.

In accordance with those strategies, we have investigated
n(r) in finite-N systems in both LSDA and DMC to find spin-
unpolarized ground states with a strong size effect and a series
of magic numbers (10, 60, 170, . . .) of N at which convergent
results are easily obtained. These features can be explained
in terms of the emergence of SSR with its long-range nature
of ξK. Its emergence is also signaled in LSDA at N → ∞
for rs � 2 by the appearance of a strange shallow bound KS
orbital below the conduction band bottom with an unusually
long binding radius. In spite of the large size effect, for each
N , n(r) in LSDA agrees very well with that in DMC.

By summarizing the results thus calculated, we have
obtained a ground-state diagram in (rs , N−1) space, shown
in Fig. 3, exhibiting sharp sequential transitions among CR,
SSR, and closed-shell H− ion confinement states. Contrary to
the previous explanation [12], we claim that the very shallow
bound KS orbital found in LSDA at intermediate densities is
not a physical H− but appears just to describe the long-range
change of n(r) over ξK in SSR in the form of an envelope
density. We also find that hydrogen is most stably embedded
in EG in the SSR region, especially, optimally firmly at rs ≈ 4
with the Kondo temperature TK ≈ 2100 K, indicating our
success in discovering a long-sought high-TK system.

In Sec. II, we explain the calculation methods in both LSDA
and DMC. In Sec. III, we show the calculated results and in
Sec. IV we discuss on the obtained results, together with their
implications and future directions. Finally, in Sec. V, we give
a summary of this paper.

II. CALCULATION METHODS

A. LSDA in the finite-N system

Let us consider the neutral system of a single nucleus with
atomic number Z embedded in the N -electron jellium sphere
of radius R. Its Hamiltonian H is given in Eq. (3). In LSDA
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FIG. 3. (Color online) Ground-state diagram in the proton-
embedded electron gas in (rs , N−1) space with N the total electron
number, indicating sharp but size-dependent sequential transitions
among CR, SSR, and closed-shell ion H−. Rigorously speaking,
SSR is defined only at N → ∞, but the states for finite N directly
connected to SSR at N → ∞ are also called SSR. In the bulk
system, the screening length ξK is predicted to diverge at the CR-SSR
boundary or rs ≈ 1.97 with the change of rs , signaling the sharp
transition. For an isolated H− ion at N = 2, we have used the exact
data for n(r) [39] to determine rs = 5.04 by averaging the local
rs(r){= [3/4πn(r)]1/3} over the weight of n(r) itself.

to DFT, the KS equation is written as[−∇2/2 + vKS
σ (r)

]
φiσ (r) = εiσ φiσ (r), (6)

where εiσ and φiσ are the energy level and the normalized
wave function for KS orbital i and spin σ , respectively, and
vKS

σ (r) is the KS potential, determined by

vKS
σ (r) = vext(r) +

∫
d r ′ n(r ′)

|r − r ′| + vxc
σ (r; [nσ ]), (7)

where vxc
σ (r; [nσ ]) is derived from Exc[nσ ] through the

functional derivative as

vxc
σ (r; [nσ ]) = δExc[nσ ]/δnσ (r). (8)

With use of the lowest-Nσ KS orbitals, nσ (r) is given by

nσ (r) =
Nσ∑
i=1

|φiσ (r)|2, (9)

and n(r) is the sum of n↑(r) and n↓(r). The spin density nσ (r)
and consequently Nσ with N = ∑

σ Nσ should be determined
by the self-consistent solution of Eqs. (6)–(9), together with
the fixed boundary condition

φiσ (r) = 0, (10)

at |r| = R = (N − Z)1/3rs . By using those converged quan-
tities, we can calculate E0(N,Z) the ground-state energy
including the constant term CZ

N by

E0(N,Z) =
∑
iσ

εiσ +
∑

σ

∫
d r

[
vext(r) − vKS

σ (r)
]
nσ (r)

+ 1

2

∫ ∫
d r d r ′ n(r)n(r ′)

|r − r ′| + Exc[nσ ] + CZ
N.

(11)

B. VMC

With use of the lowest-N KS orbitals thus obtained, we can
define the Slater determinant �0(r1, . . . ,rN ), with which the
trial many-body ground-state wave function �(r1, . . . ,rN ) for
the VMC calculation can be constructed in the Slater-Jastrow
type as [40]

�(r1, . . . ,rN ) = exp[J (r1, . . . ,rN )]�0(r1, . . . ,rN ), (12)

where the Jastrow function J (r1, . . . ,rN ) contains the terms
to describe electron-nucleus correlation u1(r i), two-electron
correlation u2(r i − rj ), and three-body nucleus-two-electron
correlation u3(r i ,rj ,r i − rj ) as

J (r1, . . . ,rN ) =
∑

i

u1(r i) +
∑
i>j

u2(r i − rj )

+
∑
i>j

u3(r i ,rj ,r i − rj ). (13)

The actual choice of the forms for u1(r i), u2(r i − rj ), and
u3(r i ,rj ,r i − rj ) as well as their optimization is done by
adopting the CHAMP-code package [41] as it is. Then, the
expectation value 〈A〉 of an operator A is given by

〈A〉VMC = 〈�|A|�〉/〈�|�〉. (14)

By putting A = n̂(r) = ∑
i δ(r − r i) in Eq. (14), we obtain

n(r) in VMC.

C. DMC

Starting with the variationally optimized wave function �

thus determined, we can further improve on the ground-state
wave function by considering the diffusion equation for �(τ )
in the imaginary time τ as

−∂�(τ )

∂τ
= (H − ER)�(τ ), (15)

where ER is the reference energy to be adjusted to E0 in the
course of DMC simulations by removing the τ dependence
from the asymptotic form of �(τ ) at τ → ∞. Note that the
formal solution to Eq. (15) is written as

�(τ ) =
∑

n

e−(En−ER)τ |�n〉〈�n|�〉, (16)

where {�n} is the normalized mutually orthogonal complete
set of eigenfunctions for H with the corresponding set
of eigenenergies {En}. Then, as long as 〈�0|�〉 �= 0, the
asymptotic τ -independent wave function � is reduced to
the true ground-state wave function �0, apart from the
normalization factor.

It is appropriate to add a comment on the condition of
〈�0|�〉 �= 0 here; by invoking the Anderson’s orthogonality
theorem [42], one may argue that 〈�0|�〉 vanishes in SSR,
but this is not correct for the reasons below; (i) both �0 and �

include the effect of the impurity atom, while the Anderson’s
theorem concerns with the relation between the wave
functions with and without the impurity. (ii) Due to the
presence of the Jastrow factor J , � is not simply given by
the single Slater determinant �0 on which the Anderson’s
theorem is proved. (iii) DMC simulations are done for finite

155140-4



EMERGENCE OF A KONDO SINGLET STATE WITH KONDO . . . PHYSICAL REVIEW B 92, 155140 (2015)

N , while the Anderson’s theorem becomes valid only at
N → ∞.

In order to avoid the notorious fermion sign problem, we
employ the fixed-node approximation in DMC simulations.
This approximation may bring about undesirable errors in �,
but we try to minimize them by seeking for N -independent
results by exploiting the fact that the node positions depend
on N in the fixed boundary condition, leading to the hope that
unphysical node-position-dependent effects will be removed
by extracting the N -independent results. In performing actual
fixed-node DMC simulations at a fixed N , we adopt CHAMP

again to obtain the stably converged asymptotic wave function
�(r1, . . . ,rN ). Then, n(r) in DMC is estimated by a second-
order approximation to the exact expectation value [40], which
amounts to

n(r)DMC = 2 〈�|n̂(r)|�〉/〈�|�〉 − n(r)VMC, (17)

where n(r)VMC = 〈n̂(r)〉VMC.

D. LSDA in the bulk system

Contrary to VMC and DMC, LSDA allows us to directly
treat the bulk (N → ∞) system, in which almost all states
in KS orbitals are continuum ones, for which we may write
εi = k2/2 with momentum k and φiσ (r) = Rklσ (r)Ylm(r/r)
with the spherical harmonics Ylm(r/r) and the radial wave
function Rklσ (r) satisfying the following boundary condition
at r (≡|r|) → ∞:

Rklσ (r) → cos[δlσ (k)]jl(kr) − sin[δlσ (k)]nl(kr), (18)

apart from a normalization factor, where jl(kr) and nl(kr) are
the spherical Bessel functions and δlσ (k) is the phase shift of
angular momentum l to be determined under the condition of
δlσ (∞) = 0, ensuring that an electron behaves as a free particle
at k (≡|k|) → ∞. There is a possibility of finding bound states
below the bottom of the conduction band (εiσ < 0) among
KS orbitals for which φiσ (r) → 0 at r → ∞. The Levinson
theorem [43] dictates that the total number of the bound
states in KS orbitals NBS is given by

∑
lσ (2l + 1)δlσ (0)/π ,

while Z = ∑
lσ (2l + 1)δlσ (kF)/π by the Friedel sum rule

[44].

E. Embedding energy

The embedding energy δE is defined as the difference of
the ground-state energies between the atom-embedded EG and
the system of separated homogeneous EG and neutral atom.
Usually this concept is relevant only to the bulk EG. Thus,
denoting the ground-state energy of the isolated neutral atom
as EZ

a , we can obtain δE through

δE = lim
N→∞

[E0(N,Z) − E0(N − Z,0)] − EZ
a . (19)

Since δE is of the order O(1) in comparison with E0 of the
order O(N ), due care must be exerted in order to accurately
evaluate δE at N → ∞. For this purpose, we rewrite Eq. (19)
with using δn(r) [= n(r) − n0] and δ′

lσ (k), the derivative of
δlσ (k) with respect to k, into the following form with ensuring

the convergence of integrals:

δE =
∑

iσ∈BS

εiσ +
∑
lσ

(2l + 1)
∫ kF

0
dk

δ′
lσ (k)

π

k2

2

−
∫

d r
Z

r
δn(r) + 1

2

∫ ∫
d r d r ′ δn(r)δn(r ′)

|r − r ′|

−
∑

σ

∫
d r

{
vxc

σ (r; [nσ ])nσ (r) − vxc
σ (r; [n0/2])

n0

2

}

+ Exc[nσ ] − Exc[n0/2] − EZ
a , (20)

where BS stands for the set of possible bound states. The
difference in the contribution of KS energies from continuum
states is treated by the consideration of change in the density
of states, δ′

lσ (k)/π .

III. RESULTS FOR PROTON IMMERSION

A. LSDA for the bulk system

In line with the previous result [45], the ground state
in the proton-embedded (Z = 1) bulk EG is perfectly spin
unpolarized, i.e., n↑(r) = n↓(r) at every r , at least for rs < 15
and our results on n(r) and δE in LSDA are in good agreement
with those in previous calculations [12–15,18,19,46]. In Fig. 4,
the obtained n(r) normalized by n(0) is plotted as a function
of 2kFr/π for rs = 1, 4, and 14, together with the s-wave
phase shift δs(k) which is spin independent and gives by far
the largest contribution among all δlσ (k)’s.

For rs < 1.97, we obtain δlσ (0) = 0 and thus NBS is zero,
leading to the typical n(r) in CR with H+ screened by metallic
electrons in a short range. For rs � 1.97, on the other hand,
δs(0) = π and thus NBS = 2, seemingly implying the sudden
appearance of H− ion confined in EG at rs = 1.97 [12]. This
must be true, if nL(r) the localized-electron distribution is
about the same as n(r) for |r| smaller than the H− ion range,
as is the case for rs � 12.5, in which δs(k) is distinctive and
almost a universal function of k/kF, as seen in Fig. 4(b). Note
that the deep dip in n(r) just outside the ion region, as seen for
rs = 14 in Fig. 4(a), is a typical electron profile describing the
repulsive action of localized closed-shell electrons to exclude
metallic electrons from the ion region by the Pauli exclusion
principle.

For 1.97 < rs � 12.5, however, the “localized” electrons
behave much differently; at rs = 4, for example, they extend
long up to |r| ≈ 82 and concomitantly nL(0) is much smaller
than n(0), indicating deep and massive penetration of itinerant
electrons into the proton site, but such penetration would
never be allowed due to the Pauli exclusion principle, if
the closed-shell H− ion were firmly constructed. Thus, by
remembering that KS orbitals in DFT are not necessarily tied
with real physical entities but just introduced for mathematical
convenience to correctly reproduce n(r), we can assume that
this “localized” orbital does not represent a real localized state
but just describes the long-range change of n(r) in the form
of an envelope density over ξK in SSR. Notice that δs(kF) in
this density region lies between 0.7 × (π/2) and 1.3 × (π/2),
which means that δs(kF) is close to π/2, a value expected in
the Kondo resonance state in IAM [22].
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FIG. 4. (Color online) Electron distribution n(r) normalized by
n(0) in (a) and spin-independent s-wave phase shift δs(k) in (b)
obtained in LSDA for the proton-embedded bulk EG. In (a), the
dotted curves show the contribution from the KS bound state which
is absent at rs = 1 must be a real physical state representing H− at
rs = 14, and appears only as mathematical convenience for describing
the long-range decrease in amplitude of the Friedel oscillation in SSR
at rs = 4. The label “localized” with a quotation mark indicates this
situation.

B. Comparison between LSDA and DMC

Before going into a more detailed discussion on SSR, let
us assess the accuracy of LSDA in comparison with DMC,
specifically at intermediate densities. At rs = 4, for example,
in Fig. 5, we see a good agreement between LSDA and DMC
for n(r) at any r , including the sphere boundary, at each N ,
although the results in VMC do not match so well, assuring the
importance to perform DMC for taking the expectation values
in accordance with Eq. (17).

As for N dependence or the size effect, we find that N =
170 is not large enough to attain convergence in n(r) for |r| �
3.5 in both LSDA and DMC. For smaller |r|, however, no
appreciable difference is seen between N = 60 and 170 in
DMC (and among N = 60, 170, and ∞ in LSDA) for rs � 4,

2 80
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N =170
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FIG. 5. (Color online) Examples of the calculated electron dis-
tribution n(r) obtained by DMC, VMC, and LSDA for (a) N = 60
and (b) 170 at rs = 4. The result in LSDA at N → ∞ is also shown.

implying that N = 60 is large enough to obtain the convergent
n(r) near the proton site.

C. Cusp theorem and the on-top density

According to the cusp theorem [47], n(r) near a nucleus of
atomic number Z behaves rigorously in the manner as

n(r) −−→
r ≈ 0

ncusp(r) ≡ n(0) exp(−2Zr), (21)

where ncusp(r) exhibits strictly a linear change with r in
semilog plots [the dashed lines in Figs. 6(a) and 6(b)]. By
exploiting this linear behavior, we can rather easily and
accurately determine the on-top density n(0) in DMC by
looking at the data in the region of 0.2 � r � 0.5, in spite of
the scattered nature of data points for n(r) at r � 0.2 due to the
rapid increase in energy scale determined by the r−1-Coulomb
potential.

For rs � 11, n(0) thus obtained is about the same as the
exact one for an isolated H− ion [39], as shown in Fig. 6(b)
for rs = 11–14, indicating that the state is very close to the
H− ion confinement state. A more detailed observation on
the DMC data reveals a systematic change of the behavior at
r � 0.2 with the increase of rs ; for rs � 12.5, the majority
of data points deviate upward, while opposite is the case for
rs � 12.5. The upward deviation indicates that the metallic
electrons rather easily penetrate into the core of the H− ion,
which is not allowed, once the closed-shell structure is solidly
constructed. On the other hand, the downward deviation is
consistent with the formation of the closed-shell ion, leading
to the conclusion that the transition to the H− ion confinement
state occurs at rs ≈ 12.5, the same rs as that in LSDA.
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FIG. 6. (Color online) Short-range part of n(r) in DMC and
LSDA at (a) rs = 4 and (b) rs = 11−14. For comparison, the exact
result for an isolated negative hydrogen ion H− [39] is also plotted.

In Fig. 7, we plot n(0) by changing rs and N and find that
the results do not depend on N for rs � 3, but they do for
rs � 3, i.e., in the CR-SSR transition region. The transition is
signaled by a jump in n(0) in both LSDA and DMC, although
its magnitude decreases with increasing N and eventually at

n(
0)

  [
a 

  ]
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FIG. 7. (Color online) On-top density n(0) plotted as a function
of rs for N = 60 (and 170 only for rs = 4) in DMC and for N = 60,
170, and ∞ in LSDA, together with the exact results for an isolated
H− ion (N = 2). The transition points are indicated by arrows. For
the data in DMC, errors are within the size of square symbols.

N → ∞ no jump is seen in LSDA even at rs = 1.97 at which
the transition is known to occur through the abrupt change in
δs(0).

In an extensive search for favorable N at which we
can easily obtain the convergent ground state, we find
that this jump becomes much enhanced at the magic
numbers (10, 60, 170, . . .) of N . Let us consider the
reason for this fact; in LSDA, all KS levels are dis-
crete at finite N and the stacking sequences of the occu-
pied levels are (1s,2p,2s), (1s,2p,2s,3d,4f,5g,3p,3s), and
(1s,2p,2s,3d,4f,3p,3s,5g,4d,6h,7i,5f,8k,4p,4s) for N =
10, 60, and 170, respectively, reflecting the competition
between the −r−1 and r2 potentials in Eq. (4) and the outermost
s orbital, situating very near the Fermi level μ at each magic
number N , plays a key role in stabilizing the ground state. We
recognize that this outermost s orbital mimics the SSR state
at finite N , at least for R < ξK, in view of the fact that the
actual SSR state in Kondo physics is situated at μ, extending
very long over the range ξK with an s-wave character. Then, the
jump in n(0) is related to the transition from the empty s-orbital
state (corresponding to CR) to the s-orbital occupied one
(corresponding to SSR) with changing N in 8 → 10, 58 → 60,
and 168 → 170 at rs = 3.85, 2.65, and 2.87, respectively, in
LSDA. In DMC, convergent results are also easily obtained for
the same series of N and the transition occurs, for example, at
rs ≈ 2.65 for N = 58 → 60, just as in LSDA. The next N in
this series is 340 associated with the 5s-orbital empty-occupied
transition, but DMC at this N is currently out of our reach.
At the second transition into the H− confinement state, a
change in the stacking sequence occurs in LSDA. Those
transition points, along with the second transition point
obtained in DMC by the data shown in Fig. 6(b), provide
the ground-state diagram in (rs , N−1) space in Fig. 3.

D. Embedding energy

In calculating δE by use of Eq. (19) at some finite N ,
we need E0(N − 1,0) in addition to E0(N,1), but for an
even number of N , the ground state of the (N − 1)-electron
system is necessarily a spin-polarized one. Nevertheless, for
smoothly connecting to the spin-unpolarized ground state
at N → ∞, it is better to calculate in the spin-unpolarized
situation. In LSDA, by a spin-symmetrized sum of KS orbitals
by fractionally occupying the orbitals at the Fermi level, we
can obtain this needed spin-unpolarized ground-state energy
E0(N − 1,0) with which we can calculate δE for finite-N
systems.

In DMC, however, we cannot adopt this procedure. Thus,
we first calculate the spin-unpolarized ground-state energy
E0(N − 2,0) in DMC, starting with the Slater determinant
�0(r1, . . . ,rN−2) without the outermost s orbital. Then, we
estimate E0(N − 1,0) by

E0(N − 1,0) = N − 1

N − 2
E0(N − 2,0)

[
1 + αN−1

(N − 1)1/3

]
,

(22)

with the coefficient αN−1 determined through E0(N − 1,0)
and E0(N − 2,0) in LSDA. We have deduced this approx-
imation scheme by considering that the leading term in
E0(N − 1,0) is, in general, in proportion to (N − 1) due to
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FIG. 8. (Color online) Embedding energy δE calculated in the
same situations as those for n(0) in Fig. 7. Errors in DMC are within
the size of square symbols.

extensiveness of the total energy as well as the subleading
term in proportion to (N − 1)2/3 due to the surface-energy
contribution. In CR in which the outermost s orbital is empty
even for the system with Z = 1 and N electrons, instead of
E0(N − 2,0), we calculate E0(N,0) in DMC, with which we
estimate E0(N − 1,0) by a similar strategy.

In Fig. 8, δE is given as a function of rs , exhibiting the N

dependence similar to that in n(0) in Fig. 7, including jumps
at CR-SSR transitions. Our results for δE agree reasonably
well with previous ones [12–19], although due attention to
the size dependence was not paid previously. These results of
δE demonstrate that hydrogen is most stably embedded in EG
in the form of SSR. Thus, the concept of SSR is deemed to
play a key role in hydrogen storage in metals and hydrogen is
expected to reside at a site with rs ≈ 4 in an inhomogeneous
metal.

E. Anomalous Friedel oscillation

Basically, the Friedel oscillation due to the presence of a
proton at the origin is a concept defined in the bulk system,
but if we try to discuss it with use of the data in DMC,
we need to eliminate the sphere-boundary effect from n(r)
obtained in finite-N systems. For this purpose, we adopt
the following procedure [17]; we first calculate the charge
distribution nN,Z(r) in the finite-N system corresponding to
E0(N,Z) and then we estimate n(r) through the cancellation
of the sphere-boundary effect by subtracting nN−1,0(r) from it
as

n(r) ≈ nN,1(r) − nN−1,0(r) + n0. (23)

In LSDA, we can employ Eq. (23) by using nN−1,0(r) which
is obtained in the spin-unpolarized situation simultaneously
with E0(N − 1,0), but in DMC, only nN−2,0(r) associated
with E0(N − 2,0) is available. Thus, we estimate nN−1,0(r)
from this nN−2,0(r) as

nDMC
N−1,0(r) = λβ(r) nDMC

N−2,0(λr), (24)

where λ is a parameter to correct the difference in the
sphere radius, defined as λ = [(N − 2)/(N − 1)]1/3, and the
r-dependent exponent β(r) is determined with use of the data
for the electron distribution in LSDA as

β(r) = ln
[
nLSDA

N−1,0(r)
/
nLSDA

N−2,0(λr)
]/

ln λ. (25)
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FIG. 9. (Color online) Long-range part of n(r) in both DMC and
LSDA obtained by the elimination of the sphere-boundary effect.

An example of n(r) obtained through the above procedure
at rs = 4 is given in Fig. 9, in which we find good convergence
for r � 7 in changing N by the comparison between N = 60
and 170, illustrating that this procedure doubles the size-
convergent range of r as compared with that in Fig. 5.
Admittedly, discrepancy is seen in the oscillation amplitude
between DMC and LSDA, but overall good agreement and
size convergence are obtained in the Friedel-oscillation phase,
indicating that accurate enough information is now available
on the node positions in δn(r) up to r ≈ 13. Incidentally, the
outermost s orbital contributes much to the oscillation behavior
in Fig. 9, assuring its importance in the SSR-density region.

In order to unambiguously confirm the emergence of SSR,
let us examine the Friedel oscillation in n(r) in the light of its
general behavior, known as [23–26]

n(r) −−−→
r�k−1

F

n0 + 1

4π2r3

[
cos

(
2kFr − 3π/2 + 2δ(0)

s

)
F (r/ξK)

− cos(2kFr − 3π/2)
]
. (26)

Here, only the s-wave contribution, which indeed dominates
others in the present case, is considered and δ(0)

s is the s-wave
phase shift at the Fermi level produced by the potential
scattering without the Kondo-resonance effect. In Eq. (26),
F (r/ξK) ≡ 1 in CR, but in SSR it gradually decreases from
1 for r � ξK to −1 for r � ξK due to physics of asymptotic
freedom [24]. Actually in SSR, F (x) is known to be a universal
scaling function, as explicitly given in Fig. 10(a).

By appropriately choosing the branch of tan−1 x, we can
rewrite Eq. (26) into

n(r) −−−→
r�k−1

F

n0 − A(r)

4π2r3
cos[2kFr + δ(r)], (27)

with the amplitude A(r) and the phase δ(r), given by

A(r) =
√

1 − 2F (r/ξK) cos
(
2δ

(0)
s

) + F (r/ξK)2, (28)

δ(r) = tan−1

[
1 − F (r/ξK) cos

(
2δ(0)

s

)
F (r/ξK) sin

(
2δ

(0)
s

)
]
. (29)

If δ(0)
s is in the range (0,π/2), δ(r) increases gradually from

δ(0)
s for small r to δ(0)

s + π/2 for large r in accordance
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FIG. 10. (Color online) (a) Universal scaling function character-
izing SSR [24,25]. (b) Friedel oscillation in SSR in the proton-
embedded EG at rs = 4, as seen by the plot of δn(r)r3/Z in both DMC
and LSDA to detect the half period of the oscillation in comparison
with that in CR obtained in the system with Z = 0.01, a fictitious tiny
charge to ensure that the ground state can be accurately obtained in
LSDA as a CR state even at rs = 4. (c) First three modulation factors
in the half period of the anomalous Friedel oscillation, given through
Eq. (29) with use of F (x) in (a), plotted as a function of the s-wave
potential scattering phase shift δ(0)

s for various values of kFξK.

with the change of F (r/ξK). On the other hand, if δ(0)
s is

in the range (π/2,π ), δ(r) decreases gradually from δ(0)
s

for small r to δ(0)
s − π/2 for large r . With taking care of

such a gradual change in δ(r), we can determine ri the ith
zero of δn(r) [≡ n(r) − n0] by 2kFri + δi = iπ + π/2 with
δi ≡ δ(ri) and i = 1,2,3, . . . . Then, the half period of the
Friedel oscillation �i in SSR is given by �i = ri+1 − ri =
[1 − (δi+1 − δi)/π ]�(0) with �(0)(≡π/2kF) the half period in
CR. Because δi+1 is slightly different from δi , �i is modified
from �(0) by the amount of (δi+1 − δi)/π . This anomalous
Friedel oscillation or the oscillation-period modulation effect
is an important consequence of the presence of SSR, but this
modulation effect has not been well recognized even in the
Kondo-physics community due to the fact that the effect is
totally absent for δ(0)

s being equal to a multiple of π/2 [see the
denominator in Eq. (29)], which happened to be assumed in
the previous model calculations [24,25].

In Fig. 10(b), we plot δn(r)r3/Z as a function of 2kFr/π at
rs = 4 to check whether the modulation effect exists or not in
our first-principles calculations. In DMC, the first four zeros
of δn(r) in units of �(0), 2kFri/π , are given by 0.994 ± 0.005,
1.970 ± 0.008, 2.949 ± 0.013, and 3.927 ± 0.019 with the
errors estimated by the distribution of data points around
δn(r) = 0 at each ri . Then, (δi+1 − δi)/π the modulation
factors for i = 1, 2, and 3 are, respectively, obtained as
0.024 ± 0.005, 0.021 ± 0.009, and 0.022 ± 0.016 in which
the errors are estimated by the inclusion of covariance between
ri and ri+1. Those results, at least definitely those for i = 1
and 2, assure the existence of the shortening of the Friedel-
oscillation period, confirming the emergence of SSR.

Once the data for {ri} are known, we can independently
calculate the modulation factors through Eq. (29) as a function
of ξK and δ(0)

s with using F (x) in Fig. 10(a). The results are
shown in Fig. 10(c), from which we find that our DMC data for
the modulation factors (actually the shortening factors in this
case) for i = 1–3 agree very well with those obtained at ξK ≈
35/kF = 73 and δ(0)

s = 0.86 × (π/2) [see the horizontal and
vertical double-dotted-dashed lines in Fig. 10(c)], indicating
that by quantitatively analyzing first few modulation factors,
we can determine both ξK and δ(0)

s uniquely, even if only the
data for the system size much shorter than ξK are available.
This determination is made possible due to the fact that
F (r/ξK) changes most rapidly at r ≈ ξK/10. By using ξK thus
determined and the Fermi velocity vF, the Kondo temperature
TK is estimated by TK = vF/ξK ≈ 0.0066 Hartree = 2100 K
with about 10% errors, revealing that this is an astonishingly
high-TK system. With such a high TK, the system will not
exhibit the prominent Kondo effects such as the ln T anomaly
in the experiment for T around the room temperature or below;
it just behaves as a usual Fermi liquid [48].

The shortening effect in the Friedel-oscillation period is
also found in LSDA, as seen in Fig 11, in which δn(r)r3 is
plotted for both Z = 1 and −1 in the bulk system at rs = 4. For
large enough r outside the SSR binding radius ξK, the Friedel-
oscillation phase for Z = 1 coincides with that for Z = −1;
the result with Z = −1 is plotted to represent the behavior for
the fictitious very tightly bound H− ion confinement state in
which the anomalous Friedel oscillation is absent. In LSDA,

Z= -1
Z=1

 3n  (r)r  :“localized” Kohn-Sham state@Z=1  L

k  =0.480Fδn(r)=n(r)−n0

2k  r/πF
255 10 150 20

δn
(r

)r
  ,

   
n 

 (r
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3
3
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-0.12

LSDA (N     ∞) s @ r  =4

FIG. 11. (Color online) Plot of δn(r)r3 in LSDA in the bulk
system with both Z = 1 and −1 at rs = 4. The contribution from
the “localized” KS state obtained at Z = 1, δnL(r)r3, is also given
and seen as playing a role of an envelope density.
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the modulation of the Friedel oscillation is brought about by the
contribution from the “localized” density nL(r). Incidentally,
the oscillation-period shortening factors in LSDA are much
smaller than those in DMC; (δ2 − δ1)/π = 0.0133 and all
others are less than 0.004, indicating δ(0)

s ≈ 0.014 × (π/2)
in LSDA. [We note that δs(kF) in Fig. 4(b) is equal to
δ(0)
s + π/2 ≈ 0.507π .] We can easily understand the reason for

this large difference in δ(0)
s between DMC and LSDA; because

this phase shift is directly connected with the wave function, its
accurate value will not be obtained by LSDA in which the wave
function in the fictitious noninteracting system is qualitatively
different from the true correlated SSR wave function. Due to
δ(0)
s ≈ 0 in LSDA, we cannot employ the diagram in Fig. 10(c)

to determine ξK very accurately. Therefore, we estimate ξK

from the extent of nL(r), which is 82, giving TK to be about
1900 K. In relation to nL(r), εBS the binding energy for this
“localized” KS state in LSDA is given as 0.0115 Hartree =
3600 K, which is about twice as large as TK. Thus, although
εBS has no direct physical meaning, this quantity seems to be
a good measure for the magnitude of TK. In our calculations
in LSDA, the values for εBS are 97, 2200, 3500, 2200, and 720
K for rs = 2.07, 3, 6, 8, and 10, respectively, indicating that
in the majority of the SSR region, namely, for 3 � rs � 8, we
may expect TK to be well beyond 1000 K.

IV. DISCUSSION

Five comments on this work are in order:
(i) In SSR, we find a good semiquantitative agreement

between LSDA and DMC, but this is by no means fortuitous
because this can be understood by the long-range nature of
ξK which makes the density variation associated with the SSR
state slow, validating the use of LSDA for the calculation
of n(r).

(ii) From our present perspective, we may regard our
previous study in LSDA on the spin-polarized ground states
for second-period atoms in periodic table [45] as a successful
extension to multichannel Kondo systems [1], in which the
Hund’s-rule coupling plays a crucial role in producing the
spin-polarized ground states.

(iii) In a short term, the immediate next target of research is
a hydrogen molecule H2 immersed in EG [12] as a function of
the interatomic distance to pursue a new concept in chemical
bonding [49,50] in metals in the light of SSR. In fact, Bonev
and Ashcroft [51] have already found an interesting bistability
between paired and unpaired states for rs > 3.2. In a longer
term, we can expect fruitful research on new aspects in the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [1] and
dilute magnetic semiconductors [52].

(iv) If the number of immersed protons is increased up to a
macroscopic level and those protons are arranged into a lattice
in a metal with the SSR-density region, we might be able to
obtain a Kondo lattice with high TK. Furthermore, if the lattice
constant might be so arranged as to tune the RKKY interaction
to be about the same as TK for realizing the quantum-

critical situation in the Doniach phase diagram [53], then as
indicated in Fig. 1 in the optimum situation, we speculate that
superconductivity occurs at a rather high temperature in the
spin-fluctuation mechanism in a metallic hydrogen alloy. This
speculation may motivate people engaged in hydrogen-based
physics, chemistry, and technology to synthesize hydrogen
alloys exhibiting exotic superconductivity at ambient pressure.
In this regard, the transition-metal-hydride system such as
TiH2 and ZrH2 [54–56], usually used for secondary batteries,
might be a promising candidate, although it seems that
the metallic electron densities in the metal hydrides so far
synthesized are too high for our purpose.

(v) The basic reason for about 100 times increase of TK in
the hydrogen system compared with those in the f -electron
heavy-fermion systems is the overall increase of energy scales
as seen by the large difference in the magnitudes of 1s and 4f

energy levels. For the same reason of increased energy scales,
superconductivity with Tc over 100 K has been discussed in
solid hydrogen at pressures of about 500 GPa in the conven-
tional phonon mechanism [57–60]. Very recently, stimulated
by the experimental result [61], similar discussions are made
on H2S [62,63] as well as H3S [64] at pressures of about
200 GPa. Note that the metallic densities in those systems are
found to be in the CR region, namely, rs < 2 (or typically
rs ≈ 1.4). Therefore, our present proposal has nothing to do
with those conventional theories for superconductivity. We
also emphasize that high metallic densities realized at such
very high pressures in solid H2 or sulfur hydrides are not
needed in our proposal for finding exotic superconductivity.

V. SUMMARY

In conclusion, by employing both DMC and LSDA, we
have revealed the emergence of SSR in the proton-embedded
electron gas by the confirmation of an anomalous Friedel
oscillation characteristic to the Kondo-type spin-singlet state
with quantitatively determining TK and emphasized its stability
in embedding hydrogen into the electron gas. Our work
necessitates to modify the paradigm of CR in metallic
screening to a point charge of Z in the sense that, depending
on the metallic electron density and Z, SSR takes the place
of CR. This work also provides a first concrete example to
show how the KS orbitals behave to represent the exact n(r) in
strongly correlated electron systems such as those describing
Kondo physics, even though they are not always physically
relevant.
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