
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Achieving optimal illumination conditions using

local search

Author(s) Sioutis, Marios; Lim, Yuto; Tan, Yasuo

Citation
2015 IEEE 4th Global Conference on Consumer

Electronics (GCCE): 168-172

Issue Date 2015

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/14280

Rights

This is the author's version of the work.

Copyright (C) 2015 IEEE. 2015 IEEE 4th Global

Conference on Consumer Electronics (GCCE), 2015,

168-172. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future

media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

Achieving Optimal Illumination Conditions Using
Local Search

Marios Sioutis
School of Information Science

Japan Advanced Institute
of Science and Technology

Nomi, Ishikawa, Japan
Email: smarios@jaist.ac.jp

Yuto Lim
School of Information Science

Japan Advanced Institute
of Science and Technology

Nomi, Ishikawa, Japan
Email: ylim@jaist.ac.jp

Yasuo Tan
School of Information Science

Japan Advanced Institute
of Science and Technology

Nomi, Ishikawa, Japan
Email: ytan@jaist.ac.jp

Abstract—In this research we attempt to achieve optimal
illumination conditions in enclosed spaces that contain multiple
illumination devices using local search algorithms. Given an
illumination request, the search space which consists of the
combination of all possible device settings is explored with the
use of local search algorithms. The illumination effects of devices
are modeled on an approach based on ray-tracing. Regarding
the problem modeling, we consider multiple-objective evaluation
functions from which a single fitness value can be extracted for
a solution. Furthermore, we discuss the properties of the search
operations that explore the search space and how they capture
the need for both exploration and exploitation. The applied local
search algorithms are evaluated in terms of convergence speed
and solution quality.

I. INTRODUCTION

In recent years, progress in consumer technology has rein-
vigorated the consumer field of home automation, by introduc-
ing more sophisticated, network-enabled home appliances at
lower price points than ever before. Network communication
protocols such as ECHONET Lite[1] and individual vendor
platforms such as Insteon[2] and Apple HomeKit[3] allow the
user to have control over the devices in the home. Neverthe-
less, such protocols and platforms only allow for some very
rudimentary automation tasks to be carried out.

To realize the dream of a smart home, software services that
incorporate intelligent decision making should be introduced
in the home environment. Such smart services can automate
tedious tasks on behalf of the user, resulting in a more com-
fortable everyday life. With the number of network-enabled
devices constantly increasing, coordinating devices is going
to become a daunting task for the user.

In this research, we focus specifically on a smart illumina-
tion service that can coordinate various illumination devices
in order to achieve an optimal illumination setting requested
by a user. Moreover, this service is able to handle conflicting
requests from multiple users, attempting to fulfill each one
of these request to the best degree possible. Such a service
can also act as a subsystem of a home service platform
that attempts to mediate conflicting operation of devices that
influence the illumination in the house [4]. Conflicts on the
environmental layer were discussed in [5], where illumination
is such an aspect of the environment.

For this research, estimating the illumination effect a device
has on the environment is critical. In our initial attempts, the
popular Philips Hue [6] smart light bulbs are used as a base
for modeling illumination devices.

II. RAY-TRACING BASED DEVICE MODELING

Lux is a unit used to express the intensity of light as
perceived by the human eye and it is equal to 1 lumen per
square meter. As the distance from the illumination source
increases, lux decreases according to the inverse square law.
Using this relation, we proceeded to construct a ray-tracing
based model for estimating lux in a give position in 3D space.

Each illumination device is modeled using a set of rays
which subsequently bounce in a room. Collisions with the
walls (and in future iterations, with furniture) are taken into
consideration, with the energy of each ray reduced by a given
absorption coefficient for each surface.

The 3D space is subdivided in smaller regions, with the
use of an Octree. With each subdivision, a cube in depth d
and size s is split into eight cubes at depth d + 1 and size
s′ = s/2. Given an initial octree node of size s = 5m,
the resulting cubes at depth d = 6 end up being 15cm in
size, a size good enough for our intended use. A ray-to-cube
intersection is performed for each ray against the octree nodes
in the scene, and the energy contribution of each ray is marked.
As a final step, for each octree node, the energy contributions
of rays are aggregated per illumination source. With the energy
contributions per source now calculated and stored in memory
for each cube, it is now possible to make estimations regarding
the illumination at a given point in the 3D space of a room.
A visualization of the ray-tracer can be seen in Fig. 1.

The relatively low number of rays used in the modeling
process lead to some artifacts that are clearly visible. Adjacent
cubes that are further away from the illumination sources may
have significantly different illumination properties, due to the
rays failing to clip one of the two cubes, as seen in Fig.2.
To adjust for this phenomenon, a higher number of rays may
be used. Furthermore, in the current model, all surfaces are
treated as perfectly smooth (although they are associated with
an absorption coefficient). This means that a ray will bounce
cleanly from a surface, as if it was a mirror, with no scattering.

Fig. 1. Two lights (with rays) Fig. 2. Two lights (no rays) Fig. 3. Two lights (with smoothing)

To adjust for the above two facts, a “smoothing” pass
can be performed, where adjacent cubes exchange a small
amount of energy with each neighboring cube. The result is a
smoother, more natural spread of the light in the scene, closer
in resemblance to reality. This can be seen in Fig. 3.

III. LOCAL SEARCH CONSIDERATIONS

A. Candidate Solution Evaluation

The problem of achieving optimal illumination conditions
in an indoor environment can be viewed as a continuous opti-
mization problem [7]. A solution to this problem is evaluated
in terms of the predicted illumination intensity at n points
in physical space. Since illumination is a non-negative real
number (R+

0), the solution space P is R+
0

n
. The estimated

illumination at point i is denoted as pi.
The search space G for the optimal illumination problem

consists of all the possible brightness setting combinations of
devices in a given space. Given a device i, the brightness
setting for that device is denoted as gi, with a range of [0, 100].

In a scenario with m number of devices and n points in
space for which illumination is to be estimated, a candidate
solution takes the form C = G,P where G = {g1, g2, ..., gm}
and P = {p1, p2, ..., pn}. Borrowing nomenclature from the
genetic algorithms field, the prospective solution G of a
candidate is usually called the genome and, respectively, P
is called the phenome, (with gi being a gene and pi being a
part of the phenome).

To evaluate a candidate solution, a genome-to-phenome
mapping function of the form P = gpm(G) is necessary.
The proposed ray-tracer fulfills this task: given a set of device
settings and a set of points in 3D space, it estimates the
illumination at each given point.

Now that the phenome of a suggested solution can be
determined, it must be evaluated for its suitability. The optimal
illumination conditions can be specified as a set of objective
functions O = {o1, o2, .., on} where oi is the objective
function associated with point i. These objective functions can
be used to denote lower or upper bounds for illumination at
a given point. In the current implementation, these objective
functions are subject to maximization. The objective function

that specifies a minimum amount of illumination can be seen
in Eq.1.

Over(val, target) =

{
− (val−target)2

target if val < 0,

logt(
val

target) if val >= 0.
(1)

By design, this function penalizes an illumination estimate
val that is less than target. An estimation that exactly matches
the target is going to yield a score of zero, and if the
estimation is over the target a positive value will be reported.
Furthermore, the relation

|Over(target− x, target)| > |Over(target+ x)|

also holds true, i.e. positive results produce far less significant
increase than their equivalent negative results. This feature
allows the prioritization of unmet objectives over objectives
that are met.

Finally, the results of the objective functions are aggregated
through a fitness function, the result of which is used as the
final evaluation of the candidate solution. Candidate solutions
with higher reported fitness will prevail over candidates whose
fitness is lower.

B. Search Strategies

With the infrastructure explained in the previous subsection
in place, it is now possible to apply search strategies and
explore the problem space.

Two metaheuristic search strategies where pursued: hill
climbing and hill climbing with restarts, the details of which
can be seen in Algorithm 1. In the case of pure hill climb-
ing, the shouldRestart() function always returns false. G
represents the current candidate solution that will be used as
a base for an exploration step. G′ is the new genome that
results after a mutation operation or a restart. Only solutions
that improve over the best solution or the current solution will
be remembered and considered for further exploration.

C. Mutation Operation

The mutation operation plays a very significant role in
deciding the next candidate solution. Here, two different muta-
tion operations where considered. The first mutation operation

Algorithm 1 Hill Climbing with Restarts
1: function HILLCLIMBING
2: G,P,G′, fit, fit′, bestfit, bestG← init()
3: while terminate() == false do
4: if shouldRestart() then
5: G′ ← Randomize(G)
6: fit← −∞
7: else
8: G′ ←Mutate(G)
9: end if

10: P ← gpm(G′), fit′ ← evaluate(P)
11: if fit′ > bestfit then
12: BestG← G′, bestfit← fit′

13: end if
14: if fit′ > fit then
15: G← G′, fit← fit′

16: end if
17: end while
18: return bestG
19: end function

is a completely random mutator that assigns a random valid
setting to a random device present in the genome. Through
pure luck, certain mutations will yield genomes that compare
favourably to previous genomes, gradually improving towards
a locally optimal solution. This mutator operation can be used
as a control against more sophisticated mutator operations.

The second mutator operation examined is a binary search
mutator. This optimized mutator operation picks a random
gene and over the next few iterations tries to optimize it as
much as possible. A new setting for that gene is decided and
stored in local memory. If this setting survives until the next
search cycle, the new gene produced a phenome with superior
fitness. If the setting for that gene did not survive, it resulted
in an inferior phenome. Using this information, the mutator
can decide the direction of the binary search towards the
most promising solution. When no further improvement can
be made, the mutator’s state is reset and in the next search
iteration a new gene will be selected for optimization.

With two mutator operations and two metaheuristic strate-
gies at hand, four possible combinations for an overall search
strategy are possible: random mutator without restarts, opti-
mized mutator without restarts, random mutator with restarts
and optimized mutator with restarts. These four strategy com-
binations (hereby referenced as NR, NO, RR, RO) are the
main focus of the experiment section that follows.

IV. EXPERIMENTS AND RESULTS

A. Experimental Environment

The room used for the duration of the experiments can be
seen in Fig. 4. The distribution of light sources in that room
can be seen in Fig. 5. Starting from the left column and moving
downwards, the lights are sequentially numbered starting from
one. The second light of the first column is light number two,
all the way to the last light being light number 25.

Fig. 4. Experimental Room Fig. 5. Light Distribution

At points XA and XC the requested illumination is set to
300 lux, whereas at point XB the requested illumination is
set at only 20 lux. Using these request we applied the four
search strategies explained earlier. For every experiment, the
termination criteria were either the completion of 50000 search
iterations or a total execution time of 1 second.

The restart strategy used was the lapse of 1000 search
iterations without improvement. Finally, the experiments were
conducted on a MacBook Air (2012 model), equipped with an
Intel Core i7 2 Ghz processor, 8GB of memory and an SSD
drive.

B. Algorithm Showcase

For each of the four search strategies proposed, an experi-
mental session was conducted with the same random seed. The
aggregated results can be seen in Tab. I. With the exception
of the NO (no restarts, optimized mutator) search strategy,
all other search strategies produced extremely similar results.
More specifically, the algorithms correctly led to a solution in
which the lights around the points XA (lights 1, 2 and 6)and
XC (lights 16, 17, 21, 22 and 23) where necessary to fulfill
the two out of three specified conditions, with all other lights
having their brightness set to zero.

The similarity of the solutions is further emphasized by their
fitness score which is the same up to 3 significant digits.

It must be stated that the estimated intensity reported by
the gpm function that utilizes the ray tracer has a tendency
to overestimate illumination. This can be attributed mainly to
the accuracy of the ray tracer and to a lesser degree to the
measuring protocol followed during the experiment.

C. Convergence Speed

To further understand the behaviour of the four algorithms,
the experiment was repeated 200 times for each algorithm,
using the same set of seeds.

The convergence speed of each algorithm was measured in
iteration counts as well as time. These results can be seen in
Fig. 6 and Fig. 7 respectively. From these results, it is readily
apparent that the NO search strategy outperforms all other
algorithms in terms of speed with a hefty margin. Average time
for which the best solution was found was 79 milliseconds.
The worst case scenario was 339 milliseconds.

In stark contrast, the NR (no restarts, random mutator)
search strategy took on average 302 milliseconds with a worst

TABLE I
SHOWCASE RESULTS PER ALGORITHM

Search Strategy Measured Illumination Estimated Illumination Fitness Genome
NO 186, 14, 218 296, 20.1, 258 -0.01974 100 100 1 0 0 25 59 0 0 0 6 0 0 0 0 100 25 3 0 0 100 100 100 25 3
NR 194, 14, 226 291, 20.5, 279.5 -0.0062 100 100 0 0 0 69 0 0 0 0 0 0 0 0 0 100 77 0 0 0 100 100 100 0 0
RO 187, 14, 222 286, 20.7, 281 -0.00685 100 100 0 0 0 56 0 0 0 0 0 0 0 0 0 100 88 0 0 0 100 100 89 0 0
RR 195, 14, 227 291, 20.5, 279 -0.00622 100 100 0 0 0 69 0 0 0 0 0 0 0 0 0 100 76 0 0 0 100 100 100 0 0

Fig. 6. Convergence (Iteration Count) Fig. 7. Convergence (Time in milliseconds)

Fig. 8. Solution Quality

case scenario of 714 milliseconds. This is due to the non-
probabilistic nature of the random mutator.

As expected, the average time for which the best solution
was discovered for the RO and RR combinations was 490
milliseconds and 542 milliseconds respectively. The worst case
results for both algorithms show that sometimes an optimal
solution was found just before the time limit of one second was
reached. The higher average time in which the best solution
was reported is indicative of the restart strategy, but also
demonstrates that this strategy actually led to a better solution
after some restarts.

D. Solution Quality

The best, worst and average solution fitness for each al-
gorithm can be seen in Fig. 8. It is of no surprise that the
NO algorithm reports the worst solutions on average, trading
solution quality for speed. The RO algorithm improves upon

TABLE II
UNIQUE SOLUTIONS AND STANDARD DEVIATION

Algorithm Unique Solutions Standard Deviation
NO 162 0.012 011 9
NR 3 0.000 001 8
RO 71 0.001 236 503
RR 78 0.000 053 6

the NO algorithm with an average result that is close to the
other two algorithms.

What may come as a surprise is that the average solution
quality for the RR and NR algorithms is very close to the best
solutions obtained. Specifically, as seen in Tab. II the standard
deviation of the fitness for 200 runs is zero up to 4 and 5
significant digits respectively.

In absolute solution quality, the NR algorithm (no restarts,
random mutator) comes out on top. In 200 runs the algorithm
reported only 3 unique solutions that differed by one or two
intensity points at two genes. This is a testament to the power
of hill climbing and random mutations.

E. Comments

From the results presented in the previous sections, two
points worth noting arise.

The first point is the accuracy of the ray tracer used as a gpm
function. As explained in Sect. III-B, the ray tracer currently
overestimates the illumination at given points. Although more
accurate predictions would be preferable, its current behaviour
is better than an alternative where underestimation would
occur. The human vision has great adaptability, and variations
in bright environments tend to go unnoticed by the user. In
contrast, small variations in illumination in darker environ-

ments are far more pronounced and immediately perceived by
the user.

The second point is about the proper selection of a search
strategy. For our purposes, the case for selecting the NR
algorithm can be made, based on the simple fact that it pro-
duced the most consistent results in terms of solution quality,
with an exceptionally low standard deviation. Nevertheless,
the average execution time for this algorithm is close to 500
milliseconds. Should a faster response time be of utmost
importance, the use of the NO algorithm is advised.

V. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the use of local search algorithms
for achieving optimal illumination conditions in enclosed
spaces. To estimate the effects of illumination devices on
the surrounding environment, a ray-tracer based approach was
used.

Although the illumination estimations produced by the ray
tracer leave a lot to be desired in terms of accuracy, by storing
attenuation information in an octree enables the fast evaluation
of the effects of illumination devices, enabling close to fifty
thousand search iterations per second.

Regarding the use of local search algorithms, their conver-
gence speed makes them an ideal fit for achieving optimal
illumination conditions in indoor spaces. With convergence
speeds of less than one second (including multiple restarts),
local search algorithms can be used for real time control of
illumination. Assuming that the location of a user moving
inside a room can be tracked, a system utilizing local search
algorithms can dynamically adjust the illumination of the room
according to the user’s position in real time.

As future work, in order to improve the illumination esti-
mations, further adjustments that improve the accuracy of the
ray tracer will be pursued, along with alternative methods for
evaluating illumination. Regarding the local search algorithms,
alternative objective and fitness functions that incorporate
and combine heterogeneous information (such as the number
of devices used, total energy consumption, etc.) in a single
solution fitness will be pursued. The combination of such
external information can drive the search towards solutions that
prioritize certain characteristics over the estimated illumination
intensity.

REFERENCES

[1] ECHONET Lite Protocol Specifications. Accessed: 2015-06-12. [Online].
Available: http://www.echonet.gr.jp/english/spec/index.htm

[2] INSTEON. Accessed: 2015-05-28. [Online]. Available:
http://http://www.insteon.com/

[3] Apple HomeKit. Accessed: 2015-05-28. [Online]. Available:
https://developer.apple.com/homekit/

[4] M. Sioutis, J. Kim, A. Lim, and Y. Tan, “A home service deployment
platform with support for detection and resolution of physical resource
conflicts,” in Consumer Electronics (GCCE), 2012 IEEE 1st Global
Conference on, Oct 2012, pp. 333–336.

[5] M. Kolberg, E. Magill, and M. Wilson, “Compatibility issues between
services supporting networked appliances,” Communications Magazine,
IEEE, vol. 41, no. 11, pp. 136–147, Nov 2003.

[6] Philips Hue. Accessed: 2015-06-12. [Online]. Available:
http://www2.meethue.com/en-US/

[7] T. Weise, Global Optimization Algorithms – Theory Application, 2nd ed.
Thomas Weise, 2008, Accessed: 2015-08-30. [Online]. Available:
http://www.it-weise.de/projects/book.pdf

