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Abstract

Text summarization is one of the most active research in natural language processing.
Even though the history of text summarization dates back to 1950s, a majority of research
focuses on extractive summarization in which we select some sentences from the input
document as the summary. Abstractive summarization is considered as closer to human
style, but it has not got enough attention from the community over the years due to its
difficulty and complexity.

With the development of deep learning lately, we have witnessed many impressive
results in various fields ranging from computer vision to natural language processing.
Using deep learning for abstractive summarization has also yielded promising results in
recently published papers. However, it is still in an early stage, and more research needs to
be done in this field. This thesis presents our study on abstractive text summarization and
our contributions: (1) we implement two deep learning models for summarization with
different encoding mechanism, then we compare their performance in terms of ROUGE
score and computational time; (2) we improve the quality of the summary by employing
diverse beam-search decoding and we propose a method to deal with the problem of word
redundancy in the output.

First of all, we introduce a widely used deep learning model for abstractive summariza-
tion, the encoder-decoder model using recurrent neural network (RNN). In this model, the
document is simply viewed as a sequence of words. Based on that, we implement a second
model for comparison which treats the input document as a hierarchical structure. To be
specific, we use Convolutional Neural Network (CNN) to get the representation of each
sentence and use Bidirectional RNN to encode these sentence vectors. By doing this, we
hope to reduce the computational complexity of the whole network while still achieving a
competitive performance comparing to the standard model. Our experiments show that
the hierarchical encoding model achieves comparable full-length ROUGE-1 and ROUGE-
L scores while having the smallest computational time. But its ROUGE-2 score is much
lower than the standard model. Because ROUGE-2 is an important metric for evaluation,
it partly indicates the weakness of hierarchical model in generating a good summary. Our
additional experiments also demonstrate the effectiveness of using Part-of-Speech feature
for improving the system performance as well as the minor effect of removing stop words
from the input document.

Our second work presented in this thesis focuses on the decoding process of neural
summarization. The summaries in our deep learning model are generated by using beam-
search, a frequently used method in neural text summarization model. By using beam-
search with beam size K, we can generate K-best list of outputs and the output with
the highest score assigned by the model is selected as the summary. However, this score
might not reflect the quality of the summary, i.e. a summary with a lower score can
be a better summary. This can be fixed by using a re-ranking stage. The main issue
with beam-search is that it produces K-best list with very similar lexical content, which
consequently reduces the effectiveness of re-ranking model. To deal with this issue, we
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chose to adopt a technique proposed recently to help generating diverse outputs. This
method controls the dissimilarity between beams at each step by assigning lower priority
to tokens which were already chosen in other beams. The combination with an re-ranker
shows the effectiveness of this technique since it yields higher Full-length F1 ROUGE
score than the default decoding method.

Another issue found in our summarization model is the repetition of words and phrases,
a common problem which has been recognized in other similar works. In this research, we
proposed a simple solution which can be incorporated easily into the decoding process.
More specifically, we guide the word expansion process in beam search algorithm by
assigning lower score to words which can cause the repetition issue. For this purpose,
we designed a function to tell how much a word is likely to be repeated based on the
unigrams and bigrams of previously decoded tokens in that beam. After performing the
evaluation, we found that our proposed method can increase the baseline ROUGE score
by up to 40% or more when combining with an Oracle re-ranker. Thus, this method
can give researchers another way to improve their existing model without modifying the
training architecture.

Despite there are several limitations, our work at least provides more aid for other future
research in this field. Our findings and results not only can be applied to abstractive
text summarization problem but also for other similar research such as image caption
generation, machine translation or spoken dialog generation.

Keywords: abstractive text summarization, deep learning, natural language processing,
diverse beam search, re-ranking.
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Chapter 1

Introduction

In this chapter, we will give an overview to the research problem, our motivation to do
the research and our goals when doing this research.

1.1 Background

In these days, text is one of the most common formats used for exchanging information.
There are many different sources of text data such as emails, reports, newspaper, blogs,
messages, etc. Millions of these electronic documents are created daily by end-users,
reporters or organizations. The amount of information contained in these electronic doc-
uments is enormous, hence it poses many challenges to process these documents efficiently.
It is too expensive to store and process the entire document content while in many cases,
only the main content is needed. Due to this reason, there is a need to extract the most
important information from text documents.

Automatic text summarization is a research topic in natural language processing (NLP)
which began in the middle of 20th century [1]. Its aim is to extract a summary represent-
ing the main content of a single document or a collection of documents. The extracted
summary can be used in a variety of ways to solve different problems in NLP like infor-
mation retrieval (IR) [2, 3], question answering [4] or text classification [5]. For example,
an IR system can utilize the extracted summary to quickly retrieve relevant documents
instead of checking the entire content. Another example is when comparing documents,
we can simply compare their main content to know if they are similar or not. These are
some examples of how we can use automatic text summarization for different purposes.

Text summarization systems can be categorized into two groups depending on their
input: single-doc summarization and multi-doc summarization. Single-doc summarization
system extracts a summary from a single document meanwhile multi-doc summarization
system is able to extract a summary representing the content from multiple relevant input
documents. Summarization can also be query-focused or generic, depending on whether
we want to generate a summary related to the user query or a summary for general
purpose.

In terms of techniques, we can divide text summarization into two main approaches:
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Figure 1.1: Illustration of a summarization system.

extractive and abstractive [6]. In the first approach, the system tries to assign a salience
score to each sentence in the input documents and then rank these sentences accordingly.
The top few sentences will be selected as a summary. The advantage of this approach is
that we do not have to deal with the grammar of the generated summary. Each sentence
in the extracted summary is assumed to be grammatically correct as long as the input is
grammatically correct [7]. In the case of abstractive summarization, we need to analyze
the documents and employ an advanced language generation technique for generating
the summary, using words or phrases which do not exist in the input documents1. This
approach is considered to be closer to our human-way of writing the summary [8]. As a
human, we do not simply select existing sentences to construct the summary but instead,
we probably use our own words or phrases to describe the main content of the text.

1.2 Motivation

Even though the abstraction-based approach is theoretically closer to the way a human
writes a summary, its difficulties and complexities make it less interesting to research
community over the years. First, this approach requires a deeper analysis on the input
documents and advanced techniques for generating the summary. The unsatisfactory
performance of available parsing and generation tools can affect the performance of the
summarization system badly. Second, evaluation in abstractive summarization is con-
sidered to be harder than extractive summarization. In extractive summarization, we
can compute the overlapping of the output summary with a gold standard summaries

1Criteria to distinguish extractive and abstractive summarization is not clearly defined and contro-
versial.
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(written by humans) to evaluate if a system output is good or not. But in abstractive
summarization, this is not a good method since there might be different ways to express a
certain fact or event. Due to these two main reasons, most of the researchers have focused
their effort on extractive summarization and only a few research addressed abstractive
summarization.

Nevertheless, there are still several works trying to solve the problem of abstractive
summarization. These works are mainly based on structure-based approaches (templates,
rules, ontology, etc) or semantic-based approaches (semantic model, semantic graph)[9].
Recently, with the advance of deep learning, a newer approach for abstractive summa-
rization has been proposed and received a great deal of attention from researchers in this
field. Deep learning has achieved great success in many areas like computer vision or
speech processing [10, 11]. NLP has also been benefited from this trend with many state-
of-the-art results reported in different tasks such as parsing [12], named entity recognition
[13] or machine translation [14]. This encouraged researchers to experiment deep learning
with new tasks in NLP, including the challenging task of abstractive text summariza-
tion. Recent publications show that abstraction-based summarization systems using deep
learning can yield promising results.

Despite that, abstractive summarization using deep learning is still in an early stage
of development, and there are rooms for improvement. Current summarization mod-
els generate understandable summaries but they still contain undesirable grammatical
mistakes or redundant words. Also, starting from a standard model used in machine
translation, researchers propose new models by adding more features or developing more
complex architecture. This comes with the cost of computational complexity. Training
a deep learning model is now quite expensive and it can take days, weeks or months to
complete training. Using less computational deep learning models while still maintaining
the quality of generated summaries is also a tough challenge. In this master research,
we would like to study several deep learning architecture for abstractive summarization
to get a deeper understanding. In particular, we want to compare the standard neural
summarization model with another architecture to learn more about their cons and pros
in terms of running time and output quality.

Another important aspect in neural summarization that is worth mentioning is the
decoding phase. Currently, most neural summarization models employ a technique called
beam-search for finding the best summary. Though this method has been used extensively,
its default algorithm has a limitation. The K-best list of outputs generated by beam-
search are very similar in terms of lexical content. This is an issue if we want to employ
a re-ranking model for selecting a good summary. Another issue affecting the quality
of summary is the repetition of words or phrases, which has been mentioned in many
publications about neural text generation [15, 16, 17, 18]. Therefore, we think that
improving the decoding process by tackling these issues is an important and interesting
research in abstractive summarization. The solution will be very helpful because it can
be integrated into any neural summarization easily without changing the architecture of
the whole model.

Our last motivation to do this master research is the lack of publicly accessible imple-
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mentation of an end-to-end abstractive summarization system using deep learning. This
technical issue might discourage researchers from developing their novel ideas in this field.
Many of the published results do not have a corresponding public implementation due
to copyright issue or other reasons. Because of that, we want to implement the deep
learning summarization model and release its source code to the research community. We
believe that another public implementation of an abstractive summarization system will
be a great help for other researchers in their research and ease them from implementing
a system from scratch.

1.3 Goals

In this research, we limit our research on the generic single-doc abstractive summarization
problem. Our goals are as follows:

• We would like to implement two deep learning models for summarization: a standard
model and a new model with a simpler architecture. We want to run different
experiments to compare these two models to get a deeper understanding on them.
Our hope is to achieve a competitive performance with a less complex network
architecture.

• We want to improve the quality of the summary by addressing different problems
in decoding phase. We hope to be able to use a technique to generate diverse beam
search and test its capability with a re-ranking model. We also want to propose
a method to fix the word repetition issue by directly integrating it into the beam-
search algorithm.

• Finally, we would like to implement an end-to-end deep learning system and release
the source code to the research community.
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Chapter 2

Literature Review

In this chapter, we first present several theoretical frameworks of deep learning related
to our research (other types of abstractive summarization models like graph-based or
ontology-based are not included in this thesis). Then, we introduce several deep learning
models for abstractive summarization which have been proposed in recent years.

2.1 Theoretical frameworks

2.1.1 Encoder-Decoder model

Most of the current approaches to abstractive summarization using deep learning are
based on the Encoder-Decoder model. This model works as illustrated in Figure 2.1. The
basic work flow of Encoder-Decoder model consists of two steps:

• Encoding: In this phase, the model reads the input and uses a neural network to
convert it into an intermediate representation, usually a vector. This vector can be
considered as a compressed box containing information about the input.

• Decoding: From the representation vector, the model uses another neural network
to generate the output.

Figure 2.1: Encoder-Decoder model.
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The input and the output can be different types of data depending on the task. For
example, in the image caption generation task, the input is an image and the output is
a sentence. In many cases, both the input and the output are also a sequence of words.
That is the reason why in NLP this model is often called Sequence-to-Sequence model or
Seq2Seq for short.

This model has been used successfully in the Machine Translation task [14, 19] and was
adopted to text summarization due to their similarity. We can view the input document
as a source language and the summary as a target language. The main difference is their
length and their vocabulary. For example, machine translation task usually works with a
single sentence and their output is also a single sentence. Meanwhile, text summarization
task accepts a document consisting of multiple sentences and generates a multi-sentence
summary. Additionally, machine translation is one-to-one mapping task (lossless com-
pression) while text summarization is a lossy compression, only the most relevant content
is kept.

The main concern when designing this model is how to encode the input and generate
the output. In the scope of this research, we introduce two common neural networks for
that purpose: Recurrent Neural Network and Convolutional Neural Network.

2.1.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a neural network which is used to model an input
with temporal behavior. In other words, the input is a sequence of items and there are
temporal dependencies between two consecutive items. Sentence is a good example of
this type of input, it consists of many words placed in a specific order to show a certain
meaning.

Given the input sequence X = {x1, x2, ..., xn} with xt ∈ Rd is the d -dimension input
vector at time step t and n is the number of time steps, RNN works on this input sequence
by applying the following formula n times:

ht = Θ(Whht−1 +Wxxt + b) (2.1)

In above equation, ht ∈ Rr is called the hidden state at time step t with r is the
dimension of the hidden vector, Wh ∈ Rr×r and Wx ∈ Rr×d are parameters of the network,
b ∈ Rr is bias value and Θ is a non-linear transformation function such as sigmoid or tanh.
As we can see from the formulation, at each time step, the hidden state ht is computed by
using not only the input value xt but also the hidden state of the previous time step ht−1
(the first hidden state h0 is initialized randomly). This mechanism enables the network
to transfer the information from previous time step to current time step. Applying above
formula n times will give us a list of n hidden states. We normally use the last hidden
state as the representation of the whole sequence because it carries information of all
previous time steps. A simple illustration of RNN architecture is shown in Figure 2.2.

In RNN, the component to compute the new hidden state using the current input and
previous hidden state is called a cell. A typical RNN cell is illustrated in Figure 2.3. As
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Figure 2.2: RNN architecture.

we show in the next part, the internal computation of a cell can be changed to address
certain problems.

Figure 2.3: An RNN cell.

The property of RNN allows it to work on any sequence regardless of their length.
However, as explored by Bengio et al. [20], vanilla RNN suffers from vanishing gradient
issue, in which the network is unable to learn much when there are long-term dependencies
in the sequence. To deal with this issue, several extensions of RNN cell were proposed
such as Long Short-Term Memory or Gated Recurrent Unit.

Long Short-Term Memory

Long Short-Term Memory (LSTM) [21] is an RNN with a special cell. Unlike the normal
cell, each LSTM cell consists of 3 gates: input, forget and update. These gates will
help the network to learn which information should be kept, forgotten or updated. The

7



formulation used inside each LSTM cell is as follows1:

ft = σ(Wf · [ht−1, xt] + bf ) (2.2)

it = σ(Wi · [ht−1, xt] + bi) (2.3)

C̃t = tanh(Wc · [ht−1, xt] + bc) (2.4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.5)

ot = σ(Wo · [ht−1, xt] + bo) (2.6)

ht = ot ∗ tanh(Ct) (2.7)

with [ht−1, xt] represents the concatenation of two vectors ht−1 and xt; Wf ∈ Rr×(r+d),
Wi ∈ Rr×(r+d), Wc ∈ Rr×(r+d), Wo ∈ Rr×(r+d) are parameters in LSTM; bf , bi, bc and bo
are bias values. Using these equations, the LSTM is shown to be better at capturing the
long-term dependencies [19, 22].

Gated Recurrent Unit (GRU)

Similar to LSTM, Gated Recurrent Unit (GRU) proposed in [19] also employs the gating
mechanism to compute the hidden state at each time step. However, the number of
parameters in GRU is less than LSTM because it does not have the output gate. Its
formulation is as follow:

zt = σ(Wzht−1 + Uzxt + bz) (2.8)

rt = σ(Wrht−1 + Urxt + br) (2.9)

h̃t = tanh(Wxt + U(rt ∗ ht−1) + bh) (2.10)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.11)

GRU has also been shown to achieve performance comparable to LSTM [22]. For
simplicity, we denote the operation of the cell to compute new hidden vector from previous
hidden as RNN. The exact formulation depends on the cell we specify.

Bidirectional RNN

In a typical RNN, each hidden state ht is computed using the previous hidden state ht−1.
Sometimes, however, an input value has dependencies with both previous and next input
value. In that case, it makes more sense to capture the information from both directions:
left-to-right and right-to-left. Bidirectional RNN (Bi-RNN) [23] was proposed to deal with
this problem. It basically consists of two conventional RNN: one forward RNN processes
the sequence from left to right and another backward RNN processes the sequence from
right to left. Finally, we concatenate the forward and backward hidden states at each
step to construct the final hidden state ht.

1Detailed explanation can be found in the original paper or at the following blog post:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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−→
h t = RNN(

−→
h t−1, xt) (2.12)

←−
h t = RNN(

←−
h t+1, xt) (2.13)

ht = [
−→
h t;
←−
h t] (2.14)

The architecture of Bi-RNN is shown in Figure 2.4. Many researchers have used Bi-RNN
in their models and reported good results [14, 24, 25].

Figure 2.4: Bidirectional RNN.

2.1.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a feed-forward neural network which uses convo-
lution filters to capture local features [26]. CNN is designed to extract and combine local
features of the input, thus it can not only extract many different features but also it can
learn the correlation between these features better. A typical CNN has two basic layers:

• Convolution layer: CNN uses a matrix called kernel or filter to map each small
sub-region (also known as receptive field) in the input matrix into a value. This ker-
nel matrix is replicated at every location of the input data to cover the entire input
matrix. The distance when replicating this across the entire input is called stride.
These replicated units have the same weights and they form a feature map. The size
of each sub-region is called kernel size. Typically, to obtain a richer representation
of the input data, people use many kernels with different kernel sizes and multiple
feature maps on each kernel, with each feature map represents a certain feature of
the input. The number of kernels, kernel sizes, feature maps and strides are varied
depending on the problem. This convolution process is illustrated in Figure 2.5.

• Pooling layer: The purpose of this layer is to down-sample each feature map to
progressively reduce the dimension of the feature matrix and retain only the most
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Figure 2.5: Illustration of the convolution layer (kernel size is 2, two feature maps are
used).

important values. There are many different types of pooling operations such as
MAX pooling, AVERAGE pooling or DYNAMIC pooling. Figure 2.6 illustrates the
MAX pooling operation for down-sampling the matrix.

Originally, CNN was designed and applied to Image processing. But later it was adapted
to use in NLP and many excellent results were published over the years showing the
effectiveness of CNN in this field [27, 28, 29]. Even though the input data in NLP like
sentence or document do not have the same format as an image, we still can transform
and treat them similarly as image data. For example, a sentence can be represented as a
2-dimensional matrix where each row represents a word vector. This matrix is viewed as
an image with a single channel and CNN can be applied as usual. Figure 2.7 taken from
[29] shows an example of how CNN architecture is used for sentence classification task.

2.1.4 Attention mechanism

In the conventional encoder-decoder model, the decoder only looks at the representation
vector provided by the encoder to generate the output. This, however, limits the ca-
pability of decoder because it might not have enough information for generating correct
output. One popular approach for dealing with this issue is to use the attention mecha-
nism. Instead of providing only a single vector to the decoder for generation, we can use
additional vectors generated by the encoder to support this decoding process. This idea
is based on the intuition that when generating a certain output, we might look at the
certain region in the input to get some ideas about what to generate.
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Figure 2.6: Illustration of MAX pooling layer.

Figure 2.7: Sentence classification using CNN.

In attention-based model, the decoder is given an additional vector called the context
vector at each step. This vector carries the information of the entire input and it is
computed as weighted sum of all encoder states. Given a list of states generated by the
encoder {h1, h2, ..., hn} and the previous hidden state of the decoder ĥt−1, we compute
the context vector ct at this time step as follows:

eti = tanh(Waĥt−1 + Uahi) (2.15)

ati =
exp(eti)∑N
j=1 exp(etj)

(2.16)

ct =
N∑
i=1

atihi (2.17)

This computation is illustrated in Figure 2.8. After having the context vector ct, we
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Figure 2.8: Attention mechanism.

combine it with the previous hidden state ĥt to compute the new hidden state for the
decoder.

ĥt = RNN(ĥt−1, ct, x
′
t) (2.18)

At the moment, attention mechanism has yielded impressive results in many tasks
[30, 31] and it now seems to be used extensively in most models for text generation.

2.2 Related Work on Neural Summarization

With the success of using deep learning in machine translation task, many researchers have
attempted to apply similar models for abstractive sentence summarization task. Rush et
al. [32] proposed a neural attention model which combined an attention-based contextual
encoder with a neural language model for automatically learning the alignment between
the input with the generated summary. They trained their model on Gigaword dataset
[33] and evaluated it on the DUC-2003 and DUC-2004 dataset [34]. The experimental
results showed that their model performed better than the other baselines. Chopra et al
[35] later extended Rush’s model by using an attentive encoder and a conditioned RNN
decoder for this task. Their model namely Recurrent Attentive Summarizer outperformed
the original model on similar datasets. Takase et al. [36] proposed a model which used
the syntactic structure of the sentence for summarization. Specifically, they represented
the sentence using Abstract Meaning Representation and used Tree-LSTM for encoding.
Their model also got better results comparing to the baseline.

All these systems are different to our research in which they were used for sentence com-
pression while our work is to summarize a full-text document and generating a summary
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containing multiple sentences.
Cheng et al. [37] proposed a deep learning model which can be used for summarizing the

entire document. The authors used a hierarchical document encoder with an attention-
based decoder for extracting sentences and words as a summary. First, CNN was used
for constructing the representation vector for each sentence in the document. After that,
RNN was applied over the list of sentence vectors to generate the encoder hidden states.
At the decoding phrase, their model assigns a label to each sentence by training the
network to maximize the likelihood of all sentence labels given the input document vector.
This process is illustrated by Figure 2.9 taken from [37]. The author also proposed a
word extractor with a hierarchical attention architecture to softly visit all words in the
original document and compute the probability of generating summary word-by-word.
We consider the word extraction model in this work as a hybrid between extractive and
abstractive approach because even though the output sentences are not copied from the
original document, the summary only contains words or phrases included in the input
document2. This model, therefore, is different from our system in this research since we
use an open vocabulary for generating each token at each time step. We are interested
in the hierarchical architecture the authors used and we would like to apply this into our
research.

Figure 2.9: A recurrent convolutional document reader with a neural sentence extractor.

An important contribution of [37] is that they provided a free big DailyMail dataset for
training an abstractive summarization model. This dataset is important to our research

2The authors actually added frequent words to the vocabulary for generation.
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because Gigaword dataset is not publicly free at the time we conduct this research. Also,
Gigaword dataset is mainly used for training to generate a single sentence while we are
interested in generating multiple-sentence summaries. Other datasets such as DUC are
for extractive summarization or simply not big enough for training a deep learning system
like our research.

The experimental results in this paper show an interesting point. Even though their
sentence extractor seems to perform better than other baselines, the word extractors
yielded very low score. It was only slightly better than the default neural summarization
baseline they implemented3. One reason for this result is that in their word extraction
model, the grammar of the summary is not enforced due to the vocabulary constraint.
Besides, they said that the ROUGE evaluation metric [38] they used was not suitable for
measuring the quality of the abstractive summaries.

One of the most recent and complex systems is developed Nallapati et al. [15]. They
also treated abstractive text summarization as a sequence-to-sequence problem, but they
addressed many problems in it. Starting from the baseline Sequence-to-Sequence model
[14], the authors proposed to apply several recent advanced techniques from machine
translation to overcome the issues presented in summarization:

• Large Vocabulary Trick [39]: they utilized this technique from Machine Trans-
lation to reduce the vocabulary size of the decoder and hence save the computa-
tion when training. However, they also proposed to expand the vocabulary with
1-nearest-neighbors to reduce the effect of Large Vocabulary Trick.

• Feature-rich Encoder: they enriched the input to their model by extending the
default word embedding vector with other feature vectors such as term-frequency
(TF) and inverted-document-frequency (IDF) vectors, part-of-speech vector, named
entity vector.

• Pointer Network: when generating the summary, some words might be unknown
because they do not exist in the vocabulary. One reason is that they are not common
words and the vocabulary size is limited to frequent words only. This is especially
true with named entities such as person names, location names, etc. To deal with
this issue, the authors proposed a switching generator/pointer architecture to decide
whether to copy a word from the original document or to generate a new word.

• Hierarchical Encoder with Hierarchical Attention: In this architecture, the
author employed two levels of attentions: sentence-level and word-level. The aim of
this architecture is to capture the key sentences and keywords at the same time.

• Temporal Attention: the authors noticed repetitive words and sentences in the
summary, so they utilized temporal attention technique [40] to let the decoder re-
member which part of the document was attended in the previous step. They
reported significant improvement when using this technique.

3They mentioned that this baseline has similar architecture to their word extraction model except it
uses an open vocabulary during decoding.
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The author conducted their evaluation on three corpora: Gigaword, DUC and Dai-
lyMail. The results show that their models outperformed other baselines on Gigaword
and DailyMail datasets, and achieved comparable performance on DUC-2004 dataset.
However, their model is expensive to train (hierarchical attention model took more than
12 hours per epoch). In addition, they could not completely solve the repetition issue,
especially on the DailyMail dataset.

In this research, we do not aim to build a system which incorporates all these techniques
due to our limited time and resources. Instead, we would like to compare the standard
sequence-to-sequence neural summarization with a hierarchical encoding model. Further-
more, we also would like to improve summarization quality by focusing on the decoding
process. Currently, beam-search decoding is often employed for generating text in neural
summarization model. But as explored by Li et al. [41], the issue of beam-search is the
lack of diversity on the output. Resolving this issue is important in case we want to
re-rank the generated texts and select the best one according to some criteria. Li et al.
[41] proposed a very simple technique to force the beam search to generate more diverse
outputs at each time step. Vijayakumar et al. [42] went further by dividing the beams
into multiple groups and enforcing the diversity between groups when decoding. All these
methods are interesting and useful because they help to improve the performance of cor-
responding systems without re-training the whole model. In our research, we also apply
these techniques to solving the single-doc abstractive text summarization problem.
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Chapter 3

Summarization Models

In this chapter, we present the models we implemented in our research as well as the
techniques we employed for improving the beam-search decoding process.

3.1 Attention-based Sequence-to-Sequence

3.1.1 Encoder

The first model we implemented is inspired from the model proposed by Bahdanau et
al. [14], which was used for machine translation task. In this model, we treat the input
document as a sequence of words. We use Bi-RNN with GRU cell for encoding the entire
content of the document. The last hidden vector is used as the document vector.

In order to map each word in the vocabulary to a vector, we use a word embedding
layer. This layer has a matrix Wx ∈ Rd×V where each column corresponds a word
vector with dimension d. Let say we have a word w represents by a one-hot vector
v = [0, 0, ..., 1, 0, ..., 0] ∈ RV (all elements in v are 0 except the i-th element, which is the
index of w in vocabulary list). We convert v into a word vector x as follow:

x = Wxv (3.1)

Even though we can directly provide the one-hot vector v as an input to the RNN
network, it is better to use the embedding layer. The first reason is that we cannot
capture the semantic relationship between words using one-hot vectors (like synonyms,
antonyms). Secondly, we want the network to be able to adjust the word vectors during
its training to find the best word representation for our problem.

3.1.2 Decoder

The decoder is also an RNN with GRU cell, it has quite similar formulation to the encoder:
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x′t = Wxwt (3.2)

ĥt = RNN(ĥt−1, x
′
t, ct) (3.3)

yt = softmax(ĥtWy + by) (3.4)

(3.5)

with:

• w′t ∈ RV : a one-hot vector represents the input word at time step t.

• Wx ∈ Rd×V : embedding matrix.

• x′t ∈ Rd: decoder input at time step t.

• ct ∈ Rr: context vector computed by the attention mechanism from the hidden
states of each words in the input document. r is the dimension of the hidden state
vector from the encoder.

• Wy ∈ Rr×V : output embedding matrix for transforming the hidden vector ĥt to the
V-dimension output vector.

• yt ∈ RV : predicted probability vector, each component in this vector is computed
using softmax function as follow:

softmax(oti) =
exp(oti)∑V
j=1 exp(otj)

(3.6)

From predicted vector ŷt, we can find the token by getting the index of the component
with the highest probability:

tokent = argmax(ŷt) (3.7)

The work flow of predicting a token from the hidden vector is described graphically as in
Figure 3.1. Noted that even though we can infer the highest probability without going
through the softmax layer, we need to use softmax function in order to get a probability
vector ŷt and then use this vector for computing the loss function.

The initial hidden state of the decoder is set to the last hidden state of the encoder
and the first input token is a special token representing the start of the output sequence
(denoted as GO token). There is a difference between the decoder inputs for training
phase and testing phase. During the training phase, we assume that the previously
decoded token is correct and therefore use the gold token to feed into the decoder. But
when we run the model for generating the summary on an actual document, the gold
tokens are not available, so we instead use previously decoded token as the input to the
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Figure 3.1: The process of decoding at time step t. The predicted token is the index with
highest probability.

next step. This is illustrated in Figure 3.2. The decoding process continues until we reach
the End-Of-Document (EOD) token or we reach the maximum number of pre-defined
time steps.

The goal of this model is to maximize the log probability of the generated summary
Ŷ = {ŷ1, ŷ2, ..., ŷM} conditioned on the input document X

log p(Ŷ|X) =
M∑
i=1

log p(ŷi|X, Ŷ1:i−1) (3.8)

This is achieved by training the model to generate a sequence of words as similar as
possible to the gold summary. The loss function is defined as the average categorical cross
entropy between the gold sequence and the predicted sequence

H(Y, Ŷ) =
1

M

M∑
i=1

H(yi, ŷi) (3.9)

H(y, ŷ) = −
V∑
i=1

y[i] log ŷ[i] (3.10)

with y ∈ RV is a one-hot vector representing the gold token, y[i] represents the i-th com-
ponent of the vector y. Assuming that the gold token is the m-th word in the vocabulary,
the cross entropy between y and ŷ can be written as follow:

H(y, ŷ) = −
V∑
i=1

y[i] log ŷ[i] = − log ŷ[m] (3.11)
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(a) Decoder inputs are gold tokens when training.

(b) Decoder inputs are from previously decoded tokens when testing.

Figure 3.2: Difference between decoder input when training and testing.

The most expensive computation in the decoder is the softmax layer since we need to
multiply ĥt with every column in the matrix Wy. In text generation, this vocabulary
can be quite big and thus it dramatically slows down the whole system when training.
There are several techniques for dealing with this issue such as hierarchical softmax [43],
differentiated softmax [44], etc. In this research, we employ a technique called sampled
softmax [39] to reduce the computational complexity. In particular, for each time step, we
construct a smaller decoder vocabulary by sampling a subset St of the large vocabulary
L, and then compute the probability that our predicted token is equal to the true token
in the smaller vocab St

1. This sampled softmax technique is applied at training phase
only, the inference at testing time still uses full softmax as usual.

3.1.3 Beam-search decoding

After training the model, the decoding process to generate the summary is, in fact, a search
problem. At each time step t, the model outputs a list of words with their corresponding
probabilities. Our job is to find the best summary by selecting good candidates from
the first step to the final step. The easiest way is to employ a greedy search in which

1St is constructed in a way that it always contains the true token. More details can be found at:
https://www.tensorflow.org/extras/candidate_sampling.pdf
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we simply select the word with the highest probability at each time step and discard all
other words. This, however, might prevent the best output to be found later in the search
process. A better and widely used search strategy in this problem is beam-search. It
works by keeping a fixed number of candidates at each time steps to increase the chance
to discover a better summary. The beam-search decoding process is illustrated in Figure
3.3. With K beams at time step t, we expand each beam to select new K candidates and
get K ×K beams after this expansion. We then assign a score to each beam as follow:

score(Bi) =
1

M

M∑
t=1

log p(wt|X,Wt−1) (3.12)

with:

• Bi: the i-th beam in our decoding process.

• M : number of words in this beam.

• X: the input document.

• wi: the predicted token at time step t.

• Wt−1 = {w1, w2, ..., wt−1}: all words previously predicted in the beam.

• log p(wt|X,Wt−1): the log probability of new predicted word given its history and
input document. This value is given by the model.

We sort these K ×K beams by their score and keep only top K beams for the next step.
When an EOD token is generated on a beam, we add that beam to the result list. We
repeat the search process until the number of results is equal to the beam size or when we
reach the maximum length of the output. Setting K = 1 is equivalent to greedy search
while setting K too big will slow down the decoding process.

3.2 Hierarchical Encoding

RNN is effective at capturing the information of a sequence but the longer the sequence
gets, the slower the network becomes. This is because we have dependencies between
time steps in the inputs, so the computation needs to be performed sequentially. More
specifically, to calculate the output values, RNN needs to compute the output value
starting from time step t = 1 first and repeat its calculation until it reaches the final time
step t = T . Additionally, to update the weights in the network, it has to apply a technique
called backpropagation through time (BPTT), in which we have to backpropagate the
gradients from the last time step t = T to the first time step t = 1. In our summarization
problem, a document can have up to a thousand words this can result in a long training
time.
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Figure 3.3: Illustration of beam-search decoding with K = 3.

To reduce the computational time of this process, we can decrease the number of time
steps performed by the encoder. In this case, we treat a document as a hierarchical
structure, each document D has ns sentences {s1, s2, ..., sns} and each sentence si has k
words {xi1, xi2, ..., xik}. We first encode each sentence into a vector vsi using CNN:

vsi = CNN(xi1, x
i
2, ..., x

i
k) (3.13)

and then we feed this sentence vector into RNN to compute the hidden state:

ht = RNN(ht−1, vst) (3.14)

Using this encoding method, we can significantly reduce the number of time steps in the
RNN and hence expect to get a faster training time. CNN is chosen to encode a sentence
because it has been shown to perform pretty well in some sentence-level tasks [29, 45]
while its computation is not too expensive due to its architecture (it is a feed-forward
network with fewer parameters than a fully connected network).

We illustrate this hierarchical model in Figure 3.4. This design is very similar to the
model proposed by Cheng et al. [37]. However, we use this model for generating summary
using an open vocabulary instead of extracting words or sentences. The decoder is the
same as the default model presented in Section 3.1. The only difference is when computing
the context vector ct, we use the hidden states calculated from the sentence vectors.
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Figure 3.4: Hierarchical encoding for summarization

Beside this new hierarchical encoding architecture, we also perform two additional ex-
periments to study the abstractive summarization model. In particular, we are interested
in seeing how the input features can affect the performance of the system. In [15], Ramesh
et. al. incorporated many additional features besides the word embedding to help the
model capture the key concepts and entities. However, we limit our study into two aspects
due to limited time and resources:

1. We enrich the input features by providing the Part-of-speech (POS) of each word
in addition to the default word vector. We build a POS vocabulary2 similar to the
word vocabulary and map each POS into a vector using the POS embedding matrix.
Word vector and POS vector are concatenated before feeding into the network. We
hope that the network can learn better using this information.

2. We discard stop words from the input document. We use a list of top 25 stop words
common in Reuters-RCV13. In our view, stop words are redundant information and
it might not be needed in a summarization model.

We could have performed these experiments on the standard attention-based Seq2Seq,
but due to the expensive training time, we decided to conduct these two experiments on
the hierarchical encoding model.

2We use the POS list from https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_

treebank_pos.html and some additional special POS tokens
3https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
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3.3 Diverse beam-search decoding with Re-ranking

In beam-search decoding, the beam outputs are ranked using the score computed from
the log probabilities which generated by the model. But these log probabilities only tell
us how good our model is at learning to minimize the loss function, they do not guarantee
to generate a good summary according to our custom evaluation, such as the similarity
with the input document or the grammar quality. A method to deal with this issue is
to employ a re-ranker to select the best summary from all the beam outputs. A good
re-ranker can be designed to prefer summaries which are highly relevant to the input
document or simply have better grammar. Utilizing a re-ranking is also an easy method
to improve the performance of a summarization system without modifying the training
model, which is an expensive process.

There are two important factors affecting the performance of the re-ranking process:
the difference between candidates and the quality of each candidate. If most candidates
are similar, there is not much chance for the re-ranker to select a best one. While if the
quality of each candidate is bad, the final output after re-ranking is expected to be bad as
well. Unfortunately, our summarization model possesses both of these issues. We would
like to describe these issues in greater details and how we tackle them by modifying the
beam-search decoding process.

3.3.1 Diversity between beams

Beam-search decoding has been known to have the lack of diversity issue [41]. It means
that most of the generated output are lexically similar and they are different at only some
small parts of the text, such as punctuation. This makes the re-ranker have fewer options
to rank and therefore decrease the chance to find the best output from the candidate list.
A solution to this problem is to force the beam-search decoder to generate more diverse
outputs during its generation process. One of the common methods is to modify the log
probability of each predicted words before expanding a beam to prevent similar words to
be selected in different beams.

In this research, we use a technique proposed by Vijayakumar et al. [42] for enforcing
the diversity between beams. The authors divide K beams into G groups and control
the diversity between these groups while expanding each beam. They modify the log
probability of each predicted word on group Gi (except the first group G1) as follow:

score(wi
t|X,W i

t−1) = log p(wi
t|X,W i

t−1) + λ∆(Pi−1) (3.15)

with:

• wi
t: candidate word on group Gi at time step t.

• Pi−1: list of the last generated tokens on previous groups G1, G2, ..., Gi−1.

• ∆(Pi−1): the dissimilarity of current group with previous groups when token wt is
selected. The choice of this function can be varied.
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• λ: the diversity factor.

This algorithm is illustrated in Figure 3.5 taken from [42]. Because the score in the first
group is not modified, their algorithm performs at least as good as the K/G-size beam
search. The final outputs are collected from each groups.

Figure 3.5: Diversity by grouping beams.

As reported by the authors on several tasks such as image captioning, machine transla-
tion and visual question generation, this method improves both the diversity of the output
and the performance of the system. We, therefore, expect to see an improvement in our
system as well because of its similarity with machine translation task. Regarding the
dissimilarity term ∆(·), we use Hamming Diversity due to its simplicity and efficiency4.

3.3.2 Diversity within a beam

Even though the technique described in Section 3.3.1 enforces the diversity between differ-
ent beams, it does not take into account the diversity within each beam. In other words,
the output of each beam can also contain repetitive words and phrases. This issue is quite
common in the sequence-to-sequence model for neural generation task [15, 16, 17, 18]. This
is especially severe in our summarization problem since the output is pretty long and con-
tains multiple sentences. There have been several attempts to deal with this issue. For
example, Sakaran et al. [40] tackled this issue in machine translation by incorporate a
temporal attention into the decoder to let it memorize the information which was used for
generation. Suzuki et al. [17] proposed a method to jointly estimate the frequency and
control the output words by their estimated frequency. These methods need to be inte-
grated into the model during the training architecture, and it could potentially increase
the training time significantly [15]. We instead would like to tackle this issue without
changing the training architecture and we prefer a technique which can be applied to any
pre-trained models using beam-search for text generation. Therefore, we propose to add
a simple update in beam-search to avoid word redundancy issue in summarization task.

Our main idea is to utilize the previously decoded tokens on each beam to guide its
expansion at each step. More specifically, the word which is likely to cause the issue of
repetition should have lower probability than other words. Following this idea, we modify
the log probability of each candidate word in a way that it discourages previously decoded

4The authors also reported the best oracle performance with Hamming Diversity in their paper [42]
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Figure 3.6: Illustration of beam-search with local diversity.

words from being chosen in beam search. The formulation for adjusting the score of each
candidate word is as follow:

score(wt|X,Wt−1) = log p(wt|X,Wt−1)− βΘ(wt,Wt−1) (3.16)

with β is called local diversity factor which controls how much you want to avoid repeti-
tion. A small β is not very helpful while big β might force the beam search to generate
incoherent text (as the very low log probability word might be selected). Θ(·) is a function
which returns a value indicating the degree of repetition when wt is selected for this beam.
We define Θ(·) as follow:

Θ(wt,Wt−1) = |{x ∈ unigrams(Wt−1)|x = wt}|
+ |{y ∈ bigrams(Wt−1)|y = [wt−1, wt]}|

(3.17)

In other words, Θ(·) is sum of the frequency of the unigram wt and the bigram wt−1wt in
the decoded sequence Wt−1 = {w1, w2, ..., wt−1} of the beam. This process is illustrated in
Figure 3.6. In that figure, “stop” is supposed to be chosen but we decrease its score since
the unigram “stop” and bigram “I stop” are already in the beam. Thus, “want” becomes
the chosen token for this beam. A better Θ(·) function can be studied in future work.
In our research, we combine both the diverse group beam-search decoding in Section 3.5
and this technique to produce multiple diverse output, each output is likely to contain
less repetitive words.

3.3.3 Re-ranking

Since we are interested in showing the effectiveness of our diverse beam-search decoding,
designing a sophisticated re-ranker is not a focus of our research. Thus, we develop a
simple re-ranker which ranks the generated summaries based on their similarity with the
first 5 sentences in the input document. Similarity value is the Jaccard Index between
two sets:
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J(A,B) =
|A ∩B|
|A ∪B|

(3.18)

with A and B is the set of n-grams of the generated summary and first 5 sentences
respectively. In this research, we use only unigrams and bigrams for comparison.

We also design an Oracle re-ranker in which the summary candidates are ranked based
on their similarity to the gold summary. This is just to show how much we can achieve if
we have a good re-ranker. In practice, we need to analyze the problem as well as the input
document to choose an appropriate re-ranker. There are already many research about this
topic such as linear re-ranker or learning-to-rank. We leave this as future work.
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Chapter 4

Evaluation

4.1 Dataset and Preprocessing

The dataset we used in this research is provided by Cheng et. el. [37]1. It contains articles
collected from two major news media: DailyMail2 and CNN3. Each article includes the
content of the article plus highlights written by a human. The statistics of this dataset
are shown in Table 4.1. For training the model, we used all 277,554 articles from both
sources, but for validation and testing, we only used a subset of the total dataset to reduce
the running time. The numbers of documents for validation and testing are 3,000 and
500 respectively.

Table 4.1: Number of documents in the experimental dataset.

Training Test Validation
DailyMail 193986 10350 12147
CNN 83568 1093 1220
Total 277554 11443 13367

In each article, all named entities are replaced with anonymous entities in order to
reduce the vocabulary size. An example is shown in Figure 4.1. It can also be seen
from the example that similar entities (Michelle MacLaren and MacLaren) are mapped
to a single key (@entity5 ). Each sentence is padded to the same length if their word
length is smaller than a certain threshold. If their word lengths exceed the threshold,
they will be truncated. We also append end of sentence (EOS) token to every sentence.
The end of document (EOD) token is appended at the end of the last sentence to mark
the end of the document. We also replace all numeric tokens with a single <DIGIT>
token. Any words that are not included in the vocabulary are set to <UNK> token.

1http://homepages.inf.ed.ac.uk/s1537177/resources.html
2http://www.dailymail.co.uk/
3http://edition.cnn.com/
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Michelle MacLaren is no longer set to direct the first ”Wonder Woman” theatrical movie
MacLaren left the project over ”creative differences”
Movie is currently set for 2017
Original text

@entity5 is no *longer* set to direct the first ” @entity9 ” theatrical movie
@entity5 left the project over ” creative differences ”
movie is currently set for 2017
Text with anonymous entities

@entity5:MacLaren
@entity9:Wonder Woman
Metadata

Figure 4.1: A sample document with anonymous entities.

4.2 Experimental settings

For word embedding layer, we initialized the matrix using the values provided by a
word2vec model [46] trained on this DailyMail dataset and we let the network continue
to update this matrix during the training phase. All models were trained with Adam
optimizer, an adaptive method for stochastic optimization [47]. The encoder vocabu-
lary and decoder vocabulary were limited to 150,000 and 100,000 words respectively. All
special tokens like <DIGIT>, <GO>, <PAD>, <EOD> were initialized with uniform
distribution in range [-0.5, 0.5].

We did not extensively tune all parameters due to time constraint. Instead, we used the
values reported by other relevant work and chose some parameters heuristically. Table
4.2 shows our network configuration for training. CNN parameters were chosen similar to
the model in [48]. Based on the statistics provided in [15], we fixed the maximum number
of sentences to 35, the maximum number of words per sentence to 50 and the maximum
number of words per document to 800. The model was trained to generated maximum
100 words. We also detected the EOD token in the generated summary and truncated it
to a proper length.

At the beginning of each epoch, we randomly shuffle the entire training examples and
we also shuffle the examples inside each batch. This is a small trick to prevent the model
from over-fitting because of repetitive input data. All the models were implemented in
Python with Tensorflow library4.

Training deep learning model like this requires a fast and powerful computer with GPU
support. We took advantage of the GPU-powered supercomputer at JAIST for running
the experiments. This server is equipped with Tesla K40M GPU and our computational
time is reduced more than 10 folds compared to when it is on CPU. Nonetheless, it still
takes a long time to finish a single epoch. In our experiment, we adopted early stopping

4https://www.tensorflow.org/
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Table 4.2: Experimental settings.

Batch size 32
Word dimension 100
Part-of-speech dimension 30
Hidden size 256
Learning rate 0.001
Sampled softmax classes 4096
CNN kernels [1,2,3,4,5,6,7]
CNN feature maps [50, 100, 150, 200, 200, 200, 200]
Max number of sentence 35
Max sentence length 50
Max input sequence length 800
Max output sequence length 100

strategy to avoid over-fitting. We also handled the cases where the loss of our model
might go up a little bit before going down by using patience value, i.e. how many epochs
we should continue when the loss goes up. Patience is set to 2. Early stopping was only
applied when each model had already finished their first 20 epochs. This is to prevent a
model from stopping too early in their training due to a jump in validation loss.

4.3 Results

For evaluating the quality of a summarization system, we employ ROUGE score [38],
the most common method for checking the performance of summarization systems. Even
though ROUGE is mainly used for evaluating extractive summarization systems, it is still
widely used in abstractive summarization because of its simplicity. Other methods like
Pyramid evaluation [49] requires human annotation, which is not available in our case.
ROUGE package computes the Precision, Recall and F1 of the generated summary by
comparing it with the gold summaries. In this case, gold summaries are the highlights in
each document. Because the generated summaries have variable length, we ran ROUGE
to compute full-length F1 score5 as well as first-75-byte F1 score6. This is similar to how
the authors did in [37] and [15]. We report ROUGE-1, ROUGE-2 and ROUGE-L for each
run.

We performed the following experiments to compare the performance of all systems:

• Experiment with standard beam-search decoding: we fixed the beam width and
compare the performance of different models in term of ROUGE score and their
computational time.

5Full command: ROUGE-1.5.5.pl -m -n 2.
6with -b 75 option.
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• Experiment with varying beam width: we evaluated each system by changing the
beam width and observed the performance of each system.

• Experiment with diverse beam-search decoding and reranking.

To make it easier for presenting the results, we use the following abbreviations:

• AttSeq2Seq : the basic attention-based Seq2Seq model described in Section 3.1.

• HierEnc: the hierarchical encoding model described in Section 3.4.

• HierEnc+POS : the hierarchical encoding model with additional POS information.

• HierEnc-SW : the hierarchical encoding model which removes stop words from the
input document.

4.3.1 Experiment 1: Decoding with standard beam-search

In this experiment, we fixed beam size to 2 on the decoder and observed the differences
between models. In Table 4.3, we report the number of epochs, average training time per
epoch and the total decoding time on 500 test files.

Table 4.3: Number of epochs, average training time and decoding time on each models.

#epochs
Average training time

(hours/epoch)
Decoding time

(seconds)
AttnSeq2Seq 24 10.4 342
HierEnc 23 4.8 82
HierEnc+POS 24 6.4 157
HierEnc-SW 25 4.4 121

As we can see from Table 4.3, AttnSeq2Seq model took the longest time to finish an
epoch, almost double the time required by other models. This is totally in accordance
with our expectation when designing the hierarchical encoder. The HierEnc+POS model
is a little bit slower than HierEnc because we increase the number of parameters in the
input layer when we add POS information. Removing stop words saved us only a little
bit of training time. For decoding, HierEnc is the fastest model while AttnSeq2Seq is the
slowest one. We can also see that HierEnc-SW is slower than the HierEnc when decoding
even though its training time is smaller. This is not caused by the network but because
of our process to remove stop words before decoding7.

The ROUGE score results are presented in Table 4.4. In both evaluation (full-length
and first-75b), the AttnSeq2Seq achieves the best result in ROUGE-2 score. Other models
with hierarchical encoder yield surprisingly low ROUGE-2 scores, but their full-length

7When training, we use multiple threads running in background for processing the input before feeding
into the network so there almost no input latency.
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Table 4.4: Performance comparison of different models with fixed beam size K = 2.

Full-length F1
ROUGE-1 ROUGE-2 ROUGE-L

AttnSeq2Seq 21.3 7.0 19.1
HierEnc 21.8 3.9 19.9
HierEnc+POS 23.5 3.9 21.4
HierEnc-SW 21.5 3.7 19.8

First 75b F1
ROUGE-1 ROUGE-2 ROUGE-L

AttnSeq2Seq 20.9 6.6 14.6
HierEnc 20.2 3.6 13.4
HierEnc+POS 20.9 3.7 13.7
HierEnc-SW 16.8 2.8 11.3

ROUGE-1 and ROUGE-L are competitive with AttnSeq2Seq. This tells us that HierEnc
model generates summaries with more words appearing in the gold summary, but their
bigrams are less relevant than the AttnSeq2Seq model. If we view ROUGE-2 as the most
important metric for evaluating a summarization system like other works [50], we can say
that the performance of HierEnc is much worse than the standard architecture.

It can also be seen that providing POS information to the encoder does help to improve
the performance of the summarization model. Removing stop words, on the other hand,
makes the system worse and this is very obvious when evaluating with first 75 bytes of the
summaries. Another thing we notice is that AttnSeq2Seq yields the best result on first-
75b F1 score in all metrics. This means that the standard attention-based model indeed
produces the first few words (or the first sentence) more relevant to the gold summary
than other models.

We present several summaries generated by different models from an input document
in Figure 4.2. As we can see, all models are capable of producing summaries relevant
to the gold summary. However, AttnSeq2Seq seems to perform a bit better since its first
and second sentences are quite good. But it is also obvious that all models have issues
with repetitive words/sentences (except HierEnc in this case because it produces only
one sentence). HierEnc+POS even generates two duplicate sentences.

4.3.2 Experiment 2: The effect of beam size

As we use beam-search for decoding, it is interesting to see how changing the beam size
affects the performance of each system. We took the previously trained models of each
system and ran the decoding with varying beam size: 2, 5, 10 and 20. Our result is
reported in Table 4.5.

We can clearly see very different trends in these models. The AttnSeq2Seq benefits the
most from bigger beam size while performance of other models gets worse. We believe
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Gold summary:
@entity8 boss @entity25 has scouted @entity1
@entity6 forward @entity1 is considering his future at the @entity3
@entity9 could leave @entity8 after rejecting Â£ 100,000 - a - week deal
@entity15 , @entity22 and @entity21 are keen on the @entity8 star
@entity89 : the real problem with @entity9 contract saga at @entity8
read : @entity23 are *monitoring* @entity9 , *reveals* @entity94
click here for all the latest @entity8 news

AttnSeq2Seq:
@entity6 forward @entity1 decision to consider @entity3 future at end of season
@entity11 could see him end up at @entity7 if @entity8 sell @entity9
@entity11 forward @entity1 ’s decision to consider his future at the end of the season

HierEnc:
@entity1 ’s contract expires at the end of the season

HierEnc+POS:
@entity1 has been linked with a loan move to @entity6
the <DIGIT> - year - old has been linked with a move to @entity6
the <DIGIT> - year - old has been linked with a move to @entity6
click here for more *transfer* news

HierEnc-SW:
@entity1 has already sold more than £ 8million
the <DIGIT> - year - old has already sold more than £ 4m for the club

Figure 4.2: Outputs from different models when we fixed beam size K = 2.
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Table 4.5: Performance comparison with different beam sizes.

Full-length F1 75b F1
Beam size 2 5 10 20 2 5 10 20

ROUGE-1
AttnSeq2Seq 21.3 21.6 21.9 22.2 20.9 21.1 21.6 21.2
HierEnc 21.8 18.0 17.6 17.0 20.2 19.6 19.4 18.6
HierEnc+POS 23.5 21.8 20.9 20.1 20.9 20.3 19.6 19.2
HierEnc-SW 21.5 21.1 20.5 20.2 16.8 17.5 17.0 16.4

ROUGE-2
AttnSeq2Seq 5.7 5.9 5.9 5.9 6.6 6.7 6.9 6.5
HierEnc 3.9 3.2 3.1 3.1 3.6 3.6 3.7 3.5
HierEnc+POS 3.9 3.8 3.7 3.7 3.7 4.1 4.2 4.3
HierEnc-SW 3.7 3.7 3.7 3.7 2.8 3.0 3.0 2.7

ROUGE-L
AttnSeq2Seq 19.1 19.3 19.4 19.7 14.6 14.6 14.9 14.7
HierEnc 19.9 16.5 16.1 15.6 13.4 12.9 12.7 12.1
HierEnc+POS 21.4 19.7 18.9 18.2 13.7 13.3 12.9 12.8
HierEnc-SW 19.8 19.3 18.6 18.4 11.3 11.7 11.4 11.3

that this is because the AttnSeq2Seq is better at learning to predict the probability of
each word in the summary and hence the score of each beam is more likely to reflect the
similarity of the output with the gold summary. This means that when we increase the
beam size, the AttnSeq2Seq model is able to explore other beams and in the end select
beam with a better score or more similar to the gold summary. On the contrary, other
models may have failed to capture the document information as well as to predict the new
token. This leads to a consequence that the beam with a higher score is not necessarily
relevant much to the document and the gold summary. These trends can be seen more
clearly in the Figure 4.3a. When we compare the models using first-75b F1 score, the
patterns are not very obvious because each model changes differently. More specifically,
AttnSeq2Seq always achieve better ROUGE scores in all metrics, but it gets a bit worse
when beam size is larger than 10. This is probably because the model prefers to choose
a summary whose relevant content is expressed in several sentences. All HierEnc-based
models have similar trend as full-length F1 score, except the ROUGE-2 score does not
change much in case of HierEnc and HierEnc+POS.

We also studied the effect of different beam size to the decoding time of each model.
The detailed results are presented in Table 4.6 and plotted in Figure 4.4. We can easily see
that the decoding time of the AttnSeq2Seq increases pretty quickly and the gap between
this model and the rest gets bigger when beam size increases. Other models also witness
the increase of decoding time but it is not too strong. Similar to the case of the training
time, HierEnc is the fastest model in decoding phase. Interestingly, it is also the model
with the lowest Full-length ROUGE score. In our opinion, there are two factors causing
this phenomenon:
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Figure 4.3: Comparison of ROUGE score when changing the beam size.
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Table 4.6: Comparison of decoding time when changing the beam size.

Decoding time (seconds)
Beam size 2 5 10 20
AttnSeq2Seq 342 476 688 1188
HierEnc 82 107 162 267
HierEnc+POS 157 206 309 517
HierEnc-SW 121 163 254 430
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Figure 4.4: A graph showing the variation of decoding time when changing the beam size.

• The CNN we use for encoding each sentence might not capture as much information
as the normal RNN. We might have lost some dependencies in the input document
and thus the model fails to learn effectively.

• When using hierarchical encoding, we significantly reduce the number of hidden
states computed by the encoder. This allows the model to be trained faster, but we
also lose information in the attention context vector when decoding.

4.3.3 Experiment 3: Diverse beam-search decoding with rerank-
ing

As we discussed in Section 3.3.1, the weakness of beam-search is the lack of diversity. In
Figure 4.5, we show an example of this issue when running the decoding process with
beam size set to 5. We can see that the words on each beam are quite similar, they only
differ at a few locations in the text.

In this experiment, we chose one summarization model and implemented different meth-
ods for beam-search decoding on it. Since we focus our study on the difference between
these methods, we are not going to compare the models as we did in two previous ex-
periments. To be more specific, we used the AttnSeq2Seq as our base summarization
model due to its superior performance comparing to other models and we tested different
decoding methods to generate the summary. We compare the default decoding, in which
we select the beam with the highest score, with two methods:
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Table 4.7: Performance comparison of different decoding methods on various beam sizes.

Full-length F1 75b F1
Beam size 2 5 10 20 2 5 10 20

ROUGE-1
Default 21.3 21.6 21.9 22.2 20.9 21.1 21.6 21.2
OracleReranker 21.7 23.2 24.2 24.8 21.0 21.7 22.3 22.4
DBS-G+Top5SentReranker 22.2 23.6 24.8 25.6 20.1 19.2 18.8 18.0
DBS-G+OracleReranker 22.3 24.1 26.0 27.6 20.7 20.7 21.1 20.1
DBS-L+Top5SentReranker 25.0 27.4 28.2 28.9 20.7 19.9 18.7 18.9
DBS-L+OracleReranker 25.5 28.4 29.7 30.9 21.5 21.6 20.8 20.7

ROUGE-2
Default 5.7 5.9 5.9 5.9 6.6 6.7 6.9 6.5
OracleReranker 5.9 6.6 7.0 7.3 6.7 7.1 7.3 7.3
DBS-G+Top5SentReranker 6.0 6.5 6.7 6.9 6.3 5.6 5.2 4.6
DBS-G+OracleReranker 6.1 6.7 7.4 8.0 6.6 6.7 6.3 5.7
DBS-L+Top5SentReranker 6.7 7.3 7.4 7.5 6.7 6.1 5.3 5.1
DBS-L+OracleReranker 7.0 7.8 10.0 10.7 7.1 7.3 6.6 6.3

ROUGE-L
Default 19.1 19.3 19.4 19.7 14.6 14.6 14.9 14.7
OracleReranker 19.5 20.8 21.6 22.1 14.6 15.1 15.5 15.5
DBS-G+Top5SentReranker 20.0 21.3 22.2 22.9 14.1 13.2 12.8 12.1
DBS-G+OracleReranker 20.2 21.8 23.5 24.9 14.4 14.3 14.4 13.8
DBS-L+Top5SentReranker 22.4 24.4 25.1 25.6 14.3 13.5 13.0 12.8
DBS-L+OracleReranker 22.9 25.5 26.5 27.5 14.9 14.9 14.4 14.1

• Method 1 (DBS-G): We use diverse beam-search decoding with beam grouping as
described in Section 3.3.1. We set diversity rate to 1.0 and the number of groups
equal to the beam size.

• Method 2 (DBS-L): We use diverse beam-search decoding with local diversity as
described in Section 3.3.2, Local diversity rate is heuristically set to 2.0.

For the re-ranking part, it can be either the top-5-sentence-relevance re-ranker (denoted
as Top5SentReranker) or the Oracle re-ranker (denoted as OracleReranker).

The ROUGE scores of these decoding methods are presented in Table 4.7. There are
several interesting points we can learn from that table:

• First, re-ranking does help to improve the performance of the summarization model
even with the default beam-search decoding. After applying OracleReranker to the
default decoding, we get better ROUGE score in all cases. The improvement when
using a real re-ranker might not be as big as our result, but at least it shows us
the room for improvement. This is in accordance with our reasoning that the beam
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Gold summary:
@entity9 , of @entity10 , @entity1 , was arrested after she was identified from the
video
the cameraman films @entity48 for more than a minute before she notices
he then asks what she ’s doing but @entity48 does not respond
the cameraman said he started filming after seeing the woman ’ pulling this kid by
his hair ’ out of a @entity112 ’s

Beam 1:
@entity1 woman was arrested after video posted on @entity3
video posted on @entity3 that showed her striking a young , crying child in face with
what appeared to be a @entity8 - like tablet

Beam 2:
@entity1 woman was arrested after video posted on @entity3
video posted on @entity3 that showed her striking a young , crying child in the face
with what appeared to be a @entity8 - like tablet

Beam 3:
@entity1 woman was arrested after video posted on @entity3
she was posted on @entity3 that showed her striking a young , crying child in face
with what appeared to be a @entity8 - like tablet

Beam 4:
@entity1 woman was arrested after video posted on @entity3
video posted on @entity3 showing her striking a young , crying child in face with what
appeared to be a @entity8 - like tablet

Beam 5:
@entity1 woman was arrested after video posted on @entity3

Figure 4.5: Similar beam outputs generated by the AttnSeq2Seq model. Beam size is 5.
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with the highest score returned by the model does not necessarily mean the best
summary. Some lower score outputs might contain more relevant content.

• Second, the effect of re-ranking becomes more obvious when we increase the beam
size. This is not too difficult to understand because larger beam size means we
have more outputs to consider. As a result, we have more chance to select the best
output which is closer to the gold summary.

• Third, first-75b F1 score cannot fully express the efficiency of diverse beam-search
and re-ranking. This is because when we have more diverse outputs, we probably
prefer the text which has the entire content as relevant as possible to the document
and the gold summary, not just the first 75 bytes of the text. That is why we see
the scores of models with diverse output tends to decrease as we increase the beam
size. OracleReranker does not follow this trend because all beam outputs from the
AttnSeq2Seq have very similar text, especially the beginning part. Thus applying
re-ranking to select a different output does not change the first 75 bytes much. The
outputs presented in Figure 4.5 are good examples for this case.

If we look at the full-length F1 score when beam size is set to 20, we can clearly see
effectiveness of new decoding methods and re-ranking. The DBS-G technique allows the
model to achieve higher ROUGE scores than the default method in all metrics (ROUGE-
1, 2 and L), no matter which re-ranker we use. Our proposed method DBS-L is shown
to be better than DBS-G, even with the simple Top5SentReranker. This means that the
outputs generated by DBS-L are generally better than the DBS-G. But Top5SentReranker
is a very simple ranker and it does not show the full potential of our method. The result
when using DBS-L in combination with an OracleReranker indicates what we can possibly
achieve with a well-designed re-ranker. This method yields impressive scores higher than
all other methods. Comparing to the standard decoding, it helps the ROUGE-1 score to
increase by almost 40%, ROUGE-2 increases by more than 80% and ROUGE-L increases
by nearly 40%. We graphically depict the difference between these methods in Figure 4.6.

To illustrate the efficiency of these techniques, we show the summaries generated by
each method in the Figure 4.6. Two methods Default and OracleReranker generate
nearly duplicate sentences and repetitive words. DBS-G+OracleReranker produces better
output but it still repeats the word “today” several times. Our proposed method DBS-
L+OracleReranker does the best job at avoiding repetitive words and phrases (though it
cannot remove this issue completely since we the word pensioner was duplicated).

4.4 Performance comparison with other systems

We could not find many published systems using the same DailyMail dataset for testing
their performance. In this section, we present only 2 systems for comparison:

• The word extraction model namely NN-WE proposed by Cheng et al. [37]. We
compare with this model using first-75b F1 score. The author did not report full-
length F1 for this model.
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Figure 4.6: Comparison of Full-length F1 score when using different methods for decoding.

• The abstractive summarization model proposed by Nallapati et al. [15]. In partic-
ular, we directly take the result of the best model called words-lvt2k-temp-att from
their paper. We compare our systems with this model using full-length F1 score.

We select two models from our side for comparison. The first one is the AttnSeq2Seq
model with default decoding method, the other one is the AttnSeq2Seq model combined
with the DBS-L+OracleReranker (both use beam size = 20 for decoding). The results
are presented in Table 4.8 and Table 4.9.

In the first result (Table 4.8), our model achieves better ROUGE-1 and ROUGE-2 score
than the NN-WE model, ROUGE-2 is not so different. This means the beginning text
of our generated summaries has more relevant content than their model. But it should
be noted that their model was tested on different test set because the authors randomly
selected 500 documents for testing.

The result in Table 4.9 shows that our best model AttnSeq2Seq+DBS-L achieves much
lower score than words-lvt2k-temp-att. This is mainly because:

• We did not use as many techniques as the authors did in their work. Our model
is, in fact, similar to their base model without extra techniques they added into
it. Therefore the comparison is not fair and lower performance on our model is
predictable.

• We did not have time and resources to extensively tune many parameters, we also
kept the network size at a reasonable size to make it runnable on the server we used.
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Gold summary:
body of woman *believed* to be @entity15 was discovered at her home
her son @entity6 , 73 , has been charged with the 95 - year - old ’s murder
police called to the scene in @entity12 on thursday at about 8pm

Default:
@entity6 , <DIGIT> , is to appear in court today today charged with the murder of
his <DIGIT> - year - old mother at her home
police arrested @entity6 after pensioner pensioner , <DIGIT> , is to appear in court
today charged with the murder of his <DIGIT> - year - old mother at her home
police arrested @entity6 after the pensioner pensioner , <DIGIT> , is to appear in
court today charged with the murder of his <DIGIT> - year - old mother at her
home
police arrested @entity6 after the pensioner pensioner , <DIGIT> ,

OracleReranker:
@entity6 , <DIGIT> , is to appear in court today today charged with the murder of
his <DIGIT> - year - old mother at her home
police arrested @entity6 after pensioner pensioner , <DIGIT> , is to appear in court
today charged with the murder of his <DIGIT> - year - old mother at her home
police arrested @entity6 after the pensioner pensioner , <DIGIT> , is to appear in
court today charged with the murder of his <DIGIT> - year - old mother at her
home
police arrested @entity6 after the pensioner pensioner was to appear
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DBS-G+Top5SentReranker
@entity19 pensioner has been charged with the murder of his <DIGIT> - year - old
mother at her home
police arrested @entity6 after pensioner *’s* mother at her home
police arrested @entity6 after pensioner , <DIGIT> , from her home
police arrested @entity6 after the pensioner pensioner is to appear in court today
charged with the murder of his <DIGIT> - year - old mother at her home
police arrested @entity6 after the pensioner pensioner , aged <DIGIT> , at her home
police arrested @entity6 after the pensioner pensioner was to appear in court today

DBS-G+OracleReranker:
the <DIGIT> pensioner , <DIGIT> , is to appear in court today today charged with
the murder of his <DIGIT> - year - old mother at her home
police arrested @entity6 after the pensioner pensioner was to appear in court today
today today today

DBS-L+Top5SentReranker
@entity122 said pensioner was to appear in court today charged with the murder of
his <DIGIT> - year - old mother at her home
police arrested @entity6 after the pensioner pensioner , who is to appear in court
today today

DBS-L+OracleReranker:
the <DIGIT> pensioner , <DIGIT> , is to appear in court today charged with the
murder of his <DIGIT> - year - old mother at her home
police arrested @entity6 after the pensioner pensioner was on @entity28 ’s home

Figure 4.6: Sample outputs generated by different decoding methods. Beam size is 20.
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Table 4.8: First-75b F1 comparison with other work.

ROUGE-1 ROUGE-2 ROUGE-L
NN-WE [37] 15.7 6.4 9.8
AttnSeq2Seq 21.0 6.5 14.7
AttnSeq2Seq+DBS-L+OracleReranker 20.7 6.3 14.1

Table 4.9: Full-length F1 comparison with other work.

ROUGE-1 ROUGE-2 ROUGE-L
words-lvt2k-temp-att [15] 35.5 16.6 32.7
AttnSeq2Seq 22.2 5.9 19.7
AttnSeq2Seq+DBS-L+OracleReranker 30.9 10.7 27.5
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Chapter 5

Discussion

Based on the results we have from the comparison of different summarization models, we
can say that the hierarchical encoding model we used is not strong enough to surpass the
default RNN encoder in term of ROUGE-2 score. One reason is probably that we have
lost some information from the input document after replacing the RNN with the CNN.
Another explanation is the attention-based decoder in HierEnc model has access only to
the information of each sentence, while the AttnSeq2Seq is able to attend each word in
the input document. The benefit of using hierarchical encoding is we save computational
time and achieve competitive ROUGE-1 and ROUGE-L scores.

We also see that providing POS as additional input features can help the deep learning
model to work better. We think this is simply because the model has more space to adjust
its parameters and therefore it could find better weight values for its network. This can
partly explain the reason why the model proposed by Nallapati et al. [15] achieved a good
performance. Removing stop words makes the system perform a little worse, but it is not
too dramatically.

Our experiments also show that beam-search decoding is a good technique for selecting
better output, but only if our model is trained sufficiently well. HierEnc did not benefit at
all from bigger beam size due to this reason, while all other models showed an improvement
when we increase the beam size. One thing we should notice is that increasing the beam
size means we spend more time on decoding process. Though it is not a big issue in our
case because it takes only a few seconds, some practical applications might not prefer this
and we should set beam size to a reasonable number.

Another thing we found in the experiments is that the combination of beam-search and
re-ranking gives us a simple way to improve our summarization system. This is useful
to be applied in many similar systems because we do not have to modify the training
architecture of the model. Yet, re-ranking can only show its full potential when we employ
several techniques to generate diverse outputs. Our proposed method DBS-L combining
with a Oracle re-ranker indicates what we could possibly achieve if we do things properly.
Diverse beam-search also benefits a lot from using larger beam-size (which is not obvious
in the case of default beam-search).

Our biggest challenge when doing this research is running the experiments. The size
of our model was huge and we could only finish those experiments by running it on a

43



supercomputer with GPU. We did try running our experiments on CPU-only server and
we found that it was 10 times slower than GPU. In addition, our training process required
more than 10GB of GPU memory (batch size is 32), a typical personal computer is totally
not suitable for this. Even when using the supercomputer, we still had to reduce several
parameters to make it runnable (by using smaller batch size and smaller hidden size
comparing to similar research). Another problem we met is that the server we used had
a limited time for each session per user. That is why we had to keep saving the model
to disk and restarting it after every 2 days. This process is truly time-consuming and
error-prone.
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Chapter 6

Conclusion

This thesis presented our study on abstractive text summarization using deep learning, our
experiments to compare different summarization models and our proposal for improving
the decoding process. There are several points which we consider the most important
contributions in this research:

• We implemented two deep learning models for single-document summarization prob-
lem. One model uses a standard RNN encoder and the other uses a hierarchical
encoder. We ran many experiments to compare these systems in terms of running
time and summary quality. The experiments gave us a greater understanding of the
network architecture we use for encoding and how it can affect the performance of
the system.

• We studied the effect of adding POS information to the encoder as well as removing
stop words from the encoder. Although it is a simple experiment, it shows how
each feature contributed to the final performance. Our study on the beam-search
decoding also showed an interesting result when beam size is varied on each model:
increasing beam size is not always beneficial if the model is too weak.

• We observed the output from neural summarization model to understand the current
issues in the summary, then employed several techniques to improve the quality of
the summaries by modifying the decoding process. In particular, we applied methods
to generate more diverse outputs and used re-ranking to select a better summary.
Our proposed method achieved the best ROUGE score comparing to the default
decoding method.

Even though there are more things we want to do in this research, we could not due to
the limited time, resources and knowledge. The main limitations of this research are:

• The reason for the lower performance of hierarchical encoding model was not sys-
tematically checked and verified through formal analysis. We could not point out
which was the most important cause for this and how to overcome it. More inves-
tigation should be done. Besides, network parameters were not tuned enough to
achieve the best performance.
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• We could not investigate the effectiveness of using other features to support the
model. The intention of using linguistic features like syntactic tree could not be
accomplished.

• We did not have time to study more functions for maintaining local diversity in
our proposed method. Our re-ranker was also a simple one instead of a carefully-
designed re-ranker.

• It would be better if we could conduct a manual evaluation for this research.
ROUGE is not very suitable for evaluating an abstractive summarization system.

Abstractive text summarization is an interesting research and we think it should deserve
more attention from the community. Among all the techniques used for solving this
problem, deep learning has shown the most promising results. It is not impossible that
in the near future, a deep learning system can generate abstractive summaries which can
even be better than our human writing.
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