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Abstract. Dynamic Aggregation of Relational Attributes is one of the ap-
proaches which can be used to learn relational data. It is capable to transform a 
multi-relational database into a vector space representation. Traditional cluster-
ing algorithm can then be applied directly on the vector space representation to 
learn and summarize the relational data. However, the performance of the algo-
rithm is highly dependent on the quality of clusters produced. A small change in 
the initialization of the clustering algorithm parameters may cause adverse ef-
fects to the clusters quality produced. In order to optimize the quality of clus-
ters, a Genetic Algorithm is used to find the best combination of initializations 
and settings to produce the optimal clusters. The proposed method involves the 
task of finding the best initialization with respect to the number of clusters, 
proximity distance measurements, fitness functions, and classifiers used for the 
evaluation. Based on the results obtained, clustering coupled with Euclidean 
distance is found to perform better in the classification stage compared to using 
clustering coupled with Cosine similarity. Based on the findings, the cluster en-
tropy is the best fitness function, followed by multi-objectives fitness function 
used in the genetic algorithm. This is most probably because of the involvement 
of external measurement that takes the class label into consideration in optimiz-
ing the structure of the cluster results. 

Keywords: Relational Data Mining, k-Means, Clustering, Ensembles, Genetic 
Algorithm, Multi-Objectives. 

1 Introduction 

Data mining is the process of discovering interesting patterns and knowledge from 
large amounts of data [1][2]. It involves several stages, first is the data preprocessing, 
which relevant data is selected and retrieved from the databases, cleaning to remove 
noise and handle missing data, integration to combine data from multiple sources. 
Second, data transformation, where features selection and transformation is applied, 
to produce an appropriate representation which represent the databases. Third, data 
mining process in which intelligent methods are used to extract patterns, such as rules, 



clusters and etc. Finally, pattern evaluation and presentation, where interesting pat-
terns extracted are presented in knowledge which is easily human understandable. 

From database point of view, a typical relational database consists of multiple rela-
tions known as tables [3][4]. These relations are connected via semantic links such as 
entity relationship links. Many useful traditional data mining algorithms work on 
single table form only and cannot be applied directly in learning multi-relational data-
bases [5]. Flattening the multi-relational databases leads will lead to inaccurate clus-
tering and results in wrong business decision. 

Thus, several approaches have been proposed to learn multi-relational databases. 
Inductive Logic Programming [6], Propositionalization [7] and Dynamic Aggregation 
for Relational Attributes [8] are popular approaches in learning relational datasets. 
Dynamic Aggregation of Relational Attributes is designed based on a clustering tech-
nique [9][10] in which it is capable of transforming multi-relational databases to vec-
tor space representation, where traditional clustering algorithms can be applied direct-
ly to learn the multi-relational data.  

Traditional ݇-means clustering algorithm is a hill climbing algorithm which is sen-
sitive to its initialization [9][11][12]. The predefined number of clusters, ݇ which is 
usually assumed to be known priori and the initialization of initial centroids of cluster, 
will heavily affect the quality of final clusters. The quality of clustering and the time 
complexity in terms of the number of iterations required to converge also depends on 
the initial selection of centroids. As different initialization in ݇-means clustering algo-
rithm will produce different results, which affect the performance of Dynamic Aggre-
gations of Relational Attributes, it is essential to combine and generalize these results 
produced by different initialization to form one single consensus result of higher sta-
bility using clustering ensembles. 

Thus, the objectives of this paper are, to design and propose the complete frame-
work of the ensemble approach to learning multi-relational data; to implement a Ge-
netic Algorithm based clustering algorithm in order to find the best initialization for 
each ݇-means clustering applied; and to assess the performance of the clustering en-
sembles by using a C4.5 classifier and Naïve Bayes classifier based on different dis-
tance metrics and different fitness function (i.e., single and multi-objectives). The rest 
of this paper is organized as followed. Section 2 explains some related works. Section 
3 discusses the Multi-Objectives Genetic Algorithm Hybridization used in this paper. 
Section 4 discusses the experimental setup and Section 5 discusses the experimental 
results obtained. Section 6 concludes this paper. 

2 Related Works 

2.1 Multi-Relational Data Mining 

A typical multi-relational database consists of multiple relations as tables and these 
tables are associated to each other through primary and foreign keys. In a one-to-
many relationship set of tables, a record stored in the target table corresponding to 
multiple records stored in the non-target table. One of the famous approaches in learn-
ing multi-relational data is known as inductive logic programming [13]. The term for 



inductive logic programming was first introduced by Muggleton [14]. It uses logic for 
representation. Based on the background knowledge provided, it constructs predicates 
for logic representations and make hypotheses base on the syntactic predicates [6]. 
However, most of the inductive logic programming based approaches are usually 
inefficient for databases with complex schemas, not appropriate for continuous values 
and not capable of dealing with missing values [15]. 

Another common approach is propositionalization [7] that captures and stores rela-
tional representation in propositional form. These propositional forms are known as 
new features and are usually stored as attributes in a vector form. Although proposi-
tionalization approaches have some inherent limitations, such as learning recurrent 
definitions, it has advantages over traditional inductive logic programming based 
approaches by allowed the use of propositional algorithms including probabilistic 
algorithms while learning relational representations [7]. 

Alfred recently introduced Dynamic Aggregation for Relational Attributes ap-
proach to summarize the entire contents of non-target tables before the target table 
can be processed for knowledge discovery [8]. It contains three stages i.e. data pre-
processing, data transformation and data summarization. Data are first preprocessed 
by discretizing continuous values into categorical values. Then, a theory from infor-
mation retrieval is borrowed, to transform the multi-relational databases. Records 
from non-target table are transformed into “bag of words”, so that frequency-inverse 
document frequency matrix can be produced. 

2.2 Clustering 

After where data is transformed from multi-relational data representation to vector 
space representation, a traditional clustering algorithm can then be applied. Data min-
ing can be generalized to supervised learning and unsupervised learning. Clustering is 
an unsupervised learning algorithm where class labels are not available during train-
ing phase [16]. Clustering can be categorized to two main categories: hierarchy and 
partition [10][11][17][18]. Hierarchy clustering will produce nested clusters tree. In 
contrast with hierarchical clustering, a record can be grouped from one cluster to an-
other cluster in different iterative of partition clustering. k-means clustering is a parti-
tion clustering algorithm [19]. The number of clusters, ݇ is predefined. For each ܰ 
record instances, we will calculate the vector distance between the records to each of 
the centroid of clusters using Euclidean distance, ݀݅ݐݏ, as follows, 

 

ݐݏ݅݀ ൌ 	ට∑ ሺݔ௜ െ ௜ሻଶௗݕ
௜ୀଵ                                                (1) 

 
where ݀ is the maximum feature dimension, ݔ is the record instance and ݕ is the cen-
troid of interest. The record instance will be assigned to the nearest centroid, which is 
the centroid with lowest Euclidean distance. 

Alternatively, the distance between the records to each of the centroid of clusters 
can also be calculated using the cosine similarity, as follows, 

 



cosሺݔ, ሻݕ ൌ ௫∙௬
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                                                       (2) 

 
where ∙ indicates the vector dot product, ݔ ∙ ݕ ൌ ∑ ௞ݕ௞ݔ

௡
௞ୀଵ , and ‖ݔ‖ is the length of 

vector ݔ ‖ݔ‖ , ൌ ඥ∑ ௞ݔ
ଶ௡

௞ୀଵ ൌ ݔ√ ∙ ݔ . Through finite number of iterations, k-means 
algorithm is guaranteed to converge to a local optimum. k-means algorithm is sensi-
tive to the centroids initialization. It is common to run k-means clustering with differ-
ent number of clusters and different centroids initialization. After clustering algorithm 
is applied, clustering validity can be used to evaluate the quality of the final clustering 
result. The clustering validity index has been defined as combination of compactness 
and separation [20]. Compactness is the measurement of distance between records of 
the same cluster. Lower distance between records of the same cluster should have 
better validity. Separation is the measurement of distance between records of different 
cluster. Records of different cluster should separate as far as possible with each other. 
The Sum of Squared Error (SSE) is the summation of squared distance for each rec-
ord in the data set with other records [21]. It is defined as, 

 
,ሺܺܧܵܵ ܻሻ ൌ 	 |ܺ െ ܻ|                                                      (3)                  

 
where X and Y are vector of two records in the vector space. Davies-Bouldin Index 
(DBI) is an internal validity index [20]. It is defined as, 
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where ܿ is the total number of clusters, ݅ and ݆ are the cluster labels in comparison, 
݀ሺ ௜ܺሻ and ݀൫ ௝ܺ൯ are records in cluster ݅ and ݆ to their respective centroids, ݀൫ܿ௜, ௝ܿ൯ is 
distance between centroid ݅  and ݆ . Lower value of DBI indicates better clustering 
result. Entropy (Ent) is an external validity index [20]. It is the measurement of purity 
of clusters’ class labels. Lower value of Entropy indicates lower impurities within the 
same cluster. First, we calculate the class distribution of objects in each cluster as 
follows, 

௝ܧ ൌ ∑ ௜௝௜݌ log൫݌௜௝൯                                                 (5) 
 

where ݆ is the cluster, ݅ is the class. ݌௜௝ is the probability of occurrences of class ݅ in 
cluster ݆. Total Entropy is calculated as follows, 

ܧ ൌ 	∑
௡ೕ
௡

௠
௝ୀଵ  ௝                                                        (6)ܧ

 
where ௝݊ is the size of cluster ݆, ݉ is the number of clusters, and ݊ is the total number 
of records in the data set. 

2.3 Multi-Objectives Optimization 

Real life optimizations are mostly multi-objectives and these objectives are mostly 
contradictory. The goal of multi-objectives optimizations is to search for solutions 



that optimize a number of functions to satisfy more than one constraint (Wahid, Gao, 
& Peter, 2014). Traditional genetic algorithms [22][23][24] can be accommodated 
with specialized multi-objectives function in order to provider higher solutions diver-
sity. There are generally two approaches to multi-objectives optimization. The first 
general approach is either combines individual functions into one composite function 
or moves all objectives to one constraint set. Combining individual functions is also 
known as weighted sum approaches (Wen, Li, Gao, Wan, & Wang, 2013), where a 
weight ݓ௜ is assigned for each normalized objective function, ௜݂ሺݔሻ so that the multi-
objectives problem is converted to a single objective problem: 

 
݂ሺݔሻ ൌ ଵݓ ଵ݂ሺݔሻ ൅	ݓଶ2ሺݔሻ ൅ ⋯൅	ݓ௜ ௜݂ሺݔሻ	                              (7) 

 
In clustering for instance, there are many functions that can be used to validate the 

cluster quality such as SSE, DBI and entropy as described in Section 2.2 above. These 
individual cluster quality validity functions can be normalized and then combined 
using equal weighted sum to convert it to a single minimization function.  

3 Multi-Objectives Genetic Algorithm Hybridization 

Since k-means algorithm is sensitive to initialization and would fall into a local opti-
ma, rather than running it for multiple times using random initialization, it has been 
hybridized with a genetic algorithm [22][23][24] in order to find the global optima. In 
this paper, a binary encoding is used with chromosome length = ܰ where ܰ is the 
total number of records. Each gene within the chromosome represents an instance of 
records of the data set. The value of each gene represents whether that particular in-
stance of records is an initial centroid of clusters. For each number of clusters, ݇ the 
population size of 100 is used and is let to evolve for 100 generations. Each chromo-
some represents a possible solution, which is a set of initial centroid of clusters. After 
݇-means algorithm run is completed for each chromosome in the first generation, the 
chromosome quality will be evaluated using the individual fitness function previously 
and multi-objectives function as described below. 

Individual fitness functions described in Section 2.2, can also be normalized, com-
bined according to weighted sum approach into one optimization objective. The nor-
malization of each of the single objective function is done based on per generation 
basis in the genetic algorithm,  

௡݂௢௥௠௔௟௜௭௘ௗሺݔሻ ൌ
௙೔ሺ௫ሻି௙ౣ౟౤ሺ௫ሻ

௙೘ೌೣሺ௫ሻି௙೘೔೙ሺ௫ሻ
                                        (8) 

 
where ௜݂ሺݔሻ is the fitness value of the individual, ௠݂௔௫ሺݔሻ and ௠݂௜௡ሺݔሻ is the maxi-
mum and minimum fitness value in the generation respectively. The multi-objectives 
fitness function can then be defined as, 
 

݂∗ሺݔሻ ൌ ଵݓ ଵ݂ሺݔሻ ൅ ଶݓ ଶ݂ሺݔሻ ൅ ଷݓ ଷ݂ሺݔሻ                                (9) 
 



where ݂∗ሺݔሻ is the computed weighted sum multi-objectives fitness value of the indi-
vidual, ଵ݂ሺݔሻ, ଶ݂ሺݔሻ and ଷ݂ሺݔሻ are normalized value for sum of squared error, Davies-
Bouldin index and cluster entropy respectively, and ݓଵ, ݓଶ and  ݓଷ are the weight 
applied to respective normalized value, where ݓଵ ൌ ଶݓ	 ൌ ଷݓ	 ൌ 1. 

4 Experimental Setup  

The main objective of the experiment that is conducted involves the task of finding 
the best initialization with respect to the number of clusters, proximity distance meas-
urements, fitness functions, and classifiers used for the evaluation. There are two 
main parts in this experiment. In the first part, the data will be clustered based on 
given number of clusters, k. The main task here is to determine the best number of 
clusters in order to summarize the transformed data. Let the number of rows in a data 
set be ݊ then the ranges of k will be from 2 to 2√݊, with increment of 1. For example, 
there are 189 rows of data within Mutagenesis dataset, 2 times of square root of 189 is 
27. We further extended 27 to 30 to allow better view of the output results in term of 
accuracy. The clustering results are then appended into the target table as new addi-
tional feature. Then the table is fed into the classifiers (e.g., C4.5 and Naïve Bayes 
classifiers with 10-fold CV) in order to evaluate the predictive performances.  

In the second part of the experiment, the results from the first part of the experi-
ment with number of clusters, k from 2 to maximum test range is collected. The clus-
ter ID which is determined from the first part of this experiment will become the fea-
tures of the second part of the experiment. The second part of the experiment consists 
purely of categorical data as cluster ID is categorical value. Same range of k is used. 
After clustering, the results are fed into WEKA using the same classifier. Results of 
the second part are then compared with the first part of the experiment. 

For each number of clusters, k, a population size of 100 is used and there is 100 
generations. Each chromosome represents a set of initial centroid of clusters. During 
reproduction, the chromosomes will undergo uniform crossover and mutation. For 
each gene of the chromosome, they will be tested with a crossover rate whether to 
exchange the information. After the offspring is produced, each of the genes of the 
offspring chromosome will be tested with mutation rate whether to flip the bit. To 
maintain the number of true bits which represent the number of clusters, when a bit is 
flipped, another bit of opposite value is also randomly chosen and flipped. 

The experiment is first executed with genetic algorithm using sum of squared error 
(SSE) as measurement of fitness function which will be used for selection. The exper-
iment is then repeated using Davis-Bouldin Index (DBI) and Cluster Entropy (Ent) as 
fitness function. After that, the experiment is repeated again using a normalized multi-
objectives (MO) fitness function, which is the combination of all previous three fit-
ness function earlier. 

 Three Mutagenesis and Three Hepatitis datasets were used, namely B1, B2, B3 
and H1, H2, H3 respectively. The number of clusters, k used in Mutagensis datasets 
starts from k=2 to k=30. The number of clusters, k used in Hepatitis datasets starts 
from k=2 to k=50. Each of the dataset was executed in the experiment using 3 differ-



ent single fitness function and 1 combined and normalized multi-objectives fitness 
function. 

5 Results and Discussion 

Six different datasets i.e. B1, B2 and B3 from mutagenesis and H1, H2 and H3 from 
hepatitis have been used. Each dataset is then summarized using different combina-
tion of distance measurement (e.g., Euclidean distance and Cosine) and genetic algo-
rithm fitness function (e.g., SSE, DBI, Ent, MO) to produce sets of 48 results. Each 
result set are then fed into two different classifier, C4.5 and Weka Naïve-Bayes classi-
fiers, which consequently produce the 96 average predictive accuracy increment tabu-
lated in Table 1.  

Table 1.  Increment of average predictive accuracy in percentage generated by different from 
classifiers using summarized datasets with clustering ensembles of different combination of 
experimental settings. 

 
In term of classifier used to generate predictive accuracy, Weka C4.5 classifier is 

able to achieve increment in average predictive accuracy as high as 6.43% with 32 
results set of positive increment and 16 results set of no improvement or decreased 
average predictive accuracy, which is able to conclude that 66.66% of the summa-
rized data can perform better on a Weka C4.5 classifier. On the other hand, Weka 
Naïve Bayes classifier is able to achieve increment in average predictive accuracy as 
high as 10.11% with 41 results set of positive increment and 7 results set of no im-
provement or decreased average predictive accuracy, which brings to a conclusion 
that 85.41% of the summarized data can perform better on a Weka Naïve Bayes clas-
sifier. From this point of view, Weka Naïve Bayes classifier will benefits from a 
summarized data more than a Weka C4.5 classifier does. 
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C4.5 B1 1.85 1.62 -0.46 0.97 3.59 0.28 2.09 2.60 
B2 0.83 -0.07 -0.02 1.78 2.44 2.84 0.00 1.41 
B3 -0.38 -0.44 4.51 0.30 3.93 3.19 4.12 0.33 
H1 2.15 2.76 -9.4 6.43 2.44 2.03 2.20 2.97 
H2 -0.02 -0.01 -0.09 0.00 0.41 1.25 0.00 0.66 
H3 -0.08 0.00 -0.09 0.00 1.46 0.07 0.07 0.15 

Naïve 
Bayes 

B1 0.11 10.11 1.08 -0.49 -0.49 0.97 0.11 1.24 
B2 0.38 -0.97 0.49 -0.81 2.37 1.35 1.73 -0.38 
B3 0.32 0.27 0.97 0.16 3.18 2.21 0.91 0.60 
H1 3.59 1.96 2.45 4.33 2.35 3.59 2.75 5.77 
H2 3.62 1.10 3.59 0.71 8.31 3.76 6.91 3.54 
H3 6.18 -0.30 5.13 0.39 9.10 -1.00 9.55 0.70 



Table 2.  Average predictive accuracy increment in percentage based on different classifier 
used and fitness function used in the genetic algorithm. 

Fitness Function \ Classifier Weka C4.5 Weka Naïve Bayes Overall 
Sum of squared error 0.67 2.19 1.43 
Davies-Bouldin index 0.32 1.5 0.91
Cluster entropy 1.99 2.97 2.48 
Multi-objectives 1.38 2.78 2.08 

Table 3.  Average predictive accuracy increment in percentage based on different classifier 
used and different summarized dataset used. 

 
 
 
 
The table above concluded the results from point of view of performance of differ-

ent fitness function used in the genetic algorithm to optimize the initialization of ini-
tial centroids of the k-means algorithm. From the results, it can be concluded that 
cluster entropy has the highest performance in optimizing the initial centroids of the 
k-means clustering algorithm, with overall average increment of predictive accuracy 
of 2.48%, followed by multi-objectives with 2.08%. This is most probable caused by 
that class label has been used as part of evaluation in the cluster entropy fitness func-
tion, which favors both classifiers. 

The table above concluded the results using another perspective, to compare which 
summarized datasets have better performance in term of average predictive accuracy 
increment according to different classifier used. It can be concluded that summarized 
mutagenesis datasets have better performance for Weka C4.5 classifier but summa-
rized hepatitis datasets have better performance for Weka Naïve Bayes classifier. 

6 Conclusion 

In this paper, a framework of ensemble approach to learning relational data is pro-
posed and designed. A genetic algorithm based k-means clustering algorithm has been 
implemented in clustering relational data to find the optimal set of solutions for each 
number of clusters, ݇. It can be concluded that the combination of Euclidean distance 
has the better performance over cosine similarity for mutagenesis datasets and Weka 
C4.5 classifier, but cosine similarity has better performance over Euclidean distance 
for hepatitis datasets and Weka C4.5 classifier. On the other hand, it was found that 
for Weka Naïve Bayes classifier, where cosine similarity has better performance for 
mutagenesis dataset and Euclidean distance has better performance for hepatitis da-
taset. The weight for each individual objective function in the multi-objectives opti-
mization process in this work is not properly tuned as it is not an easy task even for 
expert with domain knowledge. To address this problem in the future, the weights of 
each individual function can also be optimized using evolutionary algorithms. The 
purpose of doing so is to find the optimum combination of weights for each individual 

Dataset \ Classifier Weka C4.5 Weka Naïve Bayes 
Mutagenesis (B1, B2, B3) 1.55 1.05 
Hepatitis (H1, H2, H3) 0.63 3.67



function along the evolutionary algorithms of multi-objectives optimization in order 
to find the best set of initial centroids. Pareto approaches can also be implemented to 
compare the performance of cluster ensemble with a weighted sum approach. 

In future works, the processes in the transformation stage may be integrated with 
the summarization stage, such as feature aggregation or feature selection using an 
evolutionary approach, together with the optimization of initial centroids of k-means 
clustering; so that the best set of features contributing to the highest information gain 
can be selected, thus indirectly ignoring the insignificant tuples in the non-target ta-
ble. 
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