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We demonstrate that knowledge of chemical physics on a materials system can be automatically
extracted from first-principles calculations using a data mining technique; this information can
then be utilized to construct a simple empirical atomic potential model. By using unsupervised
learning of the generative Gaussian mixture model, physically meaningful patterns of atomic
local chemical environments can be detected automatically. Based on the obtained information
regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model
for estimating the atomic potential energy. Our experiments show that the proposed mixture
model significantly improves the accuracy of the prediction of the potential energy surface
for complex systems that possess a large diversity in their local structures. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964318]

INTRODUCTION

Computational materials science encompasses a range
of methods that are used to model materials and simulate
their responses at different length and time scales. Among the
many problems that are tackled by computational materials
science, the development of methods for computing the
potential energy surfaces (PESs), from which atomic forces
are also obtained, with low computational cost is of primary
importance. There are two main approaches in dealing with
this issue: the first-principles approach and the empirical
approach. The first-principles approach, which is based
on the explicit modeling of electrons, is associated with
high accuracy. However, the application of this approach
is limited to small system sizes (i.e., typically a few
hundred atoms), depending on the level of approximation
and available computing power. On the other hand, in
the empirical approach, computation methods (e.g., atomic-
scale methods, including semi-empirical tight-binding and
empirical force fields or reactive potential) are developed with
less transferability, but with high efficiency. One of the major
principles of this approach is to develop simple models to meet
the unique characteristics of materials of interest. Therefore,
these methods can yield not only impressive fidelity/accuracy
by their inherent approximation but can also yield applicability
to systems up to tens of billions of atoms.

However, the empirical approach depends strongly on
prior knowledge concerning how to identify groups of
materials with similar characteristics, which derives from
the manual extraction of behavioral patterns of materials by
researchers. The increasing volume of available experimental

and quantum computational materials databases together with
the development of machine learning techniques provides an
opportunity to integrate the two approaches. According to
this approach, prior knowledge of hidden patterns can be
automatically extracted from both first-principles-calculated
data and experimental data1–5 by using machine learning
techniques; such information can then be utilized to construct
a simple empirical potential model.

Recently, methods wherein the PES of a system is
derived from a large set of quantum calculation energies have
been developed. According to these methods, information
concerning local atomic structures is represented by using
various types of descriptors and is then mapped to
potential energy using a unique predictive modeling technique
(i.e., supervised learning). Various methods have been applied
to model this mapping using linear regression,6 kernel ridge
regression,7–9 Gaussian process regression,10,11 and neural
networks.12–21 Improvement of the original kernel regression
approach using the predefined reference centers in atomic
descriptor space, which is defined by K-mean algorithm, is
also proposed.22 Although significant research efforts have
been directed towards the fast and accurate estimation of the
PES, the performance is still limited for systems with a large
diversity in local structure—e.g., multi-component systems.

In this study, we propose a novel method for computing
the PES of multi-component systems by integrating together
generative modeling and predictive modeling. Crystalline Si
with (100) surface orientation and amorphous silicon hydride
(a-Si:H) systems are used in demonstrating the validity
of our approach. More specifically, atom-distribution-based
descriptors are used to represent an atom in a certain local
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chemical environment.23 A Gaussian mixture model (GMM)
is then applied to identify groups and calculate the probability
of an atom belonging to a particular identified group. With this
prior knowledge, we show that the PES of crystalline Si with
surfaces and the PES of a-Si:H systems, which contain diverse
local structures, can be accurately predicted in the framework
of a linear model (LM) by embedding the information about
the groups of the local structures learnt from data.

DATA PREPARATION

Raw data preparation

Si crystal with (100) surface orientation was used in the
first demonstration. This system was simulated by a repeated
slab of 12 atomic layers and a 4 × 4 super-cell. Molecular
dynamics (MD) calculations were performed using CPMD24,25

in NVT ensembles at 1500 K. For a better evaluation on the
rationality of the learned patterns of atomic local structures,
we performed the simulation at the temperature below the
melting point of Si for maintaining the surface states of the
slab. We employed the PBE exchange-correlation26 functional
to approximate the exchange-correlation energy, plane wave
basis set with a cutoff energy of 40 Ry, and ultra-soft
pseudo-potential27 for treating the interaction between valence
electrons and core electrons. Eight thousand structures were
extracted from these MD trajectories and were used as
the database. The MD simulation with the same electronic
calculation settings was applied to build the database for the
a-Si:H system. A supercell with 120 Si atoms and 9 H atoms
was used for representing a-Si:H. The amorphous structure
was generated by quenching from the melt state, which is
simulated at 2200 K. This supercell was equilibrated in an NPT
ensemble at 300, 500, and 1500 K. Three thousand structures
extracted from MD trajectories were used as the database.
The total energies of these structures were recalculated using
PWSCF code28 with the PBE exchange-correlation function,
an ultra-soft pseudo-potential, and a plane wave basis set with
a cutoff radius of 40 Ry.

Data representation for learning process

The underlying hypothesis of this study is that the total
energy ET of a system can be calculated by the summation
of the effective atomic energies of the constituent atoms:6,10,12

ET =
N

i=1 Ei, where Ei is the contribution of an atom with
index i and N is the number of constituent atoms of the
system. Further, the effective atomic energy Ei of atom i can
be estimated based on information regarding its surrounding
local chemical environment. The local chemical environment
surrounding atom i is represented by using descriptor vector
x⃗i of which components are calculated from the functional of
distributions of the two-body central term (ri j) and the three-
body non-central terms (θ j ik,ri j,rik), where ri j is the distance
between atom i and atom j, and θ j ik the bond angle between
the j, i and i, k bonds. We can extend the representation
with descriptors to higher-order terms, such as four-body and
five-body terms. In this study, we truncate the representation
x⃗i up to three-body terms. The actual functional forms, basis

functions, and parameters are provided in the supplementary
material (Eqs. (S2)-(S7)). In this context, we should note that
in the present work we aim at predicting the atomic energy
of each atom by learning from the supervised-data with the
explicitly calculated total energy of the system, which is
equal to the sum of the atomic energies over all constituent
atoms.

LEARNING THE POTENTIAL ENERGY SURFACE (PES)
FROM DATA

Behler et al. applied identical models to identical atomic
species even if their local environments are quite different.12–18

This required the use of a complex neural network to represent
atomic energies. For complex systems, such as crystalline Si
with surfaces and a-Si:H, which exhibit a large diversity
in local structure and bonding nature (not only three types
of sp hybridization but also the ionic bonding character in
a-Si:H), the atomic interaction will be even more complicated.
Therefore, a prediction model with higher complexity using
a large neural network and hence, a large number of training
data are needed, and the complexity in the training process
will dramatically increase. As a result, it is difficult to carry
out a statistical selection for the most appropriate learning
model by performing regularization and cross-validation. In
addition, the neural network functions as a black box that
maps input to output values, and the atomic potential energy
is learnt indirectly from a decomposition process of the total
energy. Therefore, it is nearly impossible to interpret the
physical meaning of the learnt results.

In the present work, we propose a new approach that
is complimentary to the neural network approach. The basic
idea of the present approach is that different atomic species,
as well as the same atomic species embedded in different local
chemical environments, are treated differently. For example,
in crystalline Si with surfaces or in a-Si:H, not only different
models used for Si and H but the models for predicting the
energies of Si atoms (or H atoms) should also be different
for different local chemical environments (such as Si in bulk
versus Si at the surface). In our method, the prior knowledge
concerning patterns of the local chemical environments is
learnt automatically from data by using unsupervised machine
learning. The advantage of using this approach is that simple
prediction models (such as linear models) can be adopted
for predicting the energies of atoms in rather complicated
systems, wherein a separate simple prediction model is used
for atoms embedded in each of the different patterns of the
local chemical environments. Further, if the linear models can
be adopted, owing to the linearity of the mapping from the
descriptors (of the local chemical environment) space to the
atomic energy space, the representation of the structure of the
entire material system can be represented in the same manner
(namely, by a vector), which is the sum of all descriptor vectors
of the constituent atoms. This is an important by-product of
this approach as explicitly shown in Eq. (9); it enables us to
learn, directly and explicitly, the atomic potential energy from
the total energy data.

To implement this approach, we first employ GMM29 for
learning the patterns of atomic local chemical environments
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FIG. 1. Linear mixture model (LMM) for estimating atomic energy based on the clustering of atomic groups.

by clustering constituent atoms into groups so that atoms
within a group have similar local chemical environments.
The GMM is based on the assumption that the data consist
of different groups and that the data in each group follow
their own Gaussian distribution. In other words, in GMM,
the distribution of data is fitted to a combination of a
certain number M of Gaussian functions (M: number of data
groups).29 The probability distribution of an atom with index
i having a representation of x⃗i, f (⃗xi), can be approximated
by

f (⃗xi) =
M

m=1

αmΦ(⃗xi; µ⃗m,Σm), (1)

where

Φ(⃗x; µ⃗m,Σm) = exp
�
−(⃗x − µ⃗m)TΣ−1

m (⃗x − µ⃗m)�

(2π) d2 |Σm| 1
2

(2)

is a multivariate Gaussian distribution with mean µ⃗m and
covariance matrix Σm, and d is the dimension of the
representation vector x⃗i. The coefficients αm are the weights
that satisfy the following constraint:

M
m=1

αm = 1. (3)

The probability that x⃗i belongs to group m can be represented
as follows:

p(⃗xi |m) = αmΦ(⃗xi; µ⃗m,Σm)M
m=1 αmΦ(⃗xi; µ⃗m,Σm)

. (4)

The model parameters, {αm, µ⃗m,Σm}, are determined by an
expectation-maximization algorithm.30 The number of data
groups, M , is determined from the data by using information
criteria such as the Akaike information criterion31 or the
Bayesian information criterion.32 It is interesting to note that
the GMM provides a “probabilistic image” of the pattern
of the atomic local chemical environment, wherein instead
of assigning an atom to a specific group, it provides the
probability for an atom to stay in a group. The sum of
probabilities for an atom to stay in either of the groups is 1.

The GMM is therefore expected to be discovered from the
data distinctive patterns of atoms in local structures/chemical

environments and to calculate the probability that an atom
belongs to a group. These discovered groups are defined as the
types of atoms; we can apply a different linear representation
model to determine the atomic energy of each different type of
atom. Figure 1 shows a schematic procedure of our approach
as a demonstration for randomly generated data in the space
spanned by two descriptors. In this case, the GMM discovers
three types of atoms in the system: group A (green), group B
(red), and group C (blue).

If an atom with a descriptor vector x⃗ belongs exclusively
to a specific group m, its atomic energy is expressed using a
linear model as follows:

E (⃗x) = c⃗m · x⃗ + Cm, (5)

where m is the index of the groups (A, B, or C), and c⃗m and
Cm are the slope vector and the intercept of the linear model,
respectively. In the systems considered here, for an atom with
index i, which is represented by a descriptor vector x⃗i, GMM
can yield probabilities wm

i = p(⃗xi |m) with which the atom i
belongs to group m. The atomic energy of this atom can be
expressed as follows:

Ei = E (⃗xi) =
M

m=1

wm
i (⃗cm · x⃗i + Cm). (6)

To include the prior knowledge learnt by GMM, the
atom i can therefore be represented by an extended descriptor
vector,

X⃗i =
�
wA
i x⃗i, w

A
i , w

B
i x⃗i, w

B
i , w

C
i x⃗i, w

C
i

�
. (7)

The atomic energy with the above extended descriptor vector
is formally expressed as

E(X⃗i) = γ⃗ · X⃗i, (8)

where γ⃗ represents the expansion coefficient vector,
{⃗cA, CA, c⃗B, CB, c⃗C, CC}, which is to be learnt. At this
stage, the total energy ET of the system is given by

ET =

i

E(X⃗i) = γ⃗ ·

i

X⃗i. (9)

It is obvious that


i X⃗i can be considered to be the
representation of the entire material system; the atomic energy

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. 



154103-4 Pham et al. J. Chem. Phys. 145, 154103 (2016)

and the total energy of the system can be predicted by using
the same linear model. Consequently, the learning process
is now a standard linear regression, and we can employ
regularization techniques for carrying out the model selection
process to validate and improve the predictability of the
model properly. In this work, we employ L2 regularization
(known as ridge regression) in which the sum of squared
errors is minimized with an additional penalty term: λ∥γ⃗∥2

2.
The regularization parameter, λ, is determined by a cross-
validation search in 1D logarithmic grid of 100 points. It
is important to note that although this approach (hereafter
referred to as the linear mixture model (LMM)) is reduced
to a standard linear regression, the dimension of the vector
X⃗i is M times larger than that of x⃗i for the simple linear
regression (hereafter referred to as LM) and the information
concerning the patterns of local chemical structure is already
taken into account in the weights, wm

i , which may absorb
non-linear effects in the regression. Furthermore, the proposed
linear model benefits a great advantage in computational cost
for the prediction process; the sparse modeling techniques
(such as the LASSO with L1 regularization29) can also
be easily employed to reduce the dimensionality of the
descriptor space and to discover which features of the local
chemical environment essentially contribute to the atomic
energy.

RESULTS AND DISCUSSION

We first apply the GMM to identify the pattern of local
structures of silicon atoms in crystalline Si with (100) surface
(i.e., slab Si).

For the GMM analysis, we employ 100-dimensional
vectors (as defined by Eq. (S11) in the supplementary material)
to represent the atomic information of an atom in its chemical
environment. However, as strong correlation exists between
components in the vectors, principal component analysis
(PCA) is applied to reduce the dimension of the descriptor
vectors, which lead to GMM analysis with better performance.

Figure 2(a) depicts the density of Si atoms of the Si slab in
the principal component space. Based on the evaluation using
statistical information criteria,31,32 Si atoms can be classified
into four groups. The distribution of the data is fitted to a
combination of four Gaussian distributions (GMM) to obtain
the probabilities that an Si atom belongs to group A, group
B, group C, and group D, which are given by wa = p(Si |A),
wb = p(Si |B), wc = p(Si |C), and wd = p(Si |D), respectively.
In order to understand the physical meaning of the GMM
results, Si atoms are assigned to the group with the highest
probability, and the geometrical structures of the four Si
types are shown in Fig. 2(b). We found that atoms of the
first type (type A) are Si atoms in the bulk; atoms of the

FIG. 2. (a) Density distribution of Si atoms in principal component space. (b) Geometrical structure of four types of Si atoms. (c) Comparison of DFT energies
and predicted energies by simple linear model. (d) Linear mixture model (LMM).
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FIG. 3. (a) Density distribution in PCA space. (b) Local structure of four types of Si atoms: Si of the first, second, third, and fourth type are yellow, red, blue,
and green, respectively. (c) Integral of radial distribution function (RDF) of the Si–H pair.

second type (type B) are buckled dimer atoms; atoms of
the third type (type C) are the third layer atoms, which lie
under buckled dimer atoms; atoms of the fourth type (type
D) are Si atoms of the second layer from the surface. The
obtained grouping is obviously in good agreement with current
knowledge regarding the structure of bare Si surfaces. This
result confirms the reliability of the prior knowledge of the
atomic local chemical environment automatically learnt by
GMM.

In the second experiment, the GMM was used to
identify the atomic pattern in the a-Si:H system. The
100-dimensional descriptor vectors of Eq. (S11) in the
supplementary material were also used to represent the
local atomic information for both Si and H atoms. This
representation was also fed into the PCA algorithm to extract
the principal components. We only focus on Si atoms in
the present work. Figure 3(a) shows the density distribution
of the data in the reduced-dimensional space. The density
distribution shows four separate peaks: one high peak (A),
two medium peaks (B and C), and one small peak (D). Peaks
A and D are well separated from others, while peaks B and
C overlap to some extent. This observation also agrees with
the evaluation using statistical information criteria.31,32 By
fitting the data for Si atoms to the GMM with four Gaussian
distributions and calculating the probabilities of a Si atom
belonging to each group, we are able to label the Si atoms.

A visualization of the local geometrical structures shows
that the first type (type A, colored yellow in Fig. 3(b)) do
not directly bond to any H atoms; Si atom of second type
(type B, colored red) and the third type (type C, colored
blue) bond to an H atom; Si atoms of the fourth type (type
D, colored green) bond to two H atoms. These results are
consistent with the fact that the density peaks of B and C
are not completely separated. The radial distribution function
(RDF) was calculated to confirm this observation. Figure 3(c)
shows the RDF of Si–H pair. Within a radius of 2.5 Å,
the RDF results are consistent with the above assignment
of four-types of Si atoms. The RDF analysis provides more
detailed information about the difference between types B and
C. In particular, type B has another H atom in its chemical
environment at a distance larger than 3.0 Å, whereas type C
does not have such an atom in its vicinity. To understand the
local environment more clearly, we analyze the histogram of
Si and H coordinated around each type of Si atom (see Fig. S2

in the supplementary material). The results imply that type-B
Si atoms appear to be more chemically active than type-C Si
atoms. Because of this chemical and geometrical difference,
different functional forms should be used for different types
of Si atoms.

We now demonstrate that with the prior knowledge of the
atomic pattern obtained by unsupervised machine learning,
the total energies of the above two systems can be predicted
with improved accuracy. As discussed already, different types
of Si atoms exhibit different geometrical structures. Within
each type, a type-dependent linear model (LMM) is applied
to predict the atomic energies directly from the calculated
total energy data. All the evaluations are carried out by using
10-times 10-fold-cross-validation.

As for the Si slab, the unsupervised GMM learning shows
four types of Si atoms (groups A, B, C, and D). We used
LMM Eq. (6) to represent the atomic energies of this system.
Figures 2(c) and 2(d) illustrate the comparison between the
density functional theory (DFT)-calculated total energies and
the energies predicted by the simple LM and the LMM of
Eq. (9), respectively. It is evident that with the prior knowledge
of the atomic patterns in combination with a linear model,
more accurate energies can be predicted as compared to only
using a simple linear model. Table I shows the root mean
square error (RMSE) of the training set and that of the test set
for LM and LMM. The best score (R-factor) given by the LM
is 0.960, while that of the LMM is approximately 0.999.

For the a-Si:H system, unsupervised GMM shows that
there are four types (A, B, C, and D) of Si atoms with
different chemical environments. A procedure similar to that
for the slab Si was also performed for the a-Si:H system. The
LMM was applied for silicon atoms, while LM is used for

TABLE I. RMSE (eV/structure) for training set and test set obtained by
linear model (LM) and linear mixture model (LMM) for slab Si with (100)
surfaces.

# basis function 100 200 300

LM
Train RMSE 0.587 0.382 0.221
Test RMSE 0.591 0.339 0.230

LMM
Train RMSE 0.235 0.138 0.073
Test RMSE 0.245 0.142 0.078
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TABLE II. RMSE (eV/structure) for training set and test set obtained by
linear model (LM) and linear mixture model (LMM) for the a-Si:H system.

# basis function 100 200 300

LM
Train RMSE 18.3 4.91 1.94
Test RMSE 19.8 5.90 2.86

LMM
Train RMSE 3.77 0.831 0.414
Test RMSE 4.45 1.22 0.636

H atoms. It was observed that applying LM to all Si atoms
yields the RMSE of 22 meV/atom for the test set, while LMM
significantly reduces the RMSE to approximately 5 meV/atom
for the test set (Table II).

These examples clearly show that the proposed LMM
that utilizes the prior knowledge concerning the patterns of
the local chemical environment performs much better than
the simple LM without such prior knowledge. Further, it is
important to note that the obtained accuracy confirms the
linearity of the mapping from the representation space to the
atomic energy and the total energy spaces. Consequently, the
representation of the entire material system by using the sum
of all descriptor vectors of the constituent atoms (Eq. (9))
is adequate. The obtained results verify the validity of our
proposed scheme to learn, directly and explicitly, the atomic
potential energy from the total energy data. Our experiments
show that when an atom is embedded into different local
chemical environments, its energy should be calculated by
environment-dependent functions. The difficulty lies in the
discovery of the patterns of the chemical environments or the
identification of the atomic pattern of the system. We have
demonstrated that the unsupervised machine learning GMM
can be employed to find the atomic patterns of Si atoms in the
crystalline Si with surfaces and a-Si:H, as seen in Figs. 2 and 3.
The demonstrated integration of unsupervised learning and
supervised learning for constructing an empirical potential
can therefore be considered as a promising approach.

CONCLUSION

We have demonstrated that hidden knowledge concerning
crystalline Si with surfaces and a-Si:H systems, i.e., the type
of atoms in the system, can be learnt from the simulation
data by using unsupervised machine learning techniques.
Based on this prior knowledge, we proposed a novel LMM
to learn the atomic energy for the estimation of PESs. In
our implementation, the GMM was employed to cluster the
atoms in the systems, and a probabilistic image of the atomic
pattern was discovered. Adopting this prior knowledge to
linear models, we built a local-chemical-structure-dependent
mixture model for predicting the atomic energy and estimating
the PESs. More specifically, each Si atom can be assigned to
a group with a certain probability obtained by GMM, and the
atomic energy of atoms in each class can then be represented
by a distinct linear representation. Our experiments show that
the model with mined prior knowledge can predict the PESs
much more accurately than that without prior knowledge. Our
approach is therefore expected to offer new opportunities in

the automation of learning empirical potential from data with
high accuracy, efficiency, and transferability.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of the linear
representation of atomic energies and statistical analysis of
the GMM results.
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