
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
アルゴリズム的コード化定理を満たすChaitnマシンの

特徴付けの研究

Author(s) 天谷, 良章

Citation

Issue Date 2001-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1479

Rights

Description Supervisor:石原 哉, 情報科学研究科, 修士

Characterization of Chaitin Machine

Satisfying The Algorithmic Coding Theorem

By Yoshibumi Amaya

A thesis submitted to

School of School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial ful�llment of the requirements

for the degree of

Master of School of Information Science

Graduate Program in Information Science

Written under the direction of

Associate Professor Hajime Ishihara

Professor Hiroakira Ono

Professor Tetsuo Asano

March, 2001

Copyright c
 2001 by Yoshibumi Amaya

Contents

1 Introduction 3

2 Preliminaries 6

2.1 Notation and De�ned . 6

2.2 Recursive Function Theory . 7

3 Noiseless Coding 9

3.1 Pre�x-Free Sets . 9

3.2 Pre�x Coding . 10

4 Program-Size Complexities 14

4.1 Machines and Complexities . 14

4.2 Algorithmic Properties of Complexities . 16

4.3 Quantitative Estimates . 17

4.4 Halting Probabilities . 20

5 Recursively Enumerable Pre�x Codes 22

5.1 Kraft-Chaitin Theorem . 22

5.2 Algorithmic Coding Theorem . 30

6 Coding with Minimal Programs 33

6.1 The Condition Under the Semi-distribution 33

6.2 Minimal Programs are Optimal . 35

6.3 Algorithmic Coding Theorem Revisited . 37

7 Concluding Remarks 40

1

Acknowledgment

The author is deeply grateful to Associate professor Hajime Ishihara,

Professor Hiroakira Ono and Professor Tetsuo Asano for their helpful guidance.

Special thanks to members of Ono-Ishihara laboratory and the author's friends who

he has met in JAIST for their encouragement.

Finally, the author would also like to thank to my family.

2

Chapter 1

Introduction

Algorithmic information theory (AIT) is the result of combining Shannon's information

theory and Turing's computability theory.

In algorithmic information theory, the primary concept is that of the information

content of an individual object which is a measure of diÆculty of specifying or describing

and constructing or calculating the object. This notion is also known as information-

theoretic complexity or Kolmogorov complexity.

On a concrete target, it is to measure the complexity HU(x) of a string x by the size

in bits of the smallest program p for computing x by a partial recursive universal machine

U . That is,

HU(x) = minfjpj j U(p) = xg:

AIT originated with the discovery of universal descriptions. It is based on the foun-

dation of probability theory and randomness and information theory. This �elds was

independently introduced by A.N.Kolmogorov, R.J.Solomono� and G.J.Chaitin in the

mid 1960s.

First, we describe the di�erence between Shannon's information theory and AIT. While

the classical theory of information is based on Shannon's concept of entropy, AIT adopts

the information-theoretic complexity of an individual object as a primary concept. The

entropy HP is a measure of the degree of ignorance concerning which possibility holds in

a set Y endowed with an a priori probability distribution P . Its point of view is largely

global; Shannon's amount of information depend on the numbers of objects in Y and

don't refer the required bits in an individual object. The entropy is de�ned as

HP = �
X
y2Y

P (y) � logP (y):

The classical de�nition of randomness considered in probability theory allows one to call a

process, such as a tossing coin, random. It does not allow one to call a particular outcome

(or string of out comes, or sequence of out comes) random, except in an intuitive, heuristic

sense. The information-theoretic complexity of an individual object is a measure of the

diÆculty of specifying the object; it focuses the attention on the individual, allowing us

to formalize the randomness intuition.

3

There are two
ows in AIT . In the original formulation of AIT (called AIT1), the

�rst important result is the Invariance Theorem by A.N.Kolmogorov, R.J.Solomono�,

G.J.Chaitin. respectively, in 1965,in 1964, in 1969.

For some universal machine U , for every machine M , for each �nite object (string) x,

KU(x) � KM(x) +O(1):

It means that each the object (string) x has an intrinsic complexity which is indepen-

dent form the ways U; M of description. Hence, we can measure an upper bound of a

program-size complexity by �xing the universal machine. The substance of the Invariance

Theorem credit A.M.Turing who discovered the universal Turing machine. The other im-

portant properties exist in randomness of �nite strings, non-computability of program-size

complexity, computability of approximations of the program-size complexity, and so on.

In the second formulation is the AIT2 (called the pre�x complexity), which was �rst

introduced by L.A.Levin and G.J.Chaitin in 1970s. The strategy is to measure the pro-

gram size complexity HU by (Chaitin) machine U having the pre�x free set as its domain.

This has nicer mathematical properties than the original AIT1, and has therefore be-

come something of standard in �eld. For example, the Kraft's inequality is satis�ed,

the machine's halting probability is de�ned, there are much fewer than 2N possible pro-

grams (strings) of size N , and so on. Two important results in AIT2 was shown by

Chaitin, in 1974. One is Kraft-Chaitin Theorem ; Given a recursively enumerable (r.e.)

set S = f(xi; ni) 2 �� �N j i � 0g such that
P

i 2
�ni � 1, we can e�ectively construct a

machine M , which is M(ui) = xi and juij = ni for all i.

By using the result, The other important result in AIT2 is the Algorithmic Coding The-

orem; the complexity HU(x) of any universal machine U are asymptotically optimal (i.e.

optimal up to at most a constant 1 + c) with respect to the machine's algorithmic prob-

abilities PU(x),

HU(x) + logPU(x) � 1 + c:

HU(x) = minfjuj j U(u) = x; u 2 ��g; PU(x) =
X

U(u)=x

2juj:

In order to make the Algorithmic Coding Theorem more general, we are interested in a

class of machines, not necessarily universal, and any semi-distribution, not the machine's

algorithmic probabilities, and a constant c. So, the aim of this thesis is, after adequately

investigating and considering fundamental concepts, which is the noiseless coding and the

program-size complexity with Chaitin machine, to investigate a class of machines satisfy-

ing the Algorithmic Coding Theorem, not necessarily universal, for any semi-distribution.

Finally, we characterize all machines satisfying the Algorithmic Coding Theorem, and we

show a class of machines satisfying the Algorithmic Coding Theorem with constant c = 0.

Finally, we easily describe about the application. One can distinguish three application

areas. That is, we can use the fact that many strings are extremely compressible; that

using fact that the compressibility of strings as a selection criterion; using fact that many

strings are not compressible at all; that fact that some strings may be compressed, but

that it takes a lot of e�ort to do so. The concepts and results of AIT are relevant for other

subjects, for instance for logic (new light is shed on G�odel's incompleteness result), physics

4

(chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how

ordered is universe?) and so on.

We give the structure of this thesis . In Chapter 2, we present the prerequested back-

ground, i.e. relevant notation of sets, functions, strings and results from recursion theory

which is vary important in measuring the program size. In Chapter 3, we show the prop-

erty of pre�x-free sets and pre�x codes using in Chaitin machine, and Kraft's inequality.

Latter on, we show the relevant of the pre�x code strings and the Shannon's entropy

as noiseless coding theorem. In Chapter 4, we show the de�nition of Chaitin machines,

program-size complexity, the machine's algorithmic probability and halting probability.

We derive non-computability of program-size complexity, computability of approxima-

tions to the program-size complexity and some elementary estimation for complexities.

In Chapter 5 we introduce two important tools: the Kraft-Chaitin Theorem (an extension

of Kraft's inequality for the construction of pre�x codes corresponding to arbitrary re-

cursively enumerable codes) and relativized complexities and probabilities. Consequently,

we show the Algorithmic Coding Theorem. In Chapter 6 we investigate machines, not

necessarily universal, satisfying Algorithmic Coding Theorem under conditions of a given

semi-distribution. Finally, we show the characterization of all machines satisfying the

Algorithmic Coding Theorem.

5

Chapter 2

Preliminaries

The �rst we present the notation and the basic background required to read this thesis,

i.e. relevant set, strings, function and results from recursion theory.

2.1 Notation and De�ned

The set of natural numbers is denoted by N ; N+ = N n f0g. The set of real is denoted
by R; R+ = R n fx 2 R j x � 0g.

The concepts about functions play an very important role in the computer science. A

partial function f : X
o
! Y is a de�ned on a subset Z of X. Z is called domain of the

function f (written dom(f)). In case dom(f) = X, a function f is called a total function,

and exhibited by writing f : X ! Y . If x 2 dom(f), then we say that f(x) is de�ned

(written f(x) 6= 1). And if x 62 dom(f), then we say that f(x) is unde�ned (written

f(x) =1). The range of f is range(f) = ff(x) j x 2 dom(f)g.
A (partial) function f is injective if, for all x; y 2 dom(X), f(x) = f(y) implies x = y.

Stated di�erently, if x 6= y implies f(x) 6= f(y). A (partial) function f is surjective if,

for all y 2 Z, there is a x 2 X such that f(x) = y. And a (partial) function f is called

bijective if f is surjective and injective. For example, the total function f : N ! N ,where

is f(x) = x2, is injective and surjective. But in case f : R ! R, it is not injective and

not surjective. About the sets and functions more see [10].

We will use the following function. The function b�c is
oor of the real �, d�e the is
ceiling of the real �. For example, b3:14c = 3, b�3:14c = �4, d3:14e = 3, d�3:14e = �3.
The other functions will be de�ned when it is requested.

We �x an alphabet � = f0; 1g. A element of alphabet is called a letter. By �� =

f�; 0; 1; 00; 01; 10; 11; 000; � � �g, denote the set of all strings a1a2 � � �an with elements ai 2
�(1 � i � n) (with � denoting the empty string, with no letters.); �+ = �� n f�g. Notice
that a 'string' is a �nite binary string, �� contains the empty string � and don't contain

in�nite binary strings. In case a in�nite binary string, which is usually called a 'sequence'.

Clearly, for all strings u 2 ��, �x = x� = x. The length of a string s 2 �� is denoted

by jsj (j�j = 0). For all x 2 �� and all i 2 N+, x
i is the concatenation xxx � � �x (i

times); x0 = �. For n 2 N , the set �n = fx 2 �� j jxj = ng. If the set S is a �nite

6

set, then]S is the cardinality of S. For example,]fx 2 �� j jxj = n; n 2 Ng = 2n

and]fx 2 �� j jxj � n; n 2 Ng = 20 + 21 + 22 + 23 + � � � + 2n = 2n+1 � 1. We now

consider a correspondence of binary strings and natural numbers. Hence, we induce a

quasi-lexicographical order (written x < y) on ��: In case jxj < jyj or if jxj = jyj then
there exists a natural k, 1 � k � n, a1 � � �ak�1 = b1 � � � bk�1, ak = 0 and bk = 1 (where is

a; b 2 f0; 1g, x = a1 � � �an, y = b1 � � � bn). That is,

� < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < � � � :

Notice that for every x 2 ��, x 6< x. We denote by string(n) the n th string according to

the quasi-lexicographical order. In this way we get a bijective function string : N ! ��;

f(n; string(n))g = f(0; �); (1; 0); (2; 1); (3; 00); (4; 01); (5; 10); (6; 11); (7; 000); � � �g:

Notice that binary representation for the natural numbers is di�erent from the standard

binary representation. It is seen that jstring(n)j = blog(n + 1)c. Notice that we regard
log as the base 2 logarithm. The base 10 logarithm is not used in this thesis. For example,

jstring(5)j = blog 6c = blog 22:32���c = 2.

Finally, we exhibit the notation of an order as the following is often used in order to

measure program-size complexity. (see Chapter 4)

Let f; g : �� ! R+ be two (partial) functions. In this thesis, we often use f(x) �
g(x) + O(1) if there exists a constant c > 0 such that f(x) � g(x) + c, for all strings

x 2 ��. And we will use the notation f(x) = g(x) + O(1) if f(x) � g(x) + O(1) and

g(x) � f(x) +O(1). This is used to measure the program-size. In general,

O(F) = fG : �� ! R+ j there exist c 2 R+; m 2 N such that

G(x) � cF (x); for all strings x; jxj � mg: (2.1)

So, O(1) means the set of the constant functions i.e.O(1) = fG j G(x) � cg.

2.2 Recursive Function Theory

Algorithmic information theory is essentially based on recursion theory. Informally, an al-

gorithm(program) for computing a partial function ' : N
o
! N is a �nite set of statements

which, given an input x 2 dom(') an algorithm (program), yields an output y = '(x)

after a �nite number of steps. And the algorithm must specify how to obtain each step

in the computation from the previous steps and the input. In case we can speci�cally

exhibit an algorithm computing the function ', we call it a partial computable (or recur-

sive) function-abbreviated p.r.function function. If ' is total, then it is called computable

(recursive) function. Formally, there are many equivalent ways to de�ne, for example,

with Turing machines, �-calculus, S programming languages, etc. (see [7], [8], [9])

In case a input x is a string, we can say that is not distinguish form the de�nition

of the above. Because there is the bijective relation between all strings and all natural

numbers by the total function string : N ! ��.

7

The main result is the possibility of enumerating all p.r.functions

'e : (�
�)n

o
! ��;

where e is a code number of some a p.r.function and n is a argument.

That is,

Theorem 2.1 (Universality Theorem) There is a p.r.function such that

'2(e; x) = '1
e(x):

Notice that since there exist the pairing functions i.e.recursive bijective functions <>:

����� ! ��, it is no problem in case the input x has many variables (x = (x1; x2; x3; � � �)).
A p.r.function which satisfy Universality Theorem is called universal p.r.function, which

is given as inputs to the p.r.function both the coding number (program) and the input

. And the universal p.r.function simulate with a p.r.function corresponding the code

number e consequently, returns same outputs. This result is very important, we will use

Universality Theorem in case we de�ne a universal Chaitin machine and, consequently we

will measure a program size by using it'machine in Chapter 4

We describe about the basic property and de�nition in recursive theory of which will

be used in this thesis . To more see [7].

A set x � �� is recursive if its characteristic function is recursive. A set X � ��

is recursively enumerable-abbreviated-r.e.-if it is either empty or else the range of some

recursive function. Equivalently, X is r.e. if it is the domain of a p.r.function.

An in�nite r.e.set is the range of some injective recursive function. Every in�nite

r.e.set has an in�nite recursive subset, etc. These facts will be used in Chapter 4, 5.

8

Chapter 3

Noiseless Coding

In this Chapter we consider the problem of safe transmission of a message over a channel,

which cannot be a�ected by noise. We rely mainly on the following two central tools:

pre�x-free sets and Shannon's entropy. The pre�x-free sets is the easiest codes to construct

and exists most interesting problems on codes. And the pre�x-free set is used to the input

of Chaitin machines. Shannon entropy is a measure of the degree of ignorance concerning

which possibility holds in an ensemble with a given a priori probability distribution. We

show the property of pre�x-codes and pre�x-free set. The concepts of pre�x-free and

pre�x code is used the Chaitin machine in Chapter 4. Later on, we show the relevant of

the Shannon entropy and the lengths of pre�x-code strings as Shannon's Noiseless Coding

Theorem .

3.1 Pre�x-Free Sets

De�nition 3.1 a) A string x 2 �� is a pre�x of another string y 2 �� (written x <p y)

if y = xz , for some string z 2 ��. For example, for all x 2 ��, � <p x.

b) A set S � �� is called pre�x-free in case for all strings x; y 2 �� , x <p y implies x = y.

For example, The set S = f1i0 j i 2 Ng is pre�x-free set.

Example 3.2 For every natural n, the set S = �n is a pre�x-free set. Moreover, every

pre�x-free set S containing the empty string � is equal to �0 = f�g.

Here, we consider about the way of the corresponding a positive number n and a

element of a pre�x-free sets. For example, the set S = f1n0 j n 2 N+g requires n+1 bits

to represent n. We improve this condition with the following the way.

We introduce the function bin : N+ ! ��, where (n)2 = 1bin(n). (n)2 is the base-2

representation of the number n, i.e. f(n; bin(n))g = f(1; �); (2; 0); (3; 1); (4; 00); � � �g. It is
seen that for every natural n 2 N , jbin(n)j = blognc. For every x 2 �� we construct the

new string x by inserting a 0 in front of each letter in x, and adding �nally 1; � = 1. For

example,

0 = 001; 1 = 011; 00 = 00001; 01 = 0001:

9

It is clear that jxj = 2jxj+ 1. Finally, let

d(x) = bin(jxj)x

, for all x 2 �+. d(x) is called the self-delimiting code of x. For example,

d(0101) = bin(4)0101 = 000101 = 000010101:

Example 3.3 The set S = fd(x) j x 2 �+g is pre�x-free and every string x 2 �+

can be represented by using jd(x)j � jxj + 2 log jxj + 1 bits. Moreover, each positive

number n can be represented by a string in S within logn + 2 log logn + 1 bits. (notice

logn+ 2 log logn+ 1 < n+ 1:)

A way of thinking a self-delimiting code is what it was used by C.E.Shannon.

In next section, we de�ne about the average length of pre�x-code and Shannon's

entropy, we show about those relations.

3.2 Pre�x Coding

Let Y be the information source set and A be the set of input of a communication channel,

where consider �nite or in�nite Y � �� and A = ��.

De�nition 3.4 a) A code is an injective function C : Y � �� ! ��. The element of C

are called code-strings.

b) An pre�x code (instantaneous code) is a code C such that C(Y) is pre�x free.

Example 3.5 Let Y = fy1; y2; y3; y4g. Consider the following functions de�ned on Y :

Y : y1 y2 y3 y4
C1 : 00 01 10 11

C2 : 10 110 1110 11110

C3 : 01 011 0111 01111

C4 : 0 00 000 0000

C5 : 10 10 110 110

The codes C1, C2 are pre�x codes while the code C3, C4 is not, C5 is not even a code.

In what follows we are concerned with pre�x codes. Their main property is uniqueness

of decodability. A code is uniquely decodable if the unique extension of from any �nite

sequence made by a code C to sequence of strings in Y is injective. For example the

sequence

0010001101

constructed by strings in code C1(Y) can be split as

00; 10; 00; 11; 01

10

and is uniqueness decoded as

y1; y3; y1; y4; y2:

Not every uniquely decodable code is pre�x code. For example, C3 is uniquely decodable,

but it is not pre�x code. The advantage of sets of pre�x code strings is possible to

decode without delay. Because the end of a code-string can be immediately recognized

and subsequent parts of message don't have to be observed before the decoding is started.

A simple way of building pre�x code-strings is given by the following theorem. More-

over, in Chapter 5 this theorem is extended for every r.e.sets.

Theorem 3.6 (Kraft) Let n1; n2; � � �nN be a �nite sequence of positive integers. These

numbers are the lengths of each pre�x code-string i�
P

i�1Q
�ni � 1.

Proof. Let the set Y � �� and the pre�x code C : Y ! �� such that jC(yi)j = ni with

i 2 N . Let rk be the number of the code-strings having length k. Let m = fn1; � � � ; nNg.
In case m < j; rj = 0. Since the code C is a pre�x code, the following relations hold true:

r1 � 2

r2 � (2� r1)2 = 22 � r12
1;

r3 � ((2� r1)2� r2)2 = 23 � r12
2 � r22

1;

...

rm � 2m � r12
m�1 � � � � � rm�12

1: (3.1)

Dividing the inequality (3.1) by 2m we get

mX
k=1

rk2
�i � 1:

Hence,
mX
k=1

rk2
�i =

NX
i=1

2�ni � 1: (3.2)

For the converse implication, we use (3.1):

r12
�1 �

mX
i=1

� 1;

r12
�1 + r22

�2 �
mX
i=1

� 1;

...

r12
�1 + r22

�2 + � � �+ rm2
�m �

mX
i=1

� 1:

Multiply each the inequality by 21, 22, � � �, 2m, respectively.
We get:

r1 � 21;

11

r2 � (2� r1)2 = 22 � r12
1;

...

rm � 2m � r12
m�1 � � � � � rm�12

1:

It means that we can construct the pre�x code whose code-strings have lengths n1; n2; � � � ;.
Notice that this result holds also in in�nite sequence (see [6]).

Remark. The inequality
P

i�1 2
�ni � 1 is called Kraft's inequality.

Proposition 3.7 For every pre�x-free set S � ��
,X

u2S

2�juj � 1:

By the direct implication in Theorem 3.6, it is clear.

Kraft's Theorem does not assert that every code which satis�es the inequality therein

must be a pre�x code. A counter-example is o�ered by the C2: it satis�es Kraft's in-

equality, but it is not pre�x-free. Nevertheless, there is a pre�x code C2 whose lengths

of string-codes are equal to those of the code C3. The relation between these codes is a

special instance of the following more general result.

Theorem 3.8 If a code is uniquely decodable with code-strings of lengths n1; n2; � � � ; nN ,
then Kraft's inequality is satis�ed.

Proof. Let be a positive integer. Then
NX
k=1

2�nk

!r
=

NX
k1=1

2�nk1 +
NX

k2=1

2�nk2 + � � �
NX

kr=1

2�nkr

=
NX

k1=1

NX
k2=1

� � �
NX

kr=1

2�(nk1+nk2+���+nkr);

because a �nite number of terms can be always rearranged without a�ecting their sum.

Now nk1 + nk2 + � � �+ nkr is exact the number of code letters in some sequence of r code-

strings. The numbers k1; k2; � � � ; kr vary, so all possible sequence of r code-strings are in

this way generated. Let ri be the number of sequences of r code-strings which contain i

letters;clearly, 1 � i � rm, where m = maxfn1; n2; � � � ; nrg. So,
NX
k=1

2�nk

!r
=

rmX
i=1

ri2
�i:

Since the code is uniquely decodable all sequences of r code-strings with a total of i letters

have to be distinct, i.e. ri � 2i. Accordingly,

NX
k=1

2�nk �

rmX
i=1

ri2
�i

! 1

r

= (rm)
1

r :

Allowing r to tend to N , the right-hand side tends to 1.

12

Corollary 3.9 Each uniquely decodable code can be replaced by a pre�x code without

changing the lengths of the code-strings.

Proof. By Theorem 3.6 and Theorem 3.8, it is clear.

Shannon discovered that the average length of pre�x code is about equal to the entropy

of the source strings set. This is known as the Noiseless Coding Theorem. The adjec-

tive "noiseless" emphasizes that we ignore the possibility of errors. Shannon's classical

argument can be expressed for semi-distributions as follows.

De�nition 3.10 A semi-distribution is a function P : Y � �� ! [0; 1] such that

X
y2Y

p(yi) � 1:

If
P

y2Y P (yi) = 1 then P is called a distribution. The self-information of y is de�ned by

I(y) = � logP (y):

De�nition 3.11 The entropy is de�ned as the average of self-information with semi-

distributions P on the set Y by

HP = �
X
y2Y

P (y) � logP (y)

De�nition 3.12 The average code-string length of a pre�x-code C with respect to a

semi-distribution P is

LC;P =
X
y2Y

P (y) � jC(y)j:

For example, let the source set Y = ��, the pre�x code C(y) = y1y1 � � � ynyn01, P (y) =
2�2jyj�3. Then, LC;P =

P
y 2

�2jxj�3 � 2jyj+ 2; HP =
P

y 2
�2jxj�3 � 2jyj+ 3,

HP � 1 � HP �
1

4
= LC;P < HP + 1:

The relation between the entropy and the average length of the pre�x code is as the

following. Shannon's classical argument can be expressed for semi-distributions. (see

more [6])

Theorem 3.13 (Noiseless Coding Theorem;Shannon) Let C : Y ! ��
be an pre�x

code a semi-distribution P on the set Y . Then,

HP � 1 � HP +

0
@X
y2Y

P (y)

1
A � log

0
@X
y2Y

P (y)

1
A � LP � HP + 1:

Notice that �1
2
�
�P

y2Y P (y)
�
� log

�P
y2Y P (y)

�
� 0.

13

Chapter 4

Program-Size Complexities

We consider a machine as a partial recursive function which reads a string (program)

as an input and then may or not print another string, as output. With reference to a

�xed machine, the complexity of a string x is de�ned as the length of the shortest string

y which when the input to the machine will determine the output of x. If one chooses

to think of the input as a program + date, then the machine acts as an unary partial

function. If the program and data is read separately, then the machine will be a binary

partial recursive function. Here we considers the machine as an unary partial function

and uses Chaitin's motivation [4] [1]. Later on, we show the machine's algorithmic prob-

ability and halting probability and derive non-computability of program-size complexity,

computability of approximations to the program-size complexity and some elementary

estimation for complexities.

4.1 Machines and Complexities

De�nition 4.1 A Chaitin Machine is a p.r. functionM : �� o
! ��, such that the domain

of M is pre�x-free.

If for every strings x 2 �� M(x) 6=1, y <p x and y 6= x, then M(y) =1. The Chaitin

machine M can be imagined as a function computable by a special Turing machine; the

domain of the function is pre�x-free. In what follows we will operate only with Chaitin

machines, so which will be simply referred as machines.

De�nition 4.2 A machine U is universal if for every machine M there is a constant

cM with the following property: if M(x) 6= 1, then there is a string x0 2 �� such that

U(x0) =M(x) and jx0j � jxj+ cM ; cM is simulation constant of M on U .

Theorem 4.3 There exists a universal Chaitin machine.

Proof. By Theorem 2.1 we can let F : N+ � �� o
! �� be a universal p.r. function for

the class of all p.r. functions M : �� o
! �� such that the set fu 2 �� j M(u) 6= 1g is

pre�x-free i.e. F (n; u) = Mn(u). Then put:

U(1n0u) = F (n; u):

14

We �x a universal machine U as standard universal machine for measuring program

size complexities. Notice that the universal machine is not only what we �xed one.

Corollary 4.4 Every universal machine U is surjective.

Proof. For every the strings z 2 ��, let the machine M(�) = z. By De�nition 4.2, for

every M there exists a string x0 2 �� such that U(x0) =M(�) = z.

De�nition 4.5 a)The program-size complexity induced by the machine M is

HM(x) = minfjzj j z 2 �;M(z) = xg:

In case M = U we put HM(x) = HU(x). The minimum of empty set is unde�ned (=1
).

b)The minimal (canonical) program is de�ned with respect to machine M by

x�M = minfu 2 �� j M(u) = xg;

where the minimum is taken according to the quasi-lexicographical ordering of strings

(the empty string � < 0 < 1 < 00 < 01 < 10 < 11 < 100 < � � �).
In case M = U we put x�M = x�U .

We can image a string x as an object, a function M as the interpreter or decoding

function and a string z as an program.

Theorem 4.6 (Invariance Theorem) For some universal machine U, for every ma-

chine M there exists a constant c > 0 (depending upon M on U) such that for every

x 2 ��
,

HU(x) � HM(x) + c: (4.1)

Proof. We use Theorem 4.3. Let HU(x) = minfj0n1uj j u 2 ��; U(0n1u) = xg; HM(x) =

minfjuj j u 2 ��;M(u) = xg and cM = n + 1.

Remark. In Theorem 4.6, put M = U 0. For every universal machines U , U 0 there exists

a constant c > 0 such that

jHU(x)�HU 0 j � c;

for all x 2 ��. Hence, universal machine's complexities don't depend on the chosen

universal machines for except the constant.

Lemma 4.7 For every x 2 X:

x�U exists and x�U 6= �; (4.2)

x = U(x�U); (4.3)

HU(x) = jx�U j: (4.4)

Proof. For (4.2), since the universal machine is surjective by Corollary 4.4, for every x��

there is a u 2 �� such that U(u) = x. If � 2 dom(U), then dom(U) = f�g. Since U is

surjective, so � 62 dom(U). For (4.3), the string x�U is one of dom(U) such that U(z) = x.

For (4.4) is clear by De�nition 4.5.

15

4.2 Algorithmic Properties of Complexities

Let the set of minimal(canonical) program of the machineM be

CPM = fx�M j x 2 ��g:

The set S � �� is an immune set if the set S has no in�nite r.e. subset. (see [8] about

the immune set)

Theorem 4.8 The set CPU is in�nite and has no in�nite r.e.subset.

Proof. Since a universal machine U is surjective, we can put k : �� ! �� be the total

function given by k(x) = x�U . If for every x�U ; x
�0

U 2 ��, x�U = x�
0

U 6= x0 imply by (4.3)

x = U(x�U) = x0 = x�
0

U . Hence the function k is injective. So rang(k) = CPU is in�nite.

We prove now by contradiction, which there exists an in�nite r.e.set S � CPU . Let S be

enumerated by the injective recursive function f : N ! �� i.e. S = ff(0); f(1); f(2) � � �g.
De�ne the function g : N ! �� by

g(0) = f(0); g(n+ 1) = f(min j[jf(j)j > n + 1]):

It is easy to check the function g is recursive, the set S 0 = g(N+) is r.e.set, in�nite and

S 0 � S. And since g(jn + 1j) = f(min j[jf(j)j > n + 1]) > n + 1, jg(n)j > n, for every

n > 0. Here, we construct a machine M such that for every i � 1, there exists a string

u 2 �� such that

M(u) = g(i); juj � log i + 2 log log i � 3 log i:

By Invariance Theorem we get a constant c1 such that for all i 2 N ,

H(g(i)) � HM(g(i)) + c1 � 3 log i+ c1 (4.5)

Intermediate Step. There exists a constant c2 � 0 such that for every x 2 CPU ,

H(x) � jxj � c2: (4.6)

Construct machine

D(u) = U(U(u))

and pick the constant c2 coming from the Invariance Theorem. Take x = y�; z = x�. By

(4.3), one has :

D(z) = U(U(z)) = U(U(x�)) = U(x) = U(y�) = y;

so

HD(y) � HU(x);

jxj = jy�j = HU(y) � HD(y) + c2 � H(x) + c2:

For all i � 1, if g(i) 2 CPU , then jg(i)j > i, so by (4.5) and (4.6)

i� c2 < jg(i)j � c2 � H(g(i)) � 3 log i+ c1;

and consequently only a �nite number of elements in S 0 can be in CPU .

Remark. The set CP is not r.e.set. (cf. Every in�nite r.e.set has an in�nite recursive

subset.)

16

Corollary 4.9 The function f : �� ! ��
, f(x) = x�U is not recursive.

Proof. The range of the function f is CPU , injective and CPU is not r.e.set. So, the

function f is not recursive.

De�nition 4.10 labeldf:semi A function f is semi-computable from below(above) in case

the set f(x; r) j x 2 ��; r 2 Q; f(x) > r(f(x) < r)g is r.e. Q : the of rational numbers.

Theorem 4.11 The program-size complexity HU(x) is semi-computable from above, but

not recursive.

Proof. We prove that the set f(x; n) j x 2 ��; n 2 N;HU(x) < ng is r.e. Since HU(x) < n

i� there exist y 2 �� and t 2 N such that jyj < n and U(y) = x in most t steps.

For the second part of the theorem we prove a bit more, namely:

There is no p.r.function ' : �� o
! N with in�nite domain and such that HU(x) = '(x),

for all x 2 dom(').

Assume that H(x) = '(x), for all x 2 dom('), where ' : �� o
! N is a p.r. function with

an in�nite domain. Let B � dom(') be a recursive, in�nite set and let f : �� o
! �� be

the partial function given by

f(ai1a2) = minfx 2 B j H(x) � 2i; i > 0g:

Since '(x) = H(x),for x 2 B, it follows that f is a p.r.function. Moreover, f has a

recursive graph and f takes as values strings of arbitrarily long length. For in�nitely

many i > 0,

H(f(0i1)) � 2i:

Accordingly, in view of the Invariance Theorem, for in�nitely many i > 0, we have:

2i � HU(f(0
i1)) � HC(f(0

i1)) + c � i + 1 + c:

This yields a contradiction.

4.3 Quantitative Estimates

We give some elementary estimations for the program-size complexity

Theorem 4.12 There exists a constant c > 0 such that for all x 2 �+
; �+ = ��=f�g,

HU(x) � jxj+ 2 log jxj+ c: (4.7)

Proof. By Example 3.3, we construct the machine M(d(x)) = x, where jd(x)j = jxj +
2 log jxj+ 1. For all x 2 �+,

HM(x) � jd(x)j = jxj+ 2 log jxj+ 1:

By Invariance Theorem,

HU(x) � HM(x) + c � jd(x)j = jxj+ 2 log jxj+ c:

17

Lemma 4.13 For every machine M and each natural n,

]fx 2 �� j HM(x) = ng � 2n: (4.8)

Proof. By]�n = 2n, it is clear.

Proposition 4.14 Let E � ��
be a set having m � 1 elements and " > 0. Then for

every machine M,

]fx 2 E j HM(x) � logm� "g > m
�
1� 21�"

�
: (4.9)

Proof.

]fx 2 E j HM(x) � logm� "g = m�]fx 2 E j HM(x) < logm� "g

� m�]fx 2 E j HM(x) < blogm� "c+ 1g

� m�]fx 2 ��j HM(x) < blogm� "c+ 1g

= m�
X

0�n�blogm�"c

]fx 2 �� j HM(x) = ng

by (4.8); � m�
X

0�n�blogm�"c

2n

= m� (2blogm�"c+1 � 1)

� m� (2logm�"+1 � 1) = m� (2logm21�" � 1)

= m(1� 21�") + 1 > m(1� 21�")

Corollary 4.15 For every machine M, natural n and positive real ",

]fx 2 �njHM(x) � n� "g > 2n(1� 21�"): (4.10)

Proof. In Proposition4.14, for each n 2 N let E = �n. By m =]�n = 2n,

]fx 2 �n j HM � n� "g > 2n(1� 21�")

Proposition 4.16 If F : �� ! N is a function such that

HU(x) � F (x) +O(1)

then

]fx 2 ��jF (x) < mg < 2m+O(1):

18

Proof. By HU(x) � F (x) + c � m+ c, for some constant c > 0, fx 2 �� j F (x) < mg �
fx 2 �� j HU(x) < m+ cg. Hence,

log]fx 2 �� j F (x) < mg � log]fx 2 �� j HU < m+ cg

= log
X

0�n�bm+cc

fx 2 �� j HU(x) = ng

= log
X

0�n�bm+cc

2n

� log 2bm+cc+1 � 1

� log(2m+c � 1)

< logwm+c:

Proposition 4.17 Let F : A� ! N be a function semi-computable from above. If there

exists a constant q > 0 such that for all natural m > 0

]fx 2 ��jF (x) < mg < logm+ q;

then HU(x) � F (x) +O(1):

Proof. Let f(x1; m1); (x2; m2); � � �g be an injective recursive enumeration of the r.e.set

f(x;m) 2 �� �N j F (x) < mg. Construct machine M by the following algorithm:

1. All strings y 2 �� is available.

2. For i = 1; 2; � � � generate (xi; mi), choose the �rst available yi 2 �logmi+q and put

M(d(yi)) = xi.

3. The string yi is no longer available.

In case of F (x) < m there exists y 2 �logm+q such that M(d(y)) = x, so

HM(x) � jd(y)j = jyj+ 2 log jyj+ 1

= log(m + q) + 2 log(logm + q) + 1

� logm+ 2 log logm+ k (constant k > 0):

In particular, F (x) < F (x) + 1 = m,so

HM � log(F (x) + 1) + 2 log log(F (x) + 1) +O(1)

� F (x) +O(1):

By Invariance Theorem,

HU � HM +O(1) � F (x) +O(1):

19

4.4 Halting Probabilities

Following Chaitin, we switch the point of view, from a deterministic one to a probabilistic

one.

De�nition 4.18 a)The algorithmic probability of the machine M to produce the output

x is

PM(x) =
X

fu2��jM(u)=xg

2�juj:

b)The halting probability of M is

M =
X
x2��

PM(x) =
X

u2dom(M�)

2�juj

In the case M = U , we put PM = PU and
M =
U .

Lemma 4.19 For every machine M and all strings x,

0 � PM(x) �
M � 1: (4.11)

Proof. By Proposition 3.7, For every machine M , all strings x 2 ��,

PM(x) � 1;

M =
X
x2��

X
fu2�� j M(u)=xg

2�juj =
X

u2dom(M)

2�juj � 1:

Lemma 4.20 For every machine M and all strings x,

PM(x) � 2�HM (x): (4.12)

Proof.

PM(x) =
X

fu2�� j M(u)=xg

2�juj;

one of terms of summation is 2�HM (x): So, PM(x) � 2�HM (x).

This Lemma is often used in Chapter 5.

Lemma 4.21 For every universal machine U and all strings x,

0 < PU(x) < 1: (4.13)

Proof. For 0 < PU(x), by Lemma 4.20 and x�U is surjective, PU(x) � 2�HU (x) = 2�jx
�

U
j > 0.

For PU(x) < 1, by (4.11),
P

x2A� PU(x) � 1. And suppose that there is x 2 �� such that

PU(x) = 1. Then,
P

x2A� PU(x) = 1. Hence, there exists x 2 �� such that PU(x) = 0.

This contradicts the fact PU(x) > 0.

20

Proposition 4.22 For every machine M and all naturals m;n � 1,

]fx 2 ��jHM(x) < mg � 2m � 1; (4.14)

]fx 2 ��jPM >
n

m
g <

m

n
: (4.15)

Proof. For (4.14), by lemma4.13,

]fx 2 �� j HM(x) < mg =
X

0�i�m�1

]fx 2 �� j HM(x) = ig

� 20 + 21 + � � �+ 2m�1

= 2m � 1:

For (4.15), let S = fx 2 �� j PM(x) > n

m
g. Assume that]S � m

n
. By (4.11),

1 �
X
x2��

PM(x) �
X
x2S

PM(x):

By PM(x) > n
m
, X

x2S

PM(x) >
n

m
+

n

m
+ � � � =

n

m
]S � 1:

So,

1 >
n

m
]S � 1:

This is a contradiction.

In next Chapter we establish upper bounds of program-size complexity by using the

de�ned universal Chaitin machine and algorithmic probability. Consequently, we will

show Algorithmic Coding Theorem.

21

Chapter 5

Recursively Enumerable Pre�x

Codes

In this Chapter, we present two main tools used to design Chaitin machines and con-

sequently to establish upper bounds: the extension of the Kraft's classical condition in

Theorem 3.6 to arbitrary r.e.sets and relativized complexities and probabilities. Latter on,

we show that the complexities of the universal machine equals, within O(1), the halting

entropy (Algorithmic Coding Theorem) [3].

5.1 Kraft-Chaitin Theorem

We devote this section to proof of the following important result.

Theorem 5.1 Let ' : N+
o
! N be a p.r.function having as domain an initial segment of

N+.The following statements are equivalent:

(1) We can e�ectively construct an injective p.r.function:

� : dom(')! ��
such that:

(a) for every n 2 dom('); j�(n)j = '(n),

(b) range(�) is pre�x-free.

(2) One has
X
i2N+

2'(i) � 1:

An initial segment of N+ is a �nite set of the form f1; 2; 3; � � � ; ng or N+. If i =2
dom('), then '(i) =1. Hence, the term of rightside in (2) is 2�1 = 0, so we can writeP

i2N+
2�'(i) =

P
x2range(�) 2

�jxj:

Proof. For the direct implication, By Proposition3.7 and (1.b),

X
i2N+

2�'(i) =
X

x2range(�)

2�jxj � 1:

22

For the converse implication, we will �nish after Proposition5.16.

The �rst, we de�nes the injective p.r.function �:

1. put �(1) = a
'(i)
1

2. if �(1), �(2), � � �, �(n) have been constructed and �(n+ 1) 6=1, then put:

�(n+ 1) = min fx 2 �'(n+1)jx 6<p �(i) and �(i) 6<p x, for all 1 � i � ng,
where the minimum is taken according to the quasi-lexicographical order.

Intermediate Step. (1) holds(i.e.there is a p.r.function � such that (a); (b)) i� for each

positive integer n for which '(n + 1) 6=1,

the set Bn = fx 2 �'(n+1)jx 6<p �(i) and �(i) 6<p x, for all 1 � i � ng 6= ;:

For the direct implication, if Bn = ;, then �(n + 1) = min; = 1. This contradicts

'(n+1) 6=1. For the converse, If Bn 6= ;, there is a p.r.function �. Hence, we will prove
that if (2) holds, then for each n for which '(n+ 1) 6=1, Bn 6= ; .

By absurdity, assume that there exists some positive integer k, such that Bk =

;. We distinguish two cases according to the relation between '(k + 1) and m =

maxf'(1); � � � ; '(k)g:

I) '(k + 1) � m,

II) '(k + 1) � m.

In case �）for all x 2 �'(k+1), there exists a positive integer i, 1 � i � k, such that

�(i) <p x. Since the set f�(1); �(2); � � �g is pre�x free, �m can be written as the following

disjoint union of sets:

�m =
k[
i=1

fy 2 �mj�(i) <p yg:

Passing to cardinalities we get 2m =
Pk

i=1 2
m�'(i); dividing by 2m,

1 =
kX
i=1

2�'(i):

By '(k + 1) 6=1;
k+1X
i=1

2�'(i) > 1;

which is contradicts (2).

In case �）we de�ne the sets

C1 = fx 2 �'(k+1)j�(i) <p x; for some 1 � i � kg;

C2 = fx 2 �'(k+1)jx <p �(i); x 6= �(i); for some 1 � i � kg:

Since Bn 6= ;, C1 \ C2 = ; and C1 [C2 = �'(k+1). To be more speci�c, let C2 =

fx1; x2; � � � ; xrg, according to the quasi-lexicographical order.

23

For every 1 � t � r put

Pt =
t[

j=1

fy 2 ��j jyj � m; xj <p yg

and note that

f�(i)j1 � i � k; '(i) > '(k + 1)g � Pr �
m[

t='(k+1)

�t: (5.1)

Indeed, if '(i) > '(k + 1), then take x to be the pre�x of length '(k + 1) of �(i) and

notice that x 2 C2.

De�nition 5.2 a) An element x 2 �� is called a free-string if x 2 Pr and there is not a

natural i, 1 � i � k such that �(i) <p x or x <p �(i).

b) A free-string x is minimal if for every y <p x, y 6= x, there exists a natural i, 1 � i � k,

such that y <p �(i).

Remark. Every proper pre�x of a minimal free-string is not free.

Lemma 5.3 For every h, '(k + 1) � h � m, and for every free-string x of length h, if

x <p y and jyj � m, then y is a free-string.

Proof. First, if x is a free-string, x <p y and jyj � m, then there exists xj 2 C2 such

that xj <p x <p y. Hence, certainly y 2 Pr. Second, suppose that y is not free. (i.e.

there exists a natural i, 1 � i � k, such that �(i) <p y or x <p �(i).) In case �(i) <p y,

by x <p y, �(i) <p x or x <p �(i). In case y <p �(i), by x 2 Pr, x <p y <p �(i). They

contradict the fact that x is free.

Corollary 5.4 Let �(k + 1) � h < t � m and assume that x is a free-string of length h.

Then:

]fy 2 �tjx <p y; y is free g = 2t�h; (5.2)

Proof. Since x is a free string, by Lemma 5.3, all strings y such that jyj � m and x <p y

are free.

Lemma 5.5 For every free-string x 2 �m\Pr�1 there exists a unique minimal free-string

x0 <p x with x0 2 Pr�1.

Proof. (Unicity) Let x0 6= x
00

, x0 <p x, x
00

<p x and fx0; x
00

g � Pr�1. Suppose that both

x0; x
00

are minimal free-strings and x0 6= x
00

. Since x0 <p x and x
00

<p x, x
0 <p x

00

orx
00

<p x
0.

In case x0 <p x
00

, there exists a natural i, 1 � i � k, such that x0 <p �(i). So, x
00

is a

minimal free-string. This contradicts that x0 is free. The same argument works for in case

x
00

<p x
0.

(Existence) If x is a minimal free-string, then we take as a minimal free-string x0 with

x = x0. If x is free and x 2 Pr�1, there exists a xj 2 C2 such that xj <p x, for some

1 � j � r � 1. Hence, The string xj is not free. So, there exists an i; 1 � i � k such that

xj <p �(i). And let x0 be y such that xi <p y <p x.

24

Corollary 5.6 Put M = fx 2 Pr�1 j x is a minimal free-stringg. Then

fy 2 �m \ Pr�1 j y is a free-stringg = [x2Mfy 2 �� j x <p yg; (5.3)

and the union on the right-hand side is disjoint.

Proof. By lemma 5.5 and lemma 5.3, it is clear.

De�nition 5.7 For x, y 2 �� we say that x is on the left of y(we write: x� y) in case

x = y or there exists x0 <p x; y
0 <p y such that jx0j = jy0j and x0 is less than y0 according

to the quasi-lexicographical order.

For example, 100 � 11, but 100 and 10 are incomparable. For every natural n > 0, the

relation � is a total order on �n. We write x � y in case x is "left" of yin a complete

tree with lambda.

Lemma 5.8 For all x, y 2 ��
, if x� y, x0 <p x, y

0 <p y and jx0j = jy0j, then x0 � y0.

Proof. Since the relation � is total order on ��, it is clear.

Lemma 5.9 For all x, y 2 ��
, if x� y, x 6= y, x <p x

0
, y <p y

0
, then x0 � y0.

Proof. By a complete tree, it is clear.

Proposition 5.10 If x, y 2 ��
are minimal free-strings and x� y, then jxj � jyj.

Proof. For direct implication, suppose that jxj < jyj. Take x0 <p y with jx0j = jxj. Since
y is a minimal string, there exist a natural i, 1 � i � k, such that x0 <p �(i). By Lemma

5.3(x is free), there exists a free-string x" such that x <p x
" and jx"j = j�(i)j. By x� y,

x <p x, x
0 <p y, jxj = jx0j and Lemma 5.8, x� x0. In case x = x0, the minimal free-string

x = x0 <p y. It contradicts the fact that y is a minimal free-string. So x 6= x0. By x� x0,

x 6= x0, x0 <p �(i), and Lemma 5.9, we get x" � �(i). It contradicts the construction of

theta(i). Notice that � is a minimum according to the quasi-lexicographical order, x" is

free and j�(i)j = jx"j. So, x" must not be on the left of �(i).

Proposition 5.11 Let x, y 2 ��
be minimal free-strings, x = x0ai, y = y0aj, ai; aj 2 �

and x� y. Then

x0 = y0 i� jxj = jyj

Proof. For direct implication, if x0 = y0, then jxj = jyj.
For converse, assume that x0 6= y0. By x � y, x0 <p x, y0 <p y, jx0j = jy0j and lemma

5.8, then x0 � y0. Since the string y is minimal free, there exists a t, 1 � t � k such that

y0 <p �(t), y0 6= �(t). Since m � j�(t)j � y0 + 1 = jx0j + 1 = jxj and x is free, by lemma

5.3, there exists a free-string x0 such that x <p x
0 and jx0j = j�(t)j � m. By x0 � y0,

x0 <p x <p x
0, y0 <p �(t), and lemma 5.9, then x0 � �(t). Since jx0j = j�(t)j and x0 is

free, the fact that x0 � �(t) contradicts the construction of �(t).

Corollary 5.12 For every '(k + 1) � h � m,

]fx 2 �hj x is a minimal free-stringg � 1: (5.4)

25

Proof. All strings �h are comparable with respect to �, so by Proposition 5.11, there

exists a string x0 2 �h�1 such that

fx 2 �h j x is a minimal free-stringg � fx 2 �h j x = x0; a 2 �g:

So, ch =]fx 2 �h j x is a minimal free-string g � 2. Moreover, since x is minimal, there

exists a t, 1 � t � k such that x0 <p �(t). In case x0 = �(t), then �(t) <p x, which

contradicts that x is free. So, x0 6= �(t), x0 <p �(t). Hence, there exists a a0 2 � such

that x0a
0 <p �(t). The string x0a

0 is not free. So, ch � 1.

Proposition 5.13 Let '(k + 1) � h � m and assume that x is a minimal free-string of

length h with x� �(i). Then '(i) � h� 1.

Proof. Assume that '(i) = j�(i)j � h. Since x is free, by lemma 5.3, there exists a

free-string x0 such that x <p x
0, jxj = '(i) � h. Since x � �(i), x 6= �(i), x <p x

0 and

�(i) <p �(i), by lemma 5.9, hence x0 � �(i). Since j�(i)j = jx0j and x0 is free, so the fact

that x0 � �(i) contradicts the construction of �(t).)

Proposition 5.14 One has:

]fx 2 �m \ Prjx is a free-stringg � 2m�'(k+1) � 1: (5.5)

Proof. Put

Y1 = fx 2 �m \ Pr�1 j x is a free-string g;

Y2 = fx 2 �m \ (Pr n Pr�1) j x is a free stringg;

= fx 2 �m j x is a free string and xr <p xg;

and

Y = Y1 [Y2:

By Corollary 5.6,

Y1 =
[
x2�

fy 2 �m j x <p yg; where M = fx 2 Pr�1 j x is a minimal free-stringg:

By (5.1),

Pr�1 � Pr �
m[

j='(k+1)

�j:

Let

t = minfjxj j x is a minimal free-string and x 2 Pr�1g � m: (5.6)

For every i, 0 � i � m� t put

ki =]fx 2 �m�i j x is a minimal free-stringg:

By Corollary 5.12, for every i, ki � 1. Let

Mi = fx 2 �i \ Pr�1 j x is a minimal free-stringg:

26

By (5.3),

Y =
m[
i=t

[
x2Mi

fy 2 Sigmam j x <p yg

Since the union is disjoint and by Corollary 5.4,

]Y =
mX
i=t

km�i2
m�i =

m�tX
j=0

kj2
j:

Intermediate Step. If x 2 �t [Pr�1 is a minimal free-string, then there exists an i,

1 � i � k, such that '(i) � jxj � 1 = t� 1.

The string xr 2 C2, so there is an i with 1 � i � k, xr <p �(i). If x 2 �tcapPr�1 is

a minimal free-string, then there exists a j � r � 1 such that xj <p xwithxj 2 C2. By

xj � xr, xj 6= xr, xj <p x, xr <p �(i) and using lemma 5.9, so x� �(i). By Proposition

5.13, '(i) = j�(i)j � jxj � 1 = t� 1.

In view of the Intermediate Step,

]fx 2 �m j xr <p x; x is not freeg � 2m�(t�1);

because if x 2 �m and xr <p �(i) <p x, then x is not free.

Obviously,

fx 2 �m j xr <p xg = fx 2 �m j xr <p x; x is a free-stringg[fx 2 Sigmam j xr <p x; x is not freeg;

so,

]Y2 =]fx 2 Sigmam j xr <p x; x is a free-string g

= 2m�'(k+1) �]fx 2 �m j x <p x; x is not free g

� 2m�'(k+1) � 2m�t+1:

Finally, by]Y2 � 2m�'(k+1) � 2m�t�1 and (5.4),

]Y =]Y1 +]Y2

=
m�tX
j=0

kj2
j +]Y2

�
m�tX
j=0

kj2
j + 2m�'(k+1) � 2m�t+1

�
m�tX
j=0

2j + 2m�'(k+1) � 1m�t+1

= (2m�t+1 � 1) + 2m�'(k+1) � 2m�'(k+1) � 2m�t+1

= 2m�'(k+1) � 1:

27

Corollary 5.15 The following inequality is valid:

]fx 2 �m \ Prjx is not freeg � 2m(1�
kX

fi=1;'(i)�'(k+1)g

2�'(i))� 2m�'(k+1) + 1: (5.7)

Proof.

�m \ Pr = fx 2 �m \ Pr j x is a free-stringg [fx 2 �m \ Prjx is not freeg:

=
r[

j=1

fx 2 �m j xj <p xg

But,

r =]C2

=]fx 2 �'(k+1) j x <p �(i); x 6= �(i); for some 1 � i � kg

= 2'(k+1) �]fx 2 �'(k+1) j �(i) <p x; for some 1 � i � kg

= 2'(k+1) �]
k[
i=1

fx 2 �'(k+1) j �(i) <p xg

= 2'(k+1) �
X

fi2N j '(i)�'(k+1);1�i�kg

2'(k+1)�'(i):

](�m \ Pr) = r2m�'(k+1)

= 2m �
X

fi2N j '(i)�'(k+1);1�i�kg

2m�'(i);

by Proposition 5.5,

]fx 2 �m \ Pr j x is not freeg =](�m \ Pr)�]fx 2 �m \ Pr j x is a free stringg

� 2m �
X

fi2N j '(i)�'(k+1);1�i�kg

2m�'(i) � 2m�'(k+1) + 1:

Proposition 5.16 The following equality is valid:

kX
fi=1;'(i)�'(k+1)g

2'(i) =]fx 2 �m \ Prj x is not freeg2�m: (5.8)

Proof. First, we prove the equality:

fx 2 �mcapPr j x is not free =
[
fi2N

j '(i) � '(k + 1); 1 � i � kg:

For the direct implication, if x 2 ��capPr, there exists xj 2 C2 such that jxjj = '(k + 1)

and xj <p x. Since x is a free and jxj = m, so there exists ij such that xj <p �(ij),

28

xj 6= �(ij). Hence �(ij) <p x and '(k + 1) < '(ij).

For the converse, if x 2 �m, �(i) <p x, then there exists jx0j 2 �'(k+1) such that x0 <p

�(i) <p x and x0 6= �(i). So, x 2 Pr \ �m) and x is not free.

Passing to cardinals we get (5.8).

Here we prove Theorem5.1.

Proof. Put

X1 = fi 2 N j 1 � i � k; '(i) � '(k + 1)g

X2 = fi 2 N j 1 � i � k; '(i) > '(k + 1)g:

k+1X
i=1

2'(i) =
kX
i=1

2�'(i) + 2�'(k+1)

=
X
i2X1

2�'(i) + sumi2X2
2�'(i) + 2�'(k+1)

by(5:8) =
X
i2X1

2�'(i) +]fx 2 �m \ Pr j x is a free stringg2�m + 2�'(k+1)

by(5:7) �
X
i2X1

2�'(i) + 2m(1�
X
i2X1

2�'(i))� 2m�'(k+1) + 1)2�m + 2�'(k+1)

= 1� 2�'(k+1) + 2�m + 2�'(k+1)

= 1 + 2�m

< 1;

which contradicts (2) in Theorem 5.1.

Theorem 5.17 Let f : N+
o
! �� � N+ be a p.r. function whose domain is an initial

segment of N+. For every k 2 dom(f) put f(k) = (xk; nk). If

1X
k=1

2�nk � 1;

then we can e�ectively construct a Chaitin machine C such that for every k 2 dom(f)

there exists a string uk of length nk with C(uk) = xk. Furthermore, for every string v,

PC(v) =
X
xk=v

2�nk ; (5.9)

and

HC(v) = minfnkjxk = vg: (5.10)

Proof. The p.r.function ' : dom(f)! N+ given by '(k) = nk does satisfy the hypothesis

of Theorem 5.1. So, We can de�ne the machine M :

M(�(k)) = xk; for every k 2 dom(k):

� is from Theorem 5.1. Notice that � is injective. For (5.9) and (5.10), the de�ned machine

M is clearly satis�ed.

29

5.2 Algorithmic Coding Theorem

Theorem 5.18 For every Chaitin machine M there exists a constant c > 0(depending

upon U and M) such that for all x; y 2 �,

HU(x) � � logPM(x) + c: (5.11)

Proof. The set

T = f(x; n) 2 �� �N j PM(x) > 2�ng

= f(x; n) 2 �� �N j
mX
i=1

2�jyij > 2�n; for some ; � � � ; ym 2 dom(M)g:

is r.e. Let B = f(x; n + 1) 2 �� � N j (x; n) 2 Tg and M =
P

(x;n+1)2B 2
�(n+1) =

2�1
P

(x;n)2T 2
�n. Here, We prove M � 1. To aim we �rst introduce the following.

For every real, if �, 2n < � � 2n+1 for some natural n, then put n = lg�. The following

relations hold true:

(1) if � > 0, then 2lg� < �,

(2) if � > 0, then lg� < log� � lg� + 1,

(3) if � > 0 and m is an integer, then lg� � m i� log� > m.

For (1) and (2), by n = lg�, which is clear. For the direct implication in (3), by 2n <

� � 2n+1 and lg� � m,

m � lg� = n = log 2n < log�:

For the converse, by 2n < � � 2n+1 and log� > m,

m < log� � n + 1:

Hence m < n + 1. Since m;n is integers, so

m � n = lg�:

For every x 2 ��, we de�ne the sets

Nx = fn 2 N j PM(x) > 2�ng:

Since if n 2 Nx, then n+ 1 2 Nx, so Nx is in�nite. Moreover,

M = 2�1
X

fn2Nx j x2��g

2�n;

and

n 2 Nx () PM(x) > 2�n

() logPM(x) > �n

by (3), () lgP 0
Mx) � �n:

30

So,

X
n2Nx

2�n =
X

n��lM (x)

2�n

= 2 � 2lgPM (x);

by (2), < 2 � PM(x):

Finally,

M =
1

2

X
x2��

X
n2Nx

2�n �
X
x2��

PM(x) � 1:

Using the Kraft-Chaitin Theorem we construct a Machine D : �� o
! �� satisfying the

following property: For every (x; n) 2 T there exists a string v 2 ��
such that D(v) = x

and jvj = n+ 1:

Notice that:

D(v) = x() (x; jvj) 2 B () PM(x) > 21�jvj:

and

HD(x) = minfjvj j v 2 ��; D(v) = xg

= minfjvj j v 2 ��; PM(x) > 21�jvjg

= minfjxj j v 2 ��; jvj � 1� lgPM(x)g

= 1� lgPM(x):

By Invariance Theorem,

HU(x) � HD(x) + c = �lgPM(x) + 1 + c < � logPM(x) + 1 + c:

Remark. Since PD(x) =
1
2

P
n2Nx 2

�n and 1
2

P
n2Nx 2

�n < PM(x) it follows that

PD(x) < PM(x):

Corollary 5.19 For every machine M there exists a constant c > 0(depending upon U ,

M) such that for all x; y 2 ��
:

PU(x) � 2�cPM(x): (5.12)

Proof. By formulae 5.11, there exists a constant c > 0 such that for all x; y 2 ��:

PM(x) � 2c�HU (x):

By Lemma4.20, we get

2�cPM(x) � 2�HU (x) � PU(x):

31

Theorem 5.20 The following formulae are true:

HU(x) = � logPU(x) +O(1): (5.13)

Proof. For HU(x) � � logPU(x) + O(1), we use Theorem 5.18. For � logPU(x) �
HU(x) +O(1), by Lemma 4.20,

� logPU(x) � HU(x):

Remark. Actually, in Theorem 5.20, we can rewrite for every U there exists a constant

c � 0 such that for all strings x 2 ��,

0 � HU(x) + logPU(x) � 1 + c: (5.14)

This result is means that program-size complexity of any universal machine are asymp-

totically optimal(i.e. optimal up to at most an additive, unknown constant) with respect

to the machine's algorithmic probabilities. Now, we are interested in a class of machines

,not necessarily universal, and a class of any semi-distribution, not the machine's algo-

rithmic probabilities, and a constant c.

32

Chapter 6

Coding with Minimal Programs

we investigate machines, not necessarily universal, satisfying Algorithmic Coding Theorem

under condition of a given semi-distribution. Finally, we show the characterization of all

machines satisfying the Algorithmic Coding Theorem.

6.1 The Condition Under the Semi-distribution

We investigate conditions under which given a semi-distribution P , we can �nd a machine

M such that HM(x) is equal, up to an additive constant c � 0, to logP (x).

De�nition 6.1 a)A semi-distribution is a function P : �� ! [0; 1] such that

X
x2��

P (x) � 1:

In case
P

x2�� P (x) = 1, P is called distribution.

b)Let Q be the set of rational number. A function is a semi-computable from below(above)

if the set

f(x; r) 2 �� �QjP (x) > rg(f(x; r) 2 Q� ��jr < P (x)g

is r.e. and a computable if the above set is computable. For example, PM(x) is semi-

distribution semi-computable from below. The function P (x) = 2�2jxj�3 is a computable

semi-distribution.

Theorem 6.2 Assume that P is a semi-distribution and there exist a r.e. set S � ���N
and a constant c � 0 such that the following two conditions are satis�ed for every x 2 ��

:

(1)
P

(x;n)2S 2
�n � P (x);

(2) for all n 2 N; if P (x) > 2�n; then there exists some k 2 S such that (x; k) 2
S and k � n + c:

Then,there exists a machine M (depending upon S) such that for all x 2 ��
,

� logP (x) � HM(x) � (1 + c)� logP (x): (6.1)

33

Proof. In view of the condition (1),X
x2��

X
(x;n)2��

2�n �
X
x2��

P (x) � 1:

So, by the Kraft-Chaitin Theorem we can construct a machine M such that for every

(x; n) 2 S there exists a string v with jvj = n such that M(v) = x. If (x;m) 62 S, for all

m 2 N , then since M(x) is unde�ned, P (x) = 0 and HM(x) = 1, so the equation6.1 is

satis�ed. If (x;m) 2 S, for some m, by conditions (2) and Theorem5.18 in Chapter4 we

get:

HM(x) = minfjvj j v 2 ��;M(v) = xg

= minfm j m 2 N; (x;m) 2 Sg

� minfn j n 2 N;P (x) > 2�ng+ c

= minfn j n 2 N; n > � logP (x)g+ c

= minfn j n 2 N; n � 1� lgP (x)g+ c

� (1 + c)� logP (x):

For � logP (x) � HM(x), if (x; n) 2 S, then by (1) P (x) � 2�n, hence

HM(x) = minfjvj j v 2 ��;M)v = xg

= minfn j n 2 N; (x; n) 2 Sg

= minfn j n 2 N;P (x) � 2�ng

= minfn j n 2 N; n � � logP (x)g

� � logP (x):

Theorem 6.2 makes no direct computability assumptions on P

Lemma 6.3 Let M be a machine such that
M < 1. Then, there exist a universal

machine U satisfying the equality HU(x) � HM(x), for all x.

Proof. By hypothesis,
M < 1, so there exists a k 2 N such that
M + 2�k. Let V be a

universal machine.

The set S = f(M(x); jxj) j x 2 dom(M)g [f(V (x); jxj+ k) j x 2 dom(V)g

is r.e. and by 0 <
 < 1,X
(y;n)2S

2�n �
M + 2�k
V �
M + 2�k � 1:

By using Kraft-Chaitin Theorem there exists a machine U such that for every (y; n) 2 S

there exists a string z 2 dom(U) with jzj = n such that U(z) = y. Clearly, for all x 2 ��,

HU(x) � minfjwj+ k j V (w) = xg = HV (x) + k;

and

HU(x) = minfjvj j U(v) = xg � HM(x);

so U is universal and satis�es the required inequality.

34

Lemma 6.4 Let M be a machine. Then, there exists a machine M 0
such that
M 0 < 1

and HM 0(x) = HM(x) + 1, for all x 2 ��
.

Proof. Let the set:

S = f(M(v); jvj+ 1) j M(v) = xg:

The set S is r.e. and X
(M(v);jvj+1)2S

2�(jvj+1) =
M � 2�1 < 1:

So, by using Kraft-Chaitin theorem, there exists a machineM 0 such that for every (y; n) 2
S there exists a string z with jzj = n = jvj+ 1 such that M 0(z) = y.

So, for all x 2 ��

HM 0(y) = minfjzj j M 0(z) = y; jzj = jxj+ 1; x 2 dom(M)g

= minfjxj j x 2 dom(M)g+ 1

= HM(y) + 1:

M 0 =
X

z2dom(M 0)

2�jzj =
X

x2dom(M)

2�(jxj+1) = 2�1
X

x2dom(M)

2�jxj

<
X

x2dom(M)

2�jxj � 1:

Corollary 6.5 Under the hypotheses of Theorem 6.2, a universal machine U can be con-

structed such that for all string x,

HU(x) � (2 + c)� logP (x): (6.2)

Proof. By Lemma 6.4, Lemma 6.3 and hypotheses of Theorem 6.2 , clearly

HU(x) � HM 0(x) = HM(x) + 1 � � logP (x) + (2 + c); for all string x:

6.2 Minimal Programs are Optimal

Now, let CM = x�M .

Proposition 6.6 Assume that P is a semi-distribution semi-computable from below. Then,

there exists a machine M (depending upon P) such that for all string x,

� logP (x) � HM(x) � 2� logP (x): (6.3)

Consequently, minimal programs for M are almost optimal: the code CM satis�es the

inequalities:

0 � LCM ;P �HP � 2:

35

Proof. Let the set S = f(x; n + 1) j P (x) > 2�ng. For all strings x,

X
(x;n)2S

2�n =
X

n>1�logP (x)

2�n = 2lgP (x) < P (x);

so condition (1) in Theorem 6.2 is satis�ed. Condition (2) holds for c = 1. Hence by (1),

0 � LCM ;P �HP =
X
x2��

P (x) � (HM(x) + logP (x)) � 2:

Corollary 6.7 Assume that f : �� ! N is a function such that the set f(x; n)jf(x) < ng
is r.e. and

P
x 2

�f(x) � 1. Let P (x) = 2�f(x). Then P is a semi- distribution semi-

computable from below, and there exists a machine M (depending upon f) such that for

all x,

HM(x) � 1 + f(x): (6.4)

Minimal Programs M are almost optimal: the code CM satis�es the inequalities:

0 � LCM ;P �HP � 1:

One more bit is enough to guarantee universality of the constructed machine, that is,

there exists a universal machine U (depending upon f)such that the code CU satis�es the

inequalities:

0 � LCU ;P �HP � 2:

Proof. Let the set S = f(x; n) j n > f(x)g. Clearly, S = f(x; n) j P (x) > 2�ng. The

�rst condition in Theorem 6.2 is satis�ed as
P

n>f(x) 2
�n = P (x) � 1, for every x, and the

second condition is satis�ed for c = 0.

Remark. When the semi-distribution P is given, an optimal pre�x-code can be found

for P . However, that code may be far from optimal for a di�erent semi-distribution. For

example let C be a pre�x-code such that jC(x)j = 2jxj+2, for all x. Let � > 0 and consider

the distribution

P�(x) = (1� 2��)2�(�+1)jxj:

Two radically di�erent situations appear: if � � 1, then

LC;P� �HP� =1;

but if � > 1, then

LC;P� �HP� <1;

So, C is asymptotically optimal for every distribution P� with 1 < �, but C is far away

from optimality if 0 < � � 1. Note that P� is computable provided � is computable.

The next result shows that minimal programs are asymptotical optimal for every semi-

distribution semi-computable from below.

36

Theorem 6.8 Let P is a semi-distribution semi-computable from below, and U a univer-

sal machine. Then, there exists a constant cP (depending upon P) such that

0 � LCU ;P �HP � 1 + cP :

Proof. LetM be the machine constructed in Proposition 6.6 and let cM be the simulation

constant of M on U . Then,

0 � LCU ;P �HP � LCU ;P + cM �HP � 1 + cM :

so take cp = cM .

Proposition 6.9 If P is a computable semi-distribution. Then there exists a machine

M such that

� logP (x) � HM(x) � 1� logP (x):

Proof. Note that �lgP (x) = minfn j n 2 N;P (x) > 2�ng and then apply Theorem

6.2 to the set S = f(x;�lgP (x)) j x 2 ��g, by �lgP (x) � P (x), (1) is satis�ed and by

�lgP (x) � n, (2) is satis�ed with a constant c = 0.

Corollary 6.10 Let P be a computable semi-distribution. Then, there exists a universal

machine U such that

HU(x) � 1� logP (x):

6.3 Algorithmic Coding Theorem Revisited

We characterize all machines satisfying the Algorithmic Coding Theorem and we construct

a class of (universal) machines for which the inequality is satis�ed with constant c = 0.

Proposition 6.11 Let M be a machine and c � 0. The following statements are equiv-

alent:

(a) for all x, HM(x) � (1 + c)� logPM(x),

(b) for all natural n � 0, if PM(x) > 2�n, then HM(x) � n+ c.

Proof. For (a) implies (b), by HM(x) � (1 + c)� logPM(x) and PM(x) > 2�n,

2�n < PM(x) � 2(1+c)�HM :

For (b) implies (b), since for all n 2 N , PM(x) > 2�n,

HM(x)� c � minfn j n 2 N;PM(x) > 2�ng

= minfn j n 2 N; n > logPM(x)g

= minfn j n 2 N; n � 1 + lgPM(x)g

= 1 + lgPM(x)

� 1 + logPM(x)

37

Remark. For every machineM satisfying one of the equivalent conditions in Proposition

6.11, the Algorithmic Coding theorem follows (see Theorem 5.20):

jHM(x) + logPM(x)j � 1 + c: (6.5)

In fact, a machineM satis�es (6.5) if and only if condition (b) is satis�ed. Every universal

machine U satis�es (a) and (b) (see Theorem 5.18), but not all machines satisfy this

condition. For example, in case considering enumeration of 2jxj copies of pair (x; 3jxj+1),

using Kraft-Chaitin Theorem, construct machine M such that for every string x there

exist 2jxj di�erent strings uix such that

M(uix) = x; i = 1; 2; 3 � � �2x:

It seen that PM(x) =
P

M(u)=x 2
�u = 2�2jxj�1: So, taking nx = 2jxj + 2 we get PM(x) >

2�nx,

HM(x) = 3jxj+ 1 � 2jxj+ 2 + c:

So there is not constant c.

Next, incase c = 0, for example, for every x, consider enumeration of 3 of pair

(x; 3jxj); (x; 3jxj + 1); (x; 3jxj + 3). Use Kraft-Chaitin Theorem to construct a machine

M such that for every string x there exist 3 di�erent strings uix such that M(uix) =

x; i = 1; 2; 3: It seen that PM(x) =
P

M(u)=x 2
�u = 2�3jxj+0:���: So, taking nx = 3jxj we get

PM(x) > 2�nx, so for all x,

HM(x) = 3jxj � 3jxj:

This is holds for c = 0.

Some machines satisfy condition (b) with c = 0, so their minimal programs begin

almost optimal. Hence next in Proposition 6.12 we will provide a class of (universal)

machines satisfying the condition.

Proposition 6.12 Let M be a machine such that if for all strings u 6= u0 with M(u) =

M(u0) implies juj 6= ju0j. Then, for all strings x,

HM(x) � 1� logPM(x): (6.6)

Proof. Let the set S = f(x; juj) j M(u) = xg, and notice that

PM(x) =
X

(x;k)2S

2�k;

as programs producing the same output x have di�erent lengths. So, juj of the set S is

di�erent natural numbers. In view of the hypothesis,

For all n 2 N , PM(x) =
X

(x;k)2S

2�k > 2�n

38

, 9(x; k1) 2 S

"
(k1 < n) _ [(k1 = n) ^ 9k2(k2 6= k1 ^ (x; k2) 2 S)]

#
;

To prove above, we will show that for all n 2 N , PM(x) =
P

(x;k)2S 2
�k > 2�n and

not 9(x; k1) 2 S such that (k1 < n) imply 9(x; k1) 2 S such that (k1 = n) ^ 9k2(k2 6=
k1 ^ (x; k2) 2 S). For the direct implication, if for all n 2 N , x 2 ��, PM(x) > 2�n,

then there exists a (x; k) 2 S such that 2�k > 2�n or 2�k � 2�n. In case there is not

a (x; k) 2 S such that 2�k > 2�n, for all (x; k) 2 S, n 2 N , 2�k � 2�n. Hence, for all

(x; k) 2 S, n 2 N , 2�k = 2�n or 2�k < 2�n. Here, assume that for all (x; k) 2 S, n 2 N ,

2�k 6= 2�n. Then, for all (x; k) 2 S, n 2 N , 2�k < 2�n i.e. for all (x; k) 2 S, n 2 N ,

k > n. Since each k is di�erent natural numbers,
P

(x;k)2S 2
�k �

P1
k=n+1 2

�k � 2�n. This

contradicts that
P

(x;k)2S 2
�k > 2�n. Hence, there exists a (x; k1) 2 S such that k1 = n.

Moreover, since one have to satisfy
P

(x;k)2S 2
�k > 2�n there exists k2 such that (x; k2) 2 S

and by machine's de�nition, k2 6= k1.

For the converse implication, in case there exists a (x; k1) 2 S such that k1 < n, clearlyP
(x;k)2S 2

�k > 2�n. In case for some (x; k1) 2 S, k1 = n and for some (x; k2) 2 S, k2 6= k1,

clearly
P

(x;k)2S 2
�k � 2�k1 +2�k2 > 2�k1 = 2�n. Hence, the condition (2) in Theorem 6.2

is satis�es with c = 0. Using Theorem 6.2 we deduce the existence of a machine M 0 such

that HM 0(x) � 1� logPM 0(x), for all strings x.

39

Chapter 7

Concluding Remarks

In Chapter 3 we gave de�nition of the pre�x-free sets, pre�x codes and Shannon entropy,

and showed the mainly property of the pre�x code. Propaties are that the pre�x-code

is the uniqueness of decodability, that the set of the pre�x code-strings (pre�x-free set)

satisfy Kraft's inequality and that the average lengths of the pre�x code-strings is about

equal to the shannon' entropy. In Chapter 4 we gave the de�nition of the program-

size complexities using Chaitin machine and the machine's algorithmic probability and

halting probability. We showed the Invariant Theorem, non-computability of program-

size complexity and computability of approximations to the program-size complexity, and

derive some elementary estimation for complexities. In Chapter 5 we showed the extention

to an arbitrary recursively enumerable set the classical Kraft's inequality condition (Kraft-

Chaitin Theorem). We showed the Algorithmic Coding Theorem which is the important

result in Algorithmic Information Theory; � logPU(x) � HM(x) � c � logPU(x): The

stronger version of the result was shown in Chapter 6. We give the basic result.

When P is a semi-distribution and S � �� � N and a constant c � 0 such that the

following two conditions are satis�ed for every x 2 ��:

(1)
P

(x;n)2S 2
�n � P (x);

(2) for all n 2 N; if P (x) > 2�n; then there exists some k � n+c such that (x; k) 2 S:

Then,there exists a machineM (depending upon S) such that for all x 2 ��, � logP (x) �
HM(x) � (1 + c)� logP (x):

By using this result, we investigated under variable conditions. When P is a semi-

distribution semi-computable from below. Then, there exists a machine M such that for

all string x,

� logP (x) � HM(x) � 2� logP (x):

When P is a computable semi-distribution. Then there exists a machine M such that for

all string x,

� logP (x) � HM(x) � 1� logP (x):

Finally, a class of the machines satisfying the Algorithmic Coding Theorem satisfy the

follow condition that there exists constant c � 0 for all natural n, if PM(x) > 2�n,

then HM(x) � n + c. Furthermore, a class of the machines satisfying the Algorithmic

40

Coding Theorem with c = 0 was under condition that for all di�erent programs u 6= u0,

M(u) =M(u0) implies juj 6= ju0j.

41

Bibliography

[1] Cristian.S.Calude, Information and Randomness :An Algorithmic Perspective,

Springer-Verlag, 1994.

[2] Cristian.S.Calude, Hajime Ishihara and Takeshi Yamaguchi, Minimal programs are

almost optimal, CDMTCS Reserch Report Series, CDMTCS-116, 1999, Spring.

[3] Greg.J.Chaitin, Information, Randomness and Imcompleteness, Paper on Algorith-

mic Information Theory, World Scienti�c, Singapore, 1990(2nd ed.,).

[4] Greg.J.Chaitin, Algorithmic Information Theory, Cambridge University Press, Cam-

bridge, 1987.

[5] Ming Li and Paul Vitanyi, Kolmogorov Complexity and Its Applications, Springer,

New York, 1997(2nd ed.,).

[6] T.M.Cover, J.A.Thomas, Element of Informatin Theory, Jhon Wiley, New York,

1991.

[7] Martin D.Davis and Ron Sigal, Computability, Complexity, and Languages, Jhon

Wiley, New York, 1991.

[8] Robert I.Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin

Heidelberg, 1987.

[9] Osamu Watanabe and Naoki Yonezaki, Keisanron Nyuumonn, Nihon-Hyouronsya,

1997 (in Japanese).

[10] K.Matsuzaka, Shugo Iso Nyumon, Iwanami-shoten, 1993 (in Japanese).

42

