
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Hardware Acceleration of Real-time Image

Processing for Vehicle Control

Author(s) Kitrungrotsakul, Yuranan

Citation

Issue Date 2017-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/14794

Rights

Description Supervisor:田中　清史, 情報科学研究科, 修士

Hardware Acceleration of Real-time Image Processing
for Vehicle Control

Yuranan Kitrungrotsakul

School of Information Science
Japan Advanced Institute of Science and Technology

September, 2017

Master’s Thesis

Hardware Acceleration of Real-time Image Processing for
Vehicle Control

1510204 Yuranan Kitrungrotsakul

Supervisor : Associate Professor Kiyofumi Tanaka
Main Examiner : Associate Professor Kiyofumi Tanaka

Examiners : Professor Mineo Kaneko
Professor Yasushi Inogushi

School of Information Science
Japan Advanced Institute of Science and Technology

August, 2017 (submitted)

Abstract

in this research, we consider the methods for using hardware components in embedded
system board to accelerate the high computational intensity program in the embedded
system. The purpose of this research is to give the alternative ways to accelerate program
in embedded system board. Moreover, the hardware accelerator must be implemented
under the resource constraints. We propose the two base types of hardware accelerator.
Firstly, the hardware accelerator bases on graphic processing unit (GPU). Secondly, the
hardware accelerator bases on programmable logic (PL). The lines tracking program is
selected as the high computational intensity program for acceleration. The hardware
accelerators are experimented in the real hardware embedded system board. The results
from the hardware accelerators are verified to the base program. The results demonstrates
that both of the GPU and PL base hardware accelerators significantly reduce the execution
time of the high computational intensity program.

i

Acknowledgements

The author would like to express my special thanks of gratitude to my supervisor,
Associate Professor Kiyofumi Tanaka, who guided me through the research. I got the
precious opportunity to do the research on the interesting topic, which helps the author to
know about many new things. I would like to express my gratitude to my minor research
supervisor, Professor Hiroyuki Iida, for gave me the opportunity for the minor research
topic, which helped me in doing research.

Lastly, I would like to thank my family and friends who always give me a support
when I need.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Problem Statement . 2

2 Virtual Environment System 4
2.1 Virtual Environment System Flow . 4
2.2 Hardware Components of Virtual Environment System 6

2.2.1 A Windows Game Simulator 6
2.2.2 A HDMI Capturing Device . 7
2.2.3 An Image Sense Module . 8
2.2.4 A virtual driving controller generator 9

3 Road Surface Marking Program 10
3.1 Object Detection . 10
3.2 Program Flow . 11

3.2.1 Color Space . 11
3.2.2 Object Extraction . 14

iii

3.2.3 Lines Detection . 16

4 Hardware Accelerators 19
4.1 Graphics Processing Unit . 21
4.2 Overclocking . 23
4.3 Programmable Logic . 24
4.4 Amdahl’s law . 26

5 Experimentation and Analysis 28
5.1 Experiment Setting . 28
5.2 Experiment from GPU Based Accelerator 29
5.3 Experiment from PL Based Accelerator 34

6 Conclusion 35

Bibliography 37

iv

List of Figures

2.1 A program flow of virtual prototyping environment 5
2.2 Hardware Components in Virtural Environment System 6
2.3 An example of system on chip’s architecture 8

3.1 The program flow of road surface marking program 12
3.2 An example of color space converting from BGR to HSV. 14
3.3 An example of an object extraction based on color feature. 15
3.4 An example of applying the Hough transform algorithm to detect the

straight lines. 17
3.5 An example of applying the Hough transform algorithm to detect the lines. 17

4.1 The hardware components of Jetson Tegra K1 21
4.2 The example hardware architecture of programmable logic SoC 24
4.3 An example of the impact from the proportion of execution time 27

5.1 The execution time per frame for two CPU clock frequency in Jetson
Tegra K1 with low power mode. 29

5.2 The execution time per frame for each CPU clock frequency and various
number of core in Jetson Tegra K1. 30

5.3 The performance of GPU accelerator with various clock frequencies of 1
CPU core . 31

5.4 The performance of GPU accelerator with various clock frequencies of 2
CPU cores . 31

5.5 The performance of GPU accelerator with various clock frequencies of 3
CPU cores . 32

v

5.6 The performance of GPU accelerator with various clock frequencies of 4
CPU cores . 32

5.7 The performance of GPU accelerator with low power mode 33

vi

List of Tables

2.1 The comparison of input format types for an image sense module 7

4.1 The frequency parameters for each mode in Jetson Tegra K1 22
4.2 Resource usage in Zedboard for hardware accelerator module 25

5.1 The execution time per frame for each method in Zedboard 34

vii

Chapter 1

Introduction

Nowadays, the computers or laptops that we use in our daily life can handle the most
of programs. Even for some applications that involve high computational intensity, our
computers can execute program without any problem. However, in the small electronic
devices such as smart phones, executing high computational intensity programs is not
suitable. The reason behind this difference is the processing power. In computers or
laptops that we use, mostly, they already contain the hardware accelerator to handle high
computational intensity program while embedded systems don’t have.

Embedded systems have been developed in recent decades. The development of
embedded systems directly affects our daily life. Nowadays the embedded devices exist
everywhere around us. The internet of things is one of the most trendy for embedded
technologies. Everything around us is going to be smarter and connected. For example,
in smart houses, electronic devices and household appliances are connected together.
The demand on the embedded system is increasing every single time. The computation
complexity of embedded program is increasing but size of the embedded system is
preferred to reduce. The direct effect of reducing size is the processing power. The
result of the contrast between high computation complexity and processing power is
outstanding in image processing devices, which mostly interact with users.

The image processing algorithms are well known as computationally intensive tasks.
Its applications are used in order to solve many problems that involve images. However,
the major problem of image processing is the trade-off between accuracy and time
consumption. In order to achieve high degree of accuracy, the time consumption increases

1

significantly. The time consumption of computational program depends on the processing
power. It can process images immediately in the high performance computers. On the
other hand, it takes more time in the embedded system; as a result, the interactive program
cannot respond to the users or the environment instantly.

The autonomous car is a vehicle that can navigate and drive without human interference.
The vehicle must have the potential to analyse the environment information from the
sensors. The environment information is retrieved in various format such as the video
from camera, the data from sensor and so on. The enormous of environment information
must be processed as fast as possible in order to respond to the environment. In this
research,the road surface marking is chosen as a target program for acceleration. The
road surface marking is commonly used in the autonomous car for keeping the vehicle to
the lane.

This thesis is divided into 6 chapters. Firstly, chapter 1 consists of the introduction.
Then, chapter 2 explains the virtual environment system. Chapter 3 describes about the
road surface marking program. Chapter 4 talks about the hardware accelerators. Chapter
5 shows the experimentation and analysis. Lastly, chapter 6 is the conclusion of all
works.

1.1 Problem Statement

The self driving have been researched for awhile. Many of them involve the road surface
marking program such as [1], [2], and [3]. They purpose the methods and applications
for fulfilling the capabilities of self driving vehicle in many aspect. However, they do not
address about the processing time, which is an important factor in the practical usage.
On the other hand, several researchers tried to attempt the hardware accelerators. For
example, [4], [5], and [6], accelerated the system by the hardware accelerators. Their
purposed hardware accelerators successfully accelerate their application but only in terms
of theoretical.

The most important characteristic of real-time computing is response time of tasks.
It must guarantee that the response time should be within some deadline. Thus, more
computation resources should be used in order to meet the time constraint. However,
accuracy must be acceptable for the given application. In some cases, when reducing

2

accuracy to minimum, the time consumption still exceeds the time limitation. Thus,
the acceleration techniques are used to achieve the timing required while accuracy
remains acceptable [7]. However, each acceleration technique has its constraints and
drawbacks. Thus, the acceleration techniques must be considered for compatibility and
suitability. Personal computers or workstations match many techniques because of their
huge computation resources. On the other hand, embedded systems lack computation
resources and cannot support many of those techniques. GPU, is a common hardware
accelerator that suits many cases [8]. However, there are a lot of systems that dont
contain GPU. Thus, the acceleration techniques must be developed for such exceptional
cases [9].

From those problems, the aim of this research is to implement the hardware accel-
erators for the road surface marking program on virtual environment. The hardware
accelerator should be able to accelerate the road surface marking program while remain
the capable of tracking. The road surface marking program is executed in the virtual
environment to simulate the environment information. In order to solve the problem,
this research purposes the methods for the hardware accelerators. Two bases of the hard-
ware accelerators are GPU base hardware accelerator and PL base hardware accelerator.
we purpose the virtual environment system which is implemented to simulate the real
environment.

3

Chapter 2

Virtual Environment System

The process of developing the embedded system requires the real embedded devices to
operate the applications. However, the development under the real circumstance is not
appropriate in some applications, especially, for the system that interacts with human.
The errors from slight mistake can threaten someone’s life.

Virtual prototyping is one of the methods to simulate the real environment. The real
environment of the target embedded system is simulated by hardware and software. By
doing this, the system can be developed even if the system is not operated under the real
circumstance.

2.1 Virtual Environment System Flow

The virtual environment system is constructed by the combination of hardware compo-
nents and software programs. The purpose of the virtual environment is to simulate the
real environment for being used in the experimental. The virtual system imitates the
work flow from the real system.

Figure 2.1 shows the virtual environment flow of this research. After the start signal is
assigned, The system initializes all hardware components and software programs. Then,
the system waits for the initialization step. After the initialization step is done, the virtual
environment is generated. Then, the image processing algorithm is applied with the
hardware accelerator. After that, the vehicle commands for navigation are generated.
After that, the vehicle responds to the virtual system according to the vehicle commands.

4

Figure 2.1: A program flow of virtual prototyping environment

5

Lastly, the system loops the processes from the generating virtual environment to the
responding to the vehicle commands until the vehicle reaches the destination.

2.2 Hardware Components of Virtual Environment Sys-
tem

The virtual environment consists of 4 major hardware components that are a windows
computer, a hdmi capturing device, an image sense module, and the virtual driving
controller. The connections of 4 components are shown in figure 2.2.

Figure 2.2: Hardware Components in Virtural Environment System

2.2.1 A Windows Game Simulator

The purpose of this module is to generate the virtual input images of the system and
respond to the commands from the virtual driving controller generator. The image sense
module requires an input image to operate the image processing. Generally, in image
processing programs, the source of input can be prepared in any format such as a picture,
a recorded video, and a streaming image.

6

Table 2.1: The comparison of input format types for an image sense module

Format Type Continuity Interaction
Image Lacks of continuity Cannot respond
Video Capable of continuity Cannot respond
Image Streaming Capable of continuity Respond to the commands

The realistic of virtual prototyping depends on the input format. Firstly, the image
input format can be used for verification of the algorithm of image processing program.
However, it is the most unrealistic format type because the program analyses an input one
by one. It lacks continuation that occurs in the real environment. Secondly, the recorded
video format achieves the continuation that is not achieved by the image input format.
The image frames from video can be analysed continuously but the generated commands
cannot affect the video because the recorded video is fixed. Lastly, the source of image
streaming effects the virtual prototyping. The image streaming from a video camera
can be used as an input but it requires a real movement to achieve the responsiveness.
On the other hand, the image streaming from the Windows game simulator achieves the
responsiveness without the real movement, which is preferred in the virtual prototyping.
Table 2.1 shows the summary of the input format type and its properties.

In this research topic, the image sense module must be able to analyse the environ-
ment in real time and in the real environment. Thus, the input of this module in real
environment is retrieved in a streaming image format. Then, the vehicle must respond to
the generated commands immediately.

2.2.2 A HDMI Capturing Device

The data from the Windows game simulator is used in the image sense module. However,
The output port of the Windows game simulator is a HDMI port type, which is rarely
used in real system. To imitate the real system, the data from HDMI port should be
converted to USB port, which is commonly used in the embedded system. Thus, the
HDMI port is used as an output port of the Windows game simulator module but it
cannot be connected directly to the image sense module. It requires an convertor device
to convert the HDMI signal to USB signal to connect two modules together. Febon168
is a HDMI to USB video class grabber. It converts HDMI input signal to USB output

7

Figure 2.3: An example of system on chip’s architecture

signal for video format. It is used as a converter between the Windows game simulator
and the image sense module.

2.2.3 An Image Sense Module

The image sense module operates the image processing program to analyse the environ-
ment. The input of this module comes from the HDMI capturing device. The output of
this module is a direction for vehicle. In this research, there are two major subsystems in
the image sense module.

Firstly, the image processing program is the target program for acceleration. The
image processing program in this research is a road surface marking. This program is
commonly used in the self-driving car. The algorithm of this program is described in
Chapter 4.

Another subsystem is the hardware accelerator. In this research, the hardware accel-
erators were implemented in two based types, which are GPU and PL. Because of the
difference architecture, two embedded system boards were used for each based type.
Firstly, Jetson Tegra K1 is NVIDIA’s embedded Linux development platform system on
chip (SoC) that is used in this research for GPU base accelerator. On the other hand, as
the PL base accelerator, Zedboard is a complete development kit that uses the Xilinx
Zynq-7000 All Programmable SoC architecture.

Both of Jetson and Zedboard are SoC. SoC is an integrated circuit that integrates many

8

useful computer components together such as CPU, digital signal processing (DSP), and
so on. Figure 2.3 shows the example of components in SoC. The performance of system
relies on the limitation of processing resources in the image sense module because the
image sense module is a bottleneck of system. Generally, the embedded system faces the
problem about responsiveness due to its hardware limitation. Jetson and Zedboard face
the same problem as the others. In order to solve this problem, the hardware accelerators
were implemented in each board to accelerate the image sense module. The hardware
accelerators are described in Chapter 5.

2.2.4 A virtual driving controller generator

The purpose of this module is to generate the driving controller commands to the vehicle
controller system. The input of this module is the direction information from the image
sense module. The output of this module is the vehicle controller commands. This
module can be integrated with the image sense module. However, it is separated because
it depends on the vehicle system. In this research, the vehicle system is a virtual simulator.
Thus, the driving controller commands are generated with the simulator compatible with
simulator compatible format.

9

Chapter 3

Road Surface Marking Program

In order to research the effect of acceleration, we have to choose the target program to be
accelerated. The target program should be a computational intensive program because
the result from the acceleration is more obvious than the less computational intensive
program. In this research, a road surface marking program is chosen to be the target
program of acceleration.

3.1 Object Detection

The object detection program is a program that uses the image processing to detect the
object. The program deals with the input digital images or videos types, which contain
the semantic objects. The interested objects have some specific features that can be
distinguished from the others [10]. The features such as shape, color, and so on represent
the individuality of the object class. For example, a circle must be round. The red circle
must be circle and the color must be red. The specific features help to clarify the object.
The complex objects contain many of features. For example, human face must have eyes,
mouth, nose, and so on.

In this research, the road surface marking is a variation of an object detection algorithm.
Then, the road surface marking was implemented based on the object detection algorithm
where the objects have the features of lines.

10

3.2 Program Flow

The common processing flow of an image processing is pre-image processing, then
image processing, and post-image processing at the end of each image. The workloads of
pre-image and post image processing are much lighter than the highly intensive workload
of the image processing part. The image processing part in the road surface marking
consists of three major parts: changing the color space, applying the object extraction,
and applying the line detection algorithm.

Fig. 3.1 shows the overall process of the road surface marking program. The program
was implemented in the image sense module. The input of program is an image streaming
via USB port. The output is sent to the virtual driving controller.

3.2.1 Color Space

The color space is an organization of color storage format. The combination of color in
the color space creates the color that its represent. The general color space is Red, Green,
and Blue (RGB), which is represented by red, green, and blue. The image is stored into
data structure that contains the information of each color channel. A color model is an
abstract mathematical model that is used in order to describe the representation of the
color as numbers in data structure. In this research, two color spaces are used.

Firstly, the color space that is used in input image is Blue, Green, and Red (BGR).
The input for the image sense module is the image streaming via USB port. The input
color space is BGR, which is similar to RGB space but the order of color information
is different. In this research, the color information is stored to 24-bit unsigned integers.
Thus, the first 8 bits represents the information of blue color. Then, the second 8 bits
represents green channel. The last 8 bits represents red channel. BGR space is calculated
from the RGB color model. The combination of red, green, and blue color creates the
new color. The RGB color model is an additive color model. The combination of each
color channels are combined together. For example, the combination of pure red and
pure green is yellow. This model is used in most of color video displays. In contrast, the
subtractive color model is used in Cyan, Magenta, and Yellow (CMY). The combination
of information color is an absorption of colors. For example, the combination of pure
Cyan and Magenta produces blue. This model is used in natural colourants such as dyes.

11

Figure 3.1: The program flow of road surface marking program

12

The combination of primary color in RGB space, which are red, green and blue, produces
the primary color of CMY color space.

Secondly, the color space that is used for image processing in the image sense module
is Hue, Saturation, and Value (HSV). HSV is one of the color space that is popular in the
image processing. It rearranges the representation of RGB space to another system. In
RGB space, the color space is represented by cartesian system. On the other hand, HSV
space is represented by cylindrical system for being more intuitive. The first parameter
hue is represented by the angle around the central vertical axis. The distance from the
central vertical axis represents saturation. Lastly, the distance along the central vertical
axis is value. Hue is an attribute of the color that describes the degree of similarity of
target color and based colors in rainbow color. Saturation represents the colorfulness
of the target color compare to its own brightness. Value is the comparison between
brightness and brightness of illuminate white.

According to the Fig. 3.1, the first major step after obtaining the input image is
”Change color space”. The color space of input image is changed from BGR to HSV
space.

V = max(R,G,B) (3.1)

S =

{
V−min(R,G,B)

V
if V 6= 0

0 otherwise
(3.2)

H =


60(G−B)

V−min(R,G,B)
if V = R

120(B−R)
V−min(R,G,B)

if V = G
240(R−G)

V−min(R,G,B)
if V = B

(3.3)

if H < 0 then H = H + 360.
The output data are in range 0 ≤ V ≤ 1, 0 ≤ S ≤ 1, 0 ≤ H ≤ 360

The equation 3.1, 3.2, and 3.3, is used in the OpenCV library. The data is normalized.
The data must be converted according to the destination data type. In this research, the
images are stored in 24-bit unsigned integer. The available data range is 0 to 255. Thus,
the data is converted to V = 255V, S = 255S,H = H/2.

The problem in BGR color space is the information of color and light intensity. The

13

Figure 3.2: An example of color space converting from BGR to HSV.

combination of BGR color space blends the information of light and shadow to the color
channel. Thus, the same color in different light source has different data in BGR color
space, which affects the object detection based on the color. On the other hand, HSV
color space separates the information of color and light intensity. The color has the equal
hue and saturation in any light environment. The result from this step is a converted
image in HSV color space from the input image which is in BGR color space.

The Fig. 3.2 shows the result of the color space converting. The input image from the
Windows game simulator is retrieved in BGR color space. Then, after apply the color
space converting, the input image in BGR color space is converted to the output image in
HSV color space. The color representation is changed to its color space.

3.2.2 Object Extraction

The object extraction is a process for separating the interested objects from the back-
ground. The interested object must have unique features in order to extract from the other
objects or background. The feature that we used in this research is color. From the color
space, the input image is converted into HSV color space. The color based extraction is
used to extract the objects that have the color in specific range.

dsti = lowerBi,H ≤ srci,H ≤ upperBi,H ∧

lowerBi,S ≤ srci,S ≤ upperBi,S ∧

lowerBi,V ≤ srci,V ≤ upperBi,V

(3.4)

14

Figure 3.3: An example of an object extraction based on color feature.

From the equation 3.4, the destination image is a single channel image. The equaltion
3.4 is applied into each pixel in the image. All of three data channels, which are hue,
saturation, and value, are blended together. In each channel, the upper bound and lower
bound is specific to filter the pixel. The target pixel is operated by boolean operators.
Thus, the destination pixel can be either 0 or 1, in other word, it is represented by black
and white color.

The object extraction based on color requires an specific range of color information
before processing, as shown in equation 3.4. In this research, the target color is yellow.
In BGR color space, the combination of pure red and pure green produces pure yellow.
However, BGR color space is not used for processing. HSV is used in image processing.
Thus, from 3.1 and 3.2, the value and saturation of yellow color is 1, which are the
maximum number. Then, from 3.3, hue is 30 out of 255. However, in this research,
those color information for yellow color are not used in exact number. Concerning to the
real environment, the color is hardly to be exactly number as it is calculated. Thus, the
numbers are extended in this research to handle the real environment.

Fig. 3.3 shows the result of an object extraction algorithm. The interested objects from
the HSV color space are extracted from the others. The result image is a binary color
image, which represents the interested objects by white color and the others by black
color.

15

3.2.3 Lines Detection

After the object extraction, the image is converted into black and white image. The white
color represents the interested objects. The road surface markings is a target program in
this research. Thus, the interested objects are markings on the road, which are road lines.
The coordination of markings in the image is required to navigate the program. Moreover,
the imperfections of an image data from the transferring and processing cause noise or
missing data information in an image. Thus, the lines detection algorithm must tolerate
the imperfection data images. For example, the single straight line may be disturbed and
separated into two straight lines.

The Hough transform is one of the feature extraction that is used in image processing.
The voting methods are used for extracting the interested object from the others. The
object is transformed to parameter space. Then, the interested objects are extracted
by the local maxima of accumulator space from the algorithm of the Hough transform.
Generally, the Hough transform is used for identifying lines, circles, or eclipses. In this
research, the Hough transform is used for identifying the straight lines.

Generally, the straight lines are defined as y = ax+ b. The point (a, b) represents the
straight line y = ax+ b in parameter space. The parameter a and b are used to define the
angulation of the lines. The set of (x, y) represents the position or point in lines. Then,
the lines can be represented by another form, which is r = xcosθ + ysinθ. In this form,
r represents the distance between the closest point on the straight line and origin point. θ
represents the angle between the x axis and the line from the origin point to the closest
point on straight line.

From the equation r = xcosθ + ysinθ, the straight lines can be represented in r and θ
plane, which is referred to as Hough space. In Hough space, the point (r, θ) represents
the straight line equation. The (x, y) point in x and y plane contain a set of straight lines
that pass through that point. Each straight lines that passes through that (x, y) point
has different value of (r, θ). The set of (r, θ) can be mapped to r and θ plane. The
sinusoid curve is formed in r and θ plan from the set of straight lines that correspond to
point (x, y) in x and y plan. Then, the intersection points of sine waves in r and θ plan
represent the straight lines that pass through points (x, y) which correspond to each sine
wave. Thus, the straight lines in the processed image can be identified by applying the
Hough transform algorithm. The number of sine waves that intersect in the same (r, θ)

16

Figure 3.4: An example of applying the Hough transform algorithm to detect the straight
lines.

Figure 3.5: An example of applying the Hough transform algorithm to detect the lines.

point is used as a threshold for classified the straight lines.
Fig. 3.4 shows an example of Hough transform with the three straight lines. All of

three straight lines are parallel to each other. Thus, the value of θ are equal in Hough
space. The different distances from the origin of three lines are represented by three
different ρ value. The top three highest intersection points of sine waves in Hough space
represent the straight lines.

After applying the Hough transform to the processed image from object extraction
method, the straight lines in the image are detected. The set of straight lines are obtained.
Then, the navigation system can use these information to determine the direction of
vehicle. The vehicle control commands are generated, which depends on the position of
vehicle and detected lines.

17

Fig. 3.5 shows the result of applying the Hough transform algorithm to the extracted
image. The detected lines are shown in red lines, which are reapplied to the input image
in BGR color space. The Hough transform can identify the imperfect line in the image
and reconstruct it.

18

Chapter 4

Hardware Accelerators

The computation resources such as central processing unit (CPU), memory, input-output
ports, and so on, in the embedded systems are dramatically less than workstations and
desktop PCs. Therefore, designing the high intensive computational programs in the
embedded systems is different from that for workstations and desktop PCs. Moreover, in
general, the embedded systems are used in an interaction environment. The responsive-
ness is one of the major concerns in the embedded system. In this research, the interested
embedded system is the vehicle controller system. The navigation program, which is
a road surface markings program, should respond to environment fast enough. Even
though the road surface markings program is not highly compute-intensive program, it’s
response in embedded system is not fast enough to be used in the real-time environment.
The CPUs processing in the embedded device is much less processing power than CPUs
processing in the workstation. Thus, in order to achieve the real-time response, the
system requires an accelerator. The software accelerators require no add-on components
but they have the limitation of acceleration. On the other hand, the hardware accelerators
provide much more acceleration factors than the software accelerator. However, the
acceleration of the hardware accelerator depends on the hardware components that are
used to accelerate. In this research, the graphics processing unit and programmable logic
are used as the hardware accelerator.

The major difference between CPUs and hardware accelerators is the number of
processing units. The hardware accelerators consist of a large number of low processing
power units [5]. Those units process concurrently the same task with different data. In

19

the same task of computation, whether the hardware accelerator can be better or worse
depends on its design. The important characteristic for using the hardware accelerator
is the workload distribution. The hardware accelerator units are much more slower
than CPU processing units. In contrast, the amount of hardware accelerator is massive.
The workload distribution comes to affect the system performance. The amount of
workload in each hardware accelerator unit should be nearly equality. The system is
blocked by the slowest processing units. Because of this, hardware accelerators are
not versatile for every algorithm. It can be a drawback with an inappropriate design.
Moreover, the operation units are located outside the CPU. The workload of the target
program must be moved from CPUs to hardware accelerators. The selected parts of the
program, which are the compute-intense parts, are operated by hardware accelerators.
Thus, the program flow of the system is changed. When the operation done in CPU
parts reaches the compute-intense parts, the operation units of the program are changed
from CPUs to hardware accelerators.The program flow is changed in this point. The
CPUs and hardware accelerators can operate at the same time but the involved data
and processes of CPUs and hardware accelerators must be completely separable. The
hardware accelerator units operate with the separated memory storages. The involved
data must be transferred from CPU memory to hardware accelerator memory. Thus, a
run time overhead is incurred because of the data transferring.

As describe in Chapter 3, the road surface marking algorithm is implemented based on
the object detection algorithm where the objects have the features of lines. The common
processing flow of an image processing is pre-image processing, then image processing,
and post-image processing at the end of each image. The workloads of pre-image and
post image processing are much lighter than the highly intensive workload of the image
processing part. The image processing part in the road surface marking algorithm consists
of three major parts: cleaning the input image, applying the line detection algorithm, and
analysing the detected lines. These tree majors parts are designed to be processed by the
hardware accelerator units. The pre and post image processing are executed by CPU.

20

Figure 4.1: The hardware components of Jetson Tegra K1

4.1 Graphics Processing Unit

In computer graphics and computer vision, GPUs are widely used for accelerating
program performance. GPUs are the hardware component that is designed for special
purpose. It provides a massive number of programmable cores with a high bandwidth
memory interface. The structure of GPUs is different from CPUs. GPUs are designed
with highly parallel structure. Thus, the parallelism of GPUs is higher than CPUs.
In image processing in which a massive number of data are processed with the same
algorithm, GPUs are more efficient than CPUs which are designed for general purpose
[11].

Due to the structure of GPUs, it is not appropriate to implement all of the road
surface marking in GPUs. The suitable parts are the highly parallel processing parts.
In general, the image processing algorithms suit for GPUs because of its parallelism.
However, GPUs, which are hardware accelerators, have their own memory. It requires
data transferring from CPUs to GPUs before processing the algorithms. Thus, the data
transferring overhead may dominate the processing time. As a result, the processing in
GPUs together with data transferring may take more time than the processing in CPUs
where the involved data are already in the CPU-side storage.

The SoC for GPU programming that is used in this research is JetSon Tegra K1. The
CPU is ARM Cortex-A15-based quad core CPU. It is designed for supporting every

21

Table 4.1: The frequency parameters for each mode in Jetson Tegra K1

Setting #CPU CPU clock GPU clock
Mode cores freq. (GHz) freq. (MHz)

Low power 1 0.51 72
Adaptive 4 2.32 72
High power 4 2.32 852

tasks. All of four CPU cores are performed in performance intensive application. The
battery saver core is used in low performance application and background tasks in idle
state. The CPU clock frequencies vary between 51 MHz to 2.3 GHz. GK20a GPU core is
included in the board for supporting high performance. It supports at most 1024 threads
per block with the maximum 32 warp size. The common usage I/O ports are integrated
in the board, which is shown in Fig. 4.1.

In the road surface marking program, the major parts, which are compute-intensive
parts, were implemented to operate in GPUs. The implementation of the image processing
algorithm can be done by using open source computer vision (OpenCV). OpenCV is an
open source library function, which focuses on the image processing algorithm. OpenCV
provides both of CPUs and GPUs implementation. The compute-intense algorithms
such as the object detection have GPUs implementation but some do not because the
data transferring dominates the processing time. By using OpenCV, the data transferring
occurs whenever the GPUs library function is called. The performance of the program is
improved by the advantage of using GPUs. However, it can be much faster by reducing
the number of data transferring to minimum.

Those algorithms which do not have OpenCV implementation for GPUs are imple-
mented by compute unified device architecture (CUDA). CUDA implementation was
applied if and only if the involved data are stored in GPUs memory. By applying CUDA
implementation, the advantage of using GPUs is obtained while reducing the data trans-
ferring to the minimum number. In this research, the data transferring from CPU to GPU
occurs only once and the data transferring from GPU to CPU occurs only once. The
number of data transferring is reduced to the minimum number.

22

4.2 Overclocking

The overclocking is a function to make the hardware components run at a faster clock
frequency than the default setting [12]. The performance of hardware components such
as CPUs and GPUs can be increased or decreased by adjusting the clock frequency.
The faster the clock frequency is the higher the computing performance is. Moreover,
the default setting of most manufactured embedded systems is configured as a low
power mode because of a power consumption factor. The difference between low power
mode and high power mode has a great impact on the high performance system. The
overclocking can be used in both of CPUs and GPUs. Thus, the system with GPUs parts
obtains higher performance from increasing the clock frequencies of both CPUs and
GPUs.

In this research, the clock frequencies of CPUs and GPUs are increased to the maxi-
mum to achieve the highest performance, which affect the respond time of system. Jetson
Tegra K1 is designed for mobile applications. Thus, it is designed to control a wide range
of clock frequency and a power usage of the system. The default settings are adaptive
settings which suit for most use cases. The clock frequency of Jetson Tegra K1 performs
high speed frequency when it operates intense programs. On the other hand, it performs
with save power for light programs.

The parameters of overclocking in this research include the number of CPU cores,
the CPU clock frequency, and the GPU clock frequency. The lowest number of CPU
cores is 1 and the highest number of CPU cores is 4, as shown in Table 4.1. The range of
CPU clock frequency is between 0.51 to 2.32 GHz. The range of GPU clock frequency
is between 72 to 852 MHz. For the low power mode, all of setting parameters are set to
the lowest number, which are a single active CPU core with 0.51 GHz clock frequency
and 72 MHz for GPU clock frequency. On the other hand, the high power mode sets
every setting parameter to the highest number, which are 4 active CPU cores with 2.32
GHz clock frequency and 852 MHz for GPU clock frequency. For the adaptive mode,
all of setting parameters depend on run time environment. In the adaptive mode, usage
of the processing resources changes while executing the lines tracking program. Thus,
the result for the adaptive setting in Table 4.1 shows the maximum values during the
execution. In the adaptive mode, the CPUs performance is the highest with four cores
and 2.32 GHz, while the GPU capability is the lowest with 72 MHz.

23

Figure 4.2: The example hardware architecture of programmable logic SoC

4.3 Programmable Logic

In modern embedded systems, SoC technology is commonly used because of the com-
plexity of applications on the embedded systems. The application on the embedded
system is not only ordinary computation but it may use an optical information such as
streaming images from the camera, the special devices, and so on. Thus, the common
components of a computer and some electronic systems are integrated together and
provided by SoCs. Moreover, SoCs provide low power consumption. On the other
word, the processing resources are limited to provided low power mode. Normally, SoC
architectures increasingly feature hardware accelerators to achieve energy-efficient high
performance [13].

Programmable SoC (PSoC) is one of the separated categories in SoC. The system of
PSoC consists of 2 major systems, which are processing system (PS) and programmable
logic (PL). The components in PS are permanently defined and unchangeable such as
CPU. In contrast, PL side is not permanently defined but programmable. PL side can be
programmed for any purpose which depends on the user design. In this research, PL is
designed and programmed to be used as a hardware accelerator for cooperating with the
PS.

The SoC for PL programming is not Jetson Tegra K1 because it does not contain

24

Table 4.2: Resource usage in Zedboard for hardware accelerator module

Name Usage Available Utilization (%)
BRAM 18K 132 280 47
DSP48E 87 220 39
FF 26625 106400 25
LUT 39901 53200 75

the programmable logic part in system. Zedboard is used instead of Jetson Tegra K1.
Zedboard is a SoC in the Zynq-7000 all programmable SoC (AP SoC) family. It integrates
both of PS and PL. The hardware architecture of programmable logic SoC is shown in
Fig. 4.2. The dual ARM Cortex-A9 MPCore is used as an CPU processor core. The
CPU frequency operates up to 1 GHz, while the maximum frequency of PL is 667 MHz.

Programming PL is conventionally different from high-level programming language.
In PL programming, a hardware description language (HDL) is used for describing the
structure and behaviour of circuits. HDLs are interpreted into to a netlist, which is a
specification of every physical electronic component and its connection. Then, the netlist
is placed and routed on PL to create programmed circuits.

In this research, high-level synthesis (HLS) was used instead of programming with
HDL directly. HLS interprets high-level language to HDLs automatically. The notion of
time is not explicit in high-level language. However, notion of time is one of the most
important in HDLs. Thus, the HLS tools must transform untimed functional code in
high-level language into fully timed in HDLs.

Due to the programming model, PL has highly parallelism if it is programmed ap-
propriately. The suitable parts are the highly parallel processing parts as same as GPUs
programming. The data from the Windows game simulator are retrieved from PS part.
At the end, the result data from the image sense module are sent by PS part. Thus, the
data transferring occurs from PS to PL at the beginning and PL to PS at the end of
acceleration. In SoCs, there are many peripherals in a system. The data transferring for
interconnection has the standard protocol to standardize every transferring of peripheral.
The advanced extensible interface (AXI), which is a common open-standard for SoC, is
used in this research.

In case of PL, the resource usage of hardware accelerator is to be considered because
it is programmable resources. The performance depends on the processing resource.

25

The more processing resource usage, the higher performance is improved. The resource
usage in the hardware accelerator is shown in Table 4.2.

4.4 Amdahl’s law

Amdahl’s law is a formula for estimating the theoretical speedup of a program when
some parts are improved. The overall speedup of the program depends on the ratio of
improved parts. Thus, the theoretical speedup of the program is limited by the serial
parts as follows [14].

S(N) =
1

(1− P) + P
N

(4.1)

According to the equation 4.1, the overall speedup S is calculated from the proportion
of parts benefiting from improvement, P , and the speedup factor, N .

In this research, the hardware accelerator improves the system performance from
improving the parallel parts of the program. According to the equation 4.1, the improve-
ment of using the hardware accelerator has a limitation from serial parts, which are not
improved from the hardware accelerator. In GPU base accelerator, the overclocking
increases the clock frequency of GPU. The CPU operation speed directly affects both of
the serial part and parallel part. Thus, the overclocking improves the performance of the
whole program.

Amdahl’s law can be used for forecasting the improvement of the hardware accelerator,
especially the upper bound limitation of an improvement. The high proportion parts are
worth to improve even if the improvement is not high but the impact to the program
is greater than the small proportion parts. Moreover, the data transferring is taken
into account in order to use the hardware accelerator. From the beginning of the data
transferring from the CPU to the hardware accelerator unit as the input data to the ending
of the data transferring from the hardware accelerator unit to the CPU as the output
data, the data transferring that occurs in the beginning and the end is operated in serial
operation. The amount time of data transferring depends on the amount of data. In this
research, the input image for the hardware accelerator and the output commands from
the hardware accelerator are fixed. In other word, the execution time of data transferring
is fixed. Then, if the improved part requires data transferring, the execution time of

26

Figure 4.3: An example of the impact from the proportion of execution time

improved part must reach at least some curtain point to improve the whole program.
The target part for an acceleration must be chosen based on the proportion of that

part according to the Amdahl’s law to achieve the highest benefit for using the hardware
accelerator. Moreover, in some part, applying the hardware accelerator may reduce
the performance because of the data transferring. Fig. 4.3 shows an example of two
parts of program. Part 1 has longer execution time than the part 2. Both of them are
improved 2 times faster than the original version. However, in term of the impact from
the improvement to the whole program, part 1 has a higher impact than part 2 because it
has higher proportion. Moreover, the data transferring is taken into account because it is
accelerated by the hardware accelerator. In part 1, the execution time of accelerated is
better than the original. In contrast, the accelerated part 2 is slower than the original part
2 because of the data transferring.

27

Chapter 5

Experimentation and Analysis

The purpose of this research is to create the hardware accelerator for an image processing
in the embedded system. Then, the concerned factor is the responsiveness or the perfor-
mance that is improved from the hardware accelerator. In terms of responsiveness, the
amount of time in each frame must be as fast as possible to achieve the better response
time. Thus, the performance of this research is evaluated in terms of the execution
time per frame. Generally, the real-time environment is achieved if and only if the
processing can compute at least 30 frames per second (FPS), which is a common number
for smoothness. In other words, the execution time for each frame is around 33.33 ms.

In this research, the hardware accelerators are implemented based on two types, which
are GPU and PL. The evaluation of hardware accelerators are completely separated
because of the hardware difference between Jetson Tegra K1 for GPU based and Zedboard
for PL based implementation.

5.1 Experiment Setting

In the experiment, the image information is retrieved from the Windows game simulator.
The image is cropped from the full 1280 width and 720 height to 1280 width and
300 height because the road surface marks are located in lower side of image. Then,
the hardware accelerators are experimented by processing the cropped images. The
performance is evaluated in terms of execution time per frame. The execution time per
frame is retrieved from the average execution time.

28

Figure 5.1: The execution time per frame for two CPU clock frequency in Jetson Tegra
K1 with low power mode.

5.2 Experiment from GPU Based Accelerator

In case of GPU based accelerator, the performance of the GPU based accelerator and
overclocking was compared with CPU-only processing in Jetson Tegra K1. The experi-
mental results are shown in figure 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. The frequencies
and number of CPU cores that are used in this experiment are supported by the hardware
components and the manufacturer.

The performance of the standard based system, which is CPU-only processing, is
evaluated with the various frequencies and number of usage cores. The x axis is the
clock frequency in MHz. The y axis is the execution time per frame in ms. Each lines
represents the number of CPU core that is used.

In case of Jetson Tegra K1, the lowest two frequencies are operated if and only if the
Jetson Tegra K1 is operated in low power mode. This mode forces the Jetson Tegra K1
to operate with single core processor with the low frequency. The performance of low
power mode is incomparable to the others. Thus, the performance of low power mode is
separated from the other and shown in figure 5.1.

The other frequencies vary from 204 to 2320.5 MHz. From the figure 5.2, the trend
of system performance is better when the frequency is increased. In terms of number
of processing cores, the difference in performance is not clear in higher frequencies.

29

Figure 5.2: The execution time per frame for each CPU clock frequency and various
number of core in Jetson Tegra K1.

However, at the lower frequencies, the performance of a single core processor is different
from the 2, 3, and 4 cores. At 312 MHz, the execution time per frame is increased
from the 564 MHz with an outstanding result. The workload from the road surface
marking is not intense enough for the higher frequencies but when the frequency is
decreased to below the edge, which is 564 MHz, the workload impacts the system with
high computation time.

30

Figure 5.3: The performance of GPU accelerator with various clock frequencies of 1
CPU core

Figure 5.4: The performance of GPU accelerator with various clock frequencies of 2
CPU cores

31

Figure 5.5: The performance of GPU accelerator with various clock frequencies of 3
CPU cores

Figure 5.6: The performance of GPU accelerator with various clock frequencies of 4
CPU cores

In case of GPU performance, the evaluation is done with 3 parameters, which are
GPU frequency, CPU frequency, and number of CPU cores. The combination from 3
parameters are evaluated in terms of execution time per frame. The results are shown in
figure 5.3, 5.4, 5.5, and 5.6.

32

Figure 5.7: The performance of GPU accelerator with low power mode

The range of CPU frequencies is from 204 to 2320.5 MHz. The range of GPU
frequencies is 72 to 852 MHz. The combination of two parameters are shown in 4 graphs,
which combine with CPU core parameter from 1 to 4 cores. The performance gap of
GPU accelerator between 2 to 4 CPU cores is not huge. However, the performance
of single core CPU with GPU accelerator is slower than the others, especially when
the frequencies of CPU or GPU are lower. The result from 4 graphs represents the
same trend of performance. The performance of GPU accelerator is better when clock
frequencies of GPU and CPU are increased. Thus, the highest clock frequencies of GPU
and CPU, which are 852 MHz for GPU and 2.3205 GHz for CPU, with 4 cores have
the best performance in this research. In contrast, the lowest clock frequencies of GPU
and CPU, which are 72 MHz for GPU and 51 MHz for CPU, with a single core have
the worst performance. The lowest improvement of GPU accelerator is operated in low
power mode because CPU is operated at 51 MHz. The result from low power mode is
shown in figure 5.7. As low power mode, an only single core CPU can be operated at 51
and 102 MHz.

According to figure 5.2 and 5.6, the performance of the standard based system, which
is CPU-only processing, is far away from the real-time environment in all possible
frequencies. In case of the best improvement, CPU is operated at the highest capabil-
ity,which is 2.305 GHz and 4 cores. The execution time of this case is 117.519 ms. Then,

33

Table 5.1: The execution time per frame for each method in Zedboard

Method Execution time (ms) Speedup
CPU-only processing 303.556 -
Hw/Sw Co-design 16.332 18.59

the performance of the GPU based accelerator with overclocking is 15.197 ms that is
7.73 times faster than the standard based system.

5.3 Experiment from PL Based Accelerator

In case of PL based accelerator, the performance of the PL based accelerator was
compared with CPU-only processing in Zedboard. The experimental results are shown
in Table 5.1.

According to Table 5.1, the performance of the standard base system, which is CPU-
only processing, is far away from the real-time environment. Then, the performance of
the PL base accelerator is 18.59 times faster than the standard base system. The PL base
accelerator achieves the real-time environment with the execution time of 16.332 ms.

34

Chapter 6

Conclusion

The embedded systems have been developed and used for decades. The embedded
systems are used in many fields, especially an interaction system with the users. This
kind of applications does not have any problem in the personal computer or laptop.
However, when it is implemented into the embedded system, the problem occurs because
of the low processing resource. The main problem from the lack of processing resource
is the slow response time. On the other word, it lacks of the characteristic of the real-time
system because it cannot be used in real-time environment. This kind of system is still in
demand. Thus, it needs an accelerator methods to accelerate the system in order to reach
the real-time response. In this research, the vehicle controller, which is the embedded
system in a vehicle, is used as a model for prototyping. The target application of the
vehicle control is the navigation system that is used in the self-driving car. The road
surface marking program is chosen as the target program to be implemented in the vehicle
controller. The virtual prototype imitates the real system by using hardware components.
The input of vehicle controller is generated by the Windows game simulator and the
HDMI capturing device. The vehicle controller is simulated by the image sense module
with GPU or PL to accelerate the program execution. The control signal transmitter
is simulated by the virtual driving controller generator. All of these components were
integrated together to create the virtual prototype of this system.

The hardware accelerators are effective in achieving a higher performance. In this
research, the system is accelerated by using two based type of the hardware accelerators.
Firstly, GPU based accelerator is implemented in Jetson Tegra K1 with the overclocking

35

method. Lastly, PL based accelerator was implemented in Zedboard.
The result from the GPU based accelerator and overclocking shows that execution

time per frame is 15.197 ms. The clock frequencies of CPU and GPU are used at the
highest possible number with 4 CPU cores.The performance is around 7.73 times higher
than the standard based system, which has the execution time is 117.519 ms.

The result from the PL base accelerator shows that execution time per frame is 16.332
ms, which is fast enough for the real-time requirement. The performance is around
18.59 times higher than that of the standard base system, the execution time of which
is 303.556 ms. The resource usage of PL for hardware accelerator is controlled. The
performance can be better if the resource usage is increased.

In conclusion, the virtual prototype of the vehicle controller system, which implements
the road surface marking, can simulate real-time environment, in term of the respon-
siveness. The hardware accelerator is able to accelerate the road surface marking while
remain the capable of tracking.

36

Bibliography

[1] Shahroz Tariq; Hyunsoo Choi; C. M. Wasiq; Heemin Park. Controlled parking for
self-driving cars. In 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pages 1861 – 1865, 2016.

[2] Seongrae Kim; Junhee Lee; Youngmin Kim. Speed-adaptive ratio-based lane
detection algorithm for self-driving vehicles. In 2016 International SoC Design

Conference (ISOCC), pages 269 – 270, 2016.

[3] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. Lost and found: detecting
small road hazards for self-driving vehicles. In Intelligent Robots and Systems

(IROS), 2016 IEEE/RSJ International Conference on, 2016.

[4] Jeremy W. Sheaffer Kevin Skadron John Lach Shuai Che, Jie Li. Accelerating
compute-intensive applications with gpus and fpgas. In Application Specific Pro-

cessors, 2008. SASP 2008. Symposium on, pages 101 – 107, 2008.

[5] Andrew Putnam; Adrian M. Caulfield; Eric S. Chung; Derek Chiou; Kypros
Constantinides; John Demme; Hadi Esmaeilzadeh; Jeremy Fowers; Gopi Prashanth
Gopal; Jan Gray; Michael Haselman; Scott Hauck; Stephen Heil; Amir Hormati;
Joo-Young Kim; Sitaram Lanka; James Larus; Eric Peterson; Simon Pope; Aaron
Smith; Jason Thong; Phillip Yi Xiao; Doug Burger. A reconfigurable fabric for
accelerating large-scale datacenter services. In IEEE Micro, pages 10 – 22, 2015.

[6] Shuichi Asano; Tsutomu Maruyama; Yoshiki Yamaguchi. Performance comparison
of fpga, gpu and cpu in image processing. In Field Programmable Logic and

Applications, 2009. FPL 2009. International Conference on, 2009.

37

[7] Takaaki Miyajima; David Thomas ; Hideharu Amano. A domain specific language
and toolchain for opencv runtime binary acceleration using gpu. In Networking

and Computing (ICNC), 2012 Third International Conference, 2012.

[8] Jason M. Ready; Clark N. Taylor. Gpu acceleration of real-time feature based
algorithms. In Motion and Video Computing, 2007. WMVC ’07. IEEE Workshop,
2007.

[9] Santiago Snchez-Solano Javier Cerezuela-Mora, Elisa Calvo-Gallego. Hard-
ware/software co-design of video processing applications on a reconfigurable plat-
form. In 2015 IEEE International Conference on Industrial Technology (ICIT),
pages 1694 – 1699, 2015.

[10] Nicholas J. Butko; Javier R. Movellan. Optimal scanning for faster object detection.
In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[11] J. Kruger; R. Westermann. Acceleration techniques for gpu-based volume rendering.
In Visualization, 2003. VIS 2003. IEEE, pages 287 – 292, 2003.

[12] Brian Greskamp; Josep Torrellas. Paceline: Improving single-thread performance
in nanoscale cmps through core overclocking. In 16th International Conference on

Parallel Architecture and Compilation Techniques (PACT 2007), 2007.

[13] Christian Pilato; Paolo Mantovani; Giuseppe Di Guglielmo; Luca P. Carloni.
System-level optimization of accelerator local memory for heterogeneous systems-
on-chip. In IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2017.

[14] R. Kumar; D. M. Tullsen; N. P. Jouppi; P. Ranganathan. Heterogeneous chip
multiprocessors. In Computer, 2005.

38

