
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Graphical Animations of State Machines [課題研究

報告書]

Author(s) Nguyen, Thi Thanh Tam

Citation

Issue Date 2017-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/14795

Rights

Description Supervisor:緒方　和博, 情報科学研究科, 修士

Graphical Animations of State Machines

Nguyen Thi Thanh Tam

School of Information Science
Japan Advanced Institute of Science and Technology

September, 2017

Master’s Research Project Report

Graphical Animations of State Machines

1510205 Nguyen Thi Thanh Tam

Supervisor : Professor Kazuhiro Ogata
Main Examiner : Professor Kazuhiro Ogata

Examiners : Professor Kunihiko Hiraishi
Professor Toshiaki Aoki

School of Information Science
Japan Advanced Institute of Science and Technology

August, 2017

Contents

1 Introduction 6
1.1 Overview . 6
1.2 The problems and solutions . 6
1.3 Goal and Contribution . 7
1.4 Report Outline . 8

2 Preliminaries 9
2.1 Alternating Bit Protocol . 9
2.2 Maude . 10
2.3 State Expression . 11
2.4 Kripke Structure and Maude LTL model checker 12

3 Motivating Example 13

4 Design and Implementation 15
4.1 Design . 15
4.2 Implementation . 16

4.2.1 The structure of an input file . 16
4.2.2 Drawing state machine pictures . 17
4.2.3 Running tool . 21
4.2.4 The algorithm of graphical animation 21
4.2.5 Filtering states . 24
4.2.6 Describing and displaying state patterns 26

5 Generation of Long Computations 27

6 Experiment 29

7 Applications 32
7.1 Comprehending Counterexamples Generated by the Maude LTL Model

Checker . 32
7.1.1 Introduction . 32
7.1.2 A flawed mutual exclusion protocol (FQlock) 33
7.1.3 Maude LTL Model Checker . 34

1

CONTENTS 2

7.1.4 Shorter Counterexamples . 35
7.1.5 Graphical Animations of Counterexamples 37

7.2 Analysis of MCS List-based Queuing Lock 40
7.2.1 Introduction . 40
7.2.2 MCS List-based Queuing Lock . 40
7.2.3 Analyzing the mutual exclusion property 42
7.2.4 Graphical Animations of MCS Protocol 42
7.2.5 Analyzing the lockout freedom property 42

8 Related Work 48

9 Future Work 50

10 Conclusion 51

Acknowledgements

This master research report would not have been possible without the guidance and the

help of my supervisor Professor Kazuhiro Ogata. I would like to express my sincere

gratitude to him for the continous support of not only my research but also my life.

My sincere thanks also goes to Joseph Liard for creating the drawSVG tool which is a

free online drawing application for designers and developers. The tool has assist me to

implement my idea in this research.

Last but not least, I would like to thank my parents and husband for their unending

support and encouragement all the time.

To all those people, this thesis is dedicated.

3

List of Figures

2.1 A snapshot of ABP . 10

3.1 Six state patterns of RMABP
. 14

4.1 Setting id for the svgText of bit2 . 18

4.2 A picture of MABP . 19

4.3 A step running of an animation . 19

4.4 A picture of MA . 20

4.5 Setting properties for process p1 at location rs of MA 20

4.6 The tool run the input file of MA . 21

4.7 The SVG picture of MB . 22

4.8 The tool run the input file of MA . 22

4.9 Setting property class for a circle element and a path element for the

location 0 of MB . 23

4.10 A state that satisfies Cond1, Const4 and Const6 25

4.11 A state pattern . 25

6.1 The definition of conditions . 30

6.2 The result of experiment. 30

6.3 The result chart of FC150. 31

6.4 The result chart of FC500. 31

7.1 Picture of FQLock . 38

7.2 Loop part of the counterexample of lofree 38

7.3 Two states in which pc[p1] is ws . 39

7.4 Three state transitions leading to the counterexample 39

7.5 Picture of MCS Protocol . 43

7.6 A state such that p1 is at l10 . 43

7.7 States 154, 155, 156, 157 and 158 . 46

4

LIST OF FIGURES 5

7.8 A counterexample for the lockout freedom property for MCS protocol in

which comp&swap is not naively used. 47

Chapter 1

Introduction

1.1 Overview

The world crucially depends on software. It would be impossible to even imagine our lives
without use of any software. The societal reliability is almost the same as that of software.
How much human beings rely on software must be increasing in the future. Therefore,
we need to have reliable technologies to make software truly reliable. A possibly promis-
ing technology is systems verification with interactive theorem proving (ITP). Hence,
many proof assistants have been developed, such as PVS [19], ACL2 [1], Isabelle [10], and
Coq [3]. One of the most intellectual activities in interactive theorem proving is lemma
conjecture. Accordingly, many researches have been conducted, trying to come up with
how to conjecture lemmas. None of them, however, is good enough. Thus, we need to
make further efforts to come up with a better way to do so.

Various kinds of systems can be formalized as state machines. A state machine M ,
〈S, I, T 〉 consists of a set S of states including the set I of initial states and a binary relation
T ⊆ S × S over states. An element (s, s′) ∈ T is called a state transition of M . The set
RM of the reachable states of M is inductively defined as follows: I ⊆ RM and if s ∈ RM

and (s, s′) ∈ T , then s′ ∈ RM . A state predicate p is called an invariant of M if and only
if (∀s ∈ RM) p(s). Many requirements of software can be formalized as invariants. Since
verifications of other classes of properties often require invariants as lemmas, invariants
are the most fundamental class of properties of state machines. s0, s1, . . . , sn is called a
finite computation of M if and only if s0 ∈ I and (∀i ∈ {0, . . . , n−1}) (si, si+1) ∈ T . Note
that each state in any finite computations of M is a reachable state of M .

1.2 The problems and solutions

While Ogata was formally verifying with interactive theorem proving that a state machine
formalizing a communication protocol enjoys an invariant, he happened to find out that
the reachable states of the state machine are classified into six state patterns. From the six
state patterns, we conjectured several useful lemmas that are also invariants to complete
the formal verification [18]. Although the six state patterns are very useful for conjecturing

6

CHAPTER 1. INTRODUCTION 7

lemmas, it took time to obtain those six state patterns. This might be because obtaining
such state patterns of a state machine is almost equivalent to conjecturing lemmas or
invariants of the state machine. We would like to obtain such state patterns of a given
state machine with a reasonable amount of efforts. We utilize human beings’ ability to
recognize patterns in various kinds of data including graphical animations. We believe
that if human beings carefully watch graphical animations of finite computations of a
given state machine, they can recognize patterns. Besides that, the reachable states of
the state machine can be classified into patterns because finite computations of the state
machine consist of reachable states of the state machine. Thus, we would like to develop a
state machine graphical animation tool to support human users find out interesting state
patterns from which they could figure out useful lemmas used for theorem proving.

On the other hand, model checking is one of the most popular automated verification
techniques, and many model checkers have been developed. Among them are SMV [16],
Spin [9], SAL [4], PAT [22] and the Maude LTL model checker [21], where LTL stands
for linear temporal logic. Specifications in which associative and/or commutative binary
operators are used can be model checked by the Maude LTL model checker, which also
deals with inductively defined data structures, while SMV, Spin, SAL and PAT cannot.
A counterexample generated by Maude LTL model checker if any, consists of a sequence
s0; . . . ; sm of states and a loop (sm+1; . . . ; sn)∞ of states such that sm+1 is a successor state
of sm and sn. Since the loop is repeatedly played, the repetition could help human users
realize what happen in the loop. It would be preferable to graphically animate a coun-
terexample so that human users could comprehend it better. Thus, we can also use the
state machine graphical animation tool help human users comprehend a counterexample.

1.3 Goal and Contribution

The research aims at designing and implementing a state machine graphical animation
tool. The main motivation for the tool is to support users get better understanding state
machines, recognize patterns to be used for conjecturing lemmas in interactive theorem
proving, and comprehend counterexamples better.

Since the tool support the users find out such state patterns of a given state machine
with a reasonable amount of effort to help them in conjecturing useful lemmas, the re-
search could give non-trivial contributions to systems verification based on interactive
theorem proving. Besides that, the tool could also help human get better understandings
of counterexamples and realize why such them occur to improve and enhance systems.
Thus, the research is not only help human users get better understanding state machines
and systems but also clear more about counterexample and ensure the quality of software.

CHAPTER 1. INTRODUCTION 8

1.4 Report Outline

The rest of the research project report is organized as follows:

• Chapter 2: Preliminaries

This chapter presents some preliminaries, such as Alternating Bit Protocol (ABP)
that is used as a running example, Maude that is the rewritting logic-based specifi-
cation or programming language, how to formalize ABP as state machine in Maude,
how to express states of a state machine, the Kripke structrue and the Maude LTL
model checker.

• Chapter 3: Motivating Example

This chapter presents the motivating example for the research.

• Chapter 4: Design and Implementation

This chapter describes the design and implementation of the tool.

• Chapter 5: Generation of Long Computations

This chapter describes a way to generate long computations which are useful for the
running tool to help users be able to recognize patterns in them.

• Chapter 6: Experiment

This chapter reports on an experiment done with the tool.

• Chapter 7: Applications

This chapter presents some applications of the tool such as comprehending coun-
terexamples generated by the Maude LTL model checker, and analyzing MCS list-
based queuing lock and some variants with the combination of Maude and the
animation tool.

• Chapter 8: Related Work

This chapter mentions some existing related works.

• Chapter 9: Future Work

This chapter discusses some future work.

• Chapter 10: Conclusion

This chapter concludes the research project.

Chapter 2

Preliminaries

2.1 Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a communication protocol such that the window size
is 1 in Sliding Window Protocol used in Transmission Control Protocol (TCP), the most
important communication protocol on the globe. ABP consists of a sender and a receiver.
The sender maintains one bit bit1 and a packet pac to be delivered. The receiver maintains
one bit bit2 and a list list that contains the packets that have been received. Two
unreliable channels chan1 and chan2 are used. Since they are unreliable channels, their
elements may be lost (or dropped) and duplicated. Fig. 2.1 shows a snapshot of ABP.
There are eight possible actions in ABP:

• send1: The sender puts a pair 〈bit1, pac〉 into chan1.

• rec1: The sender gets the top element Boolean b from chan2. If b 6= bit1, bit1 is
complemented and pac is incremented.

• send2: The receiver puts bit2 into chan2.

• rec2: The receiver gets the top element 〈b, p〉 from chan1 if chan1 is not empty. If
b = bit2, bit2 is complemented and p is added to list.

• drop1: The top of chan1 is deleted if it is not empty.

• dup1: The top of chan1 is duplicated if it is not empty.

• drop2: The top of chan2 is deleted if it is not empty.

• dup2: The top of chan2 is duplicated if it is not empty.

9

CHAPTER 2. PRELIMINARIES 10

Figure 2.1: A snapshot of ABP

2.2 Maude

Maude [2] is a rewriting logic-based computer language and system. It is one of the
direct successors of OBJ3 [5], the most famous algebraic specification language and system
mainly designed by Joseph A. Goguen. Specifications can be written in Maude flexibly.
Associative and/or commutative binary operators can be freely used in specifications and
then complex concurrent and distributed systems can be succinctly specified.

Maude is equipped with many functionalities, among which are model checking (the
Maude search command and the Maude LTL model checker), and meta-programming. A
metaprogram is a program that takes programs as inputs and performs some useful com-
putations. Besides that, Maude is equipped with the search command that exhaustively
traverses the reachable states from a given state to find states that match some pattern
and satisfy some condition in a breadth-first manner. It is also equipped with a metalevel
function that is the counterpart of the search command.

For a state machine specification in Maude, a state S, a pattern P and a condition C, the
Maude search command exhaustively traverses the reachable states from S to find states
that match P and satisfy C:

search [N] in Mod : S =>* P such that C .

where N is a natural number. The search command tries to find at most N solutions.
Note that a solution is basically a state A that matches P and satisfies C, but since there
may be more than one substitution σ such that σ(P) = A, there may be more solutions
than the number of such states and such substitutions are called solutions of the search.

As an example, ABP can be formalized as a state machine MABP by using Maude.
TABP is described as the eight rewrite rules. The state transitions of ABP are specified
as follows:

crl [send1] : (chan1: PC) (bit1: B1) (pac: P) => (chan1: (PC < B1,P >))

(bit1: B1) (pac: P) if len(PC) < Len /\ ord(P) < NoP .

rl [rec1] : (chan2: (B BC)) (bit1: B1) (pac: P)

=> (chan2: BC) (bit1: (if B1 == B then B1 else not B1 fi))

CHAPTER 2. PRELIMINARIES 11

(pac: (if B1 == B then P else next(P) fi)) .

crl [send2] : (chan2: BC) (bit2: B2) => (chan2: (BC B2)) (bit2: B2)

if len(BC) < Len .

rl [rec2] : (chan1: (< B,P > PC)) (bit2: B2) (list: L)

=> (chan1: PC) (bit2: (if B2 == B then not B2 else B2 fi))

(list: (if B2 == B then (P L) else L fi)) .

rl [drop1] : (chan1: (PC1 BP PC2)) => (chan1: (PC1 PC2)) .

rl [drop2] : (chan2: (BC1 B BC2)) => (chan2: (BC1 BC2)) .

crl [dup1] : (chan1: (PC1 BP PC2)) => (chan1: (PC1 BP BP PC2))

if len(PC1 BP PC2) < Len .

crl [dup2] : (chan2: (BC1 B BC2)) => (chan2: (BC1 B B BC2))

if len(BC1 B BC2) < Len .

where PC, PC1 and PC2 are Maude variables of Boolean-packet pair queues, BC, BC1 and
BC2 are ones of Boolean queues, B, B1 and B2 are ones of Booleans, P is one of packets,
and Len and NoP are natural numbers. The function len takes a queue and returns the
number of its elements. And the function ord takes a packet pac(n), where n is a natural
number, and returns n as an ordinal of the packet. send1, rec1, etc are the labels of the
rewrite rules.

2.3 State Expression

States can be expressed in various ways. In this research, a state is expressed as an
associative-commutative collection of name-value pairs such as: (name1 : value1) (name2 :
value2)
Name-value pairs are called observable components and associative-commutative collec-
tions are called soups. Thus, a state is expressed as a soup of observable components.

Each state of MABP is characterized by the six values as shown in Fig. 2.1. ABP for-
malized as a state machine whose states are expressed as soups of observable components.
Therefore, each state of MABP is expressed as following:
(chan1: prq) (chan2: bq) (bit1: b1) (bit2: b2) (pac: p) (list: ps)

where prq is a queue of Boolean-packet pairs, bq is a queue of Booleans, b1 is a Boolean,
b2 is a Boolean, p is a packet, and ps is a list of packets. For example, chan1 is a name,
prq is a value, and (chan1: prq) is an observable component.

Since (chan1: prq) (chan2: bq) (bit1: b1) (bit2: b2) (pac: p) (list: ps) is a
soup of observable components, even if the order in which the observable components ap-
pear is changed, such as (chan2: bq) (bit1: b1) (chan1: prq) (bit2: b2) (pac: p)

(list: ps), it represents the same state. The initial state of MABP is expressed as follows:
(chan1: empty) (chan2: empty) (bit1: false) (bit2: false) (pac: pac(0)) (list:

nil).

CHAPTER 2. PRELIMINARIES 12

2.4 Kripke Structure and Maude LTL model checker

Let S be a set and π be an infinite sequence e0; ...; ei; . . . of S, where each ei ∈ S, and
then π(i) = ei (the ith element in π) and πi = ei; . . . (the ith suffix obtained by deleting
the first i elements from π) for each natural number i. Let e0; ...; en be a non-empty
finite sequence of S, and then (e0; ...; en)∞ = e0; ...; en; e0; ...; en; . . . (the infinite sequence
in which the finite sequence repeats infinitely often). Let U be a universal set of symbols.

A Kripke structure (KS) K is a 5 tuple 〈S, I, P, L, T 〉, where S is a set of states, I ⊆ S
is the set of initial states, P ⊆ U is a set of atomic state propositions, L is a labeling
function whose type is S → 2P , and T ⊆ S × S is a total binary relation. An element
(s, s′) ∈ T may be written as s→ s′ and referred as a state transition.

A path of K is an infinite sequence s0; . . . ; si; si+1; . . . of S such that (si, si+1) ∈ T for
each natural number i. A computation of K is a path π of K such that π(0) ∈ I. Let P be
the set of all paths ofK, and C be the set of all computations ofK. A finite prefix s0; . . . ; sn
of a computation (or path) of K is called a finite computation (or path) of K. The syntax
of a formula ϕ in Linear Temporal Logic (LTL) for K is ϕ ::= > | p | ϕ∧ϕ | © ϕ | ϕU ϕ,
where p ∈ P . Let F be the set of all formulas in LTL for K.

An arbitrary path π ∈ P of K and an arbitrary LTL formula ϕ ∈ F of K, K, π |= ϕ is
inductively defined as K, π |= >, K, π |= p if and only if p ∈ L(π(0)), K, π |= ¬ϕ1 if and
only if K, π 6|= ϕ1, K, π |= ϕ1∧ϕ2 if and only if K, π |= ϕ1 and K, π |= ϕ2, K, π |=©ϕ1 if
and only if K, π1 |= ϕ1, and K, π |= ϕ1 U ϕ2 if and only if there exists a natural number i
such that K, πi |= ϕ2 and for all natural numbers j < i, K, πj |= ϕ1, where ϕ1 and ϕ2 are
LTL formulas. Then, K |= ϕ if and only if K, π |= ϕ for each computation π ∈ C of K.

The temporal connectives© and U are called the next operator and the until operator,
respectively. The other logical and temporal connectives are defined as usual as follows:
⊥ , ¬>, ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ ϕ2, ♦ϕ , > U ϕ, �ϕ , ¬(♦¬ϕ),
and ϕ1 ϕ2 , � (ϕ1 ⇒ ♦ϕ2). The temporal connectives ♦, � and are called the
eventually operator, the always operator and the leadsto operator, respectively.

For a state machine (precisely a Kripke structure) M and an LTL formula ϕ, Maude
LTL model checker checks if M satisfies ϕ. If M does not satisfy ϕ, it generates a coun-
terexample that consists of a sequence s0; . . . ; sm of states of M and a loop (sm+1; . . . ; sn)∞

of states of M such that for i = 0, 1, ...n− 1 (si, si+1) is a state transition of M and so is
(sn, sm+1).

Chapter 3

Motivating Example

When Ogata was formally verifying that ABP satisfies a desired property, he found that
RMABP

is classified into six patterns shown in Fig. 3.1. From the six state patterns, we
were able to conjecture several useful lemmas to complete the formal verification. For
example, SP3 allows us to conjecture the following lemma:

if chan2 contains two Booleans b1 and b2 in a raw such that b1 6= b2 and b1 is
closer to the top, then each Boolean b appearing in chan2 later than b2 is the
same as b2 and b2 is the same as bit2;

and SP6 allows us to conjecture the following lemma:

if chan1 contains two pairs 〈b1, p1〉 and 〈b2, p2〉 in a raw such that 〈b1, p1〉 6=
〈b2, p2〉 and 〈b1, p1〉 is closer to the top, then each pair 〈b, p〉 appearing in
chan1 later than 〈b2, p2〉 is the same as 〈b2, p2〉 and 〈b2, p2〉 is the same as
〈bit1, pac〉.

If it is possible to find out such state patterns of a given state machine with a reasonable
amount of effort, this could give non-trivial contributions to systems verification based
on interactive theorem proving because such state patterns help human users conjecture
useful lemmas.

Human beings are very good at recognizing patterns in various kinds of data, such as
sounds, still images, and graphical animations. If human beings carefully watch graphical
animations of finite computations of a state machine, they could recognize underlying
patterns from which they could conjecture useful lemmas. It would require much fewer
efforts and less time to watch graphical animations of finite computations of a state
machine M than to try to formally prove that M enjoys invariants so as to conjecture
lemmas. This has motivated us to develop the state machine graphical animation tool.
We do not try to create anything that imitates human beings’ ability to recognize patterns
but try to make the best use of this ability so as to conjecture lemmas in this research1.

1Our group has also been attempting [8] to automatically extract state patterns of a given state
machine with Inductive Logic Programming, a combination of machine learning and logic programming.

13

CHAPTER 3. MOTIVATING EXAMPLE 14

Figure 3.1: Six state patterns of RMABP

Chapter 4

Design and Implementation

4.1 Design

If the state machine graphical animation tool deals with state machines internally, we
need to design an internal representation of state machines or adopt some existing ones.
It would be clumsy to ask human users to write state machines in such an internal repre-
sentation. Consequently, we need to design a specification language for state machines or
adopt some existing ones. If so, it would be necessary to translate state machines written
in a specification language into those written in an internal representation. We should
develop multiple translators for multiple specification languages to make it possible for
any state machines to be graphically animated. Since many specification languages have
been and would be proposed, however, it would not be smart to develop a translator for
each specification language because it is not a trivial task to develop even one translator
for one specification language.

We have not designed the state machine graphical animation tool such that it deals
with state machines internally but designed it such that it basically takes a finite com-
putation of a state machine. This is because tools, such as model checkers, that can deal
with state machines can generate finite computations of state machines. We need to fix
how to represent each state of state machines and finite sequences of states. It would be
much easier, however, to transform some different state representations to that used for
the state machine graphical animation tool than to translate state machines written in a
specification language into those written in another one. Besides, it would be straightfor-
ward to transform some different representations of finite state sequences to that used for
the state machine graphical animation tool once different state representations have been
transformed into that used for the tool.

If each state in a finite computation of a state machine is graphically represented, the
finite computation is essentially a film of a graphical animation of the state machine.
Therefore, it would suffice to allow human users to intuitively design graphical state
representations (or images or pictures) of state machines.

It would be possible to make a clear correspondence between term (or text) state
representations and graphical state representations. This correspondence is treated as

15

CHAPTER 4. DESIGN AND IMPLEMENTATION 16

part of the input data to the state machine graphical animation tool, together with a
finite computation of a state machine. Although human users are supposed to write such
a correspondence, we do not think that this is a non-trivial piece of code (or programs).

In our design of the state machine graphical animation tool, a finite computation of a
state machine can be regarded as a film. Accordingly, the speed of the animation can be
adjusted by changing (redrawing) the current state to the successor state in a specified
amount of time, such as 10ms and 50ms.

If we try to generate all finite computations whose length is some specific bound and
the bound is large enough, we quickly encounter the notorious state explosion problem.
If the number of packets to be delivered is 10 and the capacity of each channel is 10,
then the Maude search command could exhaustively traverse RMABP

up to depth 37 but
encountered the state explosion problem when the depth was 38. It would be unnecessary
to generate all finite computations up to some shallow depth but necessary to generate
some long finite computations. It would be inadequate to generate computations in which
some specific state transitions are only taken. We will describe how to generate adequate
long computations later.

4.2 Implementation

4.2.1 The structure of an input file

The graphical animation tool does not deal with state machines themselves internally.
Instead, what is fed into the tool is basically a finite computation of a state machine. The
input file format is described.

An example input file of MABP is as follows:

###keys

chan1 chan2 bit1 bit2 pac list

###textDisplay

chan1::::REV::::<_,_>++++empty

###states

(chan1: empty chan2: empty bit1: false bit2: false pac: pac(0) list: nil) ||

(chan1: (< false,pac(0) > empty) chan2: empty bit1: false bit2: false pac: pac(0)

list: nil) || (chan1: empty chan2: empty bit1: false bit2: true pac: pac(0)

list: (pac(0) nil)) || (chan1: empty chan2: (true empty) bit1: false bit2: true

pac: pac(0) list: (pac(0) nil)) || chan1: empty chan2: empty bit1: true

bit2: true pac: pac(1) list: (pac(0) nil)

There are three segments in an input file as follows:

• keys: This is a list of keys which are names of observable components in a state.
The order in which the keys appear must be the same as the order in which the
corresponding observable components appear in each state.

• textDisplay: This part specifies how the value of an observable component is dis-
played. When displaying a queue, if nothing is specified, it is displayed horizontally

CHAPTER 4. DESIGN AND IMPLEMENTATION 17

and its top appears left most. There may be the case, however, where its top should
appear right most. Some values, such as stacks, may have to be displayed vertically
instead. For example, The value of (chan1 : prq) should be displayed such that its
top appears right most. The format used in this part is as follows:

key::::option:::regex(0)++++....++++regex(i)

The format consists of three parts: key, option and regexs. A key appearing in
the key segment is written in the key part. REV, VER or VER-REV is written in
the option part. REV specifies a collection, such as queues and lists, is displayed
such that its top appears right most, VER specifies a collection, such as stacks, is
displayed vertically such that its top appears top most, and VER-REV specifies
a collection is displayed vertically such that its top appears bottom most. A list
of regular expressions is written in the regexs part. For example, the textDisplay
segment of MABP is as follows:

chan1::::REV::::<_,_>++++empty

Two regular expressions <_,_> and empty are written in the regexs part. They
match texts, such as <false,p(0)> and empty, appearing in the observable com-
ponent (chan1 : prq). If the value of (chan1 : prq) is <false,p(0)> <true,p(1)>

empty, then what is displayed as the value of (chan1 : prq) is empty <true,p(1)>

<false,p(0)> because of REV.

• states: This is a finite computation of a state machine, namely a finite sequence of
states. The sign || is a separator used to distinguish adjacent states.

4.2.2 Drawing state machine pictures

It would be possible to implement the tool from scratch, but take a lot of effort as well
as much time to do so. We would like to make the tool available in as many plat-
forms and/or environments as possible. We would like to make it extensible as well
as maintainable as much as possible. Therefore, it would not be preferable to imple-
ment it from scratch if there exist some technologies available to achieve our goal. One
of such technologies is Scalable Vector Graphics (SVG) used to define graphics for the
Web. SVG has several methods for drawing paths, boxes, circles, texts, and graphic
images. It is useful to use SVG for drawing pictures of state machines. Since SVG
is supported by almost all major web browsers, it makes it possible to make the tool
available in as many platforms and/or environments as possible. Several tools with
which SVG animations can be made have been developed. One of them is DRAW-
SVG [14], which we have used in this research. DRAW-SVG is designed and developed
by Joseph LIARD. It is a free online drawing application for designers and develop-
ers, making it possible to create fully standard compliant SVG. By using API based on

CHAPTER 4. DESIGN AND IMPLEMENTATION 18

Figure 4.1: Setting id for the svgText of bit2

Mozilla jsSchannel, we use DRAW-SVG as an integrated drawing tool within our tool
to support users draw SVG pictures for any state machines. Our tool is available on
the website https://tamntt.bitbucket.io/Research/GraphicalAnimation/. The display of
DRAW-SVG is supported by all currently available browsers except for Internet Explorer.
However, it is optimized for Chrome and FireFox.

Human users can use DRAW-SVG to draw, save, edit, and open any SVG pictures of
any state machines easily and visually. After drawing the picture of a state machine, the
user needs to edit properties for texts on the picture so that the observable components
of the state machine can appear on the picture when the state machine is animated.
As clicking a text on the picture and choosing the icon of properties, a pop-up will be
displayed for editing properties. In this pop-up, the name as an ID for the text of an
observable component (name : value) is set for the text so that the value can be displayed
at the place where the text is located. The ID will be used for mapping it to the values
whose name is name appearing in an input data when we run the graphical animation tool.
For example, Fig. 4.1 shows bit2 is set as the ID of the observable component (bit2 : b2)
so that the Boolean b2 is displayed at the designated place on a state machine picture.
Fig. 4.2 shows a picture of MABP drawn with the tool.

We have three options for setting properties to display graphically states of a input
files. It depends on the purpose and expectation of the user for animation. Three options
are as following:

• Option 1: We just set the property ID of a SVG text is name of name : value
pair. By this way, values of this SVG text will be displayed and updated on it. For
example, we can use this way to set property ID for SVG texts of ABP. Fig. 4.3
shows a state transition from state 32 to state 33 in a finite computation of MABP.
Values of names in every state will be displayed on SVG texts of which we have set
properties ID is same with name.

• Option 2: If we want to display name-value pairs at different locations. We have an
example input file of a state machine MA as follows:

https://tamntt.bitbucket.io/Research/GraphicalAnimation/

CHAPTER 4. DESIGN AND IMPLEMENTATION 19

Figure 4.2: A picture of MABP

Figure 4.3: A step running of an animation

###keys

p1 p2

###textDisplay

###states

((p1: rs) p2: rs) ||

((p1: cs) p2: rs) || (p1: cs) p2: cs

We can draw two SVG elements as rectangles to display for two locations (rs and
cs), and draw two circles with texts for display two processes p1 and p2 for every
location. A SVG picture to animate MA is showed on the Fig. 4.4.

The processp1, and p2 is displayed by two SVG elements contain a circle and a
text. Thus, we will set properties for the circle and the text of every process at
every location. The property class of them will be also set is groups. And the
property ID of the circle, and the text of every process will be set as structure
KEY V ALUE, where KEY is the name, and V ALUE is the value of a name-
value pair. For process p1 at location rs, we will set the property ID is p1 : rs for

CHAPTER 4. DESIGN AND IMPLEMENTATION 20

Figure 4.4: A picture of MA

Figure 4.5: Setting properties for process p1 at location rs of MA

.

both the circle, and text element which visualize process p1. Fig. 4.5 shows how to
set properties for process p1 at location rs of MA.

By this way, we can see that locations of processes are changed and displayed graph-
ically when the tool animate states. Fig. 4.6 show the tool displays three states of
MA.

• Option 3: We just set property class as the structure groupsV ALUE1V ALUE2 . . . V ALUEn
which is the V ALUE1, V ALUE2, . . . , V ALUEn are values of name-value pairs
which we want to display. For example, we will draw a SVG picture for a state
machine MB which has an input file as following:

###keys

r1 r2 r3

###textDisplay

###states

((r1 : < 1,nil >) (r2 : < 2,nil >) r3 : < 5,nil >) ||

CHAPTER 4. DESIGN AND IMPLEMENTATION 21

Figure 4.6: The tool run the input file of MA

.

((r1 : < 1,L >) (r2 : < 2,nil >) r3 : < 5,nil >) ||

(r1 : < 0,nil >) (r2 : < 2,nil >) r3 : < 5,nil >

The drawn SVG picture of MB is shown on Fig. ??.

And Fig. 4.8 shows the sequence of states which has three states of MB. Every
name : value pair in every state has a value as < L, OPT>, where L is a location
such as 0, 1, . . . , 9, and OPT is a option of a location such as nil, L, or R. If the
option is nil, the location will be display as a circle. If the option is L, the location
will be displayed as a circle and a left arrow from the circle. And a circle and a right
arrow from the circle will be display for the case that option is R. To do that, we need
to draw all circles which represent for all locations such as 0, 1, . . . , 9. A circle of a
location will be displayed if it has the option is nil, L, or R. Thus, we will set property
class of a circle of the location 0 as groups < 0,nil > < 0,L > < 0,R >. We also
set property class for path elements which are arrows is groups and corresponding
< L, OPT>. Fig. 4.9 shows some screenshots of setting the property class for the
location 0 and the left arrow for option L of location 0.

4.2.3 Running tool

After getting a drawn picture of a state machine and importing a prepared input file,
the tool can run to play a graphical animation of the state machine. The tool allows
human users to adjust the duration of the speed of animation. The unit of duration is
millisecond. The smaller the duration is, the faster the animation is played. Animations
can be played step by step in addition to that they can be played automatically from the
beginning to the end. When an animation is played step by step, we can observe each
state transition graphically. For example, Fig. 4.3 shows a state transition (done by rec2)
from state 32 to state 33 in a finite computation of MABP.

4.2.4 The algorithm of graphical animation

The algorithm used in the tool is as follows:

Function: animation(svg, states, keys, textDisplay, duration)

CHAPTER 4. DESIGN AND IMPLEMENTATION 22

Figure 4.7: The SVG picture of MB

.

Figure 4.8: The tool run the input file of MA

.

setHiddenElementsByClass(’groups’);

CHAPTER 4. DESIGN AND IMPLEMENTATION 23

Figure 4.9: Setting property class for a circle element and a path element for the location
0 of MB

.

for(i = 0, i < size(seqStates), i+1)

state = states[i];

preState = if i > 0 then seqState[i-1] else state;

for(j = 0, j < size(keys), j+1)

key = keys[j]; value2 = state[key]; value1 = preState[key]

svgText = svg.selectById(key); attr = ’’;

if(value1 != value2) attr = ’RED_COLOR’;

else attr = ’BLACK_COLOR’;

setTransition(svgText, attr, key, value2, duration, textDisplay[key]);

showElementsById(key + ’_’ + value2);

showElementsByClass(value2);

The algorithm has been implemented in JavaScript. The parameters keys, textDisplay
and states are set the three segments in an input file, respectively. The parameter
duration is a value of animation duration that has been set by a human user. The
parameter svg is an object of the SVG picture that has been drawn and got.

Firstly, the function setHiddenElementsByClass is used to hide elements have prop-
erties class is groups.

When switching the picture of the previous state s with the picture of the successor
state s′, the values value1 and value2 of each observable component in s and s′ are
compared. The SVG element svgText that will be displayed as the value of the observable
component in s′ can be obtained by svg.selectById(key) where key is the name of the
observable component. If value1 and value2 are different, red is used as the color
attribute for svgText. Otherwise, black is used. Then, function setTransition is used
to display svgText as the value of the observable component in s′. This function is used
for display SVG elements which is set properties as the Option 1. To show elements
have properties ID as KEY V ALUE which is the Option 2 of setting properties, we use

CHAPTER 4. DESIGN AND IMPLEMENTATION 24

the function showElementsById. And lastly, showElementsByClass is used for showing
elements which is set properties as the Option 3.

4.2.5 Filtering states

Observing graphical animations of a state machine may allow human users to recognize
some relations among values of some observable components, such as the equivalence of
bit1 and bit2 of the ABP. It would be useful to select the states among the ones in a given
input file such that some condition is fulfilled and display their graphical representations.
The tool allows human users to define such a condition. The format of a condition is as
follows:

(state[’key1’] op1 state[’key2’]) op2 (state[’key3’] op4 ’value’) ...

where key1, key2, and key3 are names of observable components in states and keys
appearing in the key segment of an input file, op1, op2, and op3 are JavaScript comparison
and logical operators, and value is a value. An example (called Cond1) of the conditions
is as follows:

(state[’bit1’] == state[’bit2’] && state[’chan1’] != ’empty’

&& state[’chan2’] != ’empty’)

This condition can select the states such that bit1 equals bit2, chan1 is not empty, and
chan2 is not empty. Let Cond2 be the condition obtained by replacing == with != in
Cond1.

In addition to the condition that has been just described, it is possible to write con-
straints on the value of each observable component if the value is a collection, such as a
list and a queue. The format of a constraint is as follows:

key::::regex1++++regex2++++...++++regexn::::cond::::opt

where key is the name of an observable component, regex(1), regex(2), . . . , regex(n)
are regular expressions used to detect elements in the value, cond is a condition to be
satisfied by the elements, and opt is either NONE or REPEAT. Let the value of the observable
component be true true true false false false empty. If opt is NONE, the value as it
is, namely true true true false false false empty is displayed. If opt is REPEAT,
its abbreviation true . . . true false . . . false is displayed. Even though two values are
different but their abbreviations are the same, the two values are treated as equals if opt
is REPEAT. Eight examples of the constraints are as follows:

chan1::::<_,_>::::topElement(_) == bottomElement(_)::::NONE

chan1::::<_,_>::::topElement(_) == bottomElement(_)::::REPEAT

chan1::::<_,_>::::topElement(_) != bottomElement(_)::::NONE

chan1::::<_,_>::::topElement(_) != bottomElement(_)::::REPEAT

chan2::::_ _::::topElement(_) == bottomElement(_)::::NONE

CHAPTER 4. DESIGN AND IMPLEMENTATION 25

Figure 4.10: A state that satisfies Cond1, Const4 and Const6

Figure 4.11: A state pattern

chan2::::_ _::::topElement(_) == bottomElement(_)::::REPEAT

chan2::::_ _::::topElement(_) != bottomElement(_)::::NONE

chan2::::_ _::::topElement(_) != bottomElement(_)::::REPEAT

where topElement and bottomElement refer to the top and bottom of the value (the
queue), respectively.

Given an input file in which the keys and textDisplay segments are the same as the
input file shown earlier and the states segment is a finite computation (called FC150) that
consists of 150 states, when Cond1, Const4, and Const6 are used and we ask the tool to
find state patterns, the tool finds 18 occurrences of states that satisfy Cond1, Const4, and
Const6. Since some states occur more than once in the finite computation, the tool also
finds seven different states in it. One of them is shown in Fig. 4.10.

CHAPTER 4. DESIGN AND IMPLEMENTATION 26

4.2.6 Describing and displaying state patterns

For each of the states selected among the ones in a given input file such that some
conditions and/or constraints are fulfilled, human users may recognize a state pattern.
The tool allows human users to describe a state pattern and display it graphically. For
example, from a state shown in Fig. 4.10, one may recognize the state pattern written as
follows:

(chan1: < true,pac(i) > ... < true,pac(i) > < false,pac(i+1) > ...

< false,pac(i+1) > chan2: false ... false bit1: false bit2: false

pac: pac(i+1) list: pac(i) pac(i-1) ...)

The content of chan1 should be displayed in the reverse order. The tool allows us to
specify it as follows:

chan1::::REV::::<_,_>++++\.\.\.

Then the tool displays the state pattern shown in Fig. 4.11 that is essentially equivalent
to SP6 shown in Fig. 3.1.

Chapter 5

Generation of Long Computations

It would be necessary to play a very long animation so that some non-trivial character-
istics of the reachable states could be observed. Since Maude provides metaprogamming
functionalities, we can write a metaprogram to generate a long computation of a state
machine in Maude for displaying a long animation. A metaprogram is a program that
takes programs as inputs and performs some useful computations. It is necessary to deal
with a Maude specification (or program) of a state machine M to generate a long compu-
tation of M . Therefore, we have written a metaprogram that takes a Maude specification
of M as one input to generate a long computation of M . The algorithm to generate a
long computation of M is as follows:

genSeq(Mod,S,B,R)

seq := S; len := 1;

while len < B

succs := findAllSuccs(Mod,S);

if succs = empty then break;

s’ := selectNextTerm(succs,R rem length(succs));

seq.add(s’); len = len + 1; R = random(R quo 100000);

return seq;

in which Mod is the Maude specification of M , S is the first state of the computation, B is
a bound that is the length of the computation being generated, and R is a seed of random
numbers. As R indicates, the successor state of a state will be randomly chosen so that
various different computations can be generated.

The function findAllSuccs takes Mod, S representing a state and returns a collection
of successor states of S obtained by applying each of the rewrite rules to S if possible.
S may be a deadlock state, namely that it may not have any successor states. If that
is the case, the empty collection is returned. The function selectNextTerm will get a
collection of successor states and a number as an index to return the next state in this
collection at the index position. The function random generates a pseudo-random number
based on the given seed. Based on the pseudo-random number generated, the function
selectNextTerm will return the next state. Since modules, terms, etc. are expressed

27

CHAPTER 5. GENERATION OF LONG COMPUTATIONS 28

as Maude terms, Maude makes it possible to write metaprograms in Maude as ordinary
programs (or specifications) in Maude.

What is returned by the function genSeq is a finite computation but the computation is
represented as a meta-term. Hence, such a meta-represented term should be converted to
another representation that can be used for the tool. Then, we have defined the function
downTermList as follows:

op nil : -> ListSys [ctor] .

op _||_ : Sys ListSys -> ListSys [ctor] .

op downTermList : TermList -> ListSys .

eq downTermList(empty) = nil .

eq downTermList(TE) = downTerm(TE, nil) .

eq downTermList((TE,TList)) = downTerm(TE, nil) || downTermList(TList) .

where TE and TList are Maude variables of sorts Term and TermList. ListSyst is the
sort of finite computations that can be used for the tool. The function downTerm takes a
meta-represented term and convert it into an object-level representation of the term. For
example, we can generate the finite computation FC150 of MABP whose length is 150 by
reducing the following term:

downTermList(genSeq(upModule(’ABP,false),upTerm(init),5,150)) .

where the function upModule takes a module name as a quoted term, such as ’ABP where
ABP is the name of a module in which ABP is specified, and converts it into a meta-
represented term of the module and the function upTerm takes a term and converts it
into a meta-represented term of the term. The way to generate finite computations can
generate finite computations up to about 100000 for MABP.

Chapter 6

Experiment

We have used two finite computations FC150, and FC500 of MABP to conduct the exper-
iment for state patterns recognition. Observing animations from them have made us find
out some of the six state patterns shown in Fig. 3.1. Even if we may not find out any
interesting state patters, we can ask the tool to look for the states in the animation that
satisfy conditions and/or constraints.

We have used Condi for i = 1; 2 and Constj for i = 1, 2, . . . 5. as defined conditions
and constraints, respectively. The condition Const1, Const2, ..., Const5 are placed in the
Regex part of the tool. And the condition Cond1, and Cond2 are placed in the Condition
part of the tool. Some definitions of these conditions, and constraints are shown in the
Fig. 6.1.

Firstly,we used FC150 for running tool and selecting states satisfied these conditions.
The tool found 55 occurrences of the states that satisfied Cond1 among which there were
40 different ones. When we used C12 as well, the tool found 37 occurrences of the states
that satisfied Cond1, and Const2 among which there were 11 different states. Taking a
close look at those 11 different state patterns made us recognize SP1 and SP5 shown in
Fig. 3.1. After using the finite computation FC150 of MABP, we continued conducting the
experiment with FC500 by using these conditions for selecting. The Fig. 6.2 shows the
experimental results of FC150, and FC500 are in which OS, DSP, SP and SPj(,k) stand
for the number of occurrences of states, the number of different states or state patterns,
state patterns, and SPj (and SPk), respectively.

By presenting the result of FC150, and FC500 on charts shown in Fig. 3.1, and Fig. 3.1
respectively, we can see that selecting states satisfied conditions is able to support users
recognize useful state patterns and reduce amounts of states to detect them. The tool
reveals that there is no state that satisfies some condition and constraints. Although the
tool does not prove it, this information is crucial.

29

CHAPTER 6. EXPERIMENT 30

Figure 6.1: The definition of conditions

Figure 6.2: The result of experiment.

CHAPTER 6. EXPERIMENT 31

Figure 6.3: The result chart of FC150.

Figure 6.4: The result chart of FC500.

Chapter 7

Applications

7.1 Comprehending Counterexamples Generated by

the Maude LTL Model Checker

7.1.1 Introduction

Although Maude LTL model checker has many good points, counterexamples it generates
may not be necessarily the shortest ones. The shorter a counterexample, the easier it is
to comprehend the counterexample. Maude is equipped with the search command. The
command exhaustively traverses the reachable states from a given state s0 to find some
states s that match some pattern and/or satisfy some condition in a breadth-first manner.
A path from s0 to s is also generated. Since the search is performed in a breadth-first
manner, the path is the shortest one from s0 to s. Maude also allows us to write meta-
programs as ordinary programs because Maude provides many useful metalevel functions
including descent and ascent functions, one of which is the counterpart of the search
command. A descent function converts a metalevel representation of a term, a module,
etc. into an ordinary representation of the term, the module, etc. and an ascent function
does the reverse conversion. We have implemented a meta-program that takes a state
machine specification module and a counterexample generated by Maude LTL model
checker and generates a shorter counterexample, in which the metalevel search function
is used.

The state machine graphical animation tool basically takes a finite computation s0; s1;
. . . ; sk of M . As some model checkers, such as PAT, make it possible to represent a
counterexample graphically and run it step by step, we have realized our tool could help
human users comprehend a counterexample. Therefore, we have extended the tool so
that the tool can graphically animate a counterexample that consists of s0; . . . ; sm and
(sm+1; . . . ; sn)∗. Since the loop is repeatedly played, the repetition could help human users
realize what happen in the loop. Unlike other model checkers, the tool allows human users
design pictures or flames of animations, adjust the speed of automatic plays of animations,
and select states from a counterexample such that some conditions and/or constraints are
satisfied, which could be likely to help human users comprehend a counterexample better.

32

CHAPTER 7. APPLICATIONS 33

7.1.2 A flawed mutual exclusion protocol (FQlock)

Let us consider a flawed mutual exclusion protocol as an example. The protocol is called
FQlock whose pseudo code executed by a process pi is as follows:

Loop
“Remainder Section (RS)”

rs : queue := enq(queue, pi);
ws : repeat until top(queue) = pi;

“Critical Section (CS)”
cs : tmpi := deq(queue);
cs : queue := tmpi;

where queue is a queue of process IDs that is shared by all processes. Queuing a process
ID pi into queue is done atomically, while dequeuing queue is not.

Inductively defined data structures and associative and/or commutative binary oper-
ators can also be used in a specification processed by Maude LTL model checker. State
transitions are specified as rewrite rules that could be equipped with conditions. For
example, the state transitions of FQlock are specified as follows:

rl [eq] : (pc[I]: rs) (queue: Q) => (pc[I]: ws) (queue: enq(Q,I)) .

rl [wt] : (pc[I]: ws) (queue: (I Q)) => (pc[I]: cs) (queue: (I Q)) .

rl [dq1] : (pc[I]: cs) (queue: Q) (tmp[I]: R)

=> (pc[I]: ds) (queue: Q) (tmp[I]: deq(Q)) .

rl [dq2] : (pc[I]: ds) (queue: Q) (tmp[I]: R)

=> (pc[I]: rs) (queue: R) (tmp[I]: R) .

where eq, wt, etc. are the labels of the rewrite rules, I is a Maude variable of the sort Pid,
and Q and R are Maude variables of the sort Queue. (pc[I]: rs) and (queue: Q) are
observable components, where pc[I]: and queue: are names and rs and Q are values.
The name pc[I]: has the parameter I. Queues of process IDs are inductively constructed
with the two constructors:
op empty : -> Queue [ctor] .

op __ : Pid Queue -> Queue [ctor] .

where empty denotes the empty queue and the juxtaposition operator __ is also used to
construct non-empty queues. Given process IDs p1, p2 and p3, the term p1 p2 p3 empty

denotes the queue of process IDs that consists of the three process IDs in this order.
Let us suppose there are two processes whose IDs are p1 and p2 and then the initial

state of FQlock is denoted as the term (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty)

(tmp[p2]: empty) (queue: empty). The term will be referred as init. By substituting
I and Q with p2 and empty, the left-hand side of the rewrite rule eq is the same as the term.
Therefore, the rewrite rule eq can be applied to the term. If it is with the substitution, the
term rewrites to (pc[p1]: rs) (pc[p2]: ws) (tmp[p1]: empty) (tmp[p2]: empty)

(queue: p2 empty). This is how state transitions are done by rewriting.

CHAPTER 7. APPLICATIONS 34

7.1.3 Maude LTL Model Checker

It is an explicit-state on-the-fly LTL model checker. The model checking algorithm used
is the same as the one used in Spin. FQlock is used to describe how to use it. Users are
supposed to specify atomic propositions. Let us suppose we model check FQlock enjoys
the lockout freedom property when there are two processes. The lockout freedom property
says whenever each process wants to enter the critical section, it will eventually be there.
Therefore, we specify two kinds of atomic propositions wait(P) and crit(P), where P

is a process ID. If there are two processes whose IDs are p1 and p2, there are totally
four atomic propositions wait(p1), wait(p2), crit(p1) and crit(p2). Users are also
supposed to specify a labeling function. For our purpose, we declare the three equations:
eq (pc[P] : ws) S |= wait(P) = true .

eq (pc[P] : cs) S |= crit(P) = true .

eq S |= PROP = false [owise] .

where P is a Maude variable of the sort Pid, S is a Maude variable of the sort Sys that is
for states, and PROP is a Maude variable of the sort Prop that is for atomic propositions.
The three equations say a state s satisfies wait(P) if and only if (pc[P]: ws) ⊆ s and s
satisfies crit(P) if and only if (pc[P]: cs) ⊆ s.

Then, users are supposed to specify LTL formulas to check. The lockout freedom
property is expressed as wait(P) crit(P) for all P = {p1,p2}. In Maude, the formula is
specified as eq lofree = (wait(p1) |-> crit(p1)) /\ (wait(p2) |-> crit(p2)) .,
where the operator _|->_ denotes the leadsto operator .

Model checking that the Kripke structure formalizing FQlock satisfies the lockout free-
dom property lofree is conducted by reducing the term modelCheck(init,lofree).
Since FQlock does not enjoy the lockout freedom property, Maude LTL model checker
generates a counterexample that is as follows:

counterexample({queue: empty (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty,’eq}

{queue: (p1 empty) (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty,’eq}

{queue: (p1 p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: empty,’wt}

{queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: empty,’dq1}

{queue: (p1 p2 empty) (pc[p1]: ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty,’dq2}

{queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty,’eq}

{queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty,’wt}

{queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty,’dq1}

{queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq2}

{queue: (p1 empty) (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: p1empty,’eq}

{queue: (p1 p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’wt}

{queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq1}

{queue: (p1 p2 empty) (pc[p1]: ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq2}

{queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’wt}

{queue: (p2 empty) (pc[p1]: rs) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq1}

{queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty,’eq}

{queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty,’dq2},

{queue: empty (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: empty,’eq}

{queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty,’wt}

{queue: (p2 empty) (pc[p1]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty,’dq1}

{queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty,’dq2})

The first element that is a finite computation consists of 17 states and the second element
that is a loop of states consists of four states. This is a counterexample but not the
shortest one.

CHAPTER 7. APPLICATIONS 35

7.1.4 Shorter Counterexamples

For a Kripke structure K, an LTL formula ϕ and a counterexample π , s0; . . . ; sk;
(sk+1; . . . ; sm)∞ such that K, π 6|= ϕ, π is the shortest counterexample for K and ϕ if and
only if there is no counterexample π′ , s0; . . . ; sl; (sl+1; . . . ; sn)∞ such that K, π′ 6|= ϕ,
and (l ≤ k ∧m− k ≤ n− l) ∧ ¬(l = k ∧m− k = n− l). π′ is shorter than π (denoted as
π′ < π) if and only if (l ≤ k ∧m − k ≤ n − l) ∧ ¬(l = k ∧m − k = n − l). π′ is shorter
than or equal to π (denoted as π′ ≤ π) if and only if (l ≤ k ∧m− k ≤ n− l). Let fc(π)
be s0; . . . ; sk and loop(π) be sk+1; . . . ; sm.

For a Kripke structure K and a finite path s0; . . . ; sk of K, the shortest path from s0 to
sk can be found by exhaustively traversing the reachable states of K from s0 in a breadth-
first manner. The proof is conducted by contradiction. If there were a shorter path from
s0 to sk than the one found by the search, the search would find sk at a shallower position
because of a breadth-first manner.

Maude is equipped with the search command that exhaustively traverses the reachable
states from a given state to find states that match some pattern and satisfy some condition
in a breadth-first manner. Since Maude is also equipped with a metalevel function that
is the counterpart of the search command, we can write a meta-program that takes a
module that corresponds to a Kripke structure and a counterexample π and returns a
counterexample π′ such that π′ ≤ π.

Given a module M in which a system or Kripke structure is specified, an initial state
ST of the system and an LTL formula LF, if Maude model checker generates π such
that π(0) is ST and M, π 6|= LF, π′ is generated with the following functions shortert,
and loopSeqStates such that π′ ≤ π, fc(π′) is shorter(M,ST,LF), and loop(π′) is
loopSeqStates(M,ST,LF):

eq shortest(M,ST,LF) = subShorter(M,modelCheck(ST,LF)) .

eq loopSeqStates(M,ST,LF) = subloopSeqStates(M,modelCheck(ST,LF)) .

The function subShorter is defined as follows:

eq subShorter(M,true) = nil .

eq subShorter(M,counterexample(TL1,TL2)) = searchSequenceStates(M,

getTermFromTransList(TL1,0),

getTermFromTransList(TL1,lengthTransList(TL1) - 1),nil,’*,unbounded,0) .

If no counterexample is found, nil (the empty list) is returned. Otherwise, let π be a
counterexample found. TL1 is fc(π) and TL2 is loop(π). The first and last states of TL1
are used as the second and third parameters of the function searchSequenceStates. The
function is defined as follows:

eq searchSequenceStates(M,I,P,Cond,T,B,N)

= trace2TermList(M,metaSearchPath(upModule(M,false),I,P,Cond,T,B,N)) .

CHAPTER 7. APPLICATIONS 36

The function metaSearchPath is a metalevel function that is the counterpart of the Maude
search command. More precisely, it is the counterpart of the combination of the search
command and the show path command. It takes a module meta-represented, a state
meta-represented from which the search is carried out, a pattern meta-represented such
that the search tries to find states that match the pattern, a condition such that the search
tries to find states that satisfy the condition, a search type, a bound (or a depth) and a
natural number. The search type specifies how many transitions it takes to reach states
to be found, for example, zero or more transitions, one or more transitions and exactly
one transition. ’* specifies zero or more transitions. The natural number n specifies the
nth path (or solution) to a state to be found is returned. Note that 0 means the first
solution. nil as the condition means true. unbounded as the bound asks the search to
try to exhaustively traverse all reachable states from a given state until a designated state
(or solution) is found or all possible states have been visited. The function upModule is
an ascent function that takes a name of a module and returns a term representing the
module (the module meta-represented).
The function trace2TermList converts a path meta-represented into a user-define list
meta-represented. In the user-defined lists, nil denotes the empty list, and _||_ is used
as the constructor for non-empty lists.
Let FQLOCK be a module in which FQlock is specified. By reducing the term
downTermSearch(shorter(’FQLOCK,init,lofree)), the following term is returned:

(queue: empty (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 empty) (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]:ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty

The list consists of nine states, while fc(π) consists of 17 states, where π is the counterex-
ample generated by Maude LTL model checker.
The function loopSeqStates is defined likewise. The term is returned by reducing the
term downTermSearch(loopSeqStates(’FQLOCK,init,lofree)) as following:

(queue: empty (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty

The list consists of four states as loop(π) does. The meta-program that consists of the two
metalevel functions shorter and loopSeqStates could shorten a given counterexample
π and generate π′ such that π′ ≤ π but does not guarantee π′ is the shortest.

CHAPTER 7. APPLICATIONS 37

7.1.5 Graphical Animations of Counterexamples

It would be easier to comprehend a shorter counterexample, but a text representation
of a counterexample could not be necessarily intuitively understandable. A graphical
representation of a counterexample would help human users comprehend it more intu-
itively. Accordingly, some model checkers, such as PAT and Alloy, are equipped with
functionalities that represent counterexamples graphically.

A counterexample is not necessarily a finite computation but consists of a finite com-
putation and a loop. The tool could be used to graphically animate a counterexample by
regarding the counterexample as a finite computation. We believe, however, it would be
meaningful to repeatedly animate the loop part of a counterexample. Therefore, we have
extended the tool so that the tool can animate a counterexample such that the loop part
is repeatedly animated.

The contents of an input file that can be fed into the tool are as follows:

###keys

queue pc[p1] pc[p2] tmp[p1] tmp[p2]

###textDisplay

###states

(queue: empty (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 empty) (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty)

###loop

(queue: empty (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty)

There are four regions: ###keys, ###textDisplay, ###states and ###loop. The fourth
region ###loop has been newly added. For a counterexample π to be animated, fc(π)
is written. The fourth region ###loop is specific to counterexamples. loop(π) is written
there.

Fig. 7.1 shows the picture we have designed for animations of FQlock when there are
two processes whose IDs are p1 and p2. This is just one possible picture for animations
of FQlock and each user is allowed to design his/her own picture or flame of animations
of FQlock.

Feeding the input file whose contents have been shown into the tool, the animation of
the counterexample is played. The finite computation part is played and then the loop
part is repeatedly played, which is shown in Fig. 7.2. Looking at the loop part being

CHAPTER 7. APPLICATIONS 38

Figure 7.1: Picture of FQLock

Figure 7.2: Loop part of the counterexample of lofree

animated, we realize the process p2 visits rs, ws, cs and ds iteratively, while the process
p1 keeps in ws. Looking at the loop being animated helps us realize this counterexample
is a really one of lofree, but does not reveal why FQlock goes into the loop.

CHAPTER 7. APPLICATIONS 39

Figure 7.3: Two states in which pc[p1] is ws

Figure 7.4: Three state transitions leading to the counterexample

The tool allows users to select some states that satisfy some conditions and/or con-
straints. Thus, we have asked the tool to select the states that satisfy the condition that
the value of the observable component whose name is pc[p1] is ws. The tool found seven
such states from the counterexample, among which we found two interesting states shown
in Fig. 7.3. The left state occurs earlier than the right state. In the left state, pc[p1] is
ws and queue is p2 p1 empty, in which p1 is in the queue, while in the right state queue

is empty but pc[p1] is still ws, implying that p1 will never be in cs. In the left state
pc[p2] is ds and tmp[p2] is empty and in the right state pc[p2] is rs. Therefore, the
rewrite rule dq2 must have been applied to the left state with the substitution that I is
p2, Q is p2 p1 empty and R is empty. We took a close look at the animation at around
the left state shown in Fig. 7.3 and then found three state transitions leading to the coun-
terexample, which are shown in Fig. 7.4. We can do this quickly because the tool lets us
know the states selected appear at which positions in an input, directly displays the state
whose position is given and plays the animation from the state step by step backwardly

CHAPTER 7. APPLICATIONS 40

as well as forwardly. The first state transition is done by the rewrite rule dq1, the second
one is done by eq, and the third one is done by dq2. Since dequeuing queue is not atomic,
the second one has interrupted the dequeuing of queue done by the two rewrite rules dq1
and dq2. This is the reason why the counterexample occurs. One possible remedy is to
make dequeuing queue atomic.

7.2 Analysis of MCS List-based Queuing Lock

7.2.1 Introduction

The MCS list-based queuing lock (MCS protocol) is a mutual exclusion protocol whose
variants have been used in Java virtual machines. It has been invented by John M.
Mellor-Crummey and Michael L. Scott [17] who were awarded the 2006 Edsger W. Prize
in Distributed Computing1. MCS protocol uses a global queue to control processes such
that there exists at most one process in the critical section and any process that wants to
enter the critical section will be eventually there, but the global queue is not an atomic
queue. The queue is a linked structure, and neither enqueuing an element into the queue
at the end nor dequeuing the queue are done atomically. MCS Protocol uses two atomic
operators fetch&store and comp&swap to make the two basic operations to the queue
conducted safely. Accordingly, MCS protocol is not simple and deserve to be formally
and carefully analyzed. We have conducted a case study in which MCS protocol and
some variants have been analyzed with Maude and the animation tool, demonstrating the
usefulness of the combination of Maude and the animation tool.

7.2.2 MCS List-based Queuing Lock

A pseudo-code of MCS protocol for each process p is as follows:

rs: ”Remainder Section”
l1: nextp := nop;
l2: predp := fetch&store(glock, p);
l3: if predp 6= nop {
l4: lockp := true;
l5: nextpredp := p;
l6: repeat while lockp; }
cs: ”Critical Section”
l7: if nextp = nop {
l8: if comp&swap(glock, p, nop)
l9: goto rs;
l10: repeat while nextp = nop; }
l11: lockednextp := false;
l12: goto rs;

1https://www.podc.org/dijkstra/2006-dijkstra-prize/

CHAPTER 7. APPLICATIONS 41

There is one global variable glock shared by all processes participating in MCS protocol.
Its type is process IDs (or Pid). Initially, glock is nop, a dummy process ID. Each process
p maintains three local variables nextp, lockp and predp whose types are Pid, Bool and
Pid, respectively. Initially, nextp, lockp and predp are nop, false and nop, respectively.
nextp is used to construct a global queue of processes (or process IDs). Basically, nextp
refers to the next element of the queue if p is in the queue. Since enqueuing an element
into the queue and dequeuing the queue are not atomically done, however, nextp may be
nop even though p is not the bottom element of the queue. predp refers to the previous
element of the queue while p is being put into the queue. lockp is the local lock on which
process p is spinning while lockp is true to wait for entering the critical section. glock
basically refers to the bottom element if the queue is not empty. Since the two basic
operations to the queue are not atomic, however, glock may not refer to the real bottom
element while some process IDs are being put into the queue.

To safely conduct the two basic operations to the queue non-atomically, two atomic
operations are used: fetch&store and comp&swap. fetch&store(x, v) does the following
atomically: tmp := x, x := v, and tmp is returned, where tmp is a temporary variable.
comp&swap(x, v1, v2) does the following atomically: if x = v1, then x := v2 and true is
returned; otherwise, false is returned.

MCS protocol is formalized as a state machine whose states are expressed as soups of
observable components. When there are three processes, a state is expressed as:

(glock: G) (pc[p1]: L1) (pc[p2]: L2) (pc[p3]: L3)

(next[p1]: P1) (next[p2]: P2) (next[p3]: P3)

(lock[p1]: B1) (lock[p2]: B2) (lock[p3]: B3)

(pred[p1]: Q1) (pred[p2]: Q2) (pred[p3]: Q3)

where G, Pi and Qi for i = 1, 2, 3 are process IDs, Li for i = 1, 2, 3 are locations, such as
rs, l1 and cs, and Bi for i = 1, 2, 3 are Booleans. Initially, G, each Pi and each Qi are nop,
each Li is rs, each Bi is false. The initial state will be referred as init.

The state transitions are described in terms of rewrite rules as follows:

rl [want] : (pc[P]: rs) => (pc[P]: l1) .

rl [stnxt] : (pc[P]: l1) (next[P]: Q) => (pc[P]: l2) (next[P]: nop) .

rl [stprd] : (glock: Q) (pc[P]: l2) (pred[P]: Q1)

=> (glock: P) (pc[P]: l3) (pred[P]: Q) .

rl [chprd] : (pc[P]: l3) (pred[P]: Q)

=> (pc[P]: (if Q == nop then cs else l4 fi)) (pred[P]: Q) .

rl [stlck] : (pc[P]: l4) (lock[P]: B) => (pc[P]: l5) (lock[P]: true) .

rl [stnpr] : (pc[P]: l5) (pred[P]: Q) (next[Q]: Q1)

=> (pc[P]: l6) (pred[P]: Q) (next[Q]: P) .

rl [chlck] : (pc[P]: l6) (lock[P]: false)

=> (pc[P]: cs) (lock[P]: false) .

rl [exit] : (pc[P]: cs) => (pc[P]: l7) .

rl [rpnxt] : (pc[P]: l7) (next[P]: Q)

=> (pc[P]: (if Q == nop then l8 else l11 fi)) (next[P]: Q) .

rl [chglk] : (glock: Q) (pc[P]: l8) =>

(glock: (if Q == P then nop else Q fi))

(pc[P]: (if Q == P then l9 else l10 fi)) .

CHAPTER 7. APPLICATIONS 42

rl [go2rs] : (pc[P]: l9) => (pc[P]: rs) .

crl [rpnxt2] : (pc[P]: l10) (next[P]: Q)

=> (pc[P]: l11) (next[P]: Q) if Q =/= nop .

rl [stlnx] : (pc[P]: l11) (next[P]: Q) (lock[Q]: B)

=> (pc[P]: l12) (next[P]: Q) (lock[Q]: false) .

rl [gotrs] : (pc[P]: l12) => (pc[P]: rs) .

where want, stnxt, etc. are the labels of the rewrite rules.

7.2.3 Analyzing the mutual exclusion property

The mutual exclusion property that should be enjoyed by mutual exclusion protocols,
such as MCS protocol, says that there exists at most one process in the critical section at
any given moment. Therefore, the search command can be used to check if MCS protocol
enjoys the property as follows:

search [1] in MCS-INIT : init =>* (pc[I]: cs) (pc[J]: cs) S .

where MCS-INIT is the module in which MCS protocol is specified in Maude, I and J

are Maude variables of process IDs, and S is a Maude variable of states (or soups of
observable components). If Maude finds a solution, MCS protocol does not enjoy the
property. Maude did not find any solutions, implying that MCS protocol enjoys the
property when there are three processes.

7.2.4 Graphical Animations of MCS Protocol

Fig. 7.5 shows the picture we have designed or drawn for MCS protocol when there are
three processes. To display appearances of processes such as process p1 at location cs,
process p2 at location L1, . . . , we have to set property ID, and class of SVG elements
which will display graphical animation of processes to map the input file correctly.

We need to draw all SVG elements of all process at all locations, then set property
class is group for them. By this way, the tool will detect and hide them until a current
state which is displaying contains information of them. To showing SVG elements which
have same name and value in a current state, we need to set property ID of them as
KEY V ALUE, where KEY , V ALUE is a name, and a value of a name-value pair
respectively. For example, we will set property ID of SVG element which animate process
p1 at rs location is pc[p1] rs, and set property class is groups.

The tool basically takes a sequence of states and plays it graphically. It can select and
display the states that satisfy a condition from the input finite computation. We asked
the tool to select and display the states such that the location of p1 is l10. The tool
found 16 such states in the input finite computation. Fig. 7.6 shows one of the 16 states.

7.2.5 Analyzing the lockout freedom property

We suppose that there are two processes p1 and p2 and let init denote the initial state
in which the two processes participate in MCS protocol. Let us suppose we model check

CHAPTER 7. APPLICATIONS 43

Figure 7.5: Picture of MCS Protocol

Figure 7.6: A state such that p1 is at l10

MCS protocol enjoys the lockout freedom property when there are two processes. The
lockout freedom property says whenever each process wants to enter the critical section,

CHAPTER 7. APPLICATIONS 44

it will eventually be there.
Model checking that the Kripke structure formalizing MCS protocol satisfies the lockout

freedom property lofree(p1) for p1 is conducted by reducing the term modelCheck(init,

lofree(p1)). Maude model checker generates a counterexample.
MCS protocol uses two atomic operators fetch&store and com&swap. We model check

the two properties for a variant of MCS protocol in which comp&swap is not used. The
two lines at l8 and l9

l8: if comp&swap(glock, p, nop)
l9: goto rs;

change to the following three lines:

l8: if glock = p {
l8’: glock := nop;
l9: goto rs; }

Accordingly, the rewrite rule chglk is replaced with the following two rewrite rules:

rl [chglk’] : (glock: Q) (pc[P]: l8)

=> (glock: Q)

(pc[P]: (if Q == P then l8’ else l10 fi)) .

rl [stglk] : (glock: Q) (pc[P]: l8’)

=> (glock: nop) (pc[P]: l9) .

Model checking the two properties for the variant, the search command does not find
any counterexamples for the mutual exclusion property but the LTL model checker finds a
counterexample for the lockout freedom property even if a fair scheduler is adopted. Note
that we can use exactly the same assumption used to model check that MCS protocol
enjoys the lockout freedom property.

The counterexample generated by Maude LTL model checker for the lockout freedom
under the use of a fair scheduler consists of a finite computation that consists of 17 states
leading to an infinite loop such that a finite state sequence that consists of 9 states is
repeated forever. Feeding the counterexample generated by Maude LTL model checker,
the extended tool graphically animates it, repeating the loop part, which lets us realize
only p2 enters and leaves the critical section repeatedly while p1 is waiting at l6 until lockp1
becomes false. Fig. 7.8 shows the 26 pictures of the states composing the counterexample.
The first 17 states is the finite computation, while the last 9 states is the finite state
sequence that repeats forever, making the loop. Note that state 0 is the top state of the
finite computation.

In state 8, p1 is at l2 and is enqueuing it into the global queue, and p2 is at l8 and is
dequeuing the global queue. p2 checks the condition of the if statement at l8. Since glock
is not p2, p2 moves to l8’. In state 9, p1 executes predp1 := fetch&store(glock, p1); at l2,
making glock p1 and predp1 p2. In state 9, since predp1 is p2, the predecessor of p1 is p2
in the global queue, meaning that p1 has not been extracted from the global queue. In

CHAPTER 7. APPLICATIONS 45

what follows, since predp1 is not nop, p1 sets nextp2 to p1 and lockp1 true, and waits at
l6 until lockp1 becomes false. In state 13, p2 executes glock := nop; at l8’. Therefore, in
state 14, glock is nop, meaning that the global queue is empty, although p1 is waiting at
l6 until lockp1 becomes false. This is way p1 is waiting at l6 forever and only p2 enters
and leaves the critical section repeatedly.

MCS protocol, and a variant in which comp&swap is naively disused have been analyzed
with Maude and the state machine graphical animation tool. The tool can graphically
animate any finite state sequence and any counterexample that consists of a finite state
sequence leading a loop in which a finite state sequence repeats forever if they can be
converted into what can be fed into the tool.

CHAPTER 7. APPLICATIONS 46

Figure 7.7: States 154, 155, 156, 157 and 158
The tool lets us know the state appear in the input finite computation at position 153.
In the state, since p1 is at l10, p1 is dequeuing the global queue, while since p2 and p3

are l4 and l5, p2 and p3 are enqueuing p2 and p3 into the global queue, respectively,
but none of them has completed. Given a state number n, the tool displays the state at
position n. We asked the tool to display the state at position 153 and play the animation
from the state step by step. Fig. 7.7 shows the five states at positions 154, 155, 156, 157
and 158 from the top.
In state 153, p2 executes the assignment at l4, setting lockp2 true, and moves to l5 but
has not yet completed enqueuing p2 into the global queue. In state 154, p2 executes the
assignment at l5, setting nextp1 to p2, and moves to l6, when p2 has eventually completed
enqueuing p2 into the global queue. In state 155, glock is p3, meaning that p3 is the
bottom element of the global queue but p3 has not completed enqueuing p3 into the global
queue. In state 155, p1 leaves the loop at l10 and moves to l11 but has not yet completed
dequeuing the global queue. In state 156, p3 executes the assignment at l5, setting nextp2
to p3, and moves to l6, when p3 has eventually completed enqueuing p3 into the global
queue. In state 157, p1 executes the assignment at l11, setting lockp2 false, letting know
p2 is ready to enter the critical section, and moves to l12. In state 158, the global queue
consists of p2 and p3 in this order because lockp2 is false, nextp2 is p3, lockp2 is true,
nextp2 is nop, and glock is p3.

CHAPTER 7. APPLICATIONS 47

Figure 7.8: A counterexample for the lockout freedom property for MCS protocol in which
comp&swap is not naively used.

Chapter 8

Related Work

Most formal specification languages, such as Z, B method and Event-B, are not executable,
although some, such as VDM and VDM++, are semi-executable. Therefore, some re-
searches have been carried out, making formal specifications written in such languages
run, for example, by translating sub-sets of such languages into programming languages.
Running formal specifications is called specification animation. Specification animation
makes it possible to help human users get better understandings of formal specifications.
Therefore, specification animation has been used to improve some other activities, such
as refinement [6, 7], inspection and formal specification construction [15, 12], and software
monitoring [13]. Although specification animation does not necessarily mean visual and
graphical animations, some tools make it possible to play graphical animations [12]. The
formal specification language we have used is Maude. Since Maude is executable, we do
not need to develop any translators.

Although there is no generic graphical user interface (GUI) for Maude, a GUI for
Maude-NPA [20] is a security protocol analysis tool was implemented in Maude. In ver-
ification process, the GUI for Maude-NPA animates completely the Maude-NPA search
tree generation process. It allows users visualize the complete search tree, display rep-
resentations nodes of the search tree graphically. By displaying the search tree, the tool
support users to analyze a specification of a security protocol. Each state in the tree is
displayed as a textual information and a graphical representation which help users easier
to understand the analyzing process of the protocol.

Our tool is generic enough such that the tool is independent from Maude and can
graphically animate any finite state sequence and any counterexample that consists of a
finite state sequence leading a loop in which a finite state sequence repeats forever if they
can be converted into what can be fed into the tool.

Some model checkers, such as Alloy [11] and PAT [22], are equipped with graphical an-
imations of scenarios, such as counterexamples. Such graphical animations of counterex-
amples help human users get better understandings of the reason why the counterexamples
occur. Such model checkers, however, do not allow human users to draw pictures used
for graphical animations. Alloy and PAT do not allow users to adjust the speed of an-
imations and select some states that satisfy some conditions and/or constraints from a
counterexample.

48

CHAPTER 8. RELATED WORK 49

Alloy is a relational logic-based specification language and analyzer. The Alloy analyzer
contains a SAT-based bounded model checker. When Alloy finds a counterexample, it
builds a graphical representation of the counterexample, which can be animated and run
step by step. The picture or flame of animations is automatically created. PAT [22] is
not only a collection of model checkers but also allows users to build their own model
checkers. When PAT finds a counterexample, it builds a graphical representation of
the counterexample as a directed graph such that vertices are states and edges are state
transitions. The construction of the directed graph is animated step by step. It is possible
to take a close look at each vertex or state.

On the other hand, many researchers have been convinced that (graphical) specification
animation can help human users get better understandings of formal specifications, but
to the best of our knowledge none of them have tried to utilize graphical specification
animation for conjecturing lemmas in interactive theorem proving.

Chapter 9

Future Work

For the future work, we will improve and enhance the graphical animation tool to support
users figure out useful state patterns quickly and display state machines intuitively and
visually.

We will apply the tool to a concrete case study, tackle with the tool a non-trivial pro-
tocol such that we have not formally verified that it enjoys some invariants, finding out
interesting state patterns and conjecturing lemmas from those state patterns to complete
the formal verification. Thus, one piece of our future work is to recognize useful pat-
terns from several graphically animated computations, conjecture useful lemmas from the
animated computations and formally verify MCS protocol enjoys the mutual exclusion
property and the lockout freedom property. We will formally verify with theorem proving
that MCS enjoys properties, which requires lemmas. By looking at the graphical simula-
tions, we will try to detect state patterns which is useful for conjecturing lemmas. The
purpose of this work is to demonstrate the tool helps human users recognize patterns and
conjecture lemmas from them. For detail, we will make a specification of MCS in CafeOBJ
which is an algebraic specification language used for writting formal specifications and
verifying properties of systems. Then, we will write proof score showing that MCS enjoys
propertiesproperties, while observing the animation and finding some interesting charac-
teristics and conjecturing some lemmas. Then, we will apply the tool to Paxos which is
a protocol used for solving consensus in asynchronous systems.

On the other hand, there are some existing studies in which graphical specification
animations would be used to help human users inspect formal specifications and make
them better [15, 12]. Our main goal is to help human users comprehend counterexamples
better, but better understandings of counterexamples must be able to be used to make
formal specifications better. One piece of our future work is to investigate the relation
between our way of using graphical animations and their way.

50

Chapter 10

Conclusion

We have developed the graphical animation of state machines tool which is available at
the website https://tamntt.bitbucket.io/ Research/ GraphicalAnimation/). By display-
ing graphical animations of sequences of states, the tool help users to recognize some
useful state patterns which can be used for conjecturing lemmas in interactive theorem
proving. The tool can animate counterexamples generated by the Maude LTL model
checker to help human users comprehend them. The tool also allows users to select some
states that satisfy some conditions and/or constraints to support them detect patterns.
Formally verifying that a system enjoys an invariant with interactive theorem proving, a
human user first repeatedly conducts case splitting tasks based on come conditions and/or
constraints and then may reach a case in which he/she needs to use some lemmas. The
human users can use those conditions and/or constraints to make the tool filter out states
in a finite computation. By this way, users can figure out useful lemmas used for theo-
rem proving. The tool allows human users to design pictures (or flames) of animations.
Therefore, intuitively understandable pictures could be used, helping human get better
understandings of counterexamples and realize why they occur. Moreover, the layout of
the places where each observable value is displayed can be decided by human users. We
have written a meta-program in Maude to shorten counterexamples of properties, and a
meta-program to generate long a sequence of states for long animations in which users
can recognize patterns.

The experiment demonstrates the tool could help human users find out interesting state
patterns. We conducted another case study in which animations of a state machine formal-
izing FQlock to demonstrated the usefulness of graphical animations of counterexamples.
We also analyzed the MCS list-based queuing lock (MCS protocol), a mutual exclusion
protocol, and some variants with Maude and the state machine graphical animation tool.

For future work, we will enhance the tool and conduct some more case studies in
which we will tackle with the tool some protocols or systems such that we have not
formally verified that they enjoy some invariants, finding out interesting state patterns
and conjecturing lemmas from those state patterns to complete the formal verification.

51

https://tamntt.bitbucket.io/ Research/

Bibliography

[1] ACL2. The website of ACL2. http://www.cs.utexas.edu/users/moore/acl2/,
2017.

[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and Carolyn Talcott. All About Maude – A High-Performance Logical
Framework: How to Specify, Program and Verify Systems in Rewriting Logic. LNCS
4350. Springer, 2007.

[3] Coq. The website of Coq. https://coq.inria.fr/, 2016.

[4] Leonardo de Moura, Sam Owre, and N. Shankar. The sal language manual. 2003.

[5] Joseph A. Goguen, Timothy Winkler, Jos Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing obj, 1993.

[6] Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. Refinement-animation for
Event-B - towards a method of validation. In ABZ 2010, LNCS 5977, pages 287–301.
Springer, 2010.

[7] Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. Validation of formal models
by refinement animation. Sci. Comput. Program., 78(3):272–292, 2013.

[8] Dung Tuan Ho, Min Zhang, and Kazuhiro Ogata. Case studies on extracting the
characteristics of the reachable states of state machines formalizing communication
protocols with inductive logic programing. In ILP (Late Breaking Papers), pages
33–47, 2015.

[9] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

[10] Isabelle. The website of Isabelle. https://isabelle.in.tum.de/, 2016.

[11] Daniel Jackson. Software Abstraction (Revised edition). The MIT Press, 2012.

[12] Mo Li and Shaoying Liu. Integrating animation-based inspection into formal de-
sign specification construction for reliable software systems. IEEE Trans. Reliability,
65(1):88–106, 2016.

52

BIBLIOGRAPHY 53

[13] Hui Liang, Jin Song Dong, Jing Sun, and W. Eric Wong. Software monitoring through
formal specification animation. ISSE, 5(4):231–241, 2009.

[14] Joseph Liard. Draw SVG website. http://www.drawsvg.org/, 2015.

[15] Shaoying Liu. Validating formal specifications using testing-based specification ani-
mation. In FormaliSE@ICSE 2016, pages 29–35, 2016.

[16] Kenneth L. McMillan. The SMV System. Springer US, Boston, MA, 1993.

[17] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65,
1991.

[18] Kazuhiro Ogata. Lecture 8 Analysis of Alternating Bit Proto-
col 2. Sinaia Shcool on Formal Verification of Software Systems
(http://www.jaist.ac.jp/~kokichi/class /SinaiaSchoolFVSS0803/), 2008.

[19] PVS. The website of PVS. http://pvs.csl.sri.com/, 2014.

[20] Sonia Santiago, Carolyn L. Talcott, Santiago Escobar, Catherine A. Meadows, and
José Meseguer. A graphical user interface for Maude-NPA. In 9th Spanish Conference
on Programming and Languages (9th PROLE), Electr. Notes Theor. Comput. Sci.,
pages 3–20. Elsevier, 2009.

[21] Ambarish Sridharanarayanan Steven Eker, Jose Meseguer. The Maude LTL model
checker. In WRLA 2002, ENTCS 71, pages 162–187. Elsevier, 2013.

[22] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexible verification
under fairness. In 21st CAV, LNCS 5643, pages 709–714. Springer, 2009.

	Introduction
	Overview
	The problems and solutions
	Goal and Contribution
	Report Outline

	Preliminaries
	Alternating Bit Protocol
	Maude
	State Expression
	Kripke Structure and Maude LTL model checker

	Motivating Example
	Design and Implementation
	Design
	Implementation
	The structure of an input file
	Drawing state machine pictures
	Running tool
	The algorithm of graphical animation
	Filtering states
	Describing and displaying state patterns

	Generation of Long Computations
	Experiment
	Applications
	Comprehending Counterexamples Generated by the Maude LTL Model Checker
	Introduction
	A flawed mutual exclusion protocol (FQlock)
	Maude LTL Model Checker
	Shorter Counterexamples
	Graphical Animations of Counterexamples

	Analysis of MCS List-based Queuing Lock
	Introduction
	MCS List-based Queuing Lock
	Analyzing the mutual exclusion property
	Graphical Animations of MCS Protocol
	Analyzing the lockout freedom property

	Related Work
	Future Work
	Conclusion

