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Chapter 1

Introduction

Term rewriting is one of simple and powerful Turing-complete computational models,
which underlies automated theorem proving (e.g. Vampire, Agda, Coq) and declarative
programming languages (e.g. CafeOBJ, OCaml, Haskell). Termination is a fundamental
property that guarantees the finiteness of computation steps, which most software should
satisfy. Termination of entire software guarantees that the result can be computed in a
finite time; without termination, the software may loop and become unresponsive. While
in theorem proving termination of functions must be ensured.

In this chapter, we intend to provide a brief and informal introduction to term rewriting,
termination, and transformation along with motivation on this thesis, while the detailed
surveys of term rewriting are referred to [3, 21, 18]. Then, we mention our approach,
overview, and contributions of this thesis.

1.1 Term Rewriting and Termination

Term rewriting is a computational model regarding directed equations as computation
step. A term rewrite system (TRS) is defined as a set of directed equations.

Example 1. The term rewrite system R consist of the following rules:

1 : s(x) + y → s(x+ y)
2 : 0 + x→ x

The term rewrite system R represents an additive program where a number is represented
by successor of zero (e.g. 1 is s(0) and 3 is s(s(s(0)))). Meanwhile, the execution of the
program is simulated by rewriting steps.

Regarding to the TRS R, we illustrate the execution step of 2 + 3 by using the term
rewrite system as following rewrite step:

s(s(0)) + s(s(s(0)))→R s(s(0) + s(s(s(0))))→R s(s(0 + s(s(s(0)))))→R s(s(s(s(s(0))))

The term s(s(s(s(s(0))))) cannot match with any left-hand side of rules in R. Therefore,
the execution ends.
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The computational result, s(s(s(s(s(0))))) is called a normal form. However, in general,
there is no guarantee that a system always admits a normal form, and also reaches a
normal form even if it exists.

Example 2. We consider the term rewrite system R consist of the following rules:

1 : f(a)→ f(a)
2 : a→ b

The TRS R is non-terminating due to the following rewrite sequence:

f(a)→R f(a)→R f(a)→R · · ·

The TRS R in Example 2 is non-terminating. However, if we restrict ourselves to the
innermost rewriting strategy then the system is innermost terminating.

It is wildly known that halting problem is undecidable. Since this model is one of the
Turing-complete computational models, there exists a mapping from a Turing-machine
to the corresponding rewrite system. Therefore, the termination property of a rewrite
system is also undecidable. Moreover, the system from the result of the mapping al-
gorithm [4] yields the particular property which is called uncurrying system. In 1996,
Gramlich discover that termination and innermost termination of an uncurrying system
are equivalent [12]. Therefore, the undecidability holds for innermost termination.

1.2 Transformation

Because of the importance of the termination property, there are many researchers attempt
to extend decidable subclasses of terminating TRSs [2, 6, 8]. In contrast, there are fewer
techniques for innermost termination analysis and even lesser for outermost termination
analysis. The recent trend is using transformation techniques and attempting to solve the
transformed system instead.

In this thesis, our interest is in Thiemann’s transformation [23] which transforms an
outermost termination problem into an innermost termination problem.

Example 3. Consider the term rewrite system R consisting of the following rules:

1 : f(f(g(x)))→ x
2 : g(b)→ f(g(b))

In fact, R has the outermost termination property. We prove it by using Thiemann’s
transformation. The transformation yields the following rewrite system RT over the
signature {b(0), f(1), g(1), f

(1)
1 , g

(1)
1 , f(1), g(1),O(1),M(1),H(1)

f ,H(1)
g ,N(1), top(1)}:

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3 : Hf(f(x))→ f1(O(x)) 4 : Hg(g(x))→ g1(O(x))
5 : f(f(g(x)))→ N(x) 6 : g(b)→ N(f(g(b)))
7 : Hf(N(x))→ M(x) 8 : Hg(N(x))→ M(x)
9 : f1(M(x))→ M(f(x)) 10 : g1(M(x))→ M(g(x))
11 : top(M(x))→ top(O(x))
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For example, the outermost rewrite step of R

f(f(g(b)))→R b

corresponds to the four innermost rewrite steps of RT :

top(O(f(f(g(b)))))→RT top(Hf(f(f(g(b)))))

→RT top(Hf(N(b)))

→RT top(M(b))

→RT top(O(b))

Since this correspondence generally holds, we can show outermost termination of the
original system R by proving innermost termination of the transformed system RT . It is
also known that the transformation is complete, meaning thatRT is innermost terminating
if R is outermost terminating.

Now the remaining question is whether one can show innermost termination of such a
transformed rewrite system. The above example reveals a major problem of the approach:
This kind of transformations significantly increases the complexity of term structure in
rewrite rules. Unfortunately, even state-of-the-art termination provers tend to fail since
it cannot analyze the complex terms and rewriting structures. For example, AProVE
and TTT2, the 1st and 2nd places on the termination competition in 2015, fail to prove
innermost termination of the above system RT .

1.3 Approach

This research aims to establish techniques for showing innermost termination of systems
resulting from Thiemann’s transformation. There are various transformation techniques
for termination with specific strategies [10, 5]. Most of them result in rewrite systems
similar to those of Thiemann’s transformation.

There are two major problems of transformed systems. The first problem is that one
rewrite step becomes many rewrite steps as seen in Example 3. Termination proofs are
usually established by detecting decreasing parameters. However, the intermediate steps
obfuscate the decreasingness. The second problem originates from the nature of innermost
rewriting. Majority of existing termination techniques directly or indirectly employ the
notion of reduction order, which does not fit for innermost termination proofs when the
system is non-terminating.

In order to address these problems, we develop new transformation techniques. Exploit-
ing type information, we resolve the first problem about the complexity of term structure.
There is a technique to introduce many-sorts to untyped rewrite systems. As proved in the
main part of the thesis, all rewrite systems induced by Thiemann’s transformation admit
(proper) many-sorted signatures. Based on the sort information, we can perform type-
based reachability analysis which can be integrated with various termination techniques,
such as dependency graphs [15], usable rules [13, 24], and simple freezing [14].
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For handling the second problem, we introduce a transformation technique dubbed
pattern separation. This transformation fills in the gap between ordinary rewrite step and
innermost rewrite step, in the latter of which lacks the closure under substitutions. By
using the aforementioned type introduction technique, pattern separation can be further
improved.

Here we illustrate these techniques, contributions of this thesis. We start with type-based
reachability analysis.

Example 4 (continued from Example 3). The next sort information can be attached to
the transformed system RT .

O : α→ β M : α→ β f : α→ δ g : α→ δ
Hf : δ → β Hg : δ → β N : α→ δ b : α

f : α→ α g : α→ α f1 : β → β g1 : β → β
top : β → γ


Here we suppose that with other termination methods we succeeded in eliminate rules
5 and 6 from RT . Terms of form top(O(s)) no longer reaches top(M(t)) for any terms s
and t. Our type-based reachability analysis can detect this unreachability in the following
way: We interpret each term to a set of function symbols that may appear in reachable
terms. This can be computed by using the rewrite system ‖RT‖ on sets:

1 : {O} {Hf , f} 2 : {O} {Hg, g}
3 : {Hf , f} {f1,O} 4 : {Hg, g} {g1,O}

7 : {Hf ,N} {M} 8 : {Hg,N} {M}
9 : {f1,M} {M} 10 : {g1,M} {M}
11 : {top,M} {top,O}

Because our terms are sorted, the interpretation of top(O(s)), say A, does not contain the
symbol M, and moreover the set A cannot reach a set containing M by using ‖RT‖. This is
sufficient to conclude the announced unreachability. The information of unreachability is
used for the computation of the dependency graph [15]. Although we omit its explanation
here, this technique now shows innermost termination of RT . We provide details of type-
based reachability analysis in Chapter 3.

Our running example can also be handled by pattern separation, which is another our
contribution.

Example 5 (continued from Example 3). Applying the optimization version of pattern
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separation on the TRS RT , The following TRS Sop(RT ) is obtained:

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3.1 : Hf(f(g(x)))→ f1(O(g(x))) 3.2 : Hf(f(b))→ f1(O(b))
3.3 : Hf(f(h(x)))→ f1(O(h(x))) 3.4 : Hf(f(c))→ f1(O(c))
3.5 : Hf(f(f(f(x))))→ f1(O(f(f(x)))) 3.6 : Hf(f(f(b)))→ f1(O(f(b)))
3.7 : Hf(f(f(h(x))))→ f1(O(f(h(x)))) 3.8 : Hf(f(f(c)))→ f1(O(f(c)))
4.1 : Hg(g(f(x)))→ g1(O(f(x))) 4.2 : Hg(g(g(x)))→ g1(O(g(x)))
4.3 : Hg(g(h(x)))→ g1(O(h(x))) 4.4 : Hg(g(c))→ g1(O(c))
5 : f(f(g(x)))→ N(x) 6 : g(b)→ N(f(g(b)))
7 : Hf(N(x))→ M(x) 8 : Hg(N(x))→ M(x)
9 : f1(M(x))→ M(f(x)) 10 : g1(M(x))→ M(g(x))
11 : top(M(x))→ top(O(x))

Pattern separation replaces rule 3 of RT by its instantiated versions rules 3.1− 3.8. The
same idea applies to rules 4.

Innermost termination of the resulting system can be shown by existing termination
provers (such as AProVE and TTT2). We want to stress that the character of innermost
rewrite step has been changed by the separation: As shown in the thesis, the final system
even has the termination property.

As shown by the experiments, in Chapter 6 our pattern separation technique is helpful
for proving innermost termination of transformed systems. However, the condition to
obtain a transformed system as an overlay system remains unclear, and this will be a
future work.

1.4 Overview and Contributions

The thesis is organized as follows: In Chapter 2 we introduce background knowledge of
term rewrite system in a formal way which includes definitions, notions, and notations.
We propose the discovered property of a transformed system resulting from Thiemann’s
algorithm along with type-based reachability analysis in Chapter 3. Type-based reach-
ability analysis is a reachability analysis based on type information of the system. In
Chapter 4 we introduce pattern separation technique in two version. First with the basic
version and then following with the optimized version which is exploited type informa-
tion. The techniques have been implemented and tested. Chapter 5 reports experimental
results where we compare transformation results of pattern separation using testing result
on existing termination tools. Finally, we conclude the thesis and discuss related work
and future work in Chapter 6.

Here is the list of our contributions:

• analysis of types for Thiemann’s transformation,

• type-based reachability analysis,
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• a pattern separation technique, and

• the optimized version of pattern separation.
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Chapter 2

Term Rewriting

This chapter aims at describing background knowledge for this thesis. Term rewriting is
a computational model which is based on directed equations on terms. Recalling basic
notions for terms and relations, we define term rewrite systems and related computational
properties. For detailed surveys of term rewriting, we refer to [3, 21, 18].

2.1 Term Rewrite Systems

We start with the definition of terms, which are built from function symbols and variables.
Every function symbol f is associated with a natural number n, called arity, and we may
write f (n) to indicate the arity of f . The arity stands for the number of arguments of the
function.

Definition 1. Let F be a set of function symbols and let V be a countably infinite set
of variables. The set T (F ,V) of terms is inductively defined as follows:

• If x ∈ V then x ∈ T (F ,V).

• If f (n) ∈ F and t1, . . . , tn ∈ T (F ,V) then f(t1, . . . , tn) ∈ T (F ,V).

The set Var(t) of variables in a term t is defined as follows:

Var(t) =


{t} if t ∈ V
n⋃
i=1

Var(ti) if t = f(t1, . . . , tn)

A term t is called ground if Var(t) = ∅. The set of all ground terms is denoted by T (F).

Definition 2. A term is called linear if no variable occurs more than once in the term.

Example 6. Let F = {+(2), s(1), 0(0)} and x, y ∈ V . While the term s(0) + 0 is ground,
the term t = s((x+ 0) + s(s(0))) is not as Var(t) = {x}.
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Definition 3. The root symbol of a term t is defined as follows:

root(t) =

{
t if t ∈ V
f if t = f(t1, . . . , tn)

Definition 4. A position is a finite sequence of positive integers. The set of positions in
a term t inductively defined as follows:

Pos(t) =

{
{ε} if t ∈ V
{ε} ∪ {ip | 1 ≤ i ≤ n and p ∈ Pos(ti)} if t = f(t1, . . . , tn)

The empty sequence, denoted by ε, represents the root position. We define useful notions
for positions: Let p and q be positions. If pr = q for some position r then we say that p
is above q, or q is below p and write p ≤ q. If p ≤ q and p 6= q then we write p < q.

Example 7. The term t = s((x+ 0) + s(s(0))) can be represented as a tree structure. In
the figure, each node is a function symbol, and subscriptions indicate the position.

sε

+1

+11 s12

x111 0112 s121

01211

Definition 5. A subterm of a term t at position p ∈ Pos(t) is denoted by t|p, which is
formally defined as follows:

s|p =

{
s if p = ε

ti|q if p = iq and s = f(t1, . . . , ti, . . . , tn)

We say that t is a subterm of s if there exists p ∈ Pos(s) such that s|p = t. We denote
this relation of t and s by tE s. Moreover, we call t a proper subterm (tC s) if p 6= ε.

Example 8. The proper subterms of term s = s((x + 0) + s(s(0))) are s|111 = x, s|112 =
s|1211 = 0, s|11 = x+ 0, s|12 = s(s(0)), s|121 = s(0), and s|1 = (x+ 0) + s(s(0)). Note that
subterms of s include s itself.
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Definition 6. Let s, t be terms and p ∈ Pos(s). The term which is obtained from s
by replacing the subterm of s at position p with term t is denoted by s[t]p and formally
defined as follows:

s[t]p =

{
t if p = ε

f(s1, . . . , si[t]q, . . . , sn) if s = f(s1, . . . , si, . . . , sn) and p = iq

For convenience, contexts of a term are defined in the same way as terms containing a
special fresh constant symbol �, named hole.

Definition 7. A context is a term in T (F ] {�},V) such that the hole symbol occur in
the term exactly once. The term which is obtained from replacing the hole symbol in a
context C with a term t is denoted by C[t] and formally defined as follows:

C[t] =

{
t if C = �

f(t1, . . . , C
′[t], . . . , tn) if C = f(t1, . . . , C

′, . . . , tn)

where C ′ is a context.

The difference between a nullary function symbol (i.e. constant) and a variable is that
the variable can be substituted with a term.

Definition 8. Let V be a countably infinite set. A substitution is a mapping from V to
T (F ,V), denoted as a set of variable bindings {x1 7→ t1, . . . , xn 7→ tn}. A term t and a
substitution σ, the term tσ is an instance of t, denoted by t ·≥ tσ. The term tσ is defined
as follows:

tσ =

{
σ(t) if t ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

A substitution σ is more general than a substitution σ′ whenever σ′ = δσ for some
substitution δ. The relation is denoted by σ ≤ σ′.

Equation solving in the area of term algebra is centered around unification. In term
algebra, satisfiability is called unifiability and solutions are called unifiers.

Definition 9. Let s and t be terms. We say s and t are unifiable if there exists a
substitution σ such that sσ = tσ. This substitution is called unifier of s and t. The most
general unifier (mgu) is a unifier σ such that σ ≤ σ′ for all unifiers σ′ of them.

Example 9. The terms (x+ 0) + s(s(y)) and (s(0) + 0) + s(z) are unifiable. Substitution
{x 7→ s(0), z 7→ s(0), y 7→ 0} is one of their unifiers, while the most general unifier is
{x 7→ s(0), z 7→ s(y)}.

Now we are ready to define term rewrite systems and rewrite steps.

Definition 10. A pair (`, r) of terms with ` /∈ V and Var(r) ⊆ Var(`) is called a rewrite
rule. Such a pair is often denoted by ` → r. A term rewrite system (TRS) is a set of
rewrite rules.
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Example 10. The following set is an instance of TRSs.

R =

{
s(x) + y → s(x+ y)

0 + x→ x

}
Definition 11. Let R be a TRS over a signature F . A function symbol f ∈ F is called a
defined symbol if there exists a rewrite rule `→ r ∈ R such that f = root(`). The subset
of F consisting of all defined symbols is denoted by FD. The subset of F consisting of all
non-defined symbols is denoted by FC.

Definition 12. Let R be a TRS. We define function lhs(R) and rhs(R) as follow:

lhs(R) = {` | `→ r ∈ R} rhs(R) = {r | `→ r ∈ R}

We call a TRS R is left-linear if every term in lhs(R) are linear. A right-linear TRS is
defined in the same way.

Definition 13. Let F be a signature and let V be a set of variables. The rewrite relation
→R on terms is defined as the smallest set such that if `→ r ∈ R then C[`σ]→R C[rσ]
for all contexts C and substitutions σ.

Example 11. Consider the TRS R in Example 10. The term s(s(s(0))+s(x)) is rewritten
in the following way:

s(s(s(0)) + s(x))→R s(s(s(0) + s(x)))

→R s(s(s(0 + s(x))))

→R s(s(s(s(x))))

Next, we will introduce some basic symbols which are often combined with rewrite
relations. Here we omit R and use only → for rewrite relation.

Definition 14. Given two relations A and B, their composition A ◦B is the set of pairs
(x, z) which satisfied (x, y) ∈ A and (y, z) ∈ B for some y. The following notions are
defined on composition of rewrite relation with itself.

→0 = {(x, x) | x ∈ T (F ,V)} identity relation
→i+1 = →i ◦ → i+1 step relation
→+ =

⋃
i>0 →i transitive closure

→∗ = →+ ∪ →0 reflexive transitive closure
← = {(y, x) | x→ y} inverse relation

The following terminologies are used for describing relations between terms.

• x is reducible or a redex if there exists y such that x→ y.

• x is in a normal form if x is not reducible.

• y is a normal form of x if x→∗ y and y is in normal form.

10



Example 12. Consider TRS R in the Example 10.

• s(s(s(0)) + s(x)) is reducible

• s(s(s(s(x)))) is in normal form

• s(s(s(s(x)))) is a normal form of s(s(s(0)) + s(x))

Definition 15. Given a TRS R and two terms s and t, we say that s reaches t if there
are substitutions σ and τ such that sσ →∗R tτ . We denote it by s ↪→R t.

Definition 16. A term s overlaps with a term t if s is unifiable with a non-variable
subterm of t. A TRS is called an overlay system if overlaps between rules occur only at
the root position.

2.2 Many-sorted Term Rewrite Systems

In this section, we consider terms structure equipped with sort (i.e. type) information.
We restrict sort information to every function symbol in the following way, each function
has a sort and expects sort of each argument of the function. From here on, we denote S
is a set of sort symbols.

Definition 17. An S-sorted signature F is consisted of the set of sort symbols S, the
signature F and the sort of function symbol and expected sorts for its arguments written
as a set of:

f : α1 × · · · × αn → β

where f ∈ F , α1, . . . , αn, β ∈ S, and n is a number of the arguments in f . We say that f
has sort β

Example 13. Let S = {α, β, γ}. The next set forms a sorted signature:

F =


0 : α 1 : α
g : α→ β h : β → β
f : β → γ


Definition 18. We define function st : F → S and ar : F × N→ S as follow:

st(f) = β ar(f, i) = αi

where f : α1 × · · · × αn → β and i ∈ {1, . . . , n}.

Definition 19. The sort of a term is defined as the sort of root symbol of the term, so
we have sort(t) = st(root(t)), and we may write tα to indicate that the sort of t is α. We
inductively define the set of well-sorted terms WT (F ,V) as follows:

• If x ∈ V then x ∈ WT (F ,V).
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• If f (n) ∈ F , t1, . . . , tn ∈ WT (F ,V) and ar(f, i) = sort(ti) for all 1 ≤ i ≤ n such that
then f(t1, . . . , tn) ∈ WT (F ,V).

Definition 20. We say that S-sorted signature F is compatible with TRS R if the
following restrictions hold for all `→ r ∈ R

• ` ∈ WT (F ,V) and r ∈ WT (F ,V)

• sort(`) = sort(r)

Example 14. Consider the TRS R consisting of the following rule:

R =

{
f(g(x))→ f(g(0))

g(0)→ h(g(1))

}
The following S-sorted signature are compatible with TRS R

0 : α 1 : α
g : α→ β h : β → β
f : β → γ




0 : α 1 : α
g : α→ α h : α→ α
f : α→ α


Unsorted TRSs are regarded as one-sorted TRSs. The technique to attach sort infor-

mation to a TRS is called type introduction [27], resulting in the left set. This process can
be done by initializing all distinct sorts for every function symbols and find a compatible
many-sorted signature while forcing minimal sorts to be equal. However, TRS without
sort information can be considered as a single sorted-signature, which is shown in the
right set.

2.3 Termination

Termination is an important property of term rewrite systems. Unfortunately, it is known
to be undecidable. However, there are many researches on automated termination analysis
such as dependency pairs [2], matrix interpretations [6] and polynomial interpretations [8].

In this section, we explain the reduction order, which is an important tool for proving
termination of rewrite systems. To prove termination of a rewrite system, we find an
appropriate reduction order for the system. Thus, various reduction orders have been
invented and widely used for proving termination. First, we start with the definition of
termination of rewrite systems.

Definition 21. A relation → is terminating if there is no infinite sequence.

a0 → a1 → a2 → · · ·

Definition 22. A TRS R is terminating if →R is terminating.

It is easy to imagine how to prove that a TRS is non-terminating. Simply, we try to
find a witness of infinite rewrite sequence.
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Example 15. Consider the TRS R:{
f(g(x))→ f(g(0))

g(0)→ h(g(1))

}
There exists the following infinite rewrite sequence.

f(g(x))→R f(g(0))→R f(g(0)) · · ·

Definition 23. An order > is said to be well-founded order over a set A if and only if
for all nonempty subsets S of A there exists m ∈ S such that m 6> s for all s ∈ S.

The basic idea to prove termination of TRS R is to find a well-founded order > on
terms that is compatible with the rewrite relation →R (i.e. if s →R t then s > t for all
terms s, t). The motivation of reduction order definition is to find an order that capable
of proving termination while checking only ` > r for finitely many rules `→ r ∈ R rather
than s > t for infinitely many pairs s, t with s →R t. However, the order must satisfy
additional properties.

Definition 24. A reduction order is a well-founded order > that

• is closed under contexts :

for every term s, t and context C, if s > t then C[s] > C[t], and

• is closed under substitutions :

for every term s, t and substitution σ, if s > t then sσ > tσ.

Theorem 1. A TRS R is terminating if and only if there exists a reduction order > such
that ` > r for all `→ r ∈ R.

In the next example, we introduce a simple reduction order based on size of terms and
a number of variables occurrences.

Example 16. The strict order > on T (F ,V) defined

s > t if and only if |s| > |t| and, |s|x ≥ |t|x for all variables x

forms a reduction order. The following TRSR can be shown terminating by this reduction
order

R = {0 + x→ x}

Since |0 + x| = 3 > 1 = |x| and |0 + x|x = 1 ≥ 1 = |x|x. Therefore, Theorem 1 applies.

Here, we introduce dependency pairs [2] and dependency graphs [15].

13



Definition 25. Let R be a TRS over a signature F and F ] = F ] {f ](n)|f (n) ∈ FD}.
The set of dependency pairs of R is denoted by DP(R) and formally defined as follows:

DP(R) = {`] → u] | uE r and root(u) ∈ FD and u 6C ` and `→ r ∈ R}

where, if u = f(u1, . . . , un) then u] = f ](u1, . . . , un).

Definition 26. Let R be a TRS. A dependency graphs DG(R) is the directed graph
whose vertexes set is DP(R) and edges set E is given by the following condition:

(s→ t, u→ v) ∈ E if and only if t ↪→R u

Theorem 2. A TRS R is terminating if DG(R) contains no cycle1.

2.4 Innermost and Outermost Strategies

In Example 15, we saw that the following TRS is non-terminating.{
f(g(x))→ f(g(0))

g(0)→ h(g(1))

}
However, this TRS is innermost terminating. In most of the cases, a system requires only
termination under some strategies. We do not need the full termination property for the
system.

The innermost strategy is one of the various rewriting strategies. The idea of innermost
rewriting strategy is at the rewritable position there is no other rewritable position below.
Termination of rewrite systems may depend on a rewrite strategy. Unfortunately, the
undecidability still remains, even termination under rewriting strategies.

Example 17. Consider the TRS consisting the following rules:

f(a)→ f(a)
a→ b

This is a simple system that innermost terminating but not terminating in general.

Definition 27. Let R be a TRS. The innermost step
i−→R is defined as follows: s

i−→R t
if there is a rule ` → r ∈ R, a context C, and a substitution σ such that s = C[`σ],
t = C[rσ] and all proper subterms of `σ are in normal form.

Definition 28. A TRS R is innermost terminating if
i−→R is terminating.

There is an important theorem on a relation between terminating and innermost ter-
minating that inspire our work. The theorem was discovered by Masahiko Sakai [20].

1A non-empty set (v1, . . . , vn) of vertexes is a cycle if v1Ev2E · EvnEv1
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Theorem 3. A Right-Linear Overlay system is terminating if and only if it is innermost
terminating.

The idea of outermost rewriting strategy is at the rewritable position there is no other
rewritable position above.

Example 18. Consider the TRS consisting the following rules:

a→ f(a)
f(a)→ b

This is a simple system that outermost terminating but not terminating in general.

Definition 29. Let R be a TRS. The outermost step
o−→R is defined as follows: s

o−→R t
if there are a rule ` → r ∈ R, a context C, a position p, and a substitution σ such that
s = C[`σ], t = C[rσ], s|p = `σ and for all q ∈ Pos(s) such that if q < p then s|q is not a
redex.

Definition 30. A TRS R is outermost terminating if
o−→R is terminating.

However, only a few techniques are available to analyze outermost termination directly.
One way to prove outermost termination is to transform a system to prove it as innermost
termination. The technique was proposed by Thiemann in 2009 [23].

2.5 Thiemann’s Transformation

This work is concerned with Thiemann’s transformation because of two reasons. First,
transformed systems are highly different from hand-crafted systems. Systems resulting
from transformations are consist of heavily mutual recursion and deeply nested functions.
Second, transformed systems have a nice property when applying type information. Here,
we start with Thiemann’s transformation.

Definition 31. Let R be a TRS. The transformed TRS RT consists of following rules:

O(d(x1, . . . , xn)) → Hd(d(x1, . . . , xn))
Hf (f(x1, . . . , xm)) → fi(x1, . . . ,O(xi), . . . , xm)
g(`1, . . . , `n) → N(r)
Hd(N(x)) → M(x)
hi(x1, . . . ,M(xi) . . . , xm) → M(h(x1, . . . , xm))
top(M(x)) → top(O(x))
O(c(x1, . . . , xm)) → ci(x1, . . . ,O(xi), . . . , xm)
O(a) → M(r)

where d(n), f (m) ∈ FD, c(m) ∈ FC, h(m) ∈ F , a(0) → r, g(`1, . . . , `n) → r ∈ R, n > 0 and
i ∈ {1 . . .m}.

Theorem 4. TRS R is outermost terminating if and only if RT is innermost terminating.
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We illustrate the transformation with an example.

Example 19. In the running example, we consider the TRS R consisting of the following
rule:

R =

{
f(f(g(x)))→ x

g(b)→ f(g(b))

}
The transformed TRS RT results as:

RT =



O(f(x))→ Hf(f(x)) O(g(x))→ Hg(g(x))
Hf(f(x))→ f1(O(x)) Hg(g(x))→ g1(O(x))

f(f(g(x)))→ N(x) g(b)→ N(f(g(b)))
Hf(N(x))→ M(x) Hg(N(x))→ M(x)
f1(M(x))→ M(f(x)) g1(M(x))→ M(g(x))

top(M(x))→ top(O(x))


Next, we provide illustration of rewrite sequences of R and RT . The outermost rewrite
step of R

f(f(g(b)))→R b

corresponds to the four innermost rewrite steps of RT :

top(O(f(f(g(b)))))→RT top(Hf(f(f(g(b)))))

→RT top(Hf(N(b)))

→RT top(M(b))

→RT top(O(b))

Since this correspondence generally holds, we can show outermost termination of the orig-
inal system R by proving innermost termination of the transformed system RT . It is also
known that the transformation is complete, meaning that if RT is innermost terminating
then R is outermost terminating.

It is obvious that the TRS R in Example 19 is outermost terminating. However,
innermost termination of the transformed system cannot be proved with AProVE [9] or
TTT2 [16]. In this thesis, we will propose pattern separation technique which further
transforms the system and makes the innermost termination provable.
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Chapter 3

Type-based Reachability Analysis

In this chapter, we introduce type-based reachability analysis which exploits sort informa-
tion to analyze systems. The idea of this technique is to map a term into a set and check
subset relation for analyzing reachability. First of all, we will explain the motivation and
follow with related definitions.

3.1 Typing Transformed Systems

Considering Thiemanns transformation [23], if one applies type introduction [27] to a
transformed system, original function symbols in the transformed system can be distin-
guished which inspire the technique we propose in this thesis. Given a unsorted TRS,
type introduction tries to find a typing in such a way that all rules are well-typed. This
can be done systematically in a way similar to unification; in this way, a sorted TRS is
obtained.

Theorem 5. Suppose that R is a TRS over a signature F and the result of type intro-
duction on RT is F ′. Then the following equality holds.

{st(f) | f ∈ F} ∩ {st(g) | g ∈ F ′ \ F} = ∅

Proof. Since type induction yields the most general result, if there exists a sorted signature
which satisfies Theorem 5 then the sorted signature induce by type introduction also
satisfies the equality. Let R be an arbitrary TRS. We construct a sorted signature which
is compatible with the transformed system and satisfied the claim by attaching sorts into
the definition of transformation.

O(d(xα1 , . . . , x
α
n)α)β → Hd(d(xα1 , . . . , x

α
n)δ)β

Hf (f(xα1 , . . . , x
α
m)δ)β → fi(x

α
1 , . . . ,O(xαi )β, . . . , xαm)β

g(`α1 , . . . , `
α
n)δ → N(rα)δ

Hd(N(xα)δ)β → M(xα)β

hi(x
α
1 , . . . ,M(xαi )β . . . , xαm)β → M(h(xα1 , . . . , x

α
m)α)β

top(M(xα)β)γ → top(O(xα)β)γ

O(c(xα1 , . . . , x
α
m)α)β → ci(x

α
1 , . . . ,O(xαi )β, . . . , xαm)β

O(aα)β → M(rα)β
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where d(n), f (m) ∈ FD, c(m) ∈ FC, h(m) ∈ F , a(0) → r, g(`1, . . . , `n) → r ∈ R, n > 0 and
i ∈ {1 . . .m}. We can guarantee that `1, . . . , `n and r are well-sorted terms because all
functions from the original system are of type α. From the construction above, the set
of all sorts of new symbols is {β, γ, δ} and the set of sorts of original symbols is {α} are
disjoint.

Example 20. Let signature F = {f, g, b}, and let TRS R be the following system.

R =

{
f(f(g(x)))→ x

g(b)→ f(g(b))

}
The transformed system RT results as

O(f(x))→ Hf(f(x)) O(g(x))→ Hg(g(x))
Hf(f(x))→ f1(O(x)) Hg(g(x))→ g1(O(x))

f(f(g(x)))→ N(x) g(b)→ N(f(g(b)))
Hf(N(x))→ M(x) Hg(N(x))→ M(x)
f1(M(x))→ M(f(x)) g1(M(x))→ M(g(x))

top(M(x))→ top(O(x))


The signature of RT is F ′ = {O,Hf ,Hg,Hf ,Hg, f1, g1, top, f, g, b}. The following sort in-
formation is obtained from applying type introduction on RT

O : α→ β M : α→ β
f : α→ δ g : α→ δ
Hf : δ → β Hg : δ → β
N : α→ δ b : α
f : α→ α g : α→ α

f1 : β → β g1 : β → β
top : β → γ


So we have {st(g) | g ∈ F ′ \ F} = {β, γ, δ} and {st(f) | f ∈ F} = {α}. Therefore, the
set of original symbols sorts {st(f) | f ∈ F} and the set of new symbols sorts{st(g) | g ∈
F ′ \ F} are disjoint.

3.2 Type-based Reachability

It is well known that reachability is undecidable in general [21]. Therefore, reachability
analysis mostly based on over-approximation technique. The next definition shows how
one can approximate a term over a sorted signature to a set. Note that, sorted signature
can be given to a standard TRS by type inference.
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Example 21. Consider the running example TRS RT which consisting of the following
rules:

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3 : Hf(f(x))→ f1(O(x)) 4 : Hg(g(x))→ g1(O(x))
5 : f(f(g(x)))→ N(x) 6 : g(b)→ N(f(g(b)))
7 : Hf(N(x))→ M(x) 8 : Hg(N(x))→ M(x)
9 : f1(M(x))→ M(f(x)) 10 : g1(M(x))→ M(g(x))
11 : top(M(x))→ top(O(x))

We use the following substitutions

• σ = {x 7→ f(f(g(b)))}

• τ = {y 7→ b}

and following rewrite step as a witness to show term top(O(x)) reach term top(M(y)).

top(O(f(f(g(b)))))→RT top(Hf(f(f(g(b)))))

→RT top(Hf(N(b)))

→RT top(M(b))

→RT top(O(b))

Definition 32. Let S ′ be a subset of S on S-sort signature F and a term tα. We define
the mapping ‖tα‖ as follows:

‖tα‖ =


{t} if t ∈ V and α ∈ S ′

{f} ∪ ‖t1‖ ∪ . . . ∪ ‖tn‖ if t = f(t1, . . . , tn) and α ∈ S ′

∅ otherwise

Moreover, let R be a TRS. We define the set extending system ‖R‖ as the set of pairs of
symbols sets:

‖R‖ = {‖`‖ ‖r‖ | `→ r ∈ R}

Now, we select a special set S ′ which makes reachability approximation possible in the
following way.

Definition 33. The set S ′ is the maximal subset of S, satisfying

(‖`‖ ∪ ‖r‖) ∩ V = ∅ for every `→ r ∈ R

An intention behind this definition is to avoid accessible of variables while mapping a
term to a set.

Lemma 1. Suppose t be a well-sorted term of many-sorted TRS R. Then the following
equality holds:

‖tσ‖ = ‖t‖ for all substitutions σ
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Example 22 (continued from Example 21). The next sort information can be attached
to the transformed system RT .

O : α→ β M : α→ β f : α→ δ g : α→ δ
Hf : δ → β Hg : δ → β N : α→ δ b : α

f : α→ α g : α→ α f1 : β → β g1 : β → β
top : β → γ


The set S ′ for this system is {β, γ, δ}. Here, we obtain the set extending system ‖R‖ as
follow:

1 : {O} {Hf , f} 2 : {O} {Hg, g}
3 : {Hf , f} {f1,O} 4 : {Hg, g} {g1,O}
5 : {f} {N} 6 : {g} {N}
7 : {Hf ,N} {M} 8 : {Hg,N} {M}
9 : {f1,M} {M} 10 : {g1,M} {M}
11 : {top,M} {top,O}

From the above definition, a term can be seen as a set, and a rewrite system becomes
a set extending system. In this definition, we simulate the rewrite relation of a TRS with
a extend relation.

Definition 34. A set A is extended to the set B denoted by A  R B if there exists
`  r ∈ R such that ` ⊆ A, B = A ∪ r and |A| < |B|. For for convenience usage we
define the following notions:

• A set A is extendable if and only if there exists B such that A R B.

• A set A is in normal form if and only if it is not extendable.

• The set B is the normal form of A if A ∗R B and B is in normal form. We denoted
by A  

R
.

Example 23. Consider the set extending system R on Example 22.

• {Hf , f} is extendable.

• {b(0), f(1), g(1), f
(1)
1 , g

(1)
1 , f(1), g(1),O(1),M(1),H(1)

f ,H(1)
g ,N(1)} is the normal form of {Hf , f}.

Next, we illustrate the following rewrite step

top(O(f(f(g(b)))))
i−→RT top(Hf(f(f(g(b)))))

→RT top(Hf(N(b)))

→RT top(M(b))

→RT top(O(b))

with this extend step

{top,O} R {top,O} ∪ {Hf , f}
 R {top,O,Hf , f} ∪ {N}
 R {top,O,Hf , f,N} ∪ {M}
 R {top,O,Hf , f,N,M} ∪ {O}
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Before the proof, we show the next lemma.

Lemma 2. If s→R t then ‖t‖  ‖R‖ ⊆ ‖s‖ ‖R‖.

Proof. Suppose s  R t. We can write s = C[`σ], t = C[rσ] and s|p = `σ. The context
can be considered in two cases.

• If there exists q ∈ Pos(s) such that q ≥ p and ‖s|q‖ = ∅, then there exists contexts
C1 and C2 such that s|q = C2[`σ] and C = C1[C2]. Therefore, ‖s‖ = ‖C1‖ = ‖t‖
and the claim holds.

• If for all q ∈ Pos(s) such that if q ≥ p then ‖s|q‖ 6= ∅, then ‖s‖ = ‖C‖ ∪ ‖`‖ and
‖t‖ = ‖C‖∪‖r‖. We can extend ‖s‖ one more step to obtain ‖C‖∪‖`‖∪‖r‖. Since
‖t‖ ⊆ ‖C‖ ∪ ‖`‖ ∪ ‖r‖, we have ‖t‖  ‖R‖ ⊆ ‖s‖  ‖R‖ .

The approximation of reachability can be computed by computing a normal form with
respect to extending relation and simply check subset relation. First, we prove com-
putability of approximation by proving a normal form with respect to extending relation
is unique and computable.

Theorem 6. The relation  ‖R‖ is complete.

Proof. We show Theorem 6 by proving termination and confluence property with respect
to extending relation.

• Termination proof: Since set over function symbols is a finite set, we claim the
termination property by showing if A  ‖R‖ B then A ( B. Suppose A  ‖R‖ B
then we can write B = A ∪ ‖r‖ for some r in right hand-side of R and |A| < |B|.
Therefore A ( B.

• Confluence proof: Since the relation is terminating, we only show local confluence
for claiming confluence. Suppose A ‖R‖ B and A ‖R‖ C then we can write B =
A∪‖r1‖ and C = A∪‖r2‖ such that ‖`1‖, ‖`2‖ ⊆ A for some `1 → r1, `2 → r2 ∈ R.
Therefore B  ‖`2‖ ‖r2‖ A ∪ ‖r1‖ ∪ ‖r2‖ and C  ‖`1‖ ‖r1‖ A ∪ ‖r1‖ ∪ ‖r2‖.

Hence, a normal form with respect to  ‖R‖ is unique and computable. Next, we claim
the following theorem by induction on rewrite step.

Theorem 7. If s ↪→R t, then ‖t‖ ⊆ ‖s‖ ‖R‖

Proof. Our hypothesis is if sσ →n
R tτ for some substitutions σ and τ , then ‖t‖ ⊆ ‖s‖  ‖R‖ .

• if n = 0, then sσ = tτ . Since ‖sσ‖ = ‖s‖ and ‖tτ‖ = ‖t‖, we know that ‖s‖ = ‖t‖.
We have ‖t‖ ⊆ ‖t‖ ‖R‖ because A  ‖R‖ B implies A ⊂ B. Therefore, if t →ε

R u,
then ‖u‖ ⊆ ‖t‖  ‖R‖ .
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• if n > ε, then sσ →R t1 →n−1
R tτ . We have ‖t‖ ⊆ ‖t1‖  ‖R‖ by induction hypothesis.

Since sσ →R t1, we know that ‖t1‖  ‖R‖ ⊆ ‖sσ‖  ‖R‖ by Lemma 2. Because ‖sσ‖ =
‖s‖. So, ‖sσ‖  ‖R‖ = ‖s‖  ‖R‖ . Therefore, ‖t‖ ⊆ ‖s‖ ‖R‖ .

Hence, if s ↪→R t, then ‖t‖ ⊆ ‖s‖  ‖R‖ .

We will introduce ICAP function [11] and reachability approximation by ICAP . Then
we compare type-based reachability analysis and ICAP on the running example.

Definition 35. Let R be a TRS and let t be a term. We define ICAP as follows:

ICAP(t) =


t if t ∈ V
u if t = f(t1, . . . , tn) and u does not unify with any v ∈ lhs(R)

fresh variable otherwise

where, u = f(ICAP(t1), . . . , ICAP(tn)).

Theorem 8. If s ↪→R t, then ICAP(s) and t are unifiable.

Example 24 (continued from Example 21). Here we suppose that with other termination
methods we succeeded to eliminate rules 5 and 6 from RT . Terms of form top(O(s)) no
longer reaches top(M(t)) for any terms s and t. In this setting, let consider the dependency
graph approximation DG(RT ), the corresponding dependency pairs of rule 11 in TRS RT

will form a self-cycle if the reachability approximation of top](O(x)) and top](M(y)) yields
yes answer. Now, the accuracy of approximations become importance to remove the cycle
and lead to termination.

Our type-based reachability analysis can detect this unreachability in the following way:
We interpret each term to a set of function symbols that may appear in reachable terms.
This can be computed by using the rewrite system ‖RT‖ on sets:

1 : {O} {Hf , f} 2 : {O} {Hg, g}
3 : {Hf , f} {f1,O} 4 : {Hg, g} {g1,O}

7 : {Hf ,N} {M} 8 : {Hg,N} {M}
9 : {f1,M} {M} 10 : {g1,M} {M}
11 : {top,M} {top,O}

Here, we compare approximation of top](O(x)) ↪→RT top](M(y)) with this approach and
ICAP function.

• The approximation ICAP yield reachable answer. Since ICAP(top(O(x))) = top(x′),
we have top(x′) and top(M(y)) are unifiable.

•

‖top(M(x))‖ = {top,M}
6⊆ {top,Hs, s}
= {top,O}  

‖RT ‖
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In this example, type based reachability analysis shows a performance to remove cycle in
DG(RT ) which supports termination proof in dependency graphs technique.

This analysis can be integrated into techniques such as dependency graphs [2], usable
rules [13, 24], and usable replacement maps [14].
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Chapter 4

Pattern Separation Transformation

This chapter describes a transformation technique for innermost termination analysis,
dubbed pattern separation. This technique focuses on systems resulting from Thiemann’s
transformation stated in Chapter 2. The key point is to reduce the gap between innermost
rewriting and reduction order based termination techniques. The analysis provides more
possibility to prove the system innermost terminating.

4.1 Complementation

First of all, we recall to the complement algorithm introduced by Lazrek, Lescanne, and
Thiel [17]. The complement algorithm plays a key role in pattern separation. We here
reformulate their algorithm as a simple recursive function.

Definition 36. Let t be a term over signature F . The complement of t is a set of terms
which an element is not instant of t. The complement C(t) defined as follows:

C(t) =

{
∅ if t ∈ V
A1 ∪ . . . ∪ An ∪B if t = f(t1, . . . , tn)

Here, Ai and B stand for the following sets:

Ai = {f(t1, . . . , ti−1, ci, xi+1, . . . , xn) | ci ∈ C(ti)}
B = {g(x1, . . . , xm) | g ∈ F \ {f}}

where, x1, x2, . . . are fresh variables.

Example 25. Consider the signature F = {f(1), g(1), h(1), 0(0), 1(0)}. We illustrate compu-
tation of C(f(g(0))). Below we follow notations in Definition 36 to compute the set step
by step

We start with computing C(0):

C(0) = {g(x1, . . . , xm) | g ∈ F and 0 6= g}
= {f(x), g(x), h(x), 1}
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Then we compute C(g(0)):

C(g(0)) = {g(c) | c ∈ C(0)} ∪ {g(x1, . . . , xm) | g ∈ F and g 6= g}
= {g(c) | c ∈ C(0)} ∪ {f(x), h(x), 1, 0}
= {g(f(x)), g(g(x)), g(h(x)), g(1), f(x), h(x), 1, 0}

Finally, we can compute C(f(g(0))):

C(f(g(0))) = {f(c) | c ∈ C(g(0))} ∪ {g(x1, . . . , xm) | g ∈ F and f 6= g}
= {f(c) | c ∈ C(g(0))} ∪ {g(x), h(x), 1, 0}

=


f(g(f(x))), f(g(g(x))), f(g(h(x))), f(g(1)),

f(f(x)), f(h(x)), f(1), f(0),
g(x), h(x), 1, 0


Definition 37. We define Σ(t) as the set of all ground instantiations of a term t over a
signature. Moreover, for a set of term T we defined Σ(T ) as follows:

Σ(T ) =
⋃
t∈T

Σ(t)

Lemma 3. The identity T (F) = Σ(t) ] Σ(C(t)) holds for all linear terms t

The set of all ground instantiations of t and set of all ground instantiations of set C(t)
are disjoint and union of them result as the set of all ground terms. We divide the proof
of Lemma 3 in to two part

• Σ(t) and Σ(C(t)) are disjoint for every term t

• T (F) and Σ(t) ∪ Σ(C(t)) are equivalent for all linear terms t.

Lemma 4. The sets Σ(t) and Σ(C(t)) are disjoint.

Proof. We show the claim by induction on term t.

• If t is a variable, then we have C(t) = ∅ by Definition 36, then Σ(C(t)) = ∅.
Therefore Σ(t) ∩ Σ(C(t)) = ∅.

• Suppose t = f(t1, . . . , tn). Assume to contrary u ∈ Σ(t) ∩ Σ(C(t)). As u ∈ Σ(t),
there is a substitution σ with u = tσ. As u ∈ Σ(C(t)), there exist v ∈ C(t) =
A1 ∪ · · · ∪ An ∪ B such that u = vτ for some substitution τ . We distinguish two
cases.

– If v ∈ Σ(B), then we can write v = g(x1, . . . , xm) for fresh variables x1, . . . , xn.
We know that f 6= g by Definition 36. Hence, u = f(t1σ, . . . , tnσ) 6= g(x1τ, . . . , xmτ) =
vτ which contradicted.
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– Suppose v ∈ Σ(Ai) for some i ∈ {1, . . . , n}. We can write v = f(t1, . . . , ti−1, ci, xi+1, . . . , xn)
for an arbitrary i and fresh variables xi+1, . . . , xn. We have ciτ ∈ Σ(C(ti))
then ciτ /∈ Σ(ti) from induction hypothesis. Therefore ciτ 6= tiσ. Hence
f(t1σ, . . . , tnσ) 6= f(t1τ, . . . , ti−1τ, ciτ, xi+1τ, . . . , xnτ) which contradicted.

Therefore v /∈ C(t).

Here, we can conclude that Σ(t) and Σ(C(t)) are disjoint for every term t.

Next, we prove that T (F) and Σ(t) ∪ Σ(C(t)) are equivalent for all linear terms t. Since
Σ(t) ∪ Σ(C(t)) ⊆ T (F) is trivial. We only show that T (F) ⊆ Σ(t) ∪ Σ(C(t)).

Lemma 5. The set T (F) is a subset of Σ(t) ∪ Σ(C(t)) for all linear terms t.

Proof. Let u ∈ T (F). We show the claim by induction on u. As u is ground, one can
write u = f(u1, . . . , un).

• If t is variable, then u ∈ Σ(t).

• If t = g(t1, . . . , tm) with f 6= g, then f(x1, . . . , xn) ∈ C(t) for fresh variables
x1, . . . , xn. We take σ as {x1 7→ u1, . . . , xn 7→ un}. Hence, u = f(x1, . . . , xn)σ ∈
Σ(C(t)).

• If t = f(t1, . . . , tn), then the induction hypothesis yields ui ∈ Σ(ti)]Σ(C(ti)) for all i.
If ui ∈ Σ(ti) for all i, then u ∈ Σ(t). Otherwise, there exists an i such that uj ∈ Σ(tj)
for all 0 < j < i and ui ∈ Σ(C(ti)). We have f(t1, . . . , ti−1, ci, xi+1, . . . , xn) ∈ Ai ⊆
C(t) for some ci ∈ C(ti) and fresh variables xi+1, . . . , xn. We take σj as the most
general unification of uj and tj. We can choose ci such that ciσi = ui and take σ
as σ1, . . . , σi{xi+1 7→ u1, . . . , xn 7→ un}. We can safely substitute since t is a linear
term. Hence, u = f(t1, . . . , ti−1, ci, xi+1, . . . , xn)σ ∈ Σ(C(t)).

Therefore, u ∈ Σ(t) ] Σ(C(t)). Here, we can conclude that T (F) ⊆ Σ(t) ∪ Σ(C(t)).

The linearity condition in Lemma 3 is an important limitation of this algorithm and it
effects the pattern separation technique which will be introduced in the next section.

Example 26. Let signature F = {+(2), s(1), 0(0)}. We illustrate the necessity of linear
condition. Let t = s(x) + x. Then we obtain:

C(t) =

{
(x+ y)+z, 0 + x,

s(x), 0

}
However,

• s(0)+s(0) ∈ T (F),

• s(0)+s(0) 6∈ Σ(s(x)+x), and

• s(0)+s(0) 6∈ Σ(C(s(x)+x)).

Therefore T (F) = Σ(t) ] Σ(C(t)) does not hold.
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4.2 Pattern Separation

Most of termination techniques are base on reduction orders which the order satisfies
closure under contexts and closure under substitution. However, innermost rewriting is
not closed under substitutions witnessed by the following example.

Example 27. Consider the TRS:

R =

{
f(g(x))→ f(g(0))

g(0)→ h(g(1))

}
There exists a term which is not closed under substitutions:

f(g(x)) for σ = {x 7→ 0}

Because f(g(x))
i−→R f(g(0)) but f(g(0)) 6 i−→R f(g(0)).

We overcome this situation by resolving ambiguities of rule application caused by over-
lapping rules. For this sake, we instantiate rewrite rules. The following theorem allows
us to focus on ground terms when showing innermost termination.

Theorem 9. A TRS R over F is innermost terminating if and only if the TRS R over
F ] {h(1), c(0)} is ground innermost terminating.

Example 28. Consider the TRS R in Example 27. We instantiate f(g(x))→ f(g(0)) to
obtain the following rules:

1.1 : f(g(f(x)))→ f(g(0))
1.2 : f(g(g(x)))→ f(g(0))
1.3 : f(g(h(x)))→ f(g(0))
1.4 : f(g(1))→ f(g(0))

In this instantiated system, only the rule 1.2 is overlapping with rule 2 in TRSR. However,
the optimized version of pattern separation can get rid of it.

In order to understand the process, we introduce related theorem, definition, and no-
tation. First, we begin with definition and notation for pattern separation.

Definition 38. Let ren(t) be an arbitrary but fixed linear term resulting from replacing
all variable occurrences in a term t with fresh variables. We define the following notation:

• s ↑ t if ren(s) and ren(t) are unifiable.

• s t t is a fixed instance of s by a mgu of ren(s) and ren(t).

• S ⊗ T = {s t t | s ∈ S, t ∈ T , and s ↑ t}.

Example 29. Let A and B are set of terms.
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• A =
{

f(g(x)), g(0)
}

• B =

{
f(g(f(x)), f(g(g(x))), f(0),
f(f(x)), g(x), 0

}
We have f(g(x)) ↑ f(g(f(x)), f(g(x)) ↑ f(g(g(x))), and g(0) ↑ g(x) while the other pairs in
A×B are not unifiable. Hence,

A⊗B = {a t b | a ∈ S, b ∈ T , and a ↑ b}
= {f(g(x)) t f(g(f(x)), f(g(x)) t f(g(g(x))), g(0) t g(x)}
= {f(g(f(x)), f(g(g(x))), g(0)}

We use the ⊗ operator to perform intersection of ground term in a view of finite
representation.

Lemma 6. The identity Σ(S ⊗ T ) = Σ(S) ∩ Σ(T ) holds for all sets of terms S and T .

Proof. We divide proof of Lemma 6 into two steps.

• First, we show that Σ(S ⊗ T ) ⊆ Σ(S) ∩ Σ(T ) holds for all sets of terms S and T .
Let a ∈ Σ(S ⊗ T ) and σ an arbitrary substitution. We can write a = (s t t)σ for
some s ∈ S and t ∈ T by Definition 38. Suppose τ is the most general unification of
s and t. Now we have st t = sτ = tτ . Hence, a = sτσ ∈ Σ(S) and a = tτσ ∈ Σ(T ).
Therefore, a ∈ Σ(S) ∩ Σ(T ).

• Next, we show that Σ(S)∩Σ(T ) ⊆ Σ(S⊗T ) holds for all sets of terms S and T . Let
a ∈ Σ(S) ∩ Σ(T ). We can write a = sσ1 = tσ2 for some s ∈ S, t ∈ T and suitable
substitution σ1 and σ2. Since the identity sσ1 = tσ2 holds, there exists τ such that
(s t t)τ = sσ1 = tσ2. Therefore, a = (s t t)τ ∈ Σ(S ⊗ T ).

From here on, we define definitions for pattern separation.

Definition 39. We define non-root overlap of term ` with respect to a TRS R as follows:

OR(`) = {`[`|p t `′]p | `′ ∈ lhs(R), p ∈ PosF(`) \ {ε} and `|p ↑ `′}

This function collects terms which are instance of ` but rewritable at non-root position
by the TRS R.

Example 30. Let TRS R consist of the following rules:

R =

{
f(g(x))→ f(g(0))

g(0)→ h(g(1))

}
We compute non-root overlaps of left-hand-side of rules in TRS R, which is resulting as:

• OR(f(g(x))) = {f(g(0))}
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• OR(g(0)) = ∅

Next, we define complement pattern of term ` with respect to a TRS R. This function
aims to collect terms which are instances of ` but not rewritable at any non-root position.

Definition 40. Let R be a TRS and let ` be a term. We define complement pattern
PR(`) as follows:

PR(`) =


{`} if OR(`) = ∅
{`} ⊗

⊗
t∈OR(`)

C(t) otherwise

Lemma 7. For a left-linear TRS R over signature F and linear term `

Σ(PR(`)) = {s ∈ T (F) | ` ·≥ s and t 6 ·≥ s for all t ∈ OR(`) }

holds.

Proof. We distinguish two cases.

• If OR(`) = ∅, then

s ∈ Σ(PR(`))

⇐⇒ s ∈ T (F) and ` ·≥ s and t 6 ·≥ s for all t ∈ OR(`)

⇐⇒ s ∈ Σ(`)

⇐⇒ s ∈ Σ(PR(`)) by Definition 40

• If OR(`) 6= ∅, then

s ∈ Σ(PR(`))

⇐⇒ s ∈ T (F) and ` ·≥ s and t 6 ·≥ s for all t ∈ OR(`)

⇐⇒ s ∈ Σ(`) and s /∈ Σ(t) for all t ∈ OR(`) by Definition 37

⇐⇒ s ∈ Σ(`) and s ∈ Σ(C(t)) for all t ∈ OR(`) by Lemma 3

⇐⇒ s ∈ Σ(`) ∩
⋂

t∈OR(`)

Σ(C(t))‘

⇐⇒ s ∈ Σ({`} ⊗
⊗

t∈OR(`)

C(t)) by Lemma 6

⇐⇒ s ∈ Σ(PR(`)) by Definition 40

Example 31. Consider TRS R from the previous example. The complement pattern of
left-hand-side of rules in TRS R, which is resulting as:

• PR(f(g(x))) =

{
f(g(f(x))) f(g(g(x)))
f(g(h(x))) f(g(1))

}
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• PR(g(0)) = {g(0)}

Lastly, we rewrite a collection of term which is collected by complement pattern, with
innermost step with respect to a TRS R.

Definition 41. Let R be a TRS over a signature F . The pattern separation version of a
TRS R over signature F , denoted by S(R) and defined as follows:

S(R) = {`→ r | `′ ∈ lhs(R), ` ∈ PR(`′), and `
i−→R r}

Note that the complement algorithm compute over signature F ] {h(1), c(0)}.

Example 32. Continuing from Example 31. The pattern separation version of a TRS R
is

S(R) =


f(g(f(x)))→ f(g(0)) f(g(g(x)))→ f(g(0))
f(g(h(x)))→ f(g(0)) f(g(1))→ f(g(0))

g(0)→ h(g(1))


Lemma 8. Let s and t be ground terms. Then s

i−→R t if and only if s
i−→S(R) t.

Proof. We separate the proof into two directions.

• First, we show the ’if’-direction. Since Innermost rewrite relation is a subset of

rewrite relation, then we have
i−→S(R) is a subset of −→S(R). Following from Defini-

tion 41, we have −→S(R) is a subset of
i−→R. Therefore, s

i−→S(R) t implies s
i−→R t.

• Next, we show the ’only if’-direction. Suppose s
i−→R t with s = C[`σ], t = C[rσ] for

some rule `→ r ∈ R, a context C, and a substitution σ. All proper subterms of `σ
are in normal form. It is obvious that `σ ∈ Σ(`). Due to the normal form condition
`σ /∈ Σ(OR(`)) follows from Definition 39. Because `σ ∈ Σ(`) and `σ /∈ Σ(OR(`))
we can conclude `σ ∈ Σ(PR(`)) by Lemma 7. There exists substitution σ1 such

that `σ1 ∈ PR(`) and `σ1σ2 = `σ. Since `σ1 ∈ PR(`) and `σ
i−→R rσ, we have

`σ1 → rσ1 ∈ S(R) by Definition 41. Because all proper subterms of `σ are in

normal form, `σ1σ2
i−→S(R) rσ1σ2 holds. Hence, s = C[`σ1σ2]

i−→S(R) C[rσ1σ2] = t.

Theorem 10. A left-linear TRS R is innermost terminating if and only if S(R) is
innermost terminating.

Proof. Let R be a left-linear TRS over signature F .

R is innermost terminating

⇐⇒ R over signature F ′ is ground innermost terminating by Theorem 9

⇐⇒ S(R) is ground innermost terminating by Lemma 8

⇐⇒ S(R) is innermost terminating by Theorem 9

where, F ′ = F ] {h(1), c(0)}.
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This technique applied to a system and transformed it into another system. The tech-
nique itself does not provide a full termination prove. So, we can select any suited termi-
nation technique for the transformed system to show a complete proof.

Example 33. Consider the running example TRS RT which consisting of the following
rules:

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3 : Hf(f(x))→ f1(O(x)) 4 : Hg(g(x))→ g1(O(x))
5 : f(f(g(x)))→ N(x) 6 : g(b)→ N(f(g(b)))
7 : Hf(N(x))→ M(x) 8 : Hg(N(x))→ M(x)
9 : f1(M(x))→ M(f(x)) 10 : g1(M(x))→ M(g(x))
11 : top(M(x))→ top(O(x))

We compute S(RT ) (i.e. the pattern separation of the TRS RT ), which is resulting as:

1 : O(f(x)) :→ Hf(f(x)) 2 : O(g(x)) :→ Hg(g(x))
3 : Hf(f(O(x))) :→ f1(O(O(x))) 4 : Hf(f(Hf(x))) :→ f1(O(Hf(x)))
5 : Hf(f(f(x))) :→ f1(O(f(x))) 6 : Hf(f(g(x))) :→ f1(O(g(x)))
7 : Hf(f(Hg(x))) :→ f1(O(Hg(x))) 8 : Hf(f(g(x))) :→ f1(O(g(x)))
9 : Hf(f(f1(x))) :→ f1(O(f1(x))) 10 : Hf(f(g1(x))) :→ f1(O(g1(x)))
11 : Hf(f(N(x))) :→ f1(O(N(x))) 12 : Hf(f(b)) :→ f1(O(b))
13 : Hf(f(M(x))) :→ f1(O(M(x))) 14 : Hf(f(top(x))) :→ f1(O(top(x)))
15 : Hf(f(h(x))) :→ f1(O(h(x))) 16 : Hf(f(c)) :→ f1(O(c))
17 : Hf(f(f(O(x)))) :→ f1(O(f(O(x)))) 18 : Hf(f(f(f(x)))) :→ f1(O(f(f(x))))
19 : Hf(f(f(Hf(x)))) :→ f1(O(f(Hf(x)))) 20 : Hf(f(f(f(x)))) :→ f1(O(f(f(x))))
21 : Hf(f(f(Hg(x)))) :→ f1(O(f(Hg(x)))) 22 : Hf(f(f(g(x)))) :→ f1(O(f(g(x))))
23 : Hf(f(f(f1(x)))) :→ f1(O(f(f1(x)))) 24 : Hf(f(f(g1(x)))) :→ f1(O(f(g1(x))))
25 : Hf(f(f(N(x)))) :→ f1(O(f(N(x)))) 26 : Hf(f(f(b))) :→ f1(O(f(b)))
27 : Hf(f(f(M(x)))) :→ f1(O(f(M(x)))) 28 : Hf(f(f(top(x)))) :→ f1(O(f(top(x))))
29 : Hf(f(f(h(x)))) :→ f1(O(f(h(x)))) 30 : Hf(f(f(c))) :→ f1(O(f(c)))
31 : Hg(g(O(x))) :→ g1(O(O(x))) 32 : Hg(g(f(x))) :→ g1(O(f(x)))
33 : Hg(g(Hf(x))) :→ g1(O(Hf(x))) 34 : Hg(g(f(x))) :→ g1(O(f(x)))
35 : Hg(g(g(x))) :→ g1(O(g(x))) 36 : Hg(g(Hg(x))) :→ g1(O(Hg(x)))
37 : Hg(g(g(x))) :→ g1(O(g(x))) 38 : Hg(g(f1(x))) :→ g1(O(f1(x)))
39 : Hg(g(g1(x))) :→ g1(O(g1(x))) 40 : Hg(g(N(x))) :→ g1(O(N(x)))
41 : Hg(g(M(x))) :→ g1(O(M(x))) 42 : Hg(g(top(x))) :→ g1(O(top(x)))
43 : Hg(g(h(x))) :→ g1(O(h(x))) 44 : Hg(g(c)) :→ g1(O(c))
45 : f(f(g(x))) :→ N(x) 46 : g(b) :→ N(f(g(b)))
47 : Hf(N(x)) :→ M(x) 48 : Hg(N(x)) :→ M(x)
49 : f1(M(x)) :→ M(f(x)) 50 : g1(M(x)) :→ M(g(x))
51 : top(M(x)) :→ top(O(x))


TTT2 fails to handle this system. However, AProVE can prove its innermost termination
with in 30.93 seconds. This system name is ffg.trs. The result can be found in the
appendix.
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The result of this technique combines with termination provers are shown in Chapter 5
and the appendix. Lastly, the technique does not guarantee to resolve all ambiguity at
overlap positions (i.e. transform to overlay system). However, the optimization version
of pattern separation yield better result, details are described in the next section.

4.3 Optimization

In the previous section, we showed that pattern separation transformation is capable of
supporting innermost termination proof. However, one drawback is termination technique
need to handle many additional rules. This section will describe how to further optimize
pattern separation transformation by using type information. By this optimization, the
transformation result will produce less additional rules and may become an overlay system.
The optimization derives benefit from the following theorem proposed by Van de Pol [25].

Theorem 11. A TRS R is innermost terminating if and only if many-sorted version of
the TRS R is innermost terminating

Example 34. Let TRS R consist of the following rules:

R =

{
f(g(x))→ f(g(0))

g(0)→ h(g(1))

}
As shown in the previous section, the pattern separation version of a TRS R is

S(R) =


f(g(f(x)))→ f(g(0)) f(g(g(x)))→ f(g(0))
f(g(h(x)))→ f(g(0)) f(g(1))→ f(g(0))

g(0)→ h(g(1))


The optimization version of pattern separation Sop(R) will result in the following TRS:

Sop(R) =
{

f(g(1))→ f(g(0)) g(0)→ h(g(1))
}

The number of rules in pattern separation transformation exposed from the complement
pattern process. We reduce the number of rules by considering sort information while
performing complement on terms.

Definition 42. Let t be a well-sorted term. The sorted complement set of t is a set of
well-sorted terms which an element is not instant of t. The sorted-complement set C ′(t)
is defined as follows:

C ′(tα) =

{
∅ if t ∈ V
A1 ∪ . . . ∪ An ∪B if t = f(t1, . . . , tn)

Here, Ai and B stand for the following sets:

Ai = {f(t1, . . . , ti−1, ci, xi+1, . . . , xn) | ci ∈ C ′(ti)}
B = {g(x1, . . . , xm)β | g ∈ F \ {f}, and α = β}

where, x1, x2, . . . are fresh variables.
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The optimization version Sop(R) of pattern separation is defined in the same way as
S(R) but it uses sorted complement set instead.

Example 35. After performing type introduction on TRS R. The following sorted-
signature obtained. 

0 : α 1 : α
g : α→ β h : β → β
f : β → γ


We illustrate computation of C ′(f(g(0))). Below we follow notations in Definition 42 to
compute the set step by step.

We start with computing C ′(0):

C ′(0α) = {g(x1, . . . , xm)δ | g ∈ F , 0 6= g and α = δ}
= {1α}

Then we compute C ′(g(0)):

C ′(g(0α)β) = {g(c) | c ∈ C ′(0)} ∪ {g(x1, . . . , xm)δ | g ∈ F , g 6= g and β = δ}
= {g(c) | c ∈ C ′(0)} ∪ {h(xβ)β}
= {g(1α)β, h(xβ)β}

Finally, we can compute C ′(f(g(0))):

C ′(f(g(0α)β)γ) = {f(c) | c ∈ C ′(g(0))} ∪ {g(x1, . . . , xm)δ | g ∈ F , f 6= g and γ = δ}
= {f(c) | c ∈ C ′(g(0))} ∪∅
= {f(g(1α)β)γ, f(h(xβ)β)γ}

Definition 42 directly effect to the complement pattern which rely on complement pro-
cess. The new result on complement pattern of left-hand-side of rules in TRS R are

• PR(f(g(x))) = {f(g(1)), f(h(x))}

• PR(g(0)) = {g(0)}

After rewrite with innermost step we finally obtained the system

Sop(R) =
{

f(g(1))→ f(g(0)) g(0)→ h(g(1))
}

Here, the term f(h(x)) disappear because it not rewritable. As mention in the previous
section, pattern separation with optimization may result in an overlay system.

Theorem 12. A left-linear TRS R is innermost terminating if and only if the TRS
Sop(R) is innermost terminating.

We exploit Theorem 11 and prove Theorem 12 in the same way as Theorem 10.
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Example 36 (continued from Example 33). We compute Sop(RT ) (i.e. the optimized
version of pattern separation of the TRS RT ), which is resulting as:

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3 : Hf(f(g(x)))→ f1(O(g(x))) 4 : Hf(f(b))→ f1(O(b))
5 : Hf(f(h(x)))→ f1(O(h(x))) 6 : Hf(f(c))→ f1(O(c))
7 : Hf(f(f(f(x))))→ f1(O(f(f(x)))) 8 : Hf(f(f(b)))→ f1(O(f(b)))
9 : Hf(f(f(h(x))))→ f1(O(f(h(x)))) 10 : Hf(f(f(c)))→ f1(O(f(c)))
11 : Hg(g(f(x)))→ g1(O(f(x))) 12 : Hg(g(g(x)))→ g1(O(g(x)))
13 : Hg(g(h(x)))→ g1(O(h(x))) 14 : Hg(g(c))→ g1(O(c))
15 : f(f(g(x)))→ N(x) 16 : g(b)→ N(f(g(b)))
17 : Hf(N(x))→ M(x) 18 : Hg(N(x))→ M(x)
19 : f1(M(x))→ M(f(x)) 20 : g1(M(x))→ M(g(x))
21 : top(M(x))→ top(O(x))


Both TTT2 and AProVE can prove its innermost termination with in 7.95 seconds and
5.63 seconds respectively. The system is about half in a number of rules compared to the
normal pattern separation version. The result can be found in the appendix.

Apply this technique to the transformed system mostly result as an overlay system. In
the next chapter, we demonstrate pattern separation on transformed systems.
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Chapter 5

Experiments

In this chapter, we illustrate pattern separation technique. Unfortunately, type-based
reachability analysis cannot make a difference in a number of edges in dependency graphs
of our experiment systems. For the pattern separation technique, we divide the exper-
iment into two parts. In the first part, we will experiment on transformed systems by
comparing a number of rules in transformed systems between standard and optimized ver-
sion. In the second part, we use original systems and their transformed version as inputs
for termination tools then compare the result provided by tools. All experiments were
performed on a PC with a CPU Intel Core i7-7500U with 16GB RAM for all experiments.

5.1 Pattern Separation

We implemented both versions of the pattern separation techniques in OCaml. The
program consists of about 1000 lines of OCaml code. Input TRSs are generated from
Thiemann’s transformation [23] which take input TRSs from 279 outermost termination
problems in The Termination Problems Data Base (TPDB) [1].

Given an input TRS, the optimized version of the algorithm first performs type-introduction
to the TRS, then pattern separation. Pattern separation can be applied for each rule
therefore, in the case of non left-linear TRS, non left-linear rules will be ignored and just
transformed the rest.

Here we show the difference between both versions in term of a number of rules in
transformed systems. We limit the time for transformation to 60 seconds. The system
which transforms longer than 60 seconds considered as timeout in our experiment.

version Separation (Basic) Separation (Optimized)

Average Rules 257 92
Timeout (60s) 21 6

NOTE 1: We do not include systems which are timeout in the calculation.
NOTE 2: Full table of the result shown in the appendix.
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Example 37. Consider the running example TRS R to illustrate the difference between
basic version and optimized version.{

1 : f(f(g(x)))→ x
2 : g(b)→ f(g(b))

}
The following TRS RT is resulting from The Thiemann’s transformation [23].

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3 : Hf(f(x))→ f1(O(x)) 4 : Hg(g(x))→ g1(O(x))
5 : f(f(g(x)))→ N(x) 6 : g(b)→ N(f(g(b)))
7 : Hf(N(x))→ M(x) 8 : Hg(N(x))→ M(x)
9 : f1(M(x))→ M(f(x)) 10 : g1(M(x))→ M(g(x))
11 : top(M(x))→ top(O(x))


Applying the pattern separation on the TRS RT results as:

1 : O(f(x)) :→ Hf(f(x)) 2 : O(g(x)) :→ Hg(g(x))
3 : Hf(f(O(x))) :→ f1(O(O(x))) 4 : Hf(f(Hf(x))) :→ f1(O(Hf(x)))
5 : Hf(f(f(x))) :→ f1(O(f(x))) 6 : Hf(f(g(x))) :→ f1(O(g(x)))
7 : Hf(f(Hg(x))) :→ f1(O(Hg(x))) 8 : Hf(f(g(x))) :→ f1(O(g(x)))
9 : Hf(f(f1(x))) :→ f1(O(f1(x))) 10 : Hf(f(g1(x))) :→ f1(O(g1(x)))
11 : Hf(f(N(x))) :→ f1(O(N(x))) 12 : Hf(f(b)) :→ f1(O(b))
13 : Hf(f(M(x))) :→ f1(O(M(x))) 14 : Hf(f(top(x))) :→ f1(O(top(x)))
15 : Hf(f(h(x))) :→ f1(O(h(x))) 16 : Hf(f(c)) :→ f1(O(c))
17 : Hf(f(f(O(x)))) :→ f1(O(f(O(x)))) 18 : Hf(f(f(f(x)))) :→ f1(O(f(f(x))))
19 : Hf(f(f(Hf(x)))) :→ f1(O(f(Hf(x)))) 20 : Hf(f(f(f(x)))) :→ f1(O(f(f(x))))
21 : Hf(f(f(Hg(x)))) :→ f1(O(f(Hg(x)))) 22 : Hf(f(f(g(x)))) :→ f1(O(f(g(x))))
23 : Hf(f(f(f1(x)))) :→ f1(O(f(f1(x)))) 24 : Hf(f(f(g1(x)))) :→ f1(O(f(g1(x))))
25 : Hf(f(f(N(x)))) :→ f1(O(f(N(x)))) 26 : Hf(f(f(b))) :→ f1(O(f(b)))
27 : Hf(f(f(M(x)))) :→ f1(O(f(M(x)))) 28 : Hf(f(f(top(x)))) :→ f1(O(f(top(x))))
29 : Hf(f(f(h(x)))) :→ f1(O(f(h(x)))) 30 : Hf(f(f(c))) :→ f1(O(f(c)))
31 : Hg(g(O(x))) :→ g1(O(O(x))) 32 : Hg(g(f(x))) :→ g1(O(f(x)))
33 : Hg(g(Hf(x))) :→ g1(O(Hf(x))) 34 : Hg(g(f(x))) :→ g1(O(f(x)))
35 : Hg(g(g(x))) :→ g1(O(g(x))) 36 : Hg(g(Hg(x))) :→ g1(O(Hg(x)))
37 : Hg(g(g(x))) :→ g1(O(g(x))) 38 : Hg(g(f1(x))) :→ g1(O(f1(x)))
39 : Hg(g(g1(x))) :→ g1(O(g1(x))) 40 : Hg(g(N(x))) :→ g1(O(N(x)))
41 : Hg(g(M(x))) :→ g1(O(M(x))) 42 : Hg(g(top(x))) :→ g1(O(top(x)))
43 : Hg(g(h(x))) :→ g1(O(h(x))) 44 : Hg(g(c)) :→ g1(O(c))
45 : f(f(g(x))) :→ N(x) 46 : g(b) :→ N(f(g(b)))
47 : Hf(N(x)) :→ M(x) 48 : Hg(N(x)) :→ M(x)
49 : f1(M(x)) :→ M(f(x)) 50 : g1(M(x)) :→ M(g(x))
51 : top(M(x)) :→ top(O(x))


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Applying the optimized version of pattern separation on the TRS RT results as:

1 : O(f(x))→ Hf(f(x)) 2 : O(g(x))→ Hg(g(x))
3 : Hf(f(g(x)))→ f1(O(g(x))) 4 : Hf(f(b))→ f1(O(b))
5 : Hf(f(h(x)))→ f1(O(h(x))) 6 : Hf(f(c))→ f1(O(c))
7 : Hf(f(f(f(x))))→ f1(O(f(f(x)))) 8 : Hf(f(f(b)))→ f1(O(f(b)))
9 : Hf(f(f(h(x))))→ f1(O(f(h(x)))) 10 : Hf(f(f(c)))→ f1(O(f(c)))
11 : Hg(g(f(x)))→ g1(O(f(x))) 12 : Hg(g(g(x)))→ g1(O(g(x)))
13 : Hg(g(h(x)))→ g1(O(h(x))) 14 : Hg(g(c))→ g1(O(c))
15 : f(f(g(x)))→ N(x) 16 : g(b)→ N(f(g(b)))
17 : Hf(N(x))→ M(x) 18 : Hg(N(x))→ M(x)
19 : f1(M(x))→ M(f(x)) 20 : g1(M(x))→ M(g(x))
21 : top(M(x))→ top(O(x))


This example picks up to represent the average difference between basic and optimized
version. However, the difference between two version may vary. In this experiment,
the highest difference in a number of rules is 2314 rules from LISTUTILITIES nosorts-
noand L.trs and the highest rules reduction from basic version to optimized version is 92
percent from 4.06.trs which reduce from 1242 rules to 98 rules.

5.2 Termination Experiments

We test the innermost termination property of transformed systems compare with original
systems on AProVE [9] and TTT2 [16] which is the 1st and the 2nd winners of TermCOMP
2015 1 respectively.

We limit the run-time to 60 seconds for each system. A system that takes more than
60 seconds to proved or disproved, considered to timeout in our experiments. The result
is shown in Table 5.2.

AProVE Proved Disproved Timeout

RT 0 86 193
S(RT ) 13 73 193
Sop(RT ) 24 84 171

TTT2 Proved Disproved Timeout

RT 13 74 192
S(RT ) 20 67 192
Sop(RT ) 30 81 168

NOTE: Full table of the result shown in the appendix.

Lastly, we extract 120 systems which are an overlay and right-linear systems which in-
nermost termination is equivalent to full termination [20] and attempting to proved full
termination by NaTT [26] instead.

1Termination Problem Database, http://nfa.imn.htwk-leipzig.de/termcomp-2015/competitions/4
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NaTT Proved Disproved Timeout

Sop(RT ) 13 48 59

From above results, consider the TRS R in Example 37. The TRS RT cannot handle
by both AProVE and TTT2. However, AProVE can prove the innermost termination of
TRS S(RT ) but TTT2 still cannot. Lastly, the innermost termination of TRS Sop(RT )
can be proved by both AProVE and TTT2.
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Chapter 6

Conclusion

We presented two new techniques on innermost termination analysis, which are type-based
reachability analysis and pattern separation. Our primary target problems are transformed
systems especially innermost termination problems obtained from Thiemann’s transfor-
mation algorithm which is considered as a representation of difficult systems. Type in-
formation and complement pattern are exploited to analyze problems. We conclude the
thesis by starting with related work.

6.1 Related Work

Type-based reachability analysis is an approximation technique for computing reach-
ability. Another famous approximation technique for computing reachability is ICAP
function. However, an approach of those techniques is difference and orthogonal to each
other.

The ICAP function [11] is an approximation function which mainly relies on unification.
The solid point of this technique is that it can be applied to every system and well
performed in the most cases. However, the analysis only inspects from the start term.
On the other hand, type-based reachability analysis mainly employs type information to
analyze a term and map it to a set. The advantage of this technique is it analyze through
rewrite steps. Even though the missing step is hidden in nested rewrite steps, it may
detect, and the analysis concludes unreachable. The big drawback of this techniques is
that it will be completely useless if after performing type introduction the single-sorted
system is obtained. We strongly anticipate that this technique can be used combined with
the ICAP technique.

As, reachability analysis is a part of many techniques such as dependency graph, freez-
ing, usable rules and usable replacement maps. The improvement of approximation func-
tion will effect many techniques. We anticipate that unification approach and type ap-
proach of reachability analysis can be combined. The investigation on how to combine
those two techniques are a consideration as future work.
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Pattern separation is a transformation technique for innermost termination. We com-
pare this technique in two aspect transformation technique and innermost specific tech-
nique.

In transformation techniques aspect, we compare with Narrowing, Instantiation, and
Rewriting techniques [22] which are implemented in the AProVE. All of the mention
transformation techniques involve unification to compute the instantiation part. On top
of that pattern separation uses complement pattern of overlap part to instantiate a rule.
In our experiments, considering the proving result with TTT2 on the optimized version of
pattern separation of assoc f rhs.trs and the proving result with AProVE on the original
version of assoc f rhs.trs are failed. However, the proving result with AProVE on the
optimized version of pattern separation of assoc f rhs.trs is succeeded. Since TTT2 does
not include Narrowing technique, but the success proof relies on both pattern separation
and Narrowing. Therefore, assoc f rhs.trs is our witness to show the combining power of
pattern separation and narrowing technique.

For the innermost specific technique aspect, we compare pattern separation and in-
nermost recursive path ordering (iRPO) [7]. The iRPO is an ordering based on RPO
but, specifically designed for innermost termination. This technique is completely differ-
ent from pattern separation because iRPO directly proves the innermost termination of
a TRSs and pattern separation is just a transformation. We do not have experiments
on their combinations two technique since there are no existing tools that include iRPO
technique. Its evaluation is future work.

6.2 Limitations

The major limitation of our technique is that we heavily rely on type information. We
cannot use type based reachability analysis on a single-sorted TRS at all. In the case of
pattern separation, the basic version has significantly low performance compared to the
optimized version that requires type information. Another bottleneck for pattern separa-
tion is complement algorithm which requires to performing on a linear term. Therefore,
our technique is shining on a system which yields a nice type information after performing
type introduction such as a system from the Thiemanns algorithm. However, it may be
harmful to a system which yields single-sorted system after performing type introduction.

As future work, we plan to investigate conditions of type information which is suited
to our techniques. Since the performance of our techniques heavily depends on type
information. Another direction is to improve our techniques such as relax the linear term
condition for the complement algorithm and combine with existing techniques. Also, we
consider that simulation of rewrite step is excessive for proving termination. The idea
of an unavoidable set [19] which focuses on the termination property may apply to this
technique.
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Appendix A

Experimental Data

Transformation Experiments

This section reports number of rewrite rules of a particular system in our problem set.

• S(RT ) : The number of rules in the system resulting from basic version of pattern
separation.

• Sop(RT ) : The number of rules in the system resulting from optimized version of
pattern separation.

• Difference : The difference in number of rules of both version of pattern separation.

• Percentage : Percentage of reducing the number of rules from basic version to
optimized version.

Problem Name S(RT ) Sop(RT ) Difference Percentage
001 54 22 32 59.2593
003 116 52 64 55.1724
2.05 44 20 24 54.5455
4.06.trs 1242 98 1144 92.1095
4.12a# 144 54 90 62.5
4.13# 21 21 0 0
4.14# 131 47 84 64.1221
4.15# 409 120 289 70.6601
4.16# 131 47 84 64.1221
4.17# 193 63 130 67.3575
4.18# 40 16 24 60
4.2# 193 63 130 67.3575
4.3# 16 16 0 0
4.34 18 10 8 44.4444
4.4# 29 17 12 41.3793
4.40 82 34 48 58.5366
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Problem Name S(RT ) Sop(RT ) Difference Percentage
4.49 40 13 27 67.5
4.54 21 12 9 42.8571
4.7# 103 43 60 58.2524
afbg 300 120 180 60
append-wrong 224 86 138 61.6071
assoc c rhs 296 40 256 86.4865
assoc f rhs 296 40 256 86.4865
bintree 296 40 256 86.4865
cariboo add1 30 18 12 40
cariboo add2 29 18 11 37.931
cariboo add2a 28 17 11 39.2857
cariboo add3 25 25 0 0
cariboo len3 76 32 44 57.8947
cariboo nl 1 60 27 33 55
cariboo nl 2 63 33 30 47.619
cariboo nl 3 68 32 36 52.9412
cariboo nl 4 15 15 0 0
cariboo nl 5 12 12 0 0
cariboo nl 6 25 25 0
cime4 615 216 399 64.878
countbin 71 32 39 54.9296
countter 110 46 64 58.1818
dupl rhs 91 39 52 57.1429
even 69 29 40 57.971
ex0 55 22 33 60
ex1 171 61 110 64.3275
Ex14 AEGL02 41 27 14 34.1463
Ex14 AEGL02 FR 79 57 22 27.8481
Ex14 AEGL02 L 12 12 0 0
Ex14 AEGL02 Z 70 50 20 28.5714
Ex14 Luc06 GM 67 47 20 29.8507
Ex14 Luc06 L 31 20 11 35.4839
Ex14 Luc06 Z 68 36 32 47.0588
Ex15 Luc06 L 2 2 0 0
Ex15 Luc98 445 159 286 64.2697
Ex15 Luc98 L 221 102 119 53.8462
Ex16 Luc06 L 6 6 0 0
ex1m 37 19 18 48.6486
Ex1 2 AEL03 811 283 528 65.1048
Ex1 2 AEL03 L 605 221 384 63.4711
Ex1 2 Luc02c 49 25 24 48.9796
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Problem Name S(RT ) Sop(RT ) Difference Percentage
Ex1 2 Luc02c L 25 15 10 40
Ex1 GL02a 178 83 95 53.3708
Ex1 GL02a L 136 71 65 47.7941
Ex1 GL02a Z 65 65 0 0
Ex1 GM03 251 91 160 63.745
Ex1 GM03 L 181 73 108 59.6685
Ex1 GM03 Z 320 128 192 60
Ex1 GM99 93 39 54 58.0645
Ex1 GM99 GM 44 30 14 31.8182
Ex1 GM99 L 7 7 0 0
Ex1 GM99 Z 133 67 66 49.6241
Ex1 Luc02b 269 99 170 63.197
Ex1 Luc02b L 257 97 160 62.2568
Ex1 Luc04b FR 102 66 36 35.2941
Ex1 Luc04b L 95 50 45 47.3684
Ex1 Luc04b Z 92 56 36 39.1304
Ex1 Zan97 24 15 9 37.5
Ex1 Zan97 L 4 4 0 0
Ex1 Zan97 Z 39 28 11 28.2051
ex2 12 12 0 0
Ex24 GM04 32 20 12 37.5
Ex24 GM04 GM 55 38 17 30.9091
Ex24 GM04 L 19 12 7 36.8421
Ex24 Luc06 GM 42 28 14 33.3333
Ex24 Luc06 Z 126 60 66 52.381
Ex26 Luc03b 309 117 192 62.1359
ex2m 44 22 22 50
Ex2 8 1ConstSubstFix 82 34 48 58.5366
Ex2 Luc03b 226 86 140 61.9469
ex3 84 36 48 57.1429
ex3m 43 23 20 46.5116
Ex3 12 Luc96a 129 51 78 60.4651
Ex3 12 Luc96a L 121 49 72 59.5041
Ex3 2 Luc97 357 127 230 64.4258
Ex3 2 Luc97 L 261 108 153 58.6207
Ex3 3 25 Bor03 1536 168 1368 89.0625
Ex3 3 25 Bor03 Z 59 59 0 0
ex4 51 21 30 58.8235
Ex49 GM04 L 56 34 22 39.2857
ex4m 26 16 10 38.4615
Ex4 4 Luc96b 32 14 18 56.25
Ex4 4 Luc96b FR 26 26 0 0
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Problem Name S(RT ) Sop(RT ) Difference Percentage
Ex4 4 Luc96b Z 20 20 0 0
Ex4 7 15 Bor03 91 39 52 57.1429
Ex4 7 56 Bor03 91 39 52 57.1429
Ex4 7 56 Bor03 L 85 37 48 56.4706
Ex4 7 77 Bor03 24 15 9 37.5
Ex4 7 77 Bor03 L 21 13 8 38.0952
Ex4 DLMMU04 FR 877 360 517 58.951
Ex4 DLMMU04 L 460 200 260 56.5217
Ex4 DLMMU04 Z 877 360 517 58.951
Ex4 Zan97 180 68 112 62.2222
Ex4 Zan97 L 171 66 105 61.4035
ex5 26 16 10 38.4615
ex5m 11 11 0 0
Ex5 7 Luc97 923 311 612 66.3055
Ex5 7 Luc97 L 763 287 476 62.3853
Ex5 DLMMU04 FR 138 105 33 23.913
Ex5 DLMMU04 Z 134 101 33 24.6269
Ex5 Zan97 60 27 33 55
Ex5 Zan97 L 41 21 20 48.7805
ex6 40 20 20 50
ex6m 18 18 0 0
Ex6 15 AEL02 1542 510 1032 66.9261
Ex6 15 AEL02 L 1260 468 792 62.8571
Ex6 15 AEL02 Z 1224 482 742 60.6209
Ex6 9 Luc02c 59 31 28 47.4576
Ex6 9 Luc02c L 49 25 24 48.9796
Ex6 GM04 20 12 8 40
Ex6 GM04 Z 40 28 12 30
Ex6 Luc98 95 43 52 54.7368
ex7 71 32 39 54.9296
Ex7 BLR02 423 147 276 65.2482
Ex7 BLR02 L 409 145 264 64.5477
ex8 21 12 9 42.8571
Ex8 BLR02 248 88 160 64.5161
Ex8 BLR02 L 238 86 152 63.8655
ex9 49 19 30 61.2245
Ex9 BLR02 220 84 136 61.8182
Ex9 Luc04 GM 44 30 14 31.8182
Ex9 Luc04 L 34 18 16 47.0588
Ex9 Luc04 Z 124 58 66 53.2258
Ex9 Luc06 L 6 6 0 0
Ex9 Luc06 Z 21 21 0 0
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Problem Name S(RT ) Sop(RT ) Difference Percentage
ExAppendixB AEL03 861 301 560 65.0407
ExAppendixB AEL03 L 825 297 528 64
ExConc Zan97 9 9 0 0
ExConc Zan97 Z 19 19 0 0
ExIntrod GM01 145 69 76 52.4138
ExIntrod GM01 FR 120 78 42 35
ExIntrod GM01 L 139 67 72 51.7986
ExIntrod GM01 Z 120 78 42 35
ExIntrod GM04 141 65 76 53.9007
ExIntrod GM04 FR 131 85 46 35.1145
ExIntrod GM04 L 115 51 64 55.6522
ExIntrod GM04 Z 131 85 46 35.1145
ExIntrod GM99 553 205 348 62.9295
ExIntrod GM99 L 435 175 260 59.7701
ExIntrod GM99 Z 385 169 216 56.1039
ExIntrod Zan97 360 126 234 65
ExIntrod Zan97 L 272 104 168 61.7647
ExIntrod Zan97 Z 363 146 217 59.7796
ExSec11 1 Luc02a 423 153 270 63.8298
ExSec4 2 DLMMU04 L 538 196 342 63.5688
ffb SL 26 12 14 53.8462
ffg 51 21 30 58.8235
fg 37 17 20 54.0541
from one 44 22 22 50
from one a 44 22 22 50
from three 108 42 66 61.1111
f 2 1 40 20 20 50
f 2 2 40 20 20 50
f 5 50 22 28 56
f 5 1 85 35 50 58.8235
f 5 2 85 35 50 58.8235
gfb 54 24 30 55.5556
gkg 28 17 11 39.2857
g 2 const 22 13 9 40.9091
g 2 f var 33 15 18 54.5455
Hamming 28 28 0 0
inn out 51 21 30 58.8235
jwno1 34 16 18 52.9412
jwno4 34 16 18 52.9412
jwno6 34 16 18 52.9412
jwno9 50 18 32 64
LengthOfFiniteLists complete L 1249 484 765 61.249
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Problem Name S(RT ) Sop(RT ) Difference Percentage
LengthOfFiniteLists nokinds-noand FR 1447 535 912 63.027
LengthOfFiniteLists nokinds-noand L 614 254 360 58.6319
LengthOfFiniteLists nokinds-noand Z 1447 535 912 63.027
LengthOfFiniteLists nokinds FR 325 189 136 41.8462
LengthOfFiniteLists nokinds L 110 65 45 40.9091
LengthOfFiniteLists nokinds Z 325 189 136 41.8462
LengthOfFiniteLists nosorts-noand L 93 48 45 48.3871
LengthOfFiniteLists nosorts-noand Z 189 89 100 52.9101
LengthOfFiniteLists nosorts GM 65 47 18 27.6923
LengthOfFiniteLists nosorts L 56 32 24 42.8571
LengthOfFiniteLists nosorts noand GM 83 60 23 27.7108
LengthOfFiniteLists nosorts Z 105 57 48 45.7143
LISTUTILITIES nokinds L 2147 727 1420 66.1388
LISTUTILITIES nosorts-noand L 3318 1004 2314 69.7408
LISTUTILITIES nosorts L 753 269 484 64.2762
morse 78 39 39 50
muladd 69 29 40 57.971
MYNAT complete L 1311 427 884 67.4294
MYNAT nokinds-noand L 1019 329 690 67.7134
MYNAT nokinds L 394 142 252 63.9594
MYNAT nosorts-noand L 307 107 200 65.1466
MYNAT nosorts L 130 50 80 61.5385
n001 71 27 44 61.9718
n002 5 5 0 0
n003 5 5 0 0
n004 15 8 7 46.6667
n005 5 5 0 0
n006 7 7 0 0
n007 10 10 0 0
n008 17 10 7 41.1765
non-lin1 8 8 0 0
non-lin2 15 15 0 0
non-lin3 15 15 0 0
nonterm 34 21 13 38.2353
nonTermF 10 10 0 0
odd 69 29 40 57.971
outermost gr 250 26 224 89.6
OvConsOS complete L 2576 896 1680 65.2174
OvConsOS nokinds-noand L 1783 623 1160 65.0589
OvConsOS nokinds L 407 182 225 55.2826
OvConsOS nosorts-noand FR 1085 354 731 67.3733
OvConsOS nosorts-noand L 454 174 280 61.674
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Problem Name S(RT ) Sop(RT ) Difference Percentage
OvConsOS nosorts-noand Z 1085 354 731 67.3733
OvConsOS nosorts FR 141 78 63 44.6809
OvConsOS nosorts GM 85 62 23 27.0588
OvConsOS nosorts L 174 78 96 55.1724
OvConsOS nosorts noand GM 187 132 55 29.4118
OvConsOS nosorts Z 141 78 63 44.6809
PALINDROME nokinds L 884 213 671 75.905
PALINDROME nosorts L 797 83 714 89.5859
patterns1 146 56 90 61.6438
patterns2 161 61 100 62.1118
PEANO complete-noand L 1845 585 1260 68.2927
PEANO complete L 525 195 330 62.8571
PEANO nokinds-noand L 346 130 216 62.4277
PEANO nokinds L 157 67 90 57.3248
PEANO nosorts-noand L 103 43 60 58.2524
PEANO nosorts L 65 29 36 55.3846
round nonterm 49 25 24 48.9796
termMonTypes 145 65 80 55.1724
test10 1081 95 986 91.2118
test75 115 43 72 62.6087
test76 272 85 187 68.75
test77 309 100 209 67.6375
test9 194 66 128 65.9794
toyama out 115 43 72 62.6087
toyama stop 65 29 36 55.3846
toyama stop2 981 117 864 88.0734
ttt1 364 124 240 65.9341
ttt2 29 13 16 55.1724
TypeEx5 69 29 40 57.971
yoyo 2 75 33 42 56
yoyo 3 95 39 56 58.9474
yoyo 3a 67 31 36 53.7313
yoyo 3b 81 33 48 59.2593
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Termination Experiments via TTT2

This section report the result from TTT2. The report format is ”result : time”.

• Y : The system can be proved.

• N : The system can be disproved.

• M : The system cannot proved or disproved.

• T : The system cannot proved or disproved with in time limit 60s.

• E : The system cannot transformed with in time limit 60s.

Problem Name RT S(RT ) Sop(RT )
001 M:29.36 M:29.25 M:29.32
2.05 M:29.33 M:29.32 M:29.34
003 M:29.33 M:29.33 M:29.35
4.2# M:29.36 M:29.34 M:29.30
4.3# M:29.41 M:29.32 M:29.33
4.4# M:29.44 M:29.32 M:29.38
4.06 M:29.34 M:29.50 M:29.31
4.7# M:29.33 M:29.32 M:29.39
4.12a# M:29.34 M:29.32 M:29.32
4.13# M:29.37 M:29.36 M:29.35
4.14# M:29.34 M:29.33 M:29.33
4.15# M:29.34 M:29.35 M:29.32
4.16# N:1.18 M:29.30 N:4.09
4.17# M:29.35 M:29.37 M:29.37
4.18# M:29.72 M:29.38 M:29.38
4.34 M:29.82 M:29.32 M:29.32
4.40 M:29.32 M:29.28 M:29.30
4.49 M:29.37 M:29.32 M:29.31
4.54 M:29.38 M:29.32 M:29.34
Ex1 2 AEL03 M:29.33 M:29.47 M:29.37
Ex1 2 AEL03 L N:0.19 N:0.26 N:0.21
Ex1 2 Luc02c M:29.34 M:29.30 M:29.32
Ex1 2 Luc02c L N:0.18 N:0.17 N:0.17
Ex1 GL02a M:29.29 M:29.30 M:29.27
Ex1 GL02a L N:5.26 N:5.40 N:5.55
Ex1 GL02a Z M:29.29 M:29.34 M:29.31
Ex1 GM03 M:29.27 M:29.32 M:29.36
Ex1 GM03 L N:0.19 N:0.19 N:0.17
Ex1 GM03 Z M:29.36 M:29.35 M:29.29
Ex1 GM99 M:29.43 M:29.33 M:29.32
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Problem Name RT S(RT ) Sop(RT )

Ex1 GM99 GM M:29.32 M:29.32 M:29.31
Ex1 GM99 L N:5.44 N:5.22 N:5.22
Ex1 GM99 Z M:29.43 M:29.29 M:29.26
Ex1 GM99 iGM M:29.29 E:0.17 M:29.47
Ex1 Luc02b M:29.36 M:29.32 M:29.28
Ex1 Luc02b L N:0.18 N:0.21 N:0.18
Ex1 Luc04b FR M:29.29 M:29.30 Y:14.32
Ex1 Luc04b L N:0.18 N:0.18 N:0.19
Ex1 Luc04b Z M:29.31 M:29.25 M:29.28
Ex1 Zan97 M:29.33 N:5.69 N:5.79
Ex1 Zan97 L N:5.22 N:5.20 N:5.22
Ex1 Zan97 Z M:29.36 M:29.28 N:17.85
Ex2 8 1ConstSubstFix M:29.30 M:29.28 M:29.32
Ex2 Luc03b M:29.32 M:29.33 M:29.31
Ex3 2 Luc97 M:29.38 M:29.38 M:29.30
Ex3 2 Luc97 L N:0.18 N:0.23 N:0.20
Ex3 3 25 Bor03 M:29.36 M:29.62 M:29.32
Ex3 3 25 Bor03 Z M:29.36 M:29.32 M:29.34
Ex3 12 Luc96a M:29.34 M:29.27 M:29.31
Ex3 12 Luc96a L N:0.19 N:0.19 N:0.17
Ex4 4 Luc96b M:29.39 M:29.19 M:29.28
Ex4 4 Luc96b FR M:29.30 Y:3.63 Y:4.40
Ex4 4 Luc96b Z M:29.36 M:29.32 M:29.31
Ex4 7 15 Bor03 M:29.34 M:29.33 M:29.39
Ex4 7 37 Bor03 M:29.34 E:0.15 M:29.40
Ex4 7 37 Bor03 L N:0.18 E:0.15 N:0.26
Ex4 7 56 Bor03 M:29.33 M:29.28 M:29.24
Ex4 7 56 Bor03 L N:0.18 N:0.18 N:0.18
Ex4 7 77 Bor03 M:29.34 M:29.29 M:29.24
Ex4 7 77 Bor03 L N:0.18 N:0.22 N:0.18
Ex4 DLMMU04 FR M:29.39 M:29.38 M:29.37
Ex4 DLMMU04 L N:0.22 N:0.21 N:0.20
Ex4 DLMMU04 Z M:29.41 M:29.40 M:29.38
Ex4 Zan97 M:29.32 M:29.32 M:29.35
Ex4 Zan97 L N:0.17 N:0.19 N:0.18
Ex5 7 Luc97 M:29.34 M:29.34 M:29.36
Ex5 7 Luc97 L N:0.21 N:0.27 N:0.21
Ex5 DLMMU04 FR M:29.39 M:29.30 M:29.30
Ex5 DLMMU04 L N:0.17 E:0.15 N:0.23
Ex5 DLMMU04 Z M:29.31 M:29.28 M:29.27
Ex5 Zan97 M:29.33 M:29.31 M:29.32
Ex5 Zan97 L N:0.17 N:0.17 N:0.18
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Problem Name RT S(RT ) Sop(RT )
Ex6 9 Luc02c M:29.32 M:29.31 M:29.32
Ex6 9 Luc02c L N:0.21 N:0.18 N:0.17
Ex6 15 AEL02 M:29.32 M:29.51 M:29.35
Ex6 15 AEL02 L N:0.17 N:0.38 N:0.23
Ex6 15 AEL02 Z M:29.40 M:29.48 M:29.37
Ex6 GM04 M:29.36 M:29.26 M:29.33
Ex6 GM04 Z M:29.37 M:29.35 M:29.30
Ex6 Luc98 M:29.37 M:29.28 M:29.31
Ex7 BLR02 M:29.26 M:29.36 M:29.31
Ex7 BLR02 L N:0.21 N:0.24 N:0.19
Ex8 BLR02 M:29.33 M:29.31 M:29.28
Ex8 BLR02 L N:0.18 N:0.21 N:0.19
Ex9 BLR02 M:29.36 M:29.34 M:29.31
Ex9 Luc04 GM M:29.41 M:29.33 M:29.29
Ex9 Luc04 L N:0.68 N:3.02 N:0.81
Ex9 Luc04 Z M:29.40 M:29.32 M:29.36
Ex9 Luc06 L N:5.47 N:5.40 N:5.21
Ex9 Luc06 Z M:29.32 M:29.31 M:29.30
Ex14 AEGL02 M:29.32 M:29.30 M:29.34
Ex14 AEGL02 FR M:29.36 M:29.30 M:29.31
Ex14 AEGL02 L M:30.68 M:29.31 M:29.34
Ex14 AEGL02 Z M:29.35 M:29.32 M:29.31
Ex14 Luc06 GM M:29.30 M:29.32 M:29.37
Ex14 Luc06 L M:29.33 N:5.95 N:5.88
Ex14 Luc06 Z M:29.33 M:29.30 M:29.32
Ex15 Luc06 L N:3.81 N:4.08 N:3.77
Ex15 Luc98 M:29.31 M:29.37 M:29.33
Ex15 Luc98 L N:0.19 N:0.20 N:0.18
Ex16 Luc06 L N:5.47 N:5.21 N:5.41
Ex24 GM04 M:29.43 M:29.19 M:29.30
Ex24 GM04 GM M:29.36 M:29.33 M:29.33
Ex24 GM04 L N:5.27 N:5.43 N:5.23
Ex24 Luc06 GM M:29.32 M:29.33 Y:3.90
Ex24 Luc06 Z M:29.34 M:29.34 M:29.36
Ex24 Luc06 iGM M:29.38 E:0.17 M:29.42
Ex26 Luc03b M:29.39 M:29.36 M:29.31
Ex49 GM04 L N:0.21 N:0.17 N:0.17
ExAppendixB AEL03 M:29.40 M:29.42 M:29.36
ExAppendixB AEL03 L N:0.23 N:0.30 N:0.27
ExConc Zan97 M:29.85 M:29.80 M:29.95
ExConc Zan97 Z M:30.35 M:29.75 M:29.76
ExIntrod GM01 M:29.38 M:29.33 M:29.30
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Problem Name RT S(RT ) Sop(RT )
ExIntrod GM01 FR M:29.30 M:29.34 M:29.30
ExIntrod GM01 L N:0.21 N:0.19 N:0.18
ExIntrod GM01 Z M:29.31 M:29.30 M:29.29
ExIntrod GM04 M:29.36 M:29.31 M:29.30
ExIntrod GM04 FR M:29.35 M:29.32 M:29.30
ExIntrod GM04 L N:0.20 N:0.18 N:0.18
ExIntrod GM04 Z M:29.46 M:29.35 M:29.29
ExIntrod GM99 M:29.42 M:29.35 M:29.35
ExIntrod GM99 L N:0.17 N:0.22 N:0.19
ExIntrod GM99 Z M:29.30 M:29.32 M:29.27
ExIntrod Zan97 M:29.32 M:29.36 M:29.34
ExIntrod Zan97 L N:0.21 N:0.21 N:0.17
ExIntrod Zan97 Z M:29.37 M:29.32 M:29.30
ExSec4 2 DLMMU04 L N:0.18 N:0.26 N:0.20
ExSec11 1 Luc02a M:29.36 M:29.35 M:29.33
Hamming M:29.37 M:29.31 M:29.34
LISTUTILITIES complete-noand L N:0.28 E:0.17 E:0.18
LISTUTILITIES complete L N:0.23 E:0.15 N:0.56
LISTUTILITIES nokinds-noand L N:0.24 E:0.14 N:0.51
LISTUTILITIES nokinds L N:0.20 N:0.38 N:0.23
LISTUTILITIES nosorts-noand L N:0.21 N:0.51 N:0.24
LISTUTILITIES nosorts L N:0.20 N:0.23 N:0.19
LengthOfFiniteLists complete-noand FR M:29.39 E:0.17 E:0.15
LengthOfFiniteLists complete-noand L N:0.23 N:0.61 N:0.28
LengthOfFiniteLists complete-noand Z M:29.44 E:0.14 E:0.14
LengthOfFiniteLists complete L N:0.17 N:0.26 N:0.21
LengthOfFiniteLists nokinds-noand FR M:29.37 M:29.47 M:29.36
LengthOfFiniteLists nokinds-noand L N:0.23 N:0.24 N:0.19
LengthOfFiniteLists nokinds-noand Z M:29.41 M:29.50 M:29.36
LengthOfFiniteLists nokinds FR M:29.40 M:29.36 M:29.34
LengthOfFiniteLists nokinds L N:0.17 N:0.19 N:0.18
LengthOfFiniteLists nokinds Z M:29.36 M:29.35 M:29.32
LengthOfFiniteLists nosorts-noand L N:0.17 N:0.18 N:0.18
LengthOfFiniteLists nosorts-noand Z M:29.36 M:29.38 M:29.37
LengthOfFiniteLists nosorts GM M:29.34 M:29.31 M:29.32
LengthOfFiniteLists nosorts L N:0.20 N:0.18 N:0.18
LengthOfFiniteLists nosorts Z M:29.41 M:29.36 M:29.29
LengthOfFiniteLists nosorts iGM M:29.43 E:0.17 M:29.43
LengthOfFiniteLists nosorts noand GM M:29.31 M:29.31 M:29.33
MYNAT complete-noand L N:0.23 E:0.17 N:0.31
MYNAT complete L N:0.20 N:0.27 N:0.20
MYNAT nokinds-noand L N:0.23 N:0.28 N:0.18
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Problem Name RT S(RT ) Sop(RT )
MYNAT nokinds L N:0.18 N:0.19 N:0.16
MYNAT nosorts-noand L N:0.17 N:0.18 N:0.17
MYNAT nosorts L N:0.19 N:0.17 N:0.15
OvConsOS complete-noand L N:0.17 E:0.16 N:0.47
OvConsOS complete L N:0.17 N:0.47 N:0.23
OvConsOS nokinds-noand FR M:29.36 E:0.16 M:29.51
OvConsOS nokinds-noand L N:0.21 N:0.36 N:0.25
OvConsOS nokinds-noand Z M:29.47 E:0.17 M:29.48
OvConsOS nokinds L N:0.21 N:0.22 N:0.20
OvConsOS nosorts-noand FR M:29.37 M:29.51 M:29.40
OvConsOS nosorts-noand L N:0.17 N:0.23 N:0.20
OvConsOS nosorts-noand Z M:29.32 M:29.55 M:29.41
OvConsOS nosorts FR M:29.33 M:29.37 M:29.33
OvConsOS nosorts GM M:29.35 M:29.33 Y:12.69
OvConsOS nosorts L N:0.21 N:0.18 N:0.18
OvConsOS nosorts Z M:29.34 M:29.37 M:29.29
OvConsOS nosorts noand GM M:29.40 M:29.34 M:29.36
PALINDROME complete-noand L M:29.38 E:0.18 E:0.16
PALINDROME complete L N:0.18 E:0.14 N:0.40
PALINDROME nokinds-noand L M:29.32 E:0.14 M:29.46
PALINDROME nokinds L N:0.21 N:0.26 N:0.22
PALINDROME nosorts L N:0.20 N:0.24 N:0.20
PEANO complete-noand L N:0.22 N:0.36 N:0.24
PEANO complete L N:0.20 N:0.20 N:0.19
PEANO nokinds-noand L N:0.17 N:0.19 N:0.19
PEANO nokinds L N:0.17 N:0.18 N:0.19
PEANO nosorts-noand L N:0.16 N:0.17 N:0.18
PEANO nosorts L N:0.16 N:0.17 N:0.18
TypeEx3 M:29.37 E:0.16 M:29.44
TypeEx5 N:5.29 M:29.37 N:6.85
afbg M:29.32 M:29.48 M:29.41
append-wrong M:29.36 M:29.37 M:29.32
assoc c rhs M:29.34 M:29.35 Y:7.49
assoc f rhs M:29.32 M:29.38 M:29.38
bintree M:29.35 Y:14.45 Y:6.39
cariboo add1 M:29.32 M:29.32 M:29.32
cariboo add2 N:22.42 Y:5.45 Y:1.80
cariboo add2a N:12.88 Y:8.83 Y:2.40
cariboo add3 M:29.32 M:29.34 M:29.32
cariboo len3 M:29.34 M:29.32 M:29.31
cariboo nl 1 M:29.31 M:29.33 M:29.40
cariboo nl 2 M:29.39 M:29.33 M:29.29

53



Problem Name RT S(RT ) Sop(RT )
cariboo nl 3 M:29.33 M:29.34 M:29.33
cariboo nl 4 M:29.35 M:29.32 M:29.29
cariboo nl 5 M:29.37 Y:1.53 Y:1.54
cariboo nl 6 M:29.34 M:29.31 M:29.32
cime4 M:29.37 M:29.39 M:29.34
countbin M:29.34 M:29.30 M:29.26
countter M:29.34 M:29.33 M:29.34
dupl rhs M:29.39 M:29.34 M:29.33
even M:29.37 M:29.33 M:29.31
ex0 M:29.42 M:29.31 M:29.32
ex1 M:29.32 M:29.38 M:29.34
ex1m M:29.34 M:29.35 Y:2.12
ex2 N:16.23 N:16.17 N:16.43
ex2m M:29.37 M:29.32 M:29.37
ex3 N:17.49 M:29.38 M:29.39
ex3m M:29.38 M:29.35 Y:3.15
ex4 M:29.33 M:29.35 M:29.26
ex4m M:29.36 Y:4.87 Y:1.51
ex5 M:29.35 Y:10.14 Y:7.36
ex5m M:29.29 Y:0.53 Y:0.53
ex6 M:29.30 M:29.31 M:29.37
ex6m M:29.33 Y:18.77 Y:17.80
ex7 M:29.31 M:29.30 M:29.24
ex8 M:29.97 Y:3.86 Y:1.02
ex9 M:29.38 M:29.35 M:29.28
f 2 1 M:29.36 M:29.26 Y:7.73
f 2 2 M:29.35 M:29.30 Y:8.65
f 5 M:29.34 M:29.35 Y:10.20
f 5 1 M:29.32 M:29.34 M:29.32
f 5 2 M:29.35 M:29.37 M:29.29
ffb SL N:4.75 N:10.17 N:5.52
ffg M:29.39 M:29.38 Y:7.95
fg M:29.37 Y:9.06 Y:2.65
from one M:29.35 M:29.33 M:29.37
from one a M:29.35 M:29.31 M:29.34
from three M:29.38 M:29.31 M:29.29
g 2 const M:29.28 Y:3.00 Y:1.59
g 2 f var M:29.88 Y:19.45 Y:2.53
gfb M:29.41 M:29.31 Y:4.93
gkg N:5.55 N:5.55 N:5.67
inn out N:5.44 N:6.33 N:5.44
jwno1 M:29.32 M:29.37 M:29.31
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Problem Name RT S(RT ) Sop(RT )
jwno4 M:29.31 M:29.37 M:29.29
jwno6 M:29.32 M:29.32 M:29.30
jwno9 M:29.33 M:29.34 M:29.32
morse M:29.28 M:29.38 M:29.32
muladd M:29.35 M:29.32 M:29.34
n001 M:29.96 M:29.36 M:29.38
n002 N:0.26 N:0.25 N:0.24
n003 N:5.47 N:5.20 N:5.42
n004 N:5.43 N:5.46 N:5.21
n005 N:0.34 N:0.27 N:0.28
n006 N:0.34 N:0.24 N:0.25
n007 N:0.77 N:0.56 N:0.56
n008 N:5.47 N:5.49 N:5.21
non-lin1 M:29.36 M:29.26 M:29.26
non-lin2 M:29.37 M:29.30 M:29.32
non-lin3 M:29.39 M:29.30 M:29.32
nonTermF M:29.36 M:29.27 M:29.29
nonterm M:29.36 M:29.31 M:29.34
odd M:29.39 M:29.37 M:29.31
outermost gr N:5.81 M:29.39 N:6.03
patterns1 M:29.36 M:29.34 M:29.32
patterns2 M:29.38 M:29.37 M:29.34
round nonterm M:29.35 M:29.34 M:29.32
termMonTypes M:29.40 M:29.32 M:29.33
test9 M:29.41 M:29.34 M:29.23
test10 M:29.30 M:29.52 M:29.30
test75 M:29.36 M:29.36 M:29.32
test76 M:29.36 M:29.39 M:29.30
test77 M:29.41 M:29.41 M:29.32
thiemann28 M:29.44 E:0.17 M:29.46
toyama out M:29.43 M:29.38 M:29.35
toyama stop2 M:29.39 M:29.55 M:29.33
toyama stop M:29.38 M:29.36 M:29.33
ttt1 M:29.34 M:29.38 M:29.39
ttt2 N:6.32 M:29.29 M:29.26
yoyo 2 M:29.34 M:29.35 M:29.32
yoyo 3 M:29.38 M:29.33 M:29.33
yoyo 3a M:29.28 M:29.34 M:29.42
yoyo 3b M:30.00 M:29.33 M:29.43
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Termination Experiments via AProVE

This section report the result from AProVE. The report format is ”result : time”.

• Y : The system can be proved.

• N : The system can be disproved.

• M : The system cannot proved or disproved.

• T : The system cannot proved or disproved with in time limit 60s.

• E : The system cannot transformed with in time limit 60s.

Problem Name RT S(RT ) Sop(RT )
001 T:60.00 T:60.00 T:60.00
2.05 T:60.00 T:60.00 T:60.00
003 T:60.00 T:60.00 T:60.00
4.2# T:60.00 T:60.00 T:60.00
4.3# T:60.00 T:60.00 T:60.00
4.4# T:60.00 T:60.00 T:60.00
4.06 T:60.00 T:60.00 T:60.00
4.7# T:60.00 T:60.00 T:60.00
4.12a# T:60.00 T:60.00 T:60.00
4.13# Y:13.90 Y:15.53 Y:13.04
4.14# T:60.00 T:60.00 T:60.00
4.15# T:60.00 T:60.00 T:60.00
4.16# T:60.00 N:33.02 N:15.64
4.17# T:60.00 T:60.00 T:60.00
4.18# T:60.00 T:60.00 T:60.00
4.34 T:60.00 T:60.00 T:60.00
4.40 T:60.00 T:60.00 T:60.00
4.49 N:4.97 N:28.83 N:8.51
4.54 T:60.00 T:60.00 T:60.00
Ex1 2 AEL03 T:60.00 T:60.00 T:60.00
Ex1 2 AEL03 L N:1.28 N:1.45 N:0.93
Ex1 2 Luc02c T:60.00 T:60.00 T:60.00
Ex1 2 Luc02c L N:1.44 N:1.10 N:0.94
Ex1 GL02a T:60.00 T:60.00 T:60.00
Ex1 GL02a L T:60.00 T:60.00 T:60.00
Ex1 GL02a Z Y:3.70 Y:3.71 Y:2.96
Ex1 GM03 T:60.00 T:60.00 T:60.00
Ex1 GM03 L N:1.30 N:1.29 N:0.98
Ex1 GM03 Z T:60.00 T:60.00 T:60.00
Ex1 GM99 T:60.00 T:60.00 T:60.00
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Problem Name RT S(RT ) Sop(RT )
Ex1 GM99 GM T:60.00 T:60.00 T:60.00
Ex1 GM99 L N:2.07 N:2.14 N:1.81
Ex1 GM99 Z T:60.00 T:60.00 T:60.00
Ex1 GM99 iGM T:60.00 E:0.19 T:60.00
Ex1 Luc02b T:60.00 T:60.00 T:60.00
Ex1 Luc02b L N:1.22 N:1.19 N:1.00
Ex1 Luc04b FR T:60.00 T:60.00 T:60.00
Ex1 Luc04b L N:1.56 N:1.35 N:0.99
Ex1 Luc04b Z T:60.00 T:60.00 T:60.00
Ex1 Zan97 T:60.00 T:60.00 N:2.29
Ex1 Zan97 L N:2.12 N:2.98 N:1.55
Ex1 Zan97 Z T:60.00 T:60.00 T:60.00
Ex2 8 1ConstSubstFix T:60.00 T:60.00 T:60.00
Ex2 Luc03b T:60.00 T:60.00 T:60.00
Ex3 2 Luc97 T:60.00 T:60.00 T:60.00
Ex3 2 Luc97 L N:1.29 N:1.97 N:0.96
Ex3 3 25 Bor03 T:60.00 T:60.00 T:60.00
Ex3 3 25 Bor03 Z T:60.00 T:60.00 T:60.00
Ex3 12 Luc96a T:60.00 T:60.00 T:60.00
Ex3 12 Luc96a L N:1.17 N:1.78 N:0.96
Ex4 4 Luc96b T:60.00 T:60.00 T:60.00
Ex4 4 Luc96b FR T:60.00 T:60.00 T:60.00
Ex4 4 Luc96b Z T:60.00 T:60.00 T:60.00
Ex4 7 15 Bor03 T:60.00 T:60.00 T:60.00
Ex4 7 37 Bor03 T:60.00 E:0.31 T:60.00
Ex4 7 37 Bor03 L N:1.36 E:0.23 N:1.03
Ex4 7 56 Bor03 T:60.00 T:60.00 T:60.00
Ex4 7 56 Bor03 L N:1.49 N:1.64 N:0.97
Ex4 7 77 Bor03 T:60.00 T:60.00 T:60.00
Ex4 7 77 Bor03 L N:1.27 N:1.70 N:0.96
Ex4 DLMMU04 FR T:60.00 T:60.00 T:60.00
Ex4 DLMMU04 L N:1.32 N:2.04 N:0.99
Ex4 DLMMU04 Z T:60.00 T:60.00 T:60.00
Ex4 Zan97 T:60.00 T:60.00 T:60.00
Ex4 Zan97 L N:1.25 N:1.95 N:0.92
Ex5 7 Luc97 T:60.00 T:60.00 T:60.00
Ex5 7 Luc97 L N:1.23 N:2.37 N:1.03
Ex5 DLMMU04 FR T:60.00 T:60.00 T:60.00
Ex5 DLMMU04 L N:1.19 E:0.25 N:1.24
Ex5 DLMMU04 Z T:60.00 T:60.00 T:60.00
Ex5 Zan97 T:60.00 T:60.00 T:60.00
Ex5 Zan97 L N:1.49 N:1.96 N:0.97
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Ex6 9 Luc02c T:60.00 T:60.00 T:60.00
Ex6 9 Luc02c L N:1.16 N:1.81 N:1.03
Ex6 15 AEL02 T:60.00 T:60.00 T:60.00
Ex6 15 AEL02 L N:1.52 N:2.48 N:0.96
Ex6 15 AEL02 Z T:60.00 T:60.00 T:60.00
Ex6 GM04 T:60.00 T:60.00 T:60.00
Ex6 GM04 Z T:60.00 T:60.00 T:60.00
Ex6 Luc98 T:60.00 T:60.00 T:60.00
Ex7 BLR02 T:60.00 T:60.00 T:60.00
Ex7 BLR02 L N:1.20 N:1.96 N:1.02
Ex8 BLR02 T:60.00 T:60.00 T:60.00
Ex8 BLR02 L N:1.63 N:1.72 N:0.86
Ex9 BLR02 T:60.00 T:60.00 T:60.00
Ex9 Luc04 GM T:60.00 T:60.00 T:60.00
Ex9 Luc04 L N:3.96 N:9.21 N:13.95
Ex9 Luc04 Z T:60.00 T:60.00 T:60.00
Ex9 Luc06 L N:1.78 N:2.90 N:1.67
Ex9 Luc06 Z T:60.00 T:60.00 T:60.00
Ex14 AEGL02 T:60.00 T:60.00 T:60.00
Ex14 AEGL02 FR T:60.00 T:60.00 T:60.00
Ex14 AEGL02 L T:60.00 T:60.00 T:60.00
Ex14 AEGL02 Z T:60.00 T:60.00 T:60.00
Ex14 Luc06 GM T:60.00 T:60.00 T:60.00
Ex14 Luc06 L T:60.00 T:60.00 N:2.93
Ex14 Luc06 Z T:60.00 T:60.00 T:60.00
Ex15 Luc06 L N:2.58 N:7.05 N:2.02
Ex15 Luc98 T:60.00 T:60.00 T:60.00
Ex15 Luc98 L N:2.17 N:5.13 N:1.29
Ex16 Luc06 L N:2.62 N:7.00 N:2.13
Ex24 GM04 T:60.00 T:60.00 T:60.00
Ex24 GM04 GM T:60.00 T:60.00 T:60.00
Ex24 GM04 L N:3.27 N:8.56 N:2.29
Ex24 Luc06 GM Y:5.30 Y:11.40 Y:4.62
Ex24 Luc06 Z T:60.00 T:60.00 T:60.00
Ex24 Luc06 iGM T:60.00 E:0.67 T:60.00
Ex26 Luc03b T:60.00 T:60.00 T:60.00
Ex49 GM04 L N:1.92 N:4.29 N:1.25
ExAppendixB AEL03 T:60.00 T:60.00 T:60.00
ExAppendixB AEL03 L N:1.94 N:5.99 N:1.24
ExConc Zan97 T:60.00 T:60.00 T:60.00
ExConc Zan97 Z T:60.00 T:60.00 T:60.00
ExIntrod GM01 T:60.00 T:60.00 T:60.00
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ExIntrod GM01 FR T:60.00 T:60.00 T:60.00
ExIntrod GM01 L N:3.15 N:4.05 N:1.31
ExIntrod GM01 Z T:60.00 T:60.00 T:60.00
ExIntrod GM04 T:60.00 T:60.00 T:60.00
ExIntrod GM04 FR T:60.00 T:60.00 T:60.00
ExIntrod GM04 L N:2.95 N:4.23 N:1.27
ExIntrod GM04 Z T:60.00 T:60.00 T:60.00
ExIntrod GM99 T:60.00 T:60.00 T:60.00
ExIntrod GM99 L N:2.98 N:4.97 N:1.41
ExIntrod GM99 Z T:60.00 T:60.00 T:60.00
ExIntrod Zan97 T:60.00 T:60.00 T:60.00
ExIntrod Zan97 L N:3.24 N:5.09 N:1.30
ExIntrod Zan97 Z T:60.00 T:60.00 T:60.00
ExSec4 2 DLMMU04 L N:3.05 N:4.62 N:1.51
ExSec11 1 Luc02a T:60.00 T:60.00 T:60.00
Hamming T:60.00 T:60.00 T:60.00
LISTUTILITIES complete-noand L N:3.69 E:0.67 E:0.18
LISTUTILITIES complete L N:3.22 E:0.73 N:3.96
LISTUTILITIES nokinds-noand L N:3.01 E:0.71 N:3.45
LISTUTILITIES nokinds L N:2.99 N:8.76 N:1.46
LISTUTILITIES nosorts-noand L N:2.92 N:14.43 N:1.76
LISTUTILITIES nosorts L N:3.03 N:5.58 N:1.37
LengthOfFiniteLists complete-noand FR T:60.00 E:0.65 E:0.15
LengthOfFiniteLists complete-noand L N:3.40 N:20.32 N:1.93
LengthOfFiniteLists complete-noand Z T:60.00 E:0.65 E:0.17
LengthOfFiniteLists complete L N:3.21 N:6.04 N:1.50
LengthOfFiniteLists nokinds-noand FR T:60.00 T:60.00 T:60.00
LengthOfFiniteLists nokinds-noand L N:2.75 N:6.01 N:1.35
LengthOfFiniteLists nokinds-noand Z T:60.00 T:60.00 T:60.00
LengthOfFiniteLists nokinds FR T:60.00 T:60.00 T:60.00
LengthOfFiniteLists nokinds L N:3.06 N:4.09 N:1.11
LengthOfFiniteLists nokinds Z T:60.00 T:60.00 T:60.00
LengthOfFiniteLists nosorts-noand L N:2.98 N:4.63 N:1.13
LengthOfFiniteLists nosorts-noand Z T:60.00 T:60.00 T:60.00
LengthOfFiniteLists nosorts GM Y:6.79 Y:15.65 Y:3.74
LengthOfFiniteLists nosorts L N:2.95 N:4.29 N:1.20
LengthOfFiniteLists nosorts Z T:60.00 T:60.00 T:60.00
LengthOfFiniteLists nosorts iGM T:60.00 E:0.79 T:60.00
LengthOfFiniteLists nosorts noand GM Y:8.13 Y:21.00 Y:3.71
MYNAT complete-noand L N:3.17 E:0.82 N:1.92
MYNAT complete L N:3.27 N:6.56 N:1.35
MYNAT nokinds-noand L N:2.86 N:5.76 N:1.20
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MYNAT nokinds L N:3.08 N:4.75 N:1.14
MYNAT nosorts-noand L N:2.74 N:4.76 N:1.12
MYNAT nosorts L N:3.06 N:4.80 N:1.26
OvConsOS complete-noand L N:3.10 E:0.76 N:3.76
OvConsOS complete L N:3.01 N:10.73 N:1.76
OvConsOS nokinds-noand FR T:60.00 E:0.66 T:60.00
OvConsOS nokinds-noand L N:3.12 N:8.17 N:1.36
OvConsOS nokinds-noand Z T:60.00 E:0.74 T:60.00
OvConsOS nokinds L N:3.37 N:4.97 N:1.24
OvConsOS nosorts-noand FR T:60.00 T:60.00 T:60.00
OvConsOS nosorts-noand L N:3.18 N:5.17 N:1.22
OvConsOS nosorts-noand Z T:60.00 T:60.00 T:60.00
OvConsOS nosorts FR T:60.00 T:60.00 T:60.00
OvConsOS nosorts GM T:60.00 T:60.00 T:60.00
OvConsOS nosorts L N:2.52 N:4.92 N:1.29
OvConsOS nosorts Z T:60.00 T:60.00 T:60.00
OvConsOS nosorts noand GM T:60.00 T:60.00 T:60.00
PALINDROME complete-noand L T:60.00 E:0.67 E:0.19
PALINDROME complete L N:3.52 E:0.70 N:2.31
PALINDROME nokinds-noand L T:60.00 E:0.77 T:60.00
PALINDROME nokinds L N:2.97 N:5.61 N:1.39
PALINDROME nosorts L N:3.24 N:5.61 N:1.28
PEANO complete-noand L N:2.93 N:8.17 N:1.56
PEANO complete L N:3.08 N:5.33 N:1.33
PEANO nokinds-noand L N:3.03 N:5.08 N:1.31
PEANO nokinds L N:2.82 N:4.52 N:1.25
PEANO nosorts-noand L N:3.01 N:5.23 N:1.23
PEANO nosorts L N:2.71 N:4.45 N:1.29
TypeEx3 T:60.00 E:0.77 T:60.00
TypeEx5 T:60.00 T:60.00 T:60.00
afbg T:60.00 T:60.00 T:60.00
append-wrong T:60.00 T:60.00 T:60.00
assoc c rhs M:16.86 T:60.00 Y:6.45
assoc f rhs M:40.14 T:60.00 Y:6.44
bintree Y:6.69 T:60.00 Y:6.42
cariboo add1 T:60.00 T:60.00 T:60.00
cariboo add2 T:60.00 Y:12.74 Y:2.80
cariboo add2a T:60.00 Y:10.72 Y:2.96
cariboo add3 T:60.00 T:60.00 T:60.00
cariboo len3 T:60.00 T:60.00 T:60.00
cariboo nl 1 T:60.00 T:60.00 T:60.00
cariboo nl 2 T:60.00 T:60.00 T:60.00
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cariboo nl 3 T:60.00 T:60.00 T:60.00
cariboo nl 4 T:60.00 T:60.00 T:60.00
cariboo nl 5 Y:3.93 Y:6.17 Y:1.86
cariboo nl 6 Y:48.34 T:60.00 Y:34.64
cime4 T:60.00 T:60.00 T:60.00
countbin T:60.00 T:60.00 T:60.00
countter T:60.00 T:60.00 T:60.00
dupl rhs T:60.00 T:60.00 T:60.00
even T:60.00 T:60.00 T:60.00
ex0 T:60.00 T:60.00 T:60.00
ex1 T:60.00 T:60.00 T:60.00
ex1m T:60.00 T:60.00 Y:1.42
ex2 T:60.00 T:60.00 T:60.00
ex2m T:60.00 T:60.00 T:60.00
ex3 T:60.00 T:60.00 T:60.00
ex3m T:60.00 T:60.00 Y:10.45
ex4 T:60.00 T:60.00 T:60.00
ex4m T:60.00 Y:11.58 Y:2.81
ex5 Y:7.91 Y:17.54 Y:5.70
ex5m Y:4.06 Y:4.10 Y:1.57
ex6 T:60.00 T:60.00 Y:7.09
ex6m Y:11.11 Y:15.61 Y:6.20
ex7 T:60.00 T:60.00 T:60.00
ex8 Y:17.51 Y:4.54 Y:1.51
ex9 T:60.00 T:60.00 T:60.00
f 2 1 T:60.00 T:60.00 Y:5.20
f 2 2 T:60.00 Y:51.07 Y:21.46
f 5 T:60.00 T:60.00 T:60.00
f 5 1 T:60.00 T:60.00 T:60.00
f 5 2 T:60.00 T:60.00 T:60.00
ffb SL T:60.00 T:60.00 N:2.33
ffg T:60.00 Y:30.93 Y:5.63
fg T:60.00 Y:10.36 Y:2.77
from one T:60.00 T:60.00 T:60.00
from one a T:60.00 T:60.00 T:60.00
from three T:60.00 T:60.00 T:60.00
g 2 const T:60.00 Y:5.05 Y:1.19
g 2 f var T:60.00 Y:21.72 Y:3.06
gfb T:60.00 Y:41.07 Y:10.60
gkg N:37.76 N:41.02 N:13.79
inn out T:60.00 T:60.00 N:2.78
jwno1 T:60.00 T:60.00 T:60.00
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jwno4 T:60.00 T:60.00 T:60.00
jwno6 T:60.00 T:60.00 T:60.00
jwno9 T:60.00 T:60.00 T:60.00
morse T:60.00 T:60.00 T:60.00
muladd T:60.00 T:60.00 T:60.00
n001 T:60.00 T:60.00 N:8.66
n002 N:7.38 N:6.23 N:1.96
n003 N:7.66 N:6.24 N:2.14
n004 T:60.00 T:60.00 N:2.23
n005 N:7.21 N:6.28 N:2.03
n006 N:8.01 N:6.58 N:2.06
n007 N:8.36 N:7.46 N:2.70
n008 T:60.00 T:60.00 N:2.31
non-lin1 Y:6.50 Y:4.97 Y:1.69
non-lin2 T:60.00 T:60.00 T:60.00
non-lin3 T:60.00 T:60.00 T:60.00
nonTermF T:60.00 T:60.00 T:60.00
nonterm T:60.00 T:60.00 T:60.00
odd T:60.00 T:60.00 Y:14.34
outermost gr T:60.00 T:60.00 T:60.00
patterns1 T:60.00 T:60.00 T:60.00
patterns2 T:60.00 T:60.00 T:60.00
round nonterm T:60.00 T:60.00 T:60.00
termMonTypes T:60.00 T:60.00 T:60.00
test9 T:60.00 T:60.00 T:60.00
test10 T:60.00 T:60.00 T:60.00
test75 T:60.00 T:60.00 T:60.00
test76 T:60.00 T:60.00 T:60.00
test77 T:60.00 T:60.00 T:60.00
thiemann28 T:60.00 E:0.61 T:60.00
toyama out T:60.00 T:60.00 T:60.00
toyama stop2 T:60.00 T:60.00 T:60.00
toyama stop T:60.00 T:60.00 Y:42.61
ttt1 T:60.00 T:60.00 T:60.00
ttt2 T:60.00 T:60.00 T:60.00
yoyo 2 T:60.00 T:60.00 T:60.00
yoyo 3 T:60.00 T:60.00 T:60.00
yoyo 3a T:60.00 T:60.00 T:60.00
yoyo 3b T:60.00 T:60.00 T:60.00
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