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Abstract

CafeOBJ is a powerful algebraic specification language that can be used for writing formal
specifications of various software systems and verifying properties of them. It can be used
as a powerful interactive theorem proving system. Despite its usefulness, up to present,
few researches and engineers have used specifications written in CafeOBJ to develop soft-
ware systems. Because most systems modeled in CafeOBJ are concurrent ones, we would
like to propose methods or techniques that make it possible to write concurrent programs
in Java based on observation transition systems (OTS) in CafeOBJ. In addition, we also
propose a method to check if the concurrent program written in Java conforms to the
OTS specification in CafeOBJ.

Keywords: formal specification, CafeOBJ, OTS, Java, concurrent programming.
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Chapter 1

Introduction

In formal specification, two basic styles that are often used to formally specify a system
are model-based and algebraic specification. In the model-based approach, the state
of a system is represented by a set of data variables and transitions can be described
by operations that manipulate these variables. All possible values of these variables,
constrained by invariants over them define the state space of the system. Each operation
is often defined with pre and post-conditions. This representation makes it likely easier
for programmers to write programs as well as for automatic tools to generate codes in
object-oriented programming languages from the specification. One of the well-known
frameworks using this approach is VDM++ [5, 17], which has been applied to many
industrial projects, such as the development of the "Mobile FeliCa" IC Chip Firmware,
which is widely used in Japan [12]. While it is convenient to implement specifications
written in VDM++, there is one issue that can be dealt with algebraic specification
languages better than VDM++: formal verification. Some model-based specification
languages, such as Z [21] and Event-B [9, 11], are equipped with a model checker and/or
an interactive theorem prover, but to the best of our knowledge VDM++ is not. Testing
is mainly used to check specifications written in VDM++.

In contrast, algebraic specification is more powerful in applying verification techniques
[19, 20] but it seems more difficult for programmers to read and implement it. OTS is a
way of specifying systems in algebraic approach, in which the semantics of the system is
built from operators and axioms. In this report, we discuss how an OTS can be used to
write concurrent programs in an object-oriented programming language. Java is selected
in our projects because its concurrency features is powerful and there are also many useful
testing frameworks in Java, which allows us to test the implementations, especially, Java
PathFinder (JPF) [10]. This is a powerful model checker for Java bytecode programs,
which can be applied to further check some properties of our implementations.

1.1 Motivation and Objectives
CafeOBJ is an advanced algebraic specification language that can be used for writing
formal specifications of various software systems and verifying properties of them. It im-
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plements equational logic by rewriting and can be used as a powerful interactive theorem
proving system. Despite its usefulness, up to present, few researches and engineers have
applied CafeOBJ specifications to software development, while object-oriented specifica-
tion techniques such as VDM++, Event-B and Z are successfully applied to many projects.
One of the reasons for the dominance of object-oriented approach is that specifications in
this style are closer to program structures in imperative languages nowadays. Algebraic
specification in CafeOBJ could bring significant advantages in verification but it may make
more confuse for programmers to understand. The goal of this project is to reduce the gap
between OTS specifications in CafeOBJ and the system implementations by proposing a
technique to write a program based on its specification in CafeOBJ. Moreover, we discuss
the method to test the written program based on its OTS specification.

1.2 Contributions
In this project we briefly introduce some specification techniques which have been success-
fully applied to software development nowadays, the pros and cons of each technique and
compare those techniques with CafeOBJ, an algebraic specification language currently
used in our research group. In addition, we have proposed a possible way to write a
concurrent Java program based on an OTS specification in CafeOBJ. By annotating the
OTS specifications, programmers have more information about the concurrent programs
they write such as the number of threads in the program, global and local variables and
the methods in each thread. Because the systems specified in CafeOBJ are composed of
several components interacting with each other, we have successfully applied state pattern
in Java to design the programs where each component in the system can be developed as
a separate state machine. This makes it easier for programmers to understand the pro-
grams. Some case studies on writing the simulator of communication protocols such as
ABP, Simple Cloud and Qlock are also represented in this research project to demonstrate
our method.

Besides, we also propose a method to test the concurrent programs based on their OTS
specifications by applying some external support tools such as JPF [10] and Maude [22].
JPF can model check Java bytecode programs but one of the most serious problem when
using a model checker like JPF is the state space explosion where the size of the system
state space grows exponentially as the number of state variables in the system increases.
Despite of that, we could control JPF to model check a part of the whole state space.
Maude is another model checker whose specifications can be converted from CafeOBJ
specification by YAST [25, 26]. We intend to combine these two tools in our testing
method to check if the written programs conform with the OTS specifications.

1.3 Thesis Outline
The outline of this report is as follows:

Chapter 2: Formal Specification in Software Development

8



This chapter introduces the overview of formal specification methods nowadays and
their application to software development. One of the most popular specification
language for object-oriented designs, VDM++, is also represented in this chapter.

Chapter 3: OTS Specification in CafeOBJ
This chapter discusses the features of OTS specifications in CafeOBJ.

Chapter 4: Java and Design Patterns
This chapter talks about concurrent programming in Java and object-oriented design
patterns that is commonly used in software development.

Chapter 5: Implementation Annotations in OTS Specifications and Case
Studies
This chapter represents our techniques to write concurrent programs in Java based
on OTS specifications in CafeOBJ. It discusses how annotations in the OTSs are
used, the concurrent programs’ design and the mapping between components in OTS
specifications and Java programs. This chapter also represents some case studies on
writing the simulators of communication protocols based on their specifications.

Chapter 6: Testing Concurrent Programs based on their OTS Specifica-
tions
In this chapter we proposes a method to test the concurrent programs based on
their specifications and some external support tools.

Chapter 7: Conclusion and Future Work
This chapter concludes our project.
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Chapter 2

Formal Specification in Software
Development

In this chapter, we represent the overview of formal specification methods nowadays and
their applications to software development. In addition, we represent the features of one
of the most popular formal specification language for object-oriented designs, VDM++,
and its application to software development.

2.1 Overview of Formal Specification Methods
There are several research directions that are trying to apply formal specifications into
software development process. In [6], a model-based approach to software specification
in VDM++ is represented and the software’s codes can be automatically generated from
those specifications. Specifications’ structures in VDM++ look like programs’ structure
in Java. It includes many classes in which each system module is defined. State variables
of a system are defined as attributes in Java classes with constrains on them. Operations
in the systems are defined with pre and post conditions to make transitions in the model.
The variable types in VDM++ are also similar to Java types such as Set, Queue, Map
or others user defined data structures. VDM++ has used combinatorial testing where
multiple test cases are generated from a given test expression to test its specification.
While it is likely more straightforward to map a specification in VDM++ into Java codes
compared with our technique but its model testing technique still has many limitations.

Event-B [1, 9, 11] is another research direction applying formal specification to software
development. States of an Event-B model include constants and variables and the tran-
sitions are declared as events, which are composed of guards and actions. Refinements
in Event-B allow us to build models gradually until reaching the most refined one, which
can be translated by hand or automatically into a real software. In order to support writ-
ing Java programs based on Event-B models, [23, 4] have represented a tool - EB2Java
- to translate models to JML annotated Java programs. Each event in a model can be
translated into a subclass of Thread in Java in order to run in a multi-thread program or
a standard Java class in a sequential one. The JML specification generated by EB2Java
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can be used by programmers to checked against with their implementation by using avail-
able JML tools [3]. The correctness of the final program is made sure by testing with
JUnit test cases, which is manually written from an existing System Test Specification
(STS) and proof obligations during each model refinement step. Our approach to testing
concurrent programs written based on OTS specifications in CafeOBJ uses the rewrite
theory specifications to which the OTS specifications are translated but do not use proofs
(or proof scores) in CafeOBJ. We may want to investigate if it would be worth using proof
scores in CafeOBJ to test such concurrent programs. If that is the case, we may consult
the studies [23, 4].

Another paper [24] has proposed an automatic translation from OTS specifications in
CafeOBJ into Java programs, but the generated Java programs are not concurrent ones.
For one OTS, one Java class is generated in which observers and transitions are mapped
to attributes and methods in the class.

The paper [18] proposes a way to generate test cases for invariant properties from proof
scores for OTS specifications in CafeOBJ. Proof scores are proofs written in CafeOBJ.
Test cases generated are dedicated to sequential programs and then cannot be used to test
concurrent programs. If it is worth using proof scores to test our concurrent programs
written based on OTS specifications, we may consult the work [18] even though the work
is dedicated to sequential programs.

2.2 VDM++
VDM++ is an extension of VDM, a specification language for modeling object-oriented
systems. In VDM, models are written in a flat manner, while in VDM++, they can be
divided into many submodules and each module is described by a VDML++ class. This
makes the structure of VDM++ models look similar to the one of Java programs. There
are multiple parts in a VDM++ class such as types, instance variables, . . . as showed
in Listing 2.1 and each part begins with a specific keyword. We will go through some
important ones in a VDM++ class.

Listing 2.1: VDM++ structure
class <class-name>

types
instance variables
values
operations
functions
traces
thread
sync

end

2.2.1 Types

The basic types in VDM++ include:
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• bool : Boolean values.

• nat, nat1 : The nat type represents for natural number including 0 and nat1 is also
used for natural numbers but it does not contain 0.

• int : Integer numbers.

• real : Real numbers.

• char : Character

• Quote type: This type is similar to enum type in Java. For example, we can define
a type T like this: T = <France> | <Denmark> | <SouthAfrica>.

• Token type: Token type consists of a countably infinite set of distinct values,
each value cannot be individually represented whereas they can be written with
a mk_token. For example, mk_token(4), mk_token(5), mk_token(1, 2).

In addition, VDM++ also supports collection types such as set, sequence, map, . . . and
user defined types and operations on them. For user defined types in VDM++, we can
add the constraints to limit possible values of the type. For example, Listing 2.2 defines
a Score type including multiple attributes and the last command defines a constraint on
this type, a value of Score type is valid only if it satisfies this constraint.

Listing 2.2: VDM++ type constraint
Score ::

team : Team
won : nat
drawn : nat
lost : nat
points : nat
inv_Score (sc) == sc.points = 3 * sc.won + sc.drawn;

2.2.2 Instance Variables

This part defines state variables of a VDM++ model and starts with instance variables
keyword as showed in Listing 2.3.

Listing 2.3: VDM++ state variables
instance variables

public v1 : [int] := nil;
public v2 : [int] := nil;
inv (v1 = nil or (-10 <= v1 and v1 <= 10))

The initial values of instance variables are assigned directly in the models and invariants
on these variables can be declared after their definition. The last statement in Listing 2.3
is one of such invariants. Because instance variables may be changed by operations in the
model, these constraints can be used for checking operations’ correctness.
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2.2.3 Operations

Instance variables are updated by operators and all possible values of these variables
together with the constrains on them define the state space of VDM++ models. There
are two possible ways to define an operator in VDM++: explicit and implicit. While
an explicit operator is defined with its body, an implicit operator is not. For example,
Listing 2.4 defines an explicit operator to add an employee to a list of employees managed
by the model and this operator can be redefined implicitly in 2.5. In the implicit version,
the specification does not tell how the operation does.

Listing 2.4: VDM++ Explicit Operator
types

Id = token;
Detail :: name:seq of char

age:nat1;
instance variables

employees: map Id to Detail := {|->};
operations

addEmployee : Id * Detail ==> ()
addEmployee(id,detail) == employees := employees munion {id |-> detail}
pre id not in set dom employees

Listing 2.5: VDM++ Implicit Operator
types

Id = token;
Detail :: name:seq of char

age:nat1;
instance variables

employees: map Id to Detail := {|->};
operations

addEmployee(id:Id, detail:Detail)
pre id not in set dom employees
post exists id1 in set dom employees & id1=id and detail = employees(id)

An implicit operator is often defined with pre and post conditions. Pre-conditions must be
satisfied in order to execute the operators and post-condition are required to be satisfied
after the operator finishes.

2.2.4 Values and Functions

In VDM++ models, constants and functions are defined in values and functions parts
respectively. Functions in VDM++ models are similar to operators but they cannot access
or modify instance variables and they are often used by operators.

For concurrency models, thread and sync parts in the model are used but they are not
mentioned in this report. Readers can refer to [13] for more details. Part traces is used
for model testing and we will discuss about it in the next section.
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2.3 Model Testing in VDM++
One of the most useful features in VDM++ is the application of combinatorial testing
[13, 14] to test models. Instead of manually writing test cases for sequence of operators in
the models, test cases are automatically generated from expression defined in traces part.
Let us take an example to see how combinatorial testing are used in VDM++. Supposed
that a VDM++ model has two operators loadTable and swap as defined in Listing 2.6,
where the type table is a map from string to natural number and student type is equivalent
with string:

Listing 2.6: Operators for combinatoral testing
loadTable : table ==> ()
swap : student * student ==> ()

The loadTable operator takes a map from string to natural number as an input and
stores to an instance variable. swap operator receives two string and exchange two values
in the map. Now we want to check if there is any error when a sequence of operators is
executed. In manual manner, we could write test cases one by one as showed in Listing
2.7. There are some errors that is difficult to find out if we do not have enough test cases.

Listing 2.7: One possible test case for VDM++ model
Trace1 : loadTable({"a"|->1,"b"|->1,"c"|->1,"d"|->1,"e"|->2,"f"|->2,"g

"|->2});
swap("a","b");
swap("a","e");
swap("a","a");

Therefore, VDM++ allows us to write testing expression to automatically generate as
many test cases as possible. Listing 2.8 shows an example testing expression.

Listing 2.8: Testing expression in VDM++ model
Trace2 : loadTable({"a"|->1,"b"|->1,"c"|->1,"d"|->1,"e"|->2,"f"|->2,"g

"|->2});
(let x in set {"a", "f"}
in

let y in set {"a", "b", "e", "f"}
in swap(x,y)){1,2};

In the testing expression, variable x takes possible values from the set {"a", "f "} and y
takes values from the set {"a", "b", "e", "f "} to form parameters of swap operator. The
notation {1, 2} after swap(x,y) indicates that this operator can be executed one or two
times. Therefore, there are total 72 possible test cases generated from this expression.
Although this feature can save labor for user but it may slow down the performance to
test all possible test cases. For that reason, combinatorial testing in VDM++ allows us
skip unnecessary test cases when they are covered by previous ones and filter specific test
cases to be tested on the models based on a specific condition from users.
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2.4 Translating VDM++ to Java
Because the structure of VMD++ models are similar to Java classes, the conversion from
VDM++ to Java program is pretty straightforward. There are many translation tools
developed by different research groups and here we introduce one from [2] where each
VMD++ class is translated into a Java class whose general structure is represented in
Listing 2.9.

Listing 2.9: Java class for a VDM++ class
public class A {

/*
Implementation of VDM++ types
Implementation of VDM++ values
Implementation of VDM++ instance variables

*/
/*
static {

Initialization of VDM++ values
}

*/
public A(){

try {
// Initialization of VDM++ instance variables

}
catch (Throwable e) {

}
}
/*
Implementation of VDM++ functions
Implementation of VDM++ operations

*/
}

Most VDM++ types can be successfully converted into Java classes and the mapping
between them is showed in Table 2.1. Each quote type in VDM++ is translated into a
Java class.

VDM++ Type Java Type
real, rat Double

nat, nat1, int Integer
bool Boolean
char Character
seq Vector
map HashMap

Table 2.1: Java and VDM++ types mapping

The values and instance variables in VDM++ models are generated into constants and
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attributes in the Java class respectively. Java codes generated in the constructor will
initialize values of attributes and this comes from the initialization of instance variables
in VDM++. Operators and functions will be translated into methods in Java class.

Multiple inheritance is allowed in VDM++ but it is not in Java. Although Java does
not allow multiple inheritance, a Java class can implement multiple interfaces. Therefore,
in order to successfully translate multiple inheritance in VDM++ into Java classes, there
must be some additional requirements. The first requirement is that only one supper
class may define function and operation implementations and only this superclass may
provide instance variables. This class will be generated as the single superclass in Java and
secondly, other super classes in VDM++ must be possible to be translated into interfaces.
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Chapter 3

OTS in CafeOBJ

In this chapter, we discuss some basic concepts in algebraic specification and the OTS
method in CafeOBJ. One example OTS specification is also represented in this chapter.

3.1 Data
Data in CafeOBJ are represented by sorts. A sort is used to denote a set and corresponds
to a type in programming languages. The set denoted by a sort is composed of a same sort
of elements (or values) that are represented by operators called constructors. Operators
are also used to represent functions, which are defined in terms of equations. For example,
Listing 3.1 is a specification of natural numbers:

Listing 3.1: Specification of natural numbers
mod! PNAT {

[Nat]
op 0 : -> Nat {constr} .
op s_ : Nat -> Nat {constr} .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat .
eq 0 + Y = Y .
eq s(X) + Y = s(X + Y) .

}

Basic units of specifications in CafeOBJ are modules. PNAT is a module in which natural
numbers are specified. The sort Nat denotes the set of natural numbers. The operators 0
and s are the constructors of natural numbers, which are constructed from 0 and s, such
as 0, s(0), s(s(0)) and s(s(s(0))). The operator _ + _ is used to denote the addition of
natural numbers, which is defined with the two equations, where X and Y are variables
of Nat. Equations are used as left-to-right rewrite rules to reduce terms. For example,
s(s(s(0))) + s(s(s(s(0)))) reduces to s(s(s(s(s(s(s(0))))))) by using the second equation
three times and the first equation once.

In an OTS specification, there is a special sort that denotes the set of reachable states.
Hereafter, we use Sys as the special sort. In an OTS specification, each state is charac-
terized by values called observable values. Observable values are observed by operators
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called observers. State transitions are represented by operators called transitions. How to
change observable values by state transitions are defined in terms of equations. We will
describe observers and transitions.

3.2 Observers
Observers in an OTS are operators that are used to extract values that characterize states
of the OTS. An observer takes one state and zero or more data values and returns a data
value. For example, if one natural number and one Boolean value fully characterize each
state of an OTS, it suffices to have two observers in Listing 3.2:

Listing 3.2: Observers in an OTS
mod* SYS {

pr(PNAT)
[Sys]
op o1 : Sys -> Nat .
op o2 : Sys -> Bool .
...

}

pr(PNAT) imports PNAT module declared in Listing 3.1. Observer o1 takes one state
and returns a natural number and observer o2 takes one state and returns one Boolean
value.

3.3 Transitions
Transitions in an OTS are operators that are used to represent state transitions. A
transition takes one state and zero or more data values and returns a state, where the
latter is a successor state of the former. Transitions are defined in terms of equations
that describe how to change observable values in a successor state from a given state with
respect to a transition. For example, we have two transitions trans1 and trans2 in Listing
3.3 as follows:

Listing 3.3: Transitions in an OTS
mod* SYS {

pr(PNAT)
[Sys]
op o1 : Sys -> Nat .
op o2 : Sys -> Bool .
op trans1 : Sys -> Sys .
op trans2 : Sys -> Sys .
ceq o1(trans1(S:Sys)) = o1(S) + s(0) if o2(S) .
ceq o2(trans1(S:Sys)) = o2(S) if o2(S) .
ceq trans1(S:Sys) = S if not o2(S) .
eq o1(trans2(S:Sys)) = 0 .
eq o2(trans2(S:Sys)) = not o2(S) .

}
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The transition trans1 has the condition that the Boolean value is true in a given state,
while trans2 does not. The first equation says that the natural number is increased in
the successor state denoted as trans1(S:Sys) if o2(S) is true, where S is a variable of
Sys. Variables can be declared before equations or on-the-fly in equations. The second
equation says that the Boolean value does not change with trans1. The third equation
says that nothing changes with trans1 if the condition does hold in a given state. The
first three equations define trans1. The fourth equation says that the natural number
becomes zero with trans2, and the fifth equation says that the Boolean value is toggled
with trans2. The last two equations define trans2.

3.4 Sample OTS: ABP specification
In order to have a better understanding of OTS specification, in this section, we repre-
sent a detail specification of a communication protocol. ABP has been selected for this
demonstration. This is a protocol used for sending a sequence of packages from a sender
to a receiver over unreliable channels as showed in Figure 3.1. The sender s keeps two

Figure 3.1: ABP

information including the next package to be sent and a boolean value tag1 and the sender
keeps a list to store received packages and a boolean value tag2. There are two unreliable
channels between the sender and receiver called fifo1 and fifo2. Initial values of both tag1
and tag2 are true. Whenever the sender receives a boolean value from channel fifo2, it
checks if this received value is different from its current tag1 value. If that is the case,
the sender negates flag1 and prepare the new package by increasing next by 1; otherwise,
the received boolean value from fifo2 will be discarded. On the other side, whenever the
receiver gets a pair of package number and boolean value from channel fifo1, it checks if
the boolean value is the same as flag2. If they are the same, the receiver negates flag2
and store the package number to the list ; otherwise, it discards the pair. The two chan-
nels fifo1 and fifo2 are unreliable and their packages may be dropped or duplicated. For
simplicity, we supposed that drop or duplication occur only with the top package of each
channel. ABP makes sure that the receiver eventually receives correct sequence of data
from the sender.

In the specification, we need abstract data types to represent variables in the system
and Table 3.1 shows each variables’ data types:
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Variables Data Type
tag1,tag2 Tagvalue

next PNat
list List

< next,tag1 > Pair
fifo1, fifo2 Fifo

Table 3.1: Abstract Data Types for variables

Each data type is defined in a separated module and we look at the detail each of them.
The first one is Tagvalue, which is represented in Listing 3.4.

Listing 3.4: Tagvalue data type in CafeOBJ
mod! TAGVALUE {

[Tagvalue]
ops up down : -> Tagvalue
op flip : Tagvalue -> Tagvalue
op _=_ : Tagvalue Tagvalue -> Bool {comm}
var V : Tagvalue
eq flip(up) = down .
eq flip(down) = up .
eq (V = V) = true .
eq (up = down) = false .
eq (flip(V) = V) = false .
}

Two operators up and down can be seen as two constants of Tagvalue sort. The flip
operator is defined to toggle a variable of this data type and _=_ operator is used to
identify equality of two values of this type.

The definition of PNat data type is already showed in Listing 3.1, so we do not represent
it here again. The definition of List data type is showed in Listing 3.5.

Listing 3.5: List data type in CafeOBJ
mod! LIST {

pr(PNAT)
[List]
op nil : -> List
op __ : Nat List -> List
op hd : List -> Nat
op tl : List -> List
op mk : Nat -> List
op _=_ : List List -> Bool {comm}
vars L L1 L2 : List
vars X Y : Nat
eq hd(X L) = X .
eq tl(X L) = L .
eq mk(0) = 0 nil .
eq mk(s(X)) = s(X) mk(X) .
eq (L = L) = true .
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eq (nil = nil) = true .
eq (nil = X L) = false .
eq (X L1 = Y L2) = (X = Y and L1 = L2) .

}

The first two operators in LIST module can be called constructor operators because all
possible values of List data type can be represented by these two operators. Others are
necessary operators on List data type such as taking the first element, getting the tail or
making a list of natural number from zero to a specific value.

Next, we go to Pair data type defined in PAIR module in Listing 3.6.

Listing 3.6: Pair data type in CafeOBJ
mod* EQTRIV {

[Elt]
op _=_ : Elt Elt -> Bool {comm}

}
mod! PAIR(D1 :: EQTRIV, D2 :: EQTRIV) principal-sort Pair {

[Pair]
op <_,_> : Elt.D1 Elt.D2 -> Pair
op 1st : Pair -> Elt.D1
op 2nd : Pair -> Elt.D2
op _=_ : Pair Pair -> Bool {comm}
var X : Elt.D1
var Y : Elt.D2
vars P P1 P2 : Pair
eq 1st(< X , Y >) = X .
eq 2nd(< X , Y >) = Y .
eq (P = P) = true .
eq (P1 = P2) = (1st(P1) = 1st(P2) and 2nd(P1) = 2nd(P2)) .

}

PAIR is a parameterized module where D1 and D2 can be seen as two module parameters.
Elt.D1 denotes a sort in parameter module D1. The first operator in the PAIR module
defines the structure of each element in Pair, also called constructor, while others are
defined to handle values of this type such as taking the first or the second value of a pair.

The Queue data type with supporting operations are defined in Listing 3.7. This is
also a parameterized module.

Listing 3.7: Fifo data type in CafeOBJ
mod! FIFO(D :: EQTRIV) {

[Fifo]
-- data constructors
op empty : -> Fifo
op _|_ : Elt.D Fifo -> Fifo
-- operators
op put : Fifo Elt.D -> Fifo
op get : Fifo -> Fifo
op top : Fifo -> Elt.D
op empty? : Fifo -> Bool
op _\in_ : Elt.D Fifo -> Bool
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op _=_ : Fifo Fifo -> Bool {comm}
op _@_ : Fifo Fifo -> Fifo -- concatenate two fifos
op del : Fifo -> Fifo -- delete the last element
--
vars X Y Z : Elt.D
vars F F1 F2 : Fifo
eq put(empty,X) = X | empty .
eq put((Y | F),X) = Y | put(F,X) .
eq get(X | F) = F .
eq top(X | F) = X .
eq empty?(empty) = true .
eq empty?(X | F) = false .
eq X \in empty = false .
ceq X \in (Y | F) = true if X = Y .
ceq X \in (Y | F) = X \in F if not(X = Y) .
eq (F = F) = true .
eq (empty = (X | F)) = false .
eq ((X | F1) = (Y | F2)) = (X = Y and F1 = F2) .
eq empty @ F = F .
eq (X | F1) @ F2 = X | (F1 @ F2) .
eq del(put(F,X)) = F .
eq del(X | empty) = empty .
eq del(X | Y | F) = X | del(Y | F) .
eq del(F1 @ (X | F2)) = F1 @ del(X | F2) .
--
ceq X \in put(F,Y) = true if X \in F or X = Y .
ceq X \in put(F,Y) = false if not(X \in F or X = Y) .
eq put(F1 @ F2,X) = F1 @ put(F2,X) .
eq empty?(F1 @ F2) = empty?(F1) and empty?(F2) .
eq (empty = (F1 @ F2)) = (empty = F1) and (empty = F2) .
eq ((Z | empty) = (F1 @ (X | Y | F2))) = false .

}

As the comments starting with "--" in the specification, two operators empty and _|_
are constructors of this data type. Others are necessary operators related to a queue
structure such as putting the end of a queue, get the top of a queue and so on.

After defining necessary data types, let us look at the specification of ABP. In general,
there are two main parts in an OTS specification: observers and transitions. Looking at
the Listing 3.8, there are six observers and eight transitions in ABP’s OTS specification.

Listing 3.8: Obervers and transitions in ABP specification
-- observers
bop fifo1 : System -> PFifo -- Sender to Receiver channel
bop fifo2 : System -> BFifo -- Receiver to Sender channel
bop tag1 : System -> Tagvalue -- Sender’s tag
bop tag2 : System -> Tagvalue -- Receiver’s tag
bop next : System -> Nat -- the number Sender wants to deliver
bop list : System -> List -- the numbers received by Receiver
-- actions
bop send1 : System -> System -- Sender’s sending numbers
bop rec1 : System -> System -- Sender’s receiving acks
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bop send2 : System -> System -- Receiver’s sending acks
bop rec2 : System -> System -- Receiver’s receiving numbers
bop drop1 : System -> System -- drop the 1st of fifo1
bop dup1 : System -> System -- duplicate the 1st of fifo1
bop drop2 : System -> System -- drop the 1st of fifo2
bop dup2 : System -> System -- duplicate the 1st of fifo2

A transition in an OTS is defined by the change of observers after it is successfully
executed. For example, rec1 transition is defined in Listing 3.9 through the change of
fifo1 observer. Because this transition only changes the value of fifo1, others observer
values are unchanged after this transition finishes.

Listing 3.9: Behavior specification of ABP
var S : System
-- for initial state
eq fifo1(init) = empty .
eq fifo2(init) = empty .
eq tag1(init) = up .
eq tag2(init) = up .
eq next(init) = 0 .
eq list(init) = nil .
-- send1
eq fifo1(send1(S)) = put(fifo1(S),< tag1(S) , next(S) >) .
eq fifo2(send1(S)) = fifo2(S) .
eq tag1(send1(S)) = tag1(S) .
eq tag2(send1(S)) = tag2(S) .
eq next(send1(S)) = next(S) .
eq list(send1(S)) = list(S) .
-- rec1
op c-rec1 : System -> Bool {strat: (0 1)}
eq c-rec1(S) = not empty?(fifo2(S)) .
--
eq fifo1(rec1(S)) = fifo1(S) .
ceq fifo2(rec1(S)) = get(fifo2(S)) if c-rec1(S) .
ceq tag1(rec1(S))
= (if tag1(S) = top(fifo2(S)) then tag1(S) else top(fifo2(S)) fi)
if c-rec1(S) .
eq tag2(rec1(S)) = tag2(S) .
ceq next(rec1(S))
= (if tag1(S) = top(fifo2(S)) then next(S) else s(next(S)) fi)
if c-rec1(S) .
eq list(rec1(S)) = list(S) .
ceq rec1(S) = S if not c-rec1(S) .

One transition often goes with a condition. For example, rec1 transition is defined with
one additional condition, c-rec1. It says that the transition is enabled to execute only if
its condition is satisfied. Initial observer values of an OTS are also defined as the top
of Listing 3.9. These definitions let reader know the values of system’s variable at the
beginning.
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Chapter 4

Concurrent Programming in Java and
Design Patterns

4.1 Concurrent Programming in Java
Because Java is a commonly used programming language, we are not going to write details
about the language. Here, we just introduce some important features to write a concurrent
program in Java. Besides, we also mention design patterns that are commonly used for
software designs in Java.

4.1.1 Threads

A concurrent program in Java includes multiple threads and there are two possible ways
to define the code that will run in each thread. The first way is to define a class that
implements Runnable interface as the Listing 4.1.

Listing 4.1: Defining a thread by implementing Runnable interface
public class Sender implements Runnable {

// ...
public void run() {

// TODO: thread will run code here
}
// ...
public static void main(String args[]) {

(new Thread(new Sender())).start();
}
// ...

}

In order to create a new thread, we need to pass an object of Runnable type to Thread ’s
constructor and call start method of Thread. After the statement (new Thread(new
Sender())).start(); in Listing 4.1 is executed, a new thread is created and runs what
is defined inside the run method.

Another way to write code for a thread is to define a subclass of Thread as Listing 4.2.
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Listing 4.2: Defining a subclass of Thread
public class Sender extends Thread {

// ...
public void run() {

// TODO: thread will run code here
}
// ...
public static void main(String args[]) {

(new Sender()).start();
}
// ...

}

In this way, the new class inherits Thread and we just call start method from an instance
of this subclass to initiate a new thread. Similar to the first way, the new thread created
will runs what is defined inside the run method.

4.1.2 Synchronization

In a concurrent program, threads may interact with each other and this can cause errors if
we do not have appropriate policies to control them. If multiple threads try to access the
same resource simultaneously without any synchronization, memory consistency errors
may happen. For example, the Listing 4.3 shows an erroneous multi-thread program in
Java because there is no synchronization between threads.

Listing 4.3: Errors in multi-thread program
class Counter{

private int c = 0;
public void increment() {

c++;
}
public void decrement() {

c--;
}
public int getValue() {

return c;
}

}
public class UnsafeInc extends Thread {

private static final int LOOPS = 1000;
private Counter c;
public UnsafeInc(Counter c) {

this.c = c;
}
public void run() {

for (int i = 0; i < LOOPS; i++) {
c.increment();

}
}
public static void main(String[] args) throws InterruptedException {
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Counter c = new Counter();
UnsafeInc t1 = new UnsafeInc(c);
UnsafeInc t2 = new UnsafeInc(c);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(c.getValue());

}
}

There are two threads initiated in the above program to increase a counter value. Each
thread increases the counter 1000 times, therefore, in theory, the final counter value
should be 2000. But the actual value we get can be less than 2000. The reason is that the
statement c++; is not atomic. This means that c++; can be decomposed into smaller
steps. We do look at deeper into bytecode instructions generated for c++; but in general,
it can be decomposed into three steps:

• Retrieve the current value of c.

• Increment the retrieved value by 1.

• Store the incremented value back in c.

The two thread may interleave these three steps and this causes the final result different
from what is expected.

The mechanism Java provides to prevent these kinds of error is called synchronization.
There are two levels of synchronization in Java: method synchronization and statement
synchronization. We will explain each of them. The Listing 4.4 shows a new counter
whose all methods are defined with synchronized keyword.

Listing 4.4: Method Synchronization
public class SynchronizationCounter {

private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void decrement() {

c--;
}
public synchronized int getValue() {

return c;
}

}

Supposed that counter is an object of SynchronizationCounter class, if the synchronization
methods of counter are called by different threads, all statements inside the method will
be executed atomically. If we do not want to synchronize the whole method, we use
statement synchronization to synchronize a particular block of statements, this can make
the concurrent applications’ performance better in case that the method contains a long
sequence of statements. For example, in the Listing 4.5, because we want all thread
synchronize on c++; statement, we need to put it inside a synchronization block.
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Listing 4.5: Method Synchronization
public class StatementSynchronization {

private int c = 0;
public void exampleMethod() {

// more things to do
synchronized (this) {
c++;

}
// more things to do

}
}

If sc is an object of StatementSynchronization class and there are multiple calls to
exampleMethod of sc, then only one statement c++; is executed atomically while other
can be run simultaneously by multiple threads.

In Java, there is a lock associated with each object and if a thread acquires the lock of
the object that is passed to the synchronization block, other threads must wait the first
thread’s finish to acquire the lock to run the synchronized statement block. A synchronized
method can be rewritten using statement synchronization by wrapping all statements
inside the method into a synchronization block and pass this as the parameter of the
synchronization block.

4.2 Design Patterns
In order to have a good software design, we should follow some principles based on the
feature of the language we use. Because Java is an object-oriented programming lan-
guage, there are some strategies to write software in this language called object-oriented
design patterns. If these patterns are applied appropriately to software development, the
softwares become easier to manage, develop and modify if there are changes in require-
ments. These strategies often take advantage of features in object oriented programming
language such as inheritance, polymorphism and rely on criteria such as separability of
software components. In this section, we introduce some design patterns in Java that can
be used in this research project. If readers want to take a deeper understanding about
design patterns, please refer to [7].

4.2.1 Singleton design pattern

This pattern is one of the simplest design patterns in Java. The intent of this pattern is
to ensure that a class has only one instance and provides a global access to it. The code
in Listing 4.6 is one of the common ways to define a singleton class in Java.

Listing 4.6: Singleton class in Java
public class Singleton {
private Singleton instance;

// TODO: define attributes
private Singleton() {
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// TODO: initialization
}
public Singleton getInstance() {

if (instance != null) {
instance = new Singleton();

}
return instance;

}
// TODO: define other public methods

}

In Singleton class, an instance of this class is defined and its constructor goes with private
acccess modifiers to insure that object creation cannot be done outside the class. A
method called getInstance provides access to this unique instance inside the class and this
instance is lazy-initialized, that means it is initialized only when it is needed. All of other
public methods are accessed via this method.

4.2.2 State Design Pattern

This pattern is often used to represent an state machine in Java. This pattern can be
visualized in Fig. 4.1. An instance of Context class can be viewed as a state machine in a

Figure 4.1: State pattern in Java

program. The data of a state machine is stored in Context class and possible states of the
machine are represented by concrete subclasses of State. There is one abstract method
move in State class and it is implemented differently by subclasses.

We write a simple program to represent the state machine of a light to illustrate this
design pattern. A light has two possible states: On and Off and the switch method is
responsible for switching its current state. Listing 4.7 shows the definition of Light class.
Light class keeps a state attribute and each time a light receives a switch message, it

calls the move method on its state. Possible states of a light are represented by Java
classes in Listing 4.8.

Listing 4.7: Light class
public class Light {

private State state;
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public Light() {
super();
this.state = new StateOff();

}
public void swith() {

state.move(this);
}
public State getState() {

return state;
}
public void setState(State state) {

this.state = state;
}

}

Listing 4.8: Possible states of a light
public abstract class State {

public abstract void move(Light light);
}

public class StateOff extends State {
@Override
public void move(Light light) {

State state = new StateOn();
light.setState(state);
System.out.println("Now is On!");

}
}

public class StateOn extends State {
@Override
public void move(Light light) {

State state = new StateOff();
light.setState(state);
System.out.println("Now is Off!");

}
}

In order to see how a light works, we define a Main class in Listing 4.9. The Main class
creates a light and sends switch message to the light two times.

Listing 4.9: Main class
public class Main {

public static void main(String[] args){
Light light = new Light();
light.swith();
light.swith();

}
}

Result:
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Now is On!
Now is Off!

Each time a switch message is sent to the light, it switches its state and prints out the
new one. Because the light’s initial state is Off, then the sequence of states printed out
are On and Off.

4.2.3 MVC Design Pattern

Another design pattern that is often used in software development is MVC. The goal of
this pattern is to separate an application’s components based on its functionality:

• Model: Models are POJO Java classes carrying data of the application.

• View: View is responsible for visualizing the data contained in model.

• Controller: Controller operates on both model and view. It can modify data in
the model and update the view whenever model is changed.

Let us see an example application to manage employees in a company. Here the data
that need to be managed are employees and each of them is represented by Employee
class as showed Listing 4.10.

Listing 4.10: Employee model
public class Employee {

private int id;
private String name;
public Employee(int id, String name) {

this.id = id;
this.name = name;

}
public String toString() {

return "[ ID:" + id + ", Name: " + name + "]";
}

}

The view is represented by EmpView class in Listing 4.11. It simply prints out the list of
employees in order.

Listing 4.11: Employee view
public class Employee {

private int id;
private String name;
public Employee(int id, String name) {

this.id = id;
this.name = name;

}
public String toString() {

return "[ ID:" + id + ", Name: " + name + "]";
}

}
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Finally, the employee controller containing references to the model and view is illus-
trated in Listing 4.12.

Listing 4.12: Employees controller
public class EmpController {

private List<Employee> es;
private EmpView ev;
public EmpController(List<Employee> es, EmpView ev) {

this.es = es;
this.ev = ev;

}
public void modEmp(Employee e) {

boolean isUpdate = false;
for (Employee e1 : es) {
if (e1.getId() == e.getId()) {

e1.setName(e.getName());
isUpdate = true;

}
}
if (!isUpdate) {
es.add(e);

}
}
public void rmEmp(int id) {

for (int i = 0; i < es.size(); i++) {
if (es.get(i).getId() == id) {

es.remove(i);
break;

}
}

}
public void updateView() {

ev.dispEmps(es);
}

}

It allows external components to modify models by two methods modEmp and rmEmp
and to update the view by updateView method. The demo application in Listing 4.13
illustrates how this pattern is used.

Listing 4.13: Demo application of MVC pattern
public class Demo {

public static void main(String[] args) {
List<Employee> es = getEmployees();
EmpView ev = new EmpView();
EmpController ec = new EmpController(es, ev);
ec.updateView();
// modify and display
ec.modEmp(new Employee(23, "John"));
ec.updateView();
// remove and display
ec.rmEmp(35);
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ec.updateView();
}

private static List<Employee> getEmployees() {
List<Employee> es = new ArrayList<Employee>();
es.add(new Employee(23, "Peter"));
es.add(new Employee(35, "Marry"));
return es;

}
}

Result:
0: [ ID:23, Name: Peter]
1: [ ID:35, Name: Marry]
0: [ ID:23, Name: John]
1: [ ID:35, Name: Marry]
0: [ ID:23, Name: John]

Each time the model is changed via the controller ec and the view is updated, we get a
different result. Here the controller is the main access point to the model and view. MVC
is often used in web development frameworks where model is usually stored in a database,
the view is responsible for generating a specific html view for data and the controller is
responsible for receiving and processing requests from users via the forms on the view or
via ajax calls.

There are many other useful patterns that reader can find in [7] and because this
are not the main topic of this project, we just briefly introduce some of them. In this
research project, we apply state pattern to implement our concurrent programs because
most system modeled in OTS are composed of many state machines interacting with each
other and each of them can be designed by this pattern.
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Chapter 5

Implementation Annotations in OTS
Specifications and Case Studies

In this section, we propose steps to write a concurrent program in Java programming
language based on an OTS specification in CafeOBJ and show some case studies for the
method.

5.1 Implementation Annotations in OTS Specifications
In this section, we propose steps to write a concurrent program in Java programming
language based on an OTS specification in CafeOBJ. However, programmers need to
infer several non-trivial things from OTS specifications. To mitigate the issue, therefore,
we also propose annotations to implement OTS specifications as concurrent programs.
Annotations are written in OTS specifications as CafeOBJ comments.

5.1.1 Step1: Identifying threads in the program

Because the program we write is concurrent, we firstly need to identify threads running in
the program. They are considered as entities which are able to change the system state.
In some OTSs, transition operators contain information about which entity execute those
transitions, then we can infer threads’ information in the concurrent program but in
general cases, this requires implementors to have some understandings of the system. For
this reason, we use comments in the specification to identify threads in the program.

Listing 5.1: Threads in a concurrent program
mod* ABP {
-- #IMP: Threads: Sender, Receiver, DropDuplicator
[Sys]
-- any initial state
op init : -> Sys
-- observers
...
-- transitions
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...
}

The comments starting with "-- #IMP:" will be used by implementors. For example,
from the first comment of ABP’s specification in the Listing 5.1, programmers know that
there are three threads called "Sender", "Receiver" and "DropDuplicator" running in the
concurrent program they need to implement.

5.1.2 Step2: Mapping of observers and transitions

The set of observers in an OTS can be seen as the set of data variables in model-based
specifications such as VDM++. The difference is that by looking at observers in an
OTS, we do not know which ones belong to which thread and which ones are global in the
concurrent program. Therefore, programmers need to understand the system to distribute
observers to correct place in the program. To deal with this issue, we also use comments
in the specification as directives for programmers. So, by looking at the comment before
each observer, we map it to attributes of the correct thread. The type of each variable
in Java program must be correctly chosen depending on the return sort of the observer it
represents.

Listing 5.2: Observers mapping in APB specification
mod* ABP {
...
-- #IMP: Global variables
bop fifo1 : Sys -> PFifo
bop fifo2 : Sys -> BFifo
-- #IMP: Sender attributes
bop tag1 : Sys -> Tagvalue
bop next : Sys -> Nat
-- #IMP: Receiver attributes
bop tag2 : Sys -> Tagvalue
bop list : Sys -> List
...
}

A part of ABP’s specification showed in Listing 5.2 illustrates the distribution of observers
to threads in the concurrent program: observers tag1 and next are mapped to attributes of
the sender, observers tag2 and list are mapped to attributes of the receiver and observers
fifo1, fifo2 are mapped to global variables.

Each transition is performed by only one thread in the Java program and we also need
to decide which thread to perform the corresponding transition. Comments are used
as directives for programmers to know which threads will execute each transition. The
transition’s condition becomes the precondition of the method implementing the transition
and by looking at the change of observers in the OTS, we know how to implement the
method’s body.

Listing 5.3: Transitions in ABP
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-- #IMP: Sender actions
bop send1 : Sys -> Sys
bop rec1 : Sys -> Sys
-- #IMP: Receiver actions
bop send2 : Sys -> Sys
bop rec2 : Sys -> Sys
-- #IMP: DropDuplicator actions
bop drop1 : Sys -> Sys
bop dup1 : Sys -> Sys
bop drop2 : Sys -> Sys
bop dup2 : Sys -> Sys

For example, Listing 5.3 shows transitions of ABP’s specification with their comments.
The transitions send1 and rec1 are performed by the sender, send2 and rec2 are performed
by the receiver and four transitions drop1, dup1, drop2 and dup2 are be performed by
another thread called drop-duplicator.

5.1.3 Step3: Program design in Java

We apply state pattern represented in 4.2.2 to write concurrent programs in this project.
There is one minor difference between diagrams in the Figure 5.1 and Figure 4.1 is that
now Context is a subclass of Thread in Java so that it can be used to create threads in
Java applications. Attributes that are mapped from observers are stored in the context
of each thread. One thread has several states represented by separated classes and all
concrete states are child classes of a state abstract class.

Figure 5.1: Programe design in Java

The state abstract class has amove method which is implemented differently in concrete
child classes. Each transition of the OTS will be implemented in the move methods of
each state. On the finish of each transition, the thread changes its state by setting a new
state to its context.
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5.2 Case studies

5.2.1 ABP Simulator

From a part of ABP’s specification showed in the Listing 5.1, we have identified that there
are three threads in the simulator: sender, receiver and drop-duplicator. Six observers of
ABP specification and their distribution to threads are shown in Listing 5.2.

Table 5.1 shows the type mapping of each variable in Java program depending on the
sort of observers in the OTS.

Table 5.1: Type mapping in ABP simulator
Sort Java Type

TagValue Boolean
PFifo DeQueue〈Pair〈Integer,Boolean〉〉
BFifo DeQueue〈Boolean〉
Nat Integer
List List

Six transitions in ABP specification and information on which thread performs each
transition are shown in Listing 5.3. After mapping observers and transitions, we can
visualize the state machines of sender and receiver in Figure 5.2.

Figure 5.2: State machine of the sender and receiver

The drop-duplicator thread can also be implemented as a state machine using the
pattern in Section 5.1.3 but the order of transitions it performs is not fixed. It can
arbitrarily perform one of the four transitions at any time, then we decide to implement
it as a normal thread where the drop and duplication are performed in a while loop and
we do not talk about its structure here.

Next, we represent the structure of the sender and the receiver of the simulator. Fig.
5.3 shows the UML diagrams of the sender and receiver. The sender’s context includes
attributes tag1 and next that are mapped from observers, a reference to the global channel
and a state variable sState. Similarly, the receiver’s includes tag2 and list, a reference
to the global channel and a state variable rState. When the sender and receiver start
running, they may change their states by setting the new state to its context.

There are two possible states for the sender which are represented by two classes SState1
and SState2 in Java. The move methods of SState1 class will implement the send1
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Figure 5.3: UML diagram of the sender and receiver

transition and the move methods of SState2 class will implement the rec1 transition.
Transition rec2 is implemented in the move method of class RState2 and transition send2
is implemented in the move method of class RState2.

A transition is implemented in Java according to its equations in the OTS and we
choose rec1 as a demonstration. The semantics of rec1 transition in the OTS is shown in
Listing 5.4.

Listing 5.4: Transition rec1 in ABP
op c-rec1 : System -> Bool
eq c-rec1(S) = not empty?(fifo2(S)) .
eq fifo1(rec1(S)) = fifo1(S) .
ceq fifo2(rec1(S)) = get(fifo2(S)) if c-rec1(S) .
ceq tag1(rec1(S)) = (if tag1(S) = top(fifo2(S)) then tag1(S) else top(

fifo2(S)) fi) if c-rec1(S) .
eq tag2(rec1(S)) = tag2(S) .
ceq next(rec1(S)) = (if tag1(S) = top(fifo2(S)) then next(S) else s(next(S

)) fi) if c-rec1(S) .
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eq list(rec1(S)) = list(S) .
-- IMP: change state without modifying observers
ceq rec1(S) = S if not c-rec1(S) .

The condition c-rec1 of rec1 transition comes true if fifo2 is not empty. By looking
at the changes of observers in the specification, we know that if the condition c-rec1 is
satisfied, values of fifo2, tag2, list are not changed, values of tag1 and next are changed
based on equality of the current value of tag1 and the top of fifo2. From these information,
we implement move method in class SState2 as in Listing 5.5:

Listing 5.5: Java method for rec1 transition
public void move(SContext sContext) {

Boolean ack = sContext.getChannel().getAck();
if (ack != null) {

if (ack != sContext.getTag1()) {
sContext.setTag1(!sContext.getTag1());
sContext.setNext(sContext.getNext() + 1);

}
}
SState sState = new SState1();
sContext.setsState(sState);

}

In the function, the checking ack != null corresponds to c-rev1 condition in the OTS and
the checking ack != sContext.getTag1() is used as a condition to change values of tag1
and next in the transition. On the finish of this transition, the context is set to a new
state SState1.

The receiver is implemented in the similar way and the main class of the program will
initialize the data and start both sender and receiver in the program.

5.2.2 Simple Cloud Simulator

Simple cloud is a protocol used for synchronization of a natural number between one
cloud computer and many PCs. We can think of this number as a revision in Git control,
so now we call it revision number. The cloud computer can be in two status: IDLE
and BUSY, and each PC can be in three status: IDLE, GOTVAL, UPDATED. One
PC can only connect to the cloud computer only if it is in IDLE status and the cloud
is also IDLE. In this case, the cloud’s status goes into BUSY and the PC’s one goes
into GOTVALUE where it obtains revision number from the cloud. After that, the
PC compares the revisions, updates them according to the highest value and goes into
UPDATED status. From the UPDATED status, the PC goes back into IDLE status and
the cloud also goes into IDLE status. A part of simple cloud’s OTS showed in Listing 5.6
lets us know information about threads, variables and actions performed by each thread
in the simulator.

Listing 5.6: Simple Cloud specification
mod* CLOUD {
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-- #IMP: Threads in the system: multiple PC
[Sys]
...
-- #IMP: Global variables
op statusc : Sys -> CLabel
op valc : Sys -> Nat
-- #IMP: PC attributes
op statusp : Sys PC -> PLabel
op valp : Sys PC -> Nat
op tmp : Sys PC -> Nat
...
-- #IMP: PC actions
op modval : Sys PC -> Sys
op getval : Sys PC -> Sys
op update : Sys PC -> Sys
op gotoidle : Sys PC -> Sys
...
}

There will be multiple PC threads running in the simulator and each thread has three
attributes representing the status, revision number and a temporary revision got from
the cloud computer. The global variables include the status and revision number of the
cloud. All four transitions in the specification are performed by PC threads.

Next, let us see the implementation of the simulator in Java. Figure 5.4 and Figure 5.5
illustrate the state and UML diagrams of each PC in the program respectively.

Figure 5.4: State diagram of each PC

There are four possible states for each PC and each PC’s initially state is PState1. The
modval transition operator from the specification has two parameters and one of them is
the id of one PC whose sort is PC in CafeOBJ. This transition is implemented by the
move method in PState1 class. Transitions getval, update and gotoidle are implemented
in classes PState2, PState3 and PState4 respectively. A new state is set to the thread
context after successfully executing one transition in each move method.

Table 5.2 demonstrates the mapping from sorts of observers to Java types.

Table 5.2: Type mapping in Simple Cloud
Sort Java Type

CLabel enum CStatus
PLabel enum PStatus
Nat Integer
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Figure 5.5: UML diagram of each PC

Now, we look at the implementation of transitions in Java code. We choose the transi-
tion update as an example. The definition of update in the OTS is showed in Listing. 5.7
and the move method in Java for this transition is in Listing. 5.8.

Because this method accesses and modifies global data, there must be a synchronization
on global data between threads. The condition of update transition says that this transi-
tion is enabled only if the cloud’s status is BUSY and the thread’s status is GOTVALUE.
This condition is translated into the checking condition of the move method of PState3.
The changes of observers in the OTS are translated to the method’s body in Java. On
the finish of this method, a new state of type PState4 is set to the PC context. In the
similar way, other transitions can be implemented in corresponding states.

Listing 5.7: update transition in Simple Cloud OTS
mod* CLOUD {
...
op c-update : Sys PC -> Bool
eq c-update(S,I) = (statusc(S) = busy and statusp(S,I) = gotval) .
eq statusc(update(S,I)) = statusc(S) .
ceq valc(update(S,I)) = (if tmp(S,I) <= valp(S,I) then
valp(S,I) else valc(S) fi) if c-update(S,I) .
ceq statusp(update(S,I),J)= (if I = J then
updated else statusp(S,J) fi) if c-update(S,I) .
ceq valp(update(S,I),J) = (if I = J then
(if tmp(S,I) <= valp(S,I) then valp(S,I) else tmp(S,I) fi)
else valp(S,J) fi) if c-update(S,I) .
ceq tmp(update(S,I),J) = (if I = J then
(if tmp(S,I) <= valp(S,I) then valp(S,I) else tmp(S,I) fi)
else tmp(S,J) fi) if c-update(S,I) .
ceq update(S,I) = S if not(c-update(S,I)) .
...
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}

Listing 5.8: Java method for update transition in PState3
public void move(PContext pContext) {

synchronized (pContext.getCloud()) {
if (pContext.getStatus() == PStatus.GOTVAL && pContext.getCloud().

getStatus() == CStatus.BUSY) {
if (pContext.getTmp() <= pContext.getVal()) {

pContext.getCloud().setVal(pContext.getVal());
pContext.setTmp(pContext.getVal());

} else {
pContext.setVal(pContext.getTmp());

}
pContext.setStatus(PStatus.UPDATED);
PState pState4 = new PState4();
pContext.setpState(pState4);

}
}

}

5.2.3 Qlock Simulator

Qlock is another case study we want to represent in this report. This is a well-known
mutual exclusion protocol [8] in which many agents are trying to access a global resource
and only one can be allowed at a time. In order to do that, the protocol use a queue to
control the agents’ access. Once an agent wants to use the global resource, it has to put
its id to the queue first and waits until its id is on top of the queue. After releasing the
resourse, its id is removed from the queue. Listing 5.9 shows observers and transitions in
the OTS specification of Qlock.

Listing 5.9: Qlock specification
mod* QLOCK {
-- #IMP: Threads in the system: multiple Agents
[Sys]
...
-- #IMP: Global variables
op queue : Sys -> Queue

-- #IMP: Agent attributes
op pc : Sys Pid -> Label
...
-- #IMP: Agent actions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys
...
}

41



Observer queue is used to observe the value of global queue. Program counter of an
agent is kept track by the pc observer and it has three possible values l1, l2 or cs which
are elements of Label sort. Initial label of an agent is l1 and it will be updated to l2 if the
agent successfully puts its id to the queue by want transition. When an agent accesses
the global resource by performing try transition, its pc value will be cs and the pc comes
back to l1 when it releases the resource by performing exit transition.

From the annotations in the OTS, programmers are supposed to write a concurrent
program including many Agent threads. The state and UML diagram of each agent are
illustrated in Figure 5.6 and Figure 5.7.

Figure 5.6: State diagram of each agent

Figure 5.7: UML diagram of each agent

Each thread has pc and aid attributes to keep track of its program counter and id
respectively. The Label sort is mapped to an enum type which has three values in Java
and Integer is used for Pid sort. All the transitions in the OTS are performed by each
agent.

Now let us see the implementation of one transition in Java and we choose try transition
for the demonstration. The specification of try transition is showed in Listing 5.10 and
its implementation is described in Listing 5.11.

Listing 5.10: try transition of Qlock
op c-try : Sys Pid -> Bool
eq c-try(S,I) = (pc(S,I) = l2 and top(queue(S)) = I) .
ceq pc(try(S,I),J) = (if I = J then cs else pc(S,J) fi) if c-try(S,I) .
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eq queue(try(S,I)) = queue(S) .
ceq try(S,I) = S if not c-try(S,I) .

Listing 5.11: Java method for try transition in AState2
public void move(AContext aContext) {

if (aContext.getPc() == Label.L2 && aContext.getQueue().getFirst() ==
aContext.getaId()) {

aContext.setPc(Label.CS);
AState aState3 = new AState3();
aContext.setaState(aState3);

}
}

The condition of try transition in the OTS specification is translated into the condition
of if statement in Java. If it is satisfied, the agent’s state is changed to AState3 by
creating a new state object of this type and assigning it to the agent’s context.

In addition, the same techniques are also successfully applied to implement NSLPK, an
authentication protocol mentioned in [15, 16] to exchange keys between agents over an
insecure network based on their annotated OTS specifications in CafeOBJ.

5.3 Testing a Java Concurrent Program based on its
OTS Specification

One important issue is to check if an implementation in Java is correct and conforms to
its OTS specification in CafeOBJ or not. In this section, we represent two approaches
that has been applied to our projects.

5.3.1 Model Check the Implemenation with JPF

The first approach simply uses JPF to model check our concurrent Java programs. Prop-
erties required for the systems are expressed by assertions in Java. One advantage of this
approach is that we can exhaustively traverse the whole state space of a Java program
but for a pretty big program, it is impossible to be checked by JPF. Here we report some
cases that can be model checked in JPF.

• Testing result for ABP simulator: In order to check if the receiver gets correct
result from the sender, we add an assertion based on the next value on the sender
and the list on the receiver after they finish. If we initiate one drop-duplicator in
the simulator, the system’s state space increases significantly, therefore the following
results are reported for the simulator without any drop-duplicator.

Listing 5.12: JPF result from ABP simulator (data channel size = acknowledge
channel size = 1, number of packages = 1)

====================================================== results
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no errors detected

====================================================== statistics
elapsed time: 00:02:27
states: new=541066,visited=802592,backtracked=1343658,

end=213
search: maxDepth=2825,constraints=0
choice generators: thread=541066 (signal=0,lock=9170,sharedRef

=528320,threadApi=2473,reschedule=1103), data=0
heap: new=69402,released=78239,maxLive=738,gcCycles

=1285319
instructions: 10808265
max memory: 413MB
loaded code: classes=93,methods=2042

Listing 5.13: JPF result from ABP simulator (data channel size = acknowledge
channel size = 2, number of packages = 2)

====================================================== results
no errors detected

====================================================== statistics
elapsed time: 02:04:08
states: new=6608511,visited=9865753,backtracked

=16474264,end=444
search: maxDepth=7761,constraints=0
choice generators: thread=6608511 (signal=0,lock=85483,sharedRef

=6512924,threadApi=5976,reschedule=4128), data=0
heap: new=611038,released=731720,maxLive=747,gcCycles

=15902474
instructions: 128350636
max memory: 661MB
loaded code: classes=94,methods=2046

Listing 5.14: JPF result from ABP simulator (data channel size = acknowledge
channel size = 3, number of packages = 3)

====================================================== results
no errors detected

====================================================== statistics
elapsed time: 03:32:59
states: new=26980925,visited=40293786,backtracked

=67274711,end=936
search: maxDepth=16199,constraints=0
choice generators: thread=26980925 (signal=0,lock=350596,sharedRef

=26604701,threadApi=13102,reschedule=12526), data=0
heap: new=2468954,released=2885212,maxLive=749,

gcCycles=65007270
instructions: 529782565
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max memory: 1022MB
loaded code: classes=94,methods=2046

Listing 5.15: JPF result from ABP simulator (data channel size = acknowledge
channel size = 4, number of packages = 4)

====================================================== results
error #1: gov.nasa.jpf.vm.NoOutOfMemoryErrorProperty

====================================================== statistics
elapsed time: 01:26:23
states: new=23487488,visited=23321973,backtracked

=46804825,end=962
search: maxDepth=30077,constraints=1
choice generators: thread=23487488 (signal=0,lock=351174,sharedRef

=23104264,threadApi=21293,reschedule=10757), data=0
heap: new=2236753,released=2557679,maxLive=751,

gcCycles=44875483
instructions: 418578410
max memory: 1022MB
loaded code: classes=94,methods=2046

• Testing result from Qlock simulator: Qlock simulator is model checked for
deadlock only and we have the following results:

Listing 5.16: JPF result from Qlock simulator (2 agents)

====================================================== results
no errors detected

====================================================== statistics
elapsed time: 00:14:48
states: new=3289927,visited=4918508,backtracked=8208435,

end=141
search: maxDepth=9859,constraints=0
choice generators: thread=3289927 (signal=0,lock=41851,sharedRef

=3244621,threadApi=1756,reschedule=1699), data=0
heap: new=288723,released=362065,maxLive=738,gcCycles

=7921176
instructions: 62780954
max memory: 628MB
loaded code: classes=93,methods=2042

Listing 5.17: JPF result from Qlock simulator (3 agents)

====================================================== results
no errors detected

====================================================== statistics
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elapsed time: 02:04:49
states: new=21987544,visited=52937017,backtracked

=74924561,end=12
search: maxDepth=3944,constraints=0
choice generators: thread=21987544 (signal=0,lock=1,sharedRef

=21261845,threadApi=18384,reschedule=707314), data=0
heap: new=2866522,released=5825198,maxLive=718,

gcCycles=72703319
instructions: 680021354
max memory: 674MB
loaded code: classes=78,methods=1680

Listing 5.18: JPF result from Qlock simulator (4 agents)

====================================================== results
error #1: gov.nasa.jpf.vm.NoOutOfMemoryErrorProperty

====================================================== statistics
elapsed time: 03:52:29
states: new=46974976,visited=90609768,backtracked

=137583372,end=21
search: maxDepth=1689,constraints=1
choice generators: thread=46974976 (signal=0,lock=1,sharedRef

=45794386,threadApi=61413,reschedule=1119176), data=0
heap: new=5366036,released=11165677,maxLive=724,

gcCycles=133491254
instructions: 1070803874
max memory: 1023MB
loaded code: classes=78,methods=1680

• Testing result from Simple Cloud simulator: One of the invariants of Simple
Cloud protocol is that if one PC is in UPDATED state, the values of Cloud and that
PC are the same. Therefore, we add an assertion in the move method of PState2
class and we have following results for different number of PCs in the system:

Listing 5.19: JPF result from Simple Cloud simulator (2 PCs)

====================================================== results
no errors detected

====================================================== statistics
elapsed time: 00:00:03
states: new=6708,visited=8420,backtracked=15128,end=9
search: maxDepth=228,constraints=0
choice generators: thread=6708 (signal=0,lock=704,sharedRef=5465,

threadApi=177,reschedule=362), data=0
heap: new=3227,released=4440,maxLive=677,gcCycles

=14347
instructions: 289623
max memory: 491MB
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loaded code: classes=70,methods=1511

Listing 5.20: JPF result from Simple Cloud simulator (3 PCs)

====================================================== results
no errors detected

====================================================== statistics
elapsed time: 00:00:50
states: new=190587,visited=375154,backtracked=565741,end

=52
search: maxDepth=346,constraints=0
choice generators: thread=190587 (signal=0,lock=17894,sharedRef

=151923,threadApi=825,reschedule=19945), data=0
heap: new=25993,released=173523,maxLive=684,gcCycles

=535472
instructions: 5735733
max memory: 491MB
loaded code: classes=70,methods=1511

Listing 5.21: JPF result from Simple Cloud simulator (4 PCs)

====================================================== results
no errors detected

====================================================== statistics
elapsed time: 00:34:15
states: new=6308957,visited=16702252,backtracked

=23011209,end=375
search: maxDepth=463,constraints=0
choice generators: thread=6308957 (signal=0,lock=584649,sharedRef

=4787170,threadApi=6401,reschedule=930737), data=0
heap: new=493164,released=9259035,maxLive=691,gcCycles

=21907808
instructions: 190626896
max memory: 607MB
loaded code: classes=70,methods=1511

Listing 5.22: JPF result from Simple Cloud simulator (5 PCs)

====================================================== results
error #1: gov.nasa.jpf.vm.NoOutOfMemoryErrorProperty

====================================================== statistics
elapsed time: 04:43:30
states: new=46974976,visited=133319584,backtracked

=180294237,end=1540
search: maxDepth=579,constraints=1
choice generators: thread=46974976 (signal=0,lock=4591360,sharedRef

=35596950,threadApi=43939,reschedule=6742727), data=0
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heap: new=3322439,released=96953796,maxLive=698,
gcCycles=173555796

instructions: 1248773688
max memory: 1022MB
loaded code: classes=70,methods=1511

Table 5.3 summarizes all of the results from JPF:

Table 5.3: JPF results for simulators
Simulator Specification

Size
Implementation
Size

Settings Result

ABP
without

DropDupplicator
210 loc 378 loc

Channel size = 1
Packages = 1 Elapsed time = 00:02:27
Channel size = 2
Packages = 2 Elapsed time = 02:04:08
Channel size = 3
Packages = 3 Elapsed time = 03:32:59
Channel size = 4
Packages = 4 Out of memory error

Qlock 77 loc 114 loc
2 Agents Elapsed time = 00:14:48
3 Agents Elapsed time = 02:04:49
4 Agents Out of memory error

Simple Cloud 100 loc 174 loc
2 PCs Elapsed time = 00:00:03
3 PCs Elapsed time = 00:00:55
4 PCs Elapsed time = 00:34:15
5 PCs Out of memory error

5.3.2 Combine JPF and Maude to Test the Implementation based
on its OTS Specification

One of the most serious problems with model checking in practice is the state space
explosion problem. We cannot simply use JPF to check large programs, for example, JPF
reports out-of-memory error with a limited setting as showed in Table 5.3. Therefore, a
possible solution we are investigating is to use JPF [10] to generate a set of computations
of a Java program and then apply Maude [22] to check whether those sequences can be
generated by the specification. The OTS specification is used in this testing method and
if a sequence cannot be generated from the specification, it is a trace leading to errors
in the Java program. Although this solution cannot guarantee that the Java programs is
100 percent correct but it can tackle weak points of JPF.

In order to generate a set of sequences of states from a Java program, we need to
design a listener in JPF. This is an extension in JPF that allows us to observe, interact
with and extend JPF execution with our own classes. As showed in Figure 5.8, listeners
can be registered into JPF and they can handle situations on which some specific events
happen. JPF’s searching and Java Virtual Machine (JVM) notify the listener on specific
events during their traversing of the concurrent program based on which we can write
codes to retrieve information from each state in JPF. The designed listener includes two
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parameters: the number of sequences to be generated N and the depth of each sequence
D, and they are used during the execution of JPF.

Figure 5.8: JPF listeners

Moreover, the OTS specification in CafeOBJ can be translated into a rewrite theory
specification in Maude by YAST [25, 26]. Maude also allows us to write additional func-
tions to get all transition rules of a model from an initial state and generate all possible
next states, therefore, we are definitely able to check if a sequence of states generated
from JPF is a finite computation of the rewrite theory in Maude. Because all of these
works require a deep knowledge about JPF and meta programming in Maude, we have
not had any implementation for this yet. It is supposed to be for the future work.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
As we see, the information from the OTS is not enough to write a concurrent program
in Java. For example, in order to know how many threads in the system, how to dis-
tribute observers and transitions to threads, programmers are required to have certain
understandings about the system. In order to deal with such questions, we need to add
comments as guides for programmers, this is a disadvantage of the OTS specification style.

In addition, the specification of a transition in the OTS is sometimes ambiguous for
programmers if they do not understand the system well. The rec1 transition in the OTS
of ABP is an example. From the OTS, we just know that if the condition c-rec1 is
not satisfied, all observers do not changed. But from the view point of a programmer,
there are two possible implementations for this transition: the first one is that the sender
moves back to state SState1 without modifying any variables and the second possibility
is that the sender just waits at state SState2 until it gets an acknowledge from the global
acknowledge channel. Both ways agree with the specification. Therefore, if we want to
automate the code generation from an OTS, we need to add such information to the
transitions’ definition.

In conclusion, we have reviewed some specification techniques in software development
and mentioned some features of VDM++, a popular method that are widely used in many
industrial projects nowadays. In addition, we have proposed a possible way to implement
a concurrent Java program from an OTS in CafeOBJ by applying state design pattern
and shows case studies on writing the simulators of some communication protocols. We
also discuss the method to test the concurrent program based on its OTS specification
by applying some external support tools and present some points that need to be im-
proved from the specification in the future so that it can be used more efficiently in the
implementation.
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6.2 Future Work
As we mentioned in Section 5.3, in order to take advantage of JPF to test a program
written from its OTS specification, we need to have a deep understanding about this tool.
JPF is flexible and it allows users to implement some components depending on their
own intention but this requires a strong knowledge about JVM including Java bytecode
instructions, how they are executed and memory management inside JVM. Only when
understanding these features, we can get information about variables’ values during the
searching inside JPF.

On the other hand, after converting a CafeOBJ specification into a representation in
Maude, in order to check if a trace can be generated by the model, we need to write some
meta functions in Maude. So in the future we also need to focus on this issue.

Finally, as mentioned about the limitations of a CafeOBJ specification in Section 6.1
for the implemenation, we also need to improve the OTS specification such that it can
provide more information and does not make any ambiguity for programmers.
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