
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Study on speech fingerprints based on spikegram

using sparse coding technique

Author(s) Tran, Kim Dung

Citation

Issue Date 2017-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/14800

Rights

Description Supervisor:鵜木　祐史, 情報科学研究科, 修士



Study on speech fingerprints based on spikegram
using sparse coding technique

By Dung Kim TRAN

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Masashi UNOKI

September, 2017



Study on speech fingerprints based on spikegram
using sparse coding technique

By Dung Kim TRAN (1510217)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Masashi UNOKI

and approved by
Professor Masato AKAGI
Professor Jianwu Dang

August, 2017 (Submitted)

Copyright c© 2017 by Dung Kim TRAN



Abstract

Keywords: Speech fingerprint, spikegram, matching pursuit algorithm, Gammatone
filterbank, non-negative matrix factorization

With the advances of information technologies, the Internet has become a convenient
place where we can store and share our media content and a large portion of the content
is in the form of audio signals. Audio fingerprints have been adopted to a wide variety of
useful applications to organize and retrieve audio content effectively. A typical application,
which uses audio fingerprints to identify audio content, includes two basic steps. At first,
a database of fingerprints is needed to store information about all available audio content.
Then, given an unknown excerpt of an audio signal, an audio fingerprint technique derives
its fingerprint, and then a search algorithm searches the database to identify the audio
signal. The key to the success of this particular application lies in the technique that is
used to create the audio fingerprints.

A lot of effort has long been invested in studying audio fingerprints in response to
the rising demands of practical applications in different industries, many techniques have
evolved to increase the accuracy of audio fingerprints and to expand its capabilities.
Many techniques were developed under the inspiration of biological mechanisms such as
human hearing system, others using statistics and probability principles. Regardless of
the complexity of the fingerprinting systems, their designs appear to have three steps.
The first step is transforming audio waveforms into their representation models to reveal
their features. The second step is extracting unique features of the audio signals. The
third step is combining the extracted features to create audio fingerprints using hashing
techniques.

In case of music, block-based audio fingerprint systems can achieve industrial standard;
however, its performance reduces dramatically when applied to speech. The main cause
of the problem is that the representation model of the speech signals is unable to provide
suitable features for the process of creating speech fingerprints.

Block-based coding technique divides a speech signal into blocks and processes these
blocks separately using discrete Fourier transform (DFT) or discrete cosine transform
(DCT). This technique is substantially sensitive to signal shifting and phoneme scaling;
randomly blocking speech signals does not take into account the alignment of acoustic
cues. Given a speech content, it is unlikely for a speaker to produce signals having the same
length and phonemes having the same duration. Perceptually, these speech signals may
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sound the same but techniquely, the alignments and durations of their acoustic features
are considerably different. Therefore, block-based coding creates different spectrograms
for speech signals that have the same content and same speaker.

One way to overcome the drawback of block-based coding is using filterbank based
shift invariant coding but this technique greatly increase the dimension of speech signals
because of its convolutional calculations. Data redundancy on the representation models
makes it difficult to recognize the underlying structures of speech signals.

The sources of problems do not confine only in the signal representation process, they
also appear in the features extraction methods. To gather features for the production
of speech fingerprints, several methods have been proposed; one used the signs of en-
ergies, another used the peaks of spectrogram. Although their methods achieved great
experimental results, none of them take into account patterns of the features on the
representation model.

This study aims at creating speech fingerprints using sparse coding technique. Recent
studies have revealed that over-complete representation model, which can be produced by
using sparse coding techniques, outperforms spectrogram in speech signal representation,
which is the current technique used for audio signals like music. Indeed, sparse coding
is a data-driven technique that is able to capture the underlying structures and adapt to
the variations of speech.

In step one of the speech fingerprint extraction process, traditional block-based coding
is replaced with sparse coding and spikegram will be used as the representation model
for speech signals instead of spectrogram. In step two, features on spikegrams that repre-
sent linguistic content and speaker individuality are analyzed and extracted as they are
necessary to improve the quality of speech fingerprints. In step three, a suitable hash-
ing technique is selected to combine the extracted features to create final fingerprints for
speech signals.

In fact,this research exploits the abilities of a matching pursuit algorithm in representing
speech signals as equivalent spikegrams. It identifies the best sparse representation of a
signal in an over-complete set of dictionary by performing a nonlinear approximation in
the dictionary.

The matching pursuit algorithm we use is mathematically based on non-negative matrix
factorization that approximates one matrix with two other non-negative matrices, one is
a matrix of bases and the other is a matrix of coefficients. Therefore, the quality of the
approximation depends on the selection of appropriate bases and the method of finding
the coefficients. Two kinds of base spectra – Gabor dictionary and Gammatone dictionary
are thus used. Results of using each kind of dictionaries will be shown and compared.

While analyzing features on spikegrams, there is one obstacle that we need to deal
with is the unalignment of the features. As the result, their features on spikegrams are
difficult to compare. Further more, the features that represent linguistic content and
speaker individuality are encoded in the spike distributions. Therefore, it is necessary to
convert spikegrams into a nomalized dimension to compare their features. Considering
the robustness of of local binary pattern (LBP) in representing facial features that can
be used for face recognition, this research has tried to utilize the advantages of LBP to
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analyze the features of spikegrams. One characteristics of LBP that makes it become a
candidate for analyzing features of spikegrams is its robustness in texture analysis. Our
assumption is that spike distributions of speech signals that have the same content and
same speaker should be similar and changes in speech content and or speakers should
result in different spike distributions. Therefore, a variation of LBP was applied to this
research. Moreover, histogram of the LBP matrix is calculated to evaluate the texture of
the spikegram.

An experiment conducted to evaluate and compare the abilities of representing speech
signals of block-based coding and sparse coding using a dataset consisting of 75 speech
signals. A Gammatone filterbank, the representative for block-based coding, was used to
create spectrograms for speech signals. To create spikegrams, the matching pursuit algo-
rithm and two kinds of dictionaries, namely Gabor dictionary and Gammatone dictionary,
was used for the sparse coding technique.

We found that the matching pursuit algorithm used with Gabor or Gammatone dictio-
nary outperformed the Gammatone filterbank in decomposing speech signals by evaluat-
ing the original speech signals and the resynthesized signals with SNR and PESQ, and
sparse coding provided a better representation model for speech signals. More impor-
tantly, spikegrams could be used to replace spectrograms as a better alternative in the
process of creating speech fingerprints. Based on the experiments, we concluded that the
spike distributions of spikegrams conveyed the linguistic content and voice identities of
the utterers of speech signals. These features play a significant role in the accuracy and
reliability of speech fingerprints.
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Chapter 1

Introduction

1.1 Research background

Audio fingerprints have been adopted to a wide variety of useful applications. Media
agencies can use audio fingerprints to monitor where and when their products are played,
then they record usage statistics for other purposes such as advertisement. Audio finger-
prints can also be used as a security measure to detect illegal use of digitalized contents.
A typical application using audio fingerprints to identify content of a song including two
basic steps. At first, a database of fingerprints of all available songs is built. Then, given
an unknown excerpt of a song, an audio fingerprint technique derives its fingerprint, and
then a search algorithm searches the database to identify the song. The key to the suc-
cess of this particular application lies in the technique that is used to create the audio
fingerprints.

In computer science, audio fingerprint has been an intriguing yet challenging topic to
many researchers over the past few decades. In response to the rising demands of prac-
tical applications in different industries, many techniques have evolved to increase the
accuracy and reliability of audio fingerprints. For a number of reasons, some techniques
were developed under the inspiration of biological mechanisms such as human hearing sys-
tem, others using statistics and probability principles. Regardless of the intricacy of the
fingerprinting systems, their designs appear to have three steps consisting of transform-
ing audio waveforms into their representation models to reveal their features, extracting
unique features of the audio signals, and combining the extracted features to create audio
fingerprints using hashing techniques.

Three steps of an audio fingerprint technique do not seem to be many but each is an
interesting research field and they have to support each other to form a thorough solution.
Signal representation can be generalized into three categories that are block-based coding,
filterbank based shift invariant coding, and sparse coding. Each type of coding has its
unique characteristics and provides specific features on its representation model and the
choices are left for the designers to decide depending on their ideas. Extracting relevent
features from the representation models is a matter of pattern recognition problems.
Again, how feature extraction methods are designed heavily relied on one’s intentions
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Figure 1.1: Speech fingerprints and biometric security. Panel (a) shows the important
features of a speech signal – linguistic content and speaker individuality – in the process
of creating speech fingerprints. Panel (b) shows some unique traits of humans including
speech fingerprint that can be used in biometric security.

and the ultimate goal is to obtain distinctive information that can help identify audio
signals. The hashing techniques that are used to create audio fingerprints can be as
simple as applying a hash function to generate hash chunks or complicated as converting
the set of features from step two into another set of features. No matter how sophisticated
they are, the final fingerprints are bounded to some requirements such as distance metrics,
storage size, and indexing speed.

Speech fingerprinting is a special case of audio fingerprinting that deals with unique
characteristics of speech. The main purposes of speech fingerprints is similar to that of
audio fingerprints as they are used for monitoring and identifying speech signals. A speech
fingerprinting system also consists of two processes that are creating a database of speech
fingerprints for all available speech signals and identifying unknown speech signals. The
most important element of a speech fingerprint application is also the fingerprint extrac-
tion module. The overall design of this module also includes three steps that are creating
representation models for speech signals, extracting inherent features of the speech signals
based on their representation models, and hashing these features to generate final speech
fingerprints. Working with speech signals, one may have to pay close attention to their
instability. Unlike music clips, which are controled by machines and copied from same
sources, acoustic events of speech signals vary significantly even if they have the same
content and are produced by the same speaker.

As shown in Fig. 1.1(b), humans possess many unique traits such as fingerprints, irises,
facial features, and we believe that speech can also become a measurement in biometric
security. Regardless of the wide variations of speech, it is a matter of fact that we can
recognize the spoken words and distinguish the voice of a speaker from others. Therefore,
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we believe that speech signals must have contained information about linguistic content
and speaker individuality as depicted in Fig. 1.1(a). These features are essential to the
process of creating speech fingerprints; by extracting and combining them, the accuracy
and reliability of speech fingerprint can be greatly improved.

1.2 Problem statement

In case of music, the audio fingerprint system described in the section above can achieve in-
dustrial standard; however, its performance reduces dramatically when applied to speech.
The main cause of the problem is that the representation model of the speech signals is
unable to provide suitable features for the process of creating speech fingerprints. Spec-
trogram is one of the most commonly used representation models for speech signals; it can
be create by applying block-based coding or auditory filterbank based coding. However,
none of the coding techniques is able to represent the underlying structure of speech sig-
nals. Due to the fact that a speaker produces different speech signals for the same content,
conventional coding methods produce different spectrograms for the speech signals. As
the result, different speech fingerprints are produced for the speech signals that have the
same content and the same speaker.

1.3 Research purpose

This study aims to create speech fingerprints using sparse coding technique. Recent
studies have revealed that over-complete representation model, which can be produced
by using sparse coding techniques, outperforms spectrogram in speech signal representa-
tion [4][5] because sparse coding is a data-driven technique that is able to capture the
underlying structures and adapt to the variations of speech. In step one of the speech
fingerprint extraction process, traditional block-based coding will be replaced with sparse
coding and spikegram will be used as the representation model for speech signals instead
of spectrogram. In step two, features on spikegrams that represent linguistic content and
speaker individuality will be analyzed and extracted as they are necessary to improve the
quality of speech fingerprints. In step three, a suitable hashing technique will be selected
to combine the extracted features to create final fingerprints for speech signals.

1.4 Organization of thesis

The rest of this thesis is organized into four chapters as follow:
Chapter two begins with a review of audio fingerprint and current techniques that are

used to create audio fingerprints. Then the problems of applying audio fingerprinting
technique to speech will be discussed.

Chapter three elaborates the method that is studied in this research. More specifically,
the technique that is used to create representation models for speech signals is illustrated
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first. In the next section of this chapter, the method that is used to analyzed features of
the representation models is described.

Chapter four reports and compares the results obtain by applying the method described
in chapter three. Finally, the remaining issues and future works is described in chapter
five.
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Chapter 2

Literature review

2.1 Audio fingerprints

Audio fingerprinting is the process of analyzing audio signals to obtain their unique fea-
tures, then combining these unique features to create compact representatives for the
audio signals [1]. Unlike audio watermarking, which is the process of embeding metadata
into audio signals, audio fingerprinting processes the waveforms of audio signals directly
to capture their inherent characteristics so as to produce distinguishable information.

In the digital era, when music, speech, and videos are digitalized, uploaded, and trans-
ferred in the Internet, audio fingerprints play a significant role in the content identification
tasks as media can be quickly identified. According to a report [2], illegal usage of digi-
talized media have dealt serious damages to our economy; content creators can use audio
fingerprints to prevent unauthorized broadcasting of their assets. Applications can be de-
veloped to help people identify music quickly using audio fingerprinting techniques; this
efficiency can boost productivities and convenience in our lives.

Audio fingerprinting is a very complicated technique. To achieve the effectiveness and
efficiency that fit for the demands of content-identification applications, the technique
must be accurate and reliable enough to distinguish one audio signal from others. It has
to be fast in response to timing requirements. In reality, we do not usually compare two
original audio signals together; therefore, the fingerprints must be durable against attacks
such as distortions and signals shifting. In addition, audio fingerprints have to be small
in size storage requirements and searching performance [3].

Figure 2.1 illustrates a simple application of audio fingerprinting technique that can
be used for identifying unknown audio signals. The application can be divided into two
processes. The main objective of the first process is creating a database of audio fin-
gerprints. In this process, a fingerprints extraction unit analyzes audio signals to create
their audio fingerprints and these fingerprints are kept in a database for future references.
The main purpose of the second process is identifying unknown audio signals. In this
process, the fingerprints extraction unit analyzes the unknown audio signals to determine
their fingerprints, then these unknown fingerprints are looked up in the database of audio
fingerprints by a search algorithm. Once their matches are found, the unknown audio
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Figure 2.1: A simple application of audio fingerprints used for content identification.

signals can be identified and their additional information can be retrieved. Among the
various stages, the fingerprints extraction unit is the heart of this application and will be
discussed carefully in the following sections.

2.2 Typical method used for creating audio finger-

prints

In the attempts to derive the fingerprints of audio signals, many researches and different
approaches have been conducted and proposed by researchers [4-7]. In spite of their
ingenious ideas, their methods appear to consist of three stages as depicted in Fig. 2.2.
In the first stage, an encoding technique is applied to transform raw audio waveforms
into their representation models. In the second stage, a feature extraction module is used
to analyze and extract unique features of the audio waveforms from their representation
models. In the last stage, a hashing technique is used to pack the extracted features to
create fingerprints for the input audio signals.

The main idea of stage one is converting a raw input waveform into a set of features
that represents acoustic events and block-based coding is commonly used for this pur-
pose. This method assumes that for a period of a few milliseconds, the audio signal is
unchanged. For this reason, a windowing technique is usually applied to divide the signal
into frames. Then linear transformation techniques, namely fast Fourier transform (FFT),
discrete cosine transform (DCT), and wavelet transformation, converts the frames into a
set of acoustic features. The output of this stage is a representation model of the input
signal, commonly known as a spectrogram. One important concern when using window-
ing technique is that there is a trade of between loss of information and computational
complexity.
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Figure 2.2: The process of creating audio fingerprints. The main task of stage one is
creating a representation model for the input signal. The main task of stage two is
extracting features of the input signal from its representation model. In stage three,
a hash function is used to combine the extracted features from stage two to create a
fingerprint for the input signal.

The main purpose of stage two is extracting features of the representation model that
convey inherent information of the input audio signal. The extracted features of one sig-
nal should be distinguishable with features of other signals and resilient to attacks such
as distortions and signal shiftings. For this purpose, a handful of techniques have been
proposed for different rationales. Some researches utilized linear prediction coefficients
(LPCs), linear prediction cepstral coefficients (LPCCs), or Mel-frequency cepstral coeffi-
cients (MFCCs) to represent the spectral envelope. Some were inspired by the vibrations
of the basilar membrane and used signs of energy to simulate its fluctuations. Other re-
searchers used only maximum energies or peaks of the spectrograms with the justification
that lower energies are unlikely to survive noise.

Creating fingerprints for audio signals from the extracted features is the main focus of
stage three. The features obtained from stage two, which contain unique characteristics
of the audio signals, can be regarded as fundamental fingerprints and the hash function of
stage thee continues to increase the discrimination power of the fingerprints and to reduce
the dimension of the fingerprints for searching efficiency. Templates of audio fingerprints
vary depending on the hash function. They can be vectors or matrices of binary or
decimal numbers. Some researchers compared values of the extracted features to create
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Figure 2.3: Two Speech signals and their corresponding spectrograms. (a) and (b) are
speech signals of the same content produced by a same speaker. (c) and (d) are spectro-
grams corresponding to (a) and (b).

binary encoded fingerprints, others created their final fingerprints by applying pattern
recognition methods to capture the relationships of the features [7-12].

2.3 Problems of audio fingerprints in speech

In case of music, the methods mentioned above achieved admirable results but the charac-
teristics of speech have exposed their weaknesses. Block-based coding technique divides
a speech signal into blocks having similar arbitrary widths and processes these blocks
separately using discrete Fourier transform (DFT) or discrete cosine transform (DCT).
This technique is substantially sensitive to signal shifting and phoneme scaling; randomly
blocking speech signals does not take into account the alignment of acoustic cues. Given
a speech content, it is unlikely for a speaker to produce signals having the same length
and phonemes having the same duration. Figure 2.3 shows two speech signals that have
the same content and are produced by the same speaker and their corresponding spectro-
grams. Perceptually, these two speech signals may sound the same but techniquely, the
alignments and durations of their acoustic features are considerably different. Therefore,
block-based coding will create different spectrograms for speech signals that have the
same content and same speaker. One way to overcome the drawback of block-based cod-
ing is using filterbank based shift invariant coding but this technique greatly increase the
dimension of speech signals because of its convolutional calculations. Data redundancy
on the representation models makes it difficult to recognize the underlying structures of
speech signals [13].
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The sources of problems do not confine only in the signal representation process, they
also appear in the features extraction methods. To gather features for the production
of speech fingerprints, several methods have been proposed; one used the signs of en-
ergies, another used the peaks of spectrogram. Although their methods achieved great
experimental results, none of them take into account patterns of the features on the rep-
resentation model. Given a pair speech signals that has the same content but different
speakers and another pair that has the same speaker but different contents, a feature
extraction method should realize the similarities and differences of the features on the
representation model to improve the quality of speech fingerprints.

An experiment was carried out to evaluate the ability of block-based coding in rep-
resenting speech signals. A Gammatone filterbank [14] was used in this experiment to
process ten speech signals with the same content produced by two speakers. Although
this is one of the most well-known techniques used in speech processing, testing the dis-
tortion between the original signals and the resynthesized signals could only achieve mean
µ = 18.9 dB and standard deviation σ = 1.2 dB in the signal to noise ratio (SNR) (ranges
of SNR are: below 25 dB is low, from 25 dB to 40 dB is high, and above 40 dB is excel-
lent), and mean µ = 3.9 and standard deviation σ = 0.1 in the perceptual evaluation of
speech quality (PESQ)(PESQ scores are: 1 is bad, 2 is poor, 3 is fair, 4 is good, and 5 is
excellent).

Based on the work by Ellis [15], another experiment was also conducted to investigate
the effectiveness of spectrograms in the process of producing speech fingerprints. The
results obtained from this experiment by using the previously described data proved that
different fingerprints were generated for speech signals that had the same content and the
same speaker despite the fact that this method worked very well with audio fingerprints.
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Chapter 3

Method for creating speech
fingerprint

3.1 Overall process of creating speech fingerprint

The process used for creating speech fingerprint in this research consists of three stages
as depicted in Fig. 3.1. In stage one, sparse coding technique was used to create over-
complete representation models for speech signals. To do so, a matching pursuit algorithm
and a base spectrum were utilized to generate the desired spikegrams.

In stage two, we aimed to extract the features of the spikegrams that could be related
to linguistic content and speaker individuality. At the current stage of this research, we
used local binary pattern (LBP) and histogram to analyze texture of our spikegrams.

The purpose of stage three was using a hash function to combine the extracted features
to create final fingerprints for speech signals. Details about the configurations of this
method and experimental results will be discussed in the following sections.

3.2 First stage – creating spikegram

3.2.1 Overview of sparse coding and spikegrams

Our brains have to process a huge amount of sensory data constantly throughout our lives.
We continuously receive visual images from our eyes, sounds from our ears, smells from
our noses, tastes from our tongues, and environment temperatures from our skin. The
abilities of our brains in processing such enormous amount of stimuli and making senses of
them are still mysteries to science. Many researches have been conducted to understand
how our brains work and to create machines that are able to mimic the systems that have
been developing over millions of years of evolution. Results from these studies show that
our brains dedicate a very large number of neurons for processing sensory stimuli but
only a small amount of active neurons are used to represent sensory information; such
mechanism is called sparse coding [16].

Due to the nature of speech, it is difficult for a speaker to produce the same speech
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Figure 3.1: Process of creating speech fingerprint

signals that have the same content yet we can recongnize the words that are spoken and
distinguish the voice of one speaker from others’. This natural ability of humans is still
challenging to speech processing. One explaination for this phenomenon is that acoustical
events in speech have relationships in times and frequencies and human hearing system
has evolved to understand these kinds of relationships. A part from these relationships,
acoustical events vary dramatically in time location, duration, and pitch. Therefore,
representing important acoustical events and their relationships is key to improve quality
of a speech processing system.

Inspired by the idea, many researchers have tried to represent speech signals using an
over-complete representation model, known as spikegrams, in which the number of non-
zero elements are significantly smaller than the number of zero elements. Conventional
methods used for representing speech signals such as block-based coding or filterbank
based shift invariance coding are unable to express the structures of speech signals and
the goal of sparse coding is to capture such structures. Sparse coding is a more efficient
method for encoding the statistics of speech signals as it is a data-driven technique that
can adapt to the variations of speech. Results from several researches showed that using
spikegram is better than using spectrogram for representing speech signals [16-20].

Karklin et al. (2012) used spikegram to build a two-layer model to represent speech
signals. In the first layer, a spikegram was used to capture a fine structure of an input
speech signal. The second layer further reduced the number of spikes to represent the
most important acoustic events of the speech signal. Then the output of the second layer
was used to resynthesized the speech signal. Testing on TIMIT dataset, results showed
that this method had significant improvement over the traditional methods that were
based on spectrograms.

Siahpoush et al. (2015) studied different encoding methods to improve the quality of
auditory implants. This research first encoded input sound signals with different repre-
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Figure 3.2: Process of creating spikegrams using matching pursuit algorithm and Ga-
bor/Gammatone dictionary.

sentation models such as spectrogram, representation model from Gammatone filterbank,
and spikegram. Then Bayesian neural decoding technique was used to reconstruct the
sound signals using these kinds of representation models. The distortion between the
original signals and the resynthesized signals was measured by signal to noise ratio to
evaluate the effectiveness of the decoding technique. Results showed that encoding input
signals using spikegrams resulted in highest decoding accuracy.

Erfani et al. (2017) conducted a research about employing spikegram to create a new
audio watermarking technique. This research utilized a perceptual matching pursuit al-
gorithm and two Gammatone dictionaries – Gammasines and Gammacosines – to create
spikegrams for audio signals. Experimental results showed that this new method produced
better performance than other wartermarking techniques.

3.2.2 Process of creating spikegrams

Previous studies have shown that sparse coding outperforms other the block-based coding
techniques in decomposing speech signals. Therefore, this research exploits the abilities
of a matching pursuit algorithm [21, 22] and two kinds of base spectra – Gabor dictionary
and Gammatone dictionary – in representing speech signals as equivalent spikegrams.
Results of using each kind of dictionaries will be shown and compare later in this thesis.

The matching pursuit algorithm we use is mathematically based on non-negative matrix
factorization (see appendix for more information) that approximates one matrix with
two other non-negative matrices, one is a matrix of bases and the other is a matrix of
coefficients. Therefore, the quality of the approximation depends on the selection of
appropriate bases and the method of finding the coefficients.

Figure 3.2 shows the process of decomposing a speech signal. For a given speech signal,
the matching pursuit algorithm uses a Gabor dictionary or a Gammatone dictionary to
calculate a coefficients matrix that best approximates the input signal. The resulting
coefficients matrix is known as a spikegram.
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Figure 3.3: Gabor and Gammatone dictionaries. (a) illustrates three kernels of Gabor
dictionary and (b) illustrates 3 kernels of Gammatone dictionary.

3.2.3 Base spectrum

Base spectrum is a spectrum of a basis by which a signal can be represented. Namely, in
a specific basis, we can express the signal by a unique set of coefficients expanded in that
basis. In most vector spaces, the basis is usually orthogonal and linearly independent.
However, depending on which properties of the signal we would obtain from its represen-
tation in the basis, these constraints of orthogonality and linear dependence alternatively
contribute their effects.

A basis can characterize a sparse representation of a signal, which depends on a match-
ing between the properties of the signal and that of the basis. For instance, in an orthog-
onal basis as Fourier basis w(k), for which

w(k)
n = ej

2π
nk , (3.1)

a continuous signal can be sparsely represented, but an impulse cannot. It is realized
that on a singular basis, it is difficult to represent sparsity of signals in real situations,
besides the speech signal is not an exception. More than one basis are expected to be
involved into the representation. The collection of vectors selected from these bases must
span the space, which is called a dictionary of vectors. As a result, the vectors in the
dictionary is not necessarily linear independent or orthogonal, however, it plays an effect.
Also, the appropriate sparsity with both time-frequency is an extremely important target
that spikegram is expected to possess.

Therefore, to well capture these sparse characteristics of a speech signal onto spikegram,
one of the main components used in creating an over-complete representation of speech
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signals is a dictionary of bases. There are two kinds of dictionaries of bases we used in
this research, Gabor and Gammatone dictionaries. The impulse response of the Gabor
filter can be calculated by multiplying a Gaussian function and a sinusoidal wave. The
real part of the Gabor function can be calculated as follow:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ ψ), (3.2)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, and λ, θ, ψ, σ, γ are the parameters of
the Gabor function. The impulse response of the Gammatone filter is given by:

g(t) = atn−1e−2πbt cos(2πft+ φ), (3.3)

where a, t, n, b, f, and φ correspond to the amplitude, time, order of the filter, bandwidth
of the filter, center frequency, and phase.

Figure 3.3 illustrates three kernels of a Gabor dictionary and a Gammatone dictionary.
Details about the configurations used to create these dictionaries will be discussed later
in this thesis.

3.2.4 Matching pursuit algorithm

As previously mentioned, the vectors in the dictionary are not linearly independent, con-
sequently, it could have more than one representation of a speech signal in the dictionary.
Nonetheless, with an over-complete dictionary, we can represent a speech signal in a
collection of vectors that perfectly expand to its properties in both time and frequency
domain, underlyingly a spikegram. Moreover, we know that it could have several ways to
represent the speech signal in the dictionary. The crucial problem is how to find out the
best representation. In a mean time, it led a solution of matching pursuit algorithm.

Matching pursuit algorithm was introduced by Mallat and Zhang in 1993 [23]. It
identifies the best sparse representation of a signal in a complete or over-complete set
of dictionary by performing a nonlinear approximation in the dictionary. Assuming bi
denote the kernels of a dictionary. In this study, the dictionary is over-complete, no single
way to express the speech signal in a linear combination of the kernels. If x is the speech
signal, an ideal expectation is

x =
∑
i

wibi, (3.4)

To find out the best representation, it is find the collection of bi producing the biggest
absolute inner products with the signal. In another word, finding the best bi by following
the equation

max
i
| < x, bi > | (3.5)

for which an optimal kernel is the projection onto the subspace spanned by bi that yields
the largest scalar projection.

By the interpretation above, it implies that matching pursuit locates the optimal K-
term expansion of the speech signal in the dictionary. A basic algorithm of matching
pursuit for time-shiftable kernels is explained as follows.
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Figure 3.4: Computation steps of matching pursuit algorithm. (a) is a speech signal, (b)
is a base spectrum, (c) is the convolution set created by convolving the speech signal and
the base spectrum, (d) illustrate the reconstructed signal and spikegram after one, two,
and twenty iterations.

• An input signal in the matching pursuit technique can be decomposed into a linear
combination:

x =
K∑
i

wibi + r, (3.6)

where x is the signal vector, K is the number of iterations, wi ∈ W and bi ∈ B are
the weight and kernel at the i-th iteration, and r is the residual.

• According to the equation Eq. 3.6, minimizing the residual will maximize the ap-
proximation of the input signal and its linear combination. Therefore, the matching
pursuit algorithm performs a search at each iteration for the largest inner product
between the residual and a kernel, i.e.:

wi = arg max | < ri, bi > |2, (3.7)

where < ri, bi > is the inner product between the residual, ri, and a kernel, bi, at
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Figure 3.5: Speech signal representation using spikegram. (a) and (d) represent superim-
position of the speech signals shown in Fig. 2.3 and their approximations. (b) and (e)
are the residual signals after the approximations. (c) and (f) are the spikegrams of the
speech signals created using a matching pursuit algorithm and Gammatone dictionary.

the i-th iteration. The residual is then updated as:

ri+1 = ri − wibi, (3.8)

3.2.5 Creating spikegrams

This research employed a matching pursuit algorithm [7] by using the dictionary of Gam-
matone kernels as described in the previous section and some computational improvements
[8] to create equivalent spikegrams for speech signals. The six overall computation steps
are below.

1. There are two most important input arguments of MP, they are input signal x and
dictionary of Gammatone kernels B. The MP performs calculation based on these
inputs and produce resynthesized signal y and spikegram W .

2. In the initialization step, the MP pre-calculates the correlations between the signal
x and each kernel of the Gammatone dictionary B to create a correlation set C.
More specifically, all kernels are first inversed by using B(:, end : −1 : 1), then
the correlation set is calculated by using C = conv2(B(:, end : −1 : 1), x). The
resynthesized signal is set to be a zero vector with the length of the input signal
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y = zeros(1, length(x)) and the spikegram is set to be a zero matrix with the size
of the correlation set W = zeros(size(C)).

3. In step one of the main loop, the MP uses the max function to find the maximum
value of the correlation set C and to obtain the position of the maximum value
denoted as (maxi,maxj).

4. In step two, the spikegram and the resynthesized signal are updated. More specifi-
cally, a spike is recored by usingW (maxi,maxj) = W (maxi,maxj)+C(maxi,maxj).
To update the resynthesized signal, multiplication between the coefficient and the
kernel that are corresponding to the maximum value are first calculated as delta =
C(maxi,maxj)× B(maxi, :), then the resynthesized signal is appended with delta
as y = y + delta.

5. In step three, the correlation set C is updated corresponding to the current max-
imum value. First, MP calculates the multiplication of the current coefficient and
the current kernel corresponding to the maximum value delta = C(maxi,maxj)×
B(maxi, :). Then with the current position (maxi,maxj), a part of the correlation
set is subtracted by delta. After step 2, the resynthesized signal y is updated; the
calculation in step three is performed to reflect the correlation between the residual
(x− y) and kernels of the Gammatone dictionary B.

6. Step one of the main loop is repeated until stoping criteria are met.

The matching pursuit algorithm implemented in this research used two stopping criteria;
the first was when the SNR reached 40 dB and the second was the total number of
iterations.

The top panels in Fig. 3.5 illustrate the original signals and the reconstructed signals
from the dictionary of Gammatone kernels B and weight matrix W of two speech utter-
ances. The residuals of the approximation process are depicted in the middle panels. The
bottom panels illustrate the spikegrams of these speech utterances.

An experiment was conducted by using the same data as those presented in Section 2
to evaluate the capabilities of the matching pursuit algorithm and Gammatone dictionary
in decomposing speech signals. This method achieved mean µ = 40.0 dB and standard
deviation σ = 0.0 dB in SNR, and mean µ = 4.3 and standard deviation σ = 0.2 in PESQ
when the distortion between the original signals and the resynthesized signals were tested.

3.3 Second stage – feature extraction

Local binary pattern is a technique that is widely used in texture analysis [24] and image
processing. It was first proposed by Ojala et al. [25] in 1994 as a method used for image
classification. In this work, an image was divided into 3×3 blocks, then eight values of the
outer ring of each block were compared with the center value of the block. If a value was
greater than or equals to the center value, it was encoded with one, and zero otherwise.
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Figure 3.6: Process of converting a spikegram into a LBP matrix. Each spike on the
spikegram is selected as the center value along with eight other spikes. Values of the
neighboring spikes are compare with the center value to create an eight-bit binary string.
Then, the binary string is converted into a decimal value. Finally, the center value is re-
placed with this decimal value. After this process complete, the spikegram is transformed
into a LBP matrix with values ranging from 0 to 255.

After this encoding process, this technique converted pixels an image into a binary matrix
and revealed the patterns of the image which was useful for classification tasks. An image
classification experiment was conducted to evaluate and compare performances of this
technique along with others using various dataset. Results showed that LBP outperfomed
other techniques as it achieved lowest error rate.

Over the course of development, LBP was expanded with many variations and appli-
cations [26]. The variations of LBP have been proposed for many purposes; some were
used for improving image classifying results, others were used for choosing LBP blocks,
applying to 3D images, and combining with other methods to create hybrid approaches.
One of the most noticeable applications of LBP is face recognition. This application can
be summarized in two processes that are representing facial features and classifying them.
The facial features representation model plays an important role in the overall quality of
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a face recognition application. Therefore, when building a representation model for facial
features, one should bare in mind some significant requirements. One of the requirements
is that, given images of the same person, features on their representation models should
be similar; meanwhile, they should be considerably different for images of different people.
Another requirement is that the feature extraction method should be effective for practi-
cal application that means the features of raw images should be easy to obtain to avoid
computational complexity. Another requirement is that the dimensionality of the repre-
sentation model should be low so that the classification process could work effectively.
LBP happens to satisfy all of the aforementioned requirements. By applying LBP, many
researchers, who worked with face recognition problem, achieved astonishing benchmarks
in FERET database [27-30].

While analyzing features on spikegrams, there is one obstacle that we need to deal
with is the unalignment of the features. Recorded signals have different lengths, they
are unaligned, and their phonemes are scaled; as the result, their features on spikegrams
are difficult to compare. Further more, the features that represent linguistic content and
speaker individuality are encoded in the spike distributions. Therefore, it is necessary to
convert spikegrams into a nomalized dimension to compare their features. Considering
the robustness of of LBP in representing facial features that can be used for face recog-
nition, this research has tried to utilize the advantages of LBP to analyze the features of
spikegrams. One characteristics of LBP that makes it become a candidate for analyzing
features of spikegrams is its robustness in texture analysis. Our assumption is that spike
distributions of speech signals that have the same content and same speaker should be
similar and changes in speech content and or speakers should result in different spike
distributions. Therefore, a variation of LBP was applied to this research as shown in Fig.
3.6. Each value on a spikegram is chosen as a center value and eight other values, i.e., four
preceding and four trailing the center value, are also selected to calculate the LBP. After
this process, each value of a spikegram is converted to a decimal number ranging from
zero to 255 and a spikegram is transformed into an LBP matrix. Moreover, histogram
of the LBP matrix is calculated to evaluate the texture of the spikegram. Results and
evaluations will be discussed later in this thesis.

3.4 Third stage – hash function

Based on the output of the second stage, the hashing technique of this stage further
combines the extracted features to create final fingerprints for speech signals. Many
researchers have proposed different hashing techniques to create speech fingerprints and
designs of the techniques are driven by some requirements

• Speech fingerprints should have strong discrimination power. It means that speech
fingerprints created from the speech signals that have the same content and same
speaker should be similar together to be considered as the same. On the other hand,
speech fingerprints created from speech signals that have different content and or
speakers should be considerably different.
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• Speech fingerprints should be small in size because there is an enormous amount
of speech content that are needed to be hashed. Therefore, the size of speech
fingerprints should be as compact as possible to reduce the size of the fingerprint
database.

• A direct consequence can be drawn from the above requirement is searching effi-
ciency. A database of fingerprints may contain hundreds of millions of hash se-
quences, therefore, fingerprints matching should be fast enough to be applicable to
practical applications.

Salem et al. (2009) [10] proposed a robust audio hashing system that simulated the
vibrations of the basilar membrane and hair cells of our hearing system. In this research,
the researchers divided speech signals into frames and applied an energy function to
calculate the energies for all the frames. The matrix of energies created by this method
was regarded as representation models for the speech signals. Then, two adjacent values
on the representation model were selected and subtracted together. If the subtraction
result was greater than zero, one was recorded and zero otherwise. After this process, the
speech signals were converted into hash strings. Given two hash strings, their bit error
rate was calculated and compared with a threshold of 0.25. If the bit error rate was less
than threshold, the original two speech signals was regarded as the same and different
otherwise. Experimental results showed that this method worked very well against audio
attacks and achieved high accuracy.

Chen et al. (2010) [8] first calculated LPCs a speech signal, then the researchers applied
NNF to the LPCs to create a features vector for the speech signal, then each value of the
features vector was compared with the average value of the entire feature vector. If the
value was greater than or equal the average value, one was recorded and zero otherwise.
Finally, fingerprint created for the speech signal was a binary vector. The researchers
further calculated a threshold that was used distinguishing their speech fingerprints. To
compare two speech fingerprints, they calculated their Euclidean distance. If the distance
was less than the threshold, the two speech signals were considered as the same and
different otherwise. This method was tested with 1000 speech signals and its accuracy
was admirable.

28



Chapter 4

Result and evaluation

4.1 Speech signals representation

This section describes an experiment conducted to evaluate and compare the abilities
of representing speech signals of block-based coding and sparse coding. The dataset
used for this experiment consists of 75 speech signals of three different types of content
including /ohayo-gozaimasu/, /konnichiwa/, and /konbanwa/ produced by five speakers
that included three males and two females (each speaker spoke each content five times).
A Gammatone filterbank, the representative for block-based coding, was used to create
spectrograms for speech signals. To create spikegrams, the matching pursuit algorithm
described in the above section and two kinds of dictionaries, namely Gabor dictionary
and Gammatone dictionary, was used for the sparse coding technique. Details of the
configurations and parameters used for the coding techniques and the results are described
in the following section.

4.1.1 Gammatone filterbank spectrograms

In this experiment, a Gammatone filterbank was used to create Gammatone spectrograms.
As shown in Table 4.1, the Gammatone filterbank used in this experiment was configured
to have 129 channels, the center frequency was 600 Hz, and the frequency of the input
speech signals was 16, 000 Hz.

To evaluate the effectiveness of these configurations, the distortions between the original
speech signals and the resynthesized speech signals was calculated using SNR and PESQ.
Table 4.2 shows the effectiveness results of this method. It can achieve mean µ = 19 dB,
standard deviation σ = 1 dB in SNR and mean µ = 3.6, standard deviation σ = 0.2 in
PESQ.

4.1.2 Gabor spikegrams

Based on the work of Patrick Mineault et al. (2011), a Gabor dictionary was used for
the maching pursuit algorithm to create Gabor spikegrams. As shown in Table 4.1, the
Gabor dictionary used in this experiment was configured to have 128 kernels, depicted in
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Table 4.1: These tables show the configurations of the methods used in this experiment.
Parameters of the methods using Gammatone filterbank, Gabor spikegram, and Gamma-
tone spikegram are shown in the top, middle, and bottom tables, respectively.

Parameters of Gammatone filterbank Value

Number of channels 129

Center frequency 600 Hz

Sampling frequency of input signals 16000 Hz

Parameters of Gabor dictionary Value

Number of kernels 128

Sampling frequency of input signals 16000 Hz

Parameters of Gammatone dictionary Value

Number of kernels 33

Center frequency 600 Hz

Sampling frequency of input signals 16000 Hz

Fig. 4.1(b), and the frequency of the input speech signals was 16, 000 Hz. The matching
pursuit algorithm was configured to have 2 stopping criteria, one is when the residual
signal equals to zero, and another is the maximum iteration limit (100, 000).

To evaluate the effectiveness of these configurations, the distortions between the original
speech signals and the resynthesized speech signals was calculated using SNR and PESQ.
Table 4.2 shows the effectiveness results of this method. It can achieve mean µ = 19 dB,
standard deviation σ = 2 dB in SNR and mean µ = 4.4, standard deviation σ = 0.0 in
PESQ.

4.1.3 Gammatone spikegrams

In this experiment, a Gammatone dictionary was used for the maching pursuit algorithm
to create Gammatone spikegrams. As shown in Table 4.1, the Gammatone dictionary
used in this experiment was configured to have 33 kernels, depicted in Fig. 4.2(b), the
center frequency was 600 Hz, and the frequency of the input speech signals was 16, 000
Hz. The matching pursuit algorithm was configured to have 2 stopping criteria, one is
the SNR limit (40 dB), and another is the maximum iteration limit (500, 000).

To evaluate the effectiveness of these configurations, the distortions between the original
speech signals and the resynthesized speech signals was calculated using SNR and PESQ.
Table 4.2 shows the effectiveness results of this method. It can achieve mean µ = 39 dB,
standard deviation σ = 1 dB in SNR and mean µ = 4.4, standard deviation σ = 0.1 in
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Table 4.2: These table shows results of measuring the distortions between the original
speech signals and the resynthesized speech signals – created by the methods in this
experiment – using SNR and PESQ. Results of the methods using Gammatone filterbank,
Gabor spikegram, and Gammatone spikegram are shown in the top, middle, and bottom
tables, respectively.

Results of using Gammatone filterbank

Mesurement Mean Standard Deviation

SNR µ = 19 dB σ = 1 dB

PESQ µ = 3.6 σ = 0.2

Results of using Gabor spikegram

Mesurement Mean Standard Deviation

SNR µ = 30 dB σ = 7 dB

PESQ µ = 4.4 σ = 0.0

Results of using Gammatone spikegram

Mesurement Mean Standard Deviation

SNR µ = 39 dB σ = 1 dB

PESQ µ = 4.4 σ = 0.1

PESQ.

4.2 Features of spikegrams

A variation of local binary pattern was employed for this process in the current stage of
this research. One characteristic of LBP is that it is able to demonstrate local changes
in spike distributions that are important in comparing changes in content and utterers of
speech. Each value on a spikegram is chosen as a center value and eight other values, i.e.,
four preceding and four trailing the center value, are also selected to calculate the LBP.
After this process, each value of a spikegram is converted to a decimal number ranging
from zero to 255 and a spikegram is transformed into an LBP matrix as shown in Fig. 4.3.
Then, histograms for all channels of the LBP matrix are calculated to form a (33× 255)
histogram matrix, as shown in Fig. 4.4 and Fig. 4.5.

As spikegrams are calculated using a sparse coding technique, a spike in the middle of
an ocean of zeros is very common. The stripes in Fig. 4.4 are the results of this pattern;
more specifically, they are positioned at 20, 21, 22, 23, 24, 25, 26, and 27. Figures 4.4(b)
and 4.4(c) are histogram matrices of two speech signals of the same content produced by

31



Figure 4.1: Gabor dictionary used for creating Gabor spikegrams. (a) shows 3 kernels of
the dictionary and (b) shows full 128 kernels of the dictionary.

two different speakers. Figures 4.5(a), 4.5(b), and 4.5(c) are histogram matrices of three
speech signals that are produced by the same speaker and have different content. The
speech content includes /ohayo-gozaimasu/, /kon-nichiwa/, and /konbanwa/ shown in
(a), (b), and (c), respectively. Color patterns of the LBP histogram matrices are different
indicating that texture of the spikegrams are different; this serves as a cue in comparing
histogram matrices.

An experiment was conducted to evaluate the capabilities of spikegrams in capturing
the underlying structures of speech signals, where 75 speech signals of three different
types of content including /ohayo-gozaimasu/, /kon-nichiwa/, and /konbanwa/ produced
by five speakers that included three males and two females were recorded. Then, the
histogram matrices of equivalent spikegrams of speech signals were calculated using the
previously described process.

One method that was used to evaluate the differences in spike distributions involved
subtracting the histogram matrices by one another. Figure 4.6(a) shows the results ob-
tained from subtracting the histogram matrices of two speech signals that had the same
spoken word produced by the same speaker. The remaining subtraction is almost flat,
which indicates that the spike distributions of the original two spikegrams are very simi-
lar. Figures 4.6(b), 4.6(c), and 4.6(d) are the respective results from subtracting signals
in the same manner that have the same content with different speakers, different types
of content with the same speaker, and different types of content with different speakers.
The color patterns of these figures indicate that changes in linguistic content or speakers
result in very different spike distributions.

The Frobenius norm was another method used for comparing the histogram matrices.
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Table 4.3: Comparing Frobenius norm of LBP histograms of different speech utterances
to evaluate the effectiveness of spikegram.

Mean Standard Deviation

Same speaker and same content µ = 408.3 σ = 20.3

Same speaker and different content µ = 3878.0 σ = 194.3

Different speakers and same content µ = 5072.6 σ = 878.8

Different speakers and different content µ = 5260.1 σ = 2747.2

Table 4.3 summarizes the mean distances and standard deviations of the results. The
mean distance and standard deviation obtained by comparing histogram matrices that
have the same content and same speaker are about 10 times lower than the others. The
other results demonstrate that changes in content or speakers notably increase the dis-
tances between histogram matrices and the farthest distances and largest variations of all
of these are between different types of content and different speakers.

4.3 Hash function

We conducted another experiment to evaluate the discrimination ability of the LBP his-
togram matrices. Given a LBP histogram matrix of a speech signal, we calculated the
mean for each column to obtain a (1 × 256) vector and temporarily called it the speech
fingerprint for the speech signal. In this manner, we produced a database containing 75
speech fingerprints. Then we computed Euclidean distances for these 75 fingerprints with
the number of permutation was ten. Then we calculated means and standard deviations
for the Euclidean distances.

For a new speech signal, we calculated the speech fingerprint for this signal. Then
we calculated the Euclidean distance between this fingerprint and other fingerprints in
the database. If this distance fell into a distribution calculated earlier, we considered it
as a match. Based on the experiment results, we found that there were some cases this
comparing method produced wrong results but most of the cases, the querying fingerprints
felt into correct distributions.
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Figure 4.2: Gammatone dictionary used for creating Gammatone spikegrams. (a) shows
3 kernels of the dictionary and (b) shows full 33 kernels of the dictionary.

Figure 4.3: A spikegram (top panel) and its LBP matrix (bottom panel).
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Figure 4.4: LBP histogram matrices. (a) illustrate LBP histogram of one channel of a
speech utterance. (b) and (c) are LBP histograms of 33 channels of the speech signal
shown in Fig. 2.3 produced by 2 speakers.
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Figure 4.5: LBP histogram matrices of three speech signals that are produced by the same
speaker and have different content. Color patterns of the three LBP histogram matrices
are different indicating that texture of the spikegrams are different. The speech content
includes /ohayo-gozaimasu/, /kon-nichiwa/, and /konbanwa/ shown in (a), (b), and (c),
respectively.
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Figure 4.6: Comparing LBP histograms of different speech utterances to evaluate the
effectiveness of spikegram. Color patterns in (a) are almost flat, which indicate that 2
LBP histograms are very similar. Color patterns in (b), (c), and (d) are spikier, which
indicates that the LBP histograms are significantly different.
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Chapter 5

Conclusion

5.1 Summary

We found that the matching pursuit algorithm used with Gabor or Gammatone dictionary
outperformed the Gammatone filterbank in decomposing speech signals by evaluating the
original speech signals and the resynthesized signals with SNR and PESQ, and sparse
coding provided a better representation model for speech signals. More importantly,
spikegrams could be used to replace spectrograms as a better alternative in the process
of creating speech fingerprints.

Based on the experiments, we concluded that the spike distributions of spikegrams
conveyed the linguistic content and voice identities of the utterers of speech signals. These
features play a significant role in the accuracy and reliability of speech fingerprints.

5.2 Remaining issues

The aim of stage one is using spikegrams as the representation model for speech signals but
there was only one sparse coding technique the matching pursuit algorithm was studied.
Other methods used for creating spikegrams should be examined and their results should
be compared to evaluate their performances. In addition, Gabor and Gammatone were
the only two based spectra that were used in the process of creating spikegrams. Other
kinds of base spectrum such as Gammachirp should also be investigated.

In stage 2, local binary pattern was somewhat able to represent characteristics of the
spike distribution on spikegrams but its weakness was that it could only reflect the local
changes of the spikes. A pattern analysis method that can incorporate all the spikes of an
entire spikegram is preferable. Moreover, features that correspond to linguistic content
and voice identity of speakers have not been thoroughly studied. Consequently, a model
used for extracting these feature has not been built.

In stage 3, calculating the mean of the histogram matrices was too simple for a hash
function and using mean and standard deviation to compare the distances of speech
fingerprints was unable to achieve good recognition rate. Future development of this
stage should target a hash function that could combine the extracted features from stage
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2 to create better speech fingerprints. Furthermore, a suitable matching method should
be studied to compare speech fingerprints.

So far, the performance of the proposed method was evaluated using a limited dataset.
To ensure the quality of the method, a formal dataset should be used and results of each
stage should be examine carefully.

5.3 Future work

Futher development of this research will be dedicated to resolve the remaining issues
listed in the above section. Although there are still room for improvement in stage one,
we belive that features on the spikegrams are sufficient to be analyzed. Therefore, stage
two can be carried out with the following tasks:

1. An investigation will be conducted to recognize features that represent linguistic
content and voice identity of speakers on the spikegrams.

2. A model will be built to extract these features.

3. The consistency of the features and the effectiveness of the model will be evaluated
using a formal dataset.

Stage three can be carried out with the following tasks:

1. A robust hash function will be built to combine the well-tested features from stage
2 to produce speech fingerprints.

2. A suitable method used to compare speech fingerprints to achieve highest recognition
rate will be carried on.

3. The robustness of the hash function and the comparing method will be examined
using a formal dataset.

A refinement process is necessary to improve the overall quality of the solution. This can
be done with the following tasks:

1. In stage 1, other kinds of base spectrum such as Gammachirp, and other kinds of
sparse coding algorithms will be explored to compare their performance.

2. In stage 2, various kinds of feature extraction methods will be reviewed to evaluate
their effectiveness.

3. In stage 3, different kinds of hash function will be studied to test their effectiveness.

4. Results from each stage will be compared to find the most effective ones.
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Appendices

Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a method used for decomposing a matrix into
two other matrices that only contain non-negative elements.

The approximation is given by:

|V | ≈ W ×B, (5.1)

where V ∈ RF×T ,W ∈ RF×P , and B ∈ RP×T . The matrix V can be a speech signal, the
matrices B and W are commonly known as the dictionary of bases, or the base spectrum,
for the former and the weight matrix, or activations, for the latter. The F and T are
often referred as a frequency bin and a time bin respectively.

To perform this approximation, it is to minimize the β-divergence, which is defined as

Dβ(c||d) =


1

β(β−1)(c
β + (β − 1)dβ − βcdβ−1) β ∈ R− {0, 1}

c log c
d
− c+ d β = 1

c
d
− log c

d
− 1 β = 0

(5.2)

Commonly, researchers concentrated on 3 special cases of the β-divergence that are corre-
sponded with β = 0, 1, 2. Or, they are minimizing the Kullback-Leibler divergence (KL)
[31] (Eq. 5.3) minimizing the Itakura-Saito divergence [32] (Eq. 5.3) and minimizing the
squared norm (Eq. 5.5) respectively [33, 34].

• The KL divergence

(V ||WB)KL =
∑
f,t

(|Vf,t|(log(
Vf,t

(WB)f,t
)) + (WB)f,t) (5.3)

• The Itakura-Saito divergence

(V ||WB)IS =
∑
f,t

(
Vf,t

(WB)f,t
− log Vf,t

(WB)f,t
− 1) (5.4)

• The squared norm

||V ||WB|| =
∑
f,t

(|Vf,t| − (WB)f,t)
2 (5.5)
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It is seen that it has no direct way to find out the global minimums of the divergences
above. Instead, an iterative method is applied. In that process, after the base matrix
B and the weight matrix W are initialized by specific values, they are updated in each
iteration. We can use the following formulas to update the base and weight vector [32, 34].

• Updating the base and weight matrices in the KL divergence

Bf,p = Bf,p

∑
i

Wp,iV f,i

(WB)f,i∑
jWp,j

(5.6)

Wp,t = Wp,t

∑
i
Bi,pV i,t

(WB)i,t∑
j Bj,k

(5.7)

• Updating the base and weight matrices in the Itakura-Saito divergence

Bf,p = Bf,p
W T ((WB)−2V )

W T (WB)−1
(5.8)

Wp,t = Wpt
((WB)−2V )BT

(WB)−1BT
(5.9)

• Updating the base and weight matrices in the squared norm

Bf,p = Bf,p
(W TV )f,p

(W TWB)f,p
(5.10)

Wp,t = Wp,t
(V BT )p,t

(WBBT )p,t
(5.11)

When deriving the update equations, it is done on an auxiliary function of the cost
function, by which the cost keeps decreasing after every iteration or going down hill in
the finding [33, 34]. The auxiliary functions of the cost functions for the squared norm,
the KL divergence and the Itakura-Saito divergence can be found in most of the study on
NMF [32, 34].

The loop ends when the update is convergent. In another word, a threshold is satisfied
(possibly an acceptable value of divergence) or no changes of the base and the weight
matrices in further iterations are made. The latter situation of the convergence rarely
happens, the preceding case is common in practice.
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