
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
時間オートマトンから時間モジュールへの変換に関す

る考察

Author(s) 館, 宜伸

Citation

Issue Date 2001-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1485

Rights

Description Supervisor:落水 浩一郎, 情報科学研究科, 修士



A Study on Transformation

from Timed Automata to Timed Modules

Yoshinobu Tachi

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 2001

Keywords: timed automata, timed modules, real-time systems, software process.

1 Background

For real-time systems, such as communication systems, logic circuits, operating systems

etc., we must ensure not only that they work correctly but also that they work in correct

timing. Recently, many real-time systems are very large and complex, so that it is very

diÆcult to verify correctness of them by simulation tests. Hence, we need mathematical

veri�cation methods in the design step of them.

For this purpose, that is, for veri�cation of correctness of real-time systems, timed

automata and timed modules are proposed. The timed automata model is an extension

of a well-known model, automata. Each timed automaton has clocks to control its transi-

tions: each edge of a timed automaton may have clock constraints and clock resets. The

timed module model is the model which describes systems by transitions of the values

of variables. The types of variables are discrete(boolean or enumerate) and clock(real).

That is, by using this model, we can treat both actions concerning discrete variables and

action concerning clocks by the same manner. Both of the two models are proposed by

Alur et. al. They suggests that the timed module model is a generalization of the timed

automata model. However, they did not explicitly give any transformation procedure

from timed automata to timed modules.

Copyright c 2001 by Yoshinobu Tachi

1



2 Transformation from Timed Automata to Timed

Modules

Then, in this thesis, we give a transformation procedure from timed automata to timed

modules. The procedure consists of the following two sub-procedures.

� An equivalent transformation procedure from timed automata to timed modules

� An optimization procedure for the timed modules obtained by the above procedure

We also give the proofs of the validities of them. Note that the procedure is for the timed

I/O automata model. This is the model with Input/Output distinguish in the events. We

use this model because systems and processes that we want to describe need such events.

We apply this procedure to the following two examples.

� A speci�cation of a train/gate controller system

(This is an example of real-time systems.)

� \Software Process Modeling Example Problem" by Kellner et. al. [3]

It is one feature of this thesis that we give a software process description in an automata

model. We have compared the description obtained by the procedure with the description

in timed automata, for both examples. We conclude that the descriptions obtained by

applying the procedure are certainly optimized. This is due to discrete variables of timed

modules, which give us exible descriptions. Details are shown in the next section.

3 Comparison between Two Models

Because only one event are allowed to occur for each transition in timed automata, we

need to write descriptions which are not simple, in the following cases.

� For the case that an event can occur only when some other input events have arrived,

we need the same number of edges and states as the number of the input events.

� It is similar for the case that an event can occur only after some output events have

occurred.

� For each of the above cases, if the order of the input(output) events can not be

determined, then the number of the possible orders is the factorial of the events,

and we need the same number of states and edges as the number of the orders.

� For an input event and a continuously succeeding output event, we also need two

edges and states.

� Suppose that we need a judgment in a description. We need the same number of

states and edges as the number of the results of the judgment.

2



� Suppose that each timed automaton must let its state be the initial state by some

\reset event" of another automaton. We need the same number o9f additional edges

as the number of the states of the automaton.

By using timed modules, we can write simpler (optimized) descriptions for each of the

above cases.

� In timed modules, each input event is expressed by the assignment of \true" for

the boolean variable corresponding to the event, as a condition of an expression.

Hence, we can describe the arrivals of many input events by the conditions of only

one expression.

� It is similar for the case of output events.

� In timed modules, the order of events becomes the order of the conditions of an

expression. Because we need not consider this order, we need only one expression

also for this case.

� An input event becomes a condition of an expression and a continuously succeeding

output event becomes an assignment in the expression. Hence, we need only one

expression also for this case.

� In timed modules, the results of a judgment are expressed by the values of a variable

with enumerate type. Hence, we need only one variable for any judgment.

� For a \reset event", we must add only one expression which lets the value of the

variable \state" be the value denoting the initial state whenever the current value

of the \state" is.

In the examples in the chapter 4, we have shown the optimized descriptions in timed

modules obtained by applying the above methods. Note that descriptions in timed mod-

ules are sets of expressions, so that they are not easy to read. Hence, we also propose an

\automata representation" of timed modules, in this thesis.

4 Future Works

Future works are as follows.

1. Application of the transformation procedure to other examples, that is, other ex-

amples of real-time systems and other software processes.

2. Development of further optimization methods.

3


