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Played on a Point Set
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Abstract: We study a combinatorial game named “sankaku-tori” in Japanese, which means “triangle-taking” in En-
glish. It is an old pencil-and-paper game for two players played in Western Japan. The game is played on points on
the plane in general position. In each turn, a player adds a line segment to join two points, and the game ends when a
triangulation of the point set is completed. The player who completes more triangles than the other wins. In this paper,
we formalize this game and investigate three restricted variants of this game. We first investigate a solitaire variant; for
a given set of points and line segments with two integers t and k, the problem asks if you can obtain t triangles after
k moves. We show that this variant is NP-complete in general. The second variant is the standard two player version,
but the points are in convex position. In this case, the first player has a nontrivial winning strategy. The last variant is a
natural extension of the second one; we have the points in convex position but one point inside. Then, it turns out that
the first player has no winning strategy.

Keywords: combinatorial game, Sankaku-tori, NP-complete.

1. Introduction

“Sankaku-tori” is a classic pencil-and-paper game for two
players, traditionally played in Western Japan. Sankaku-tori lit-
erally means “triangle taking” in English. The rule is as follows.
First, two players put a number of points on a sheet of paper.
Then, they join the points alternately by a line segment. Line seg-
ments cannot cross each other. When an empty triangle is com-
pleted by a move, it scores +1 to the player who draws the (last)
line segment. If two empty triangles are completed by the line
segment, it scores +2. When no more line segment can be drawn,
the game ends, and the player who scores more wins (see Fig. 1;
in the figure, solid lines and dotted lines are played by the first
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Fig. 1 Sample play.

player R and the second player B, respectively. Finally, R wins
since she obtains four triangles, while B obtains two triangles).
We study the algorithmic aspects of the sankaku-tori game.

The game has a similar flavor to those studied by Aichholzer
et al. [1] under the name of “Games on Triangulations.” Among
variations they studied, the most significant resemblance can
be seen in the monochromatic complete triangulation game.
The only difference between the sankaku-tori game and the
monochromatic complete triangulation game is as follows. In the
monochromatic complete triangulation game, if a player com-
pletes a triangle, then she can continue to draw a line seg-
ment. This rule is similarly seen in Dots and Boxes, where
two players construct a grid instead of a triangulation of the
point set. Dots and Boxes has been investigated in the litera-
ture (see Refs. [2], [4]), and especially, one book is devoted to
the game [3], revealing a rich mathematical structure. Such a rule
of the monochromatic complete triangulation game and Dots and
Boxes admits us to use related results in combinatorial games
such as Kayles and Nimstring. Aichholzer et al. [1] proved that
the monochromatic complete triangulation game is a first-player

A part of this paper was presented at FUN 2014 [7].
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win if the number of points is odd, and a tie if it is even. We note
that a few problems left by Aichholzer et al. [1] have recently
been resolved by Manić et al. [5].

On the other hand, in the sankaku-tori game, even though a
player completes a triangle, she should leave the token to the next
player. Hence, we cannot directly use the previously known re-
sults, and we need to develop new techniques for our game.

We first consider a solitaire version of the sankaku-tori game.
Namely, we are given a point set and some line segments connect-
ing pairs of those points, and we want to maximize the number
of triangles that can be constructed by drawing k more line seg-
ments. We prove that this problem is NP-complete.

Next, we turn to the ordinary two-player version. We consider
the case that the points are in convex position. In this case, the
first player always has a winning strategy. Then, we extend this
case to adding one more point inside of the points in convex po-
sition. That is, the points are in convex position but one special
point inside. In this case, interestingly, the second player has
an advantage. More precisely, the first player has no winning
strategy.

2. Preliminaries

In this paper, a finite planar point set S = {p1, p2, . . . , pn} is
always assumed to be in general position, i.e., no three points in
S are collinear. A triangulation of a finite planar point set S is a
decomposition of its convex hull by a maximal set of triangles in
such a way that their vertices are precisely the points in S . Two
players R(ed) and B(lue) play in turns, and we assume that R is
the first player. In terms of games in Ref. [1], our problem is con-
structing monochromatic triangulation of the point set. That is,
the players construct a triangulation of a given point set S *1.

Starting from no edges, players R and B play in turn by draw-
ing one edge in each move. We note that each player draws pre-
cisely one edge. This is the difference from the dots-and-boxes-
like games. The game ends when a triangulation of the point set
is completed. Each triangle belongs to the player who draws the
last edge of the triangle *2. The player who has more triangles
than the other wins.

We first note that, for any set S of n points, the number of
edges of a triangulation of S is determined by the position of the
points. That is, the number of turns of the sankaku-tori game is
determined when the position of the points are given, and the to-
tal score of two players is a constant. For example, if n points are
in convex position, its any triangulation of the point set consists
of 2n − 3 edges, and the resulting triangulation of the point set
contains n− 2 triangles. Therefore, the number of turns is 2n− 3,
and the total score of both players is n − 2.

3. NP-completeness

In this section, we consider the solitaire variant by modifying
the rule of the original game. We start halfway through the game.
That is, we are given a set of n points and O(n) lines joining them.

*1 In a real game, two players arbitrarily draw the point set by themselves
simultaneously until both agree with.

*2 In a real game, when a player draws the last edge, she writes her initials
in the triangle.

We are also given two integers k = O(n) and t. The decision prob-
lem asks whether we can obtain t triangles after k moves for the
set of points and lines.

Theorem 1 The solitaire variant of Sankaku-Tori is NP-
complete.

The problem is in NP since we can guess k new edges and eas-
ily check whether we can obtain t triangles. Later in this section,
we reduce POSITIVE PLANAR 1-IN-3-SAT problem [6] to our
problem. In POSITIVE PLANAR 1-IN-3-SAT, we are given a
3-CNF formula ϕ with n variables and m clauses, together with
a planar embedding of its incidence graph G(ϕ). Each clause of
ϕ consists of three positive literals (i.e., variable itself). The in-
cidence graph G(ϕ) of ϕ consists of n vertices vxi corresponding
to the variables xi and m vertices vC j corresponding to the clauses
C j. There is an edge (vxi , vC j ) if and only if xi appears in C j. The
problem is to decide whether there exists a satisfying assignment
to the variables of ϕ such that each clause in ϕ has exactly one
literal assigned true. POSITIVE PLANAR 1-IN-3-SAT is NP-
complete [6].
Basic gadgets. We first introduce two important gadgets; cres-
cent and barrier.

A crescent consists of c points p1, p2, . . . , pc for a certain in-
teger c. They are in convex position, that is, all points are on
its convex hull. The crescent also contains the line segments of
convex hull of these points, and a set of line segments that fully
triangulates this convex hull (thus the crescent has 2c − 3 lines).
The line segment p1 pc is relatively long enough so that all the
other vertices p2, . . . , pc−1 are on the “same side” from the line
p1 pc (Fig. 2). More precisely, we assume that h is so close to 0
that from any point outside of this crescent (except the points on
the line including the line segment p1 pc), one can view either only
the line segment p1 pc or all line segments p1 p2, p2 p3, . . . , pc−1 pc

but p1 pc.
A barrier consists of points and lines that inhibits to join any

point outside of the region to a (given) point inside of the region
surrounded by the barrier. An example of a barrier is given in
Fig. 3 (a). This barrier consists of eight line segments surrounding
two crescents, and no point outside of this barrier can be joined
to any point of these two crescents.

Our key claim is the following: When we are given the sit-
uation illustrated in Fig. 3 (a) and two integers k = 2c − 1 and
t = 2c − 2, a unique solution for obtaining t triangles is join
two crescents by the k lines as illustrated in Fig. 3 (b). In other

Fig. 2 A crescent of 7 points.

Fig. 3 Basic gadget: two crescents and barrier enclosing them.
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words, once we use any line to join two points of the barrier, or
one point on a crescent and the other of the barrier, we can no
longer obtain t triangles. We deduce this claim by introducing a
loss which is defined as i − j if we obtain j triangles by draw-
ing i lines. In Fig. 3 (a), we can obtain triangles by drawing lines
between two connected components. Note that we have 10 con-
nected components in Fig. 3 (a); two connected components are
crescents, and this barrier consists of 8 connected components
such that each connected component consists of a line. To con-
nect two connected components, it requires at least one loss. (We
are required to draw at least two lines for obtaining one triangle.)
Here, k = 2c − 1 and t = 2c − 2 means the loss should be at most
one. Thus, we are required to draw k lines between two connected
components, not to connect three or more components. Here, we
cannot obtain t or more triangles if we connect two line segments
of the barrier, or if we connect a crescent and a line segment of the
barrier. Thus the only way is to connect two crescents by drawing
k lines; one possible solution is given in Fig. 3 (b).

Now we turn to the construction of the gadget for the reduction
from POSITIVE PLANAR 1-IN-3-SAT, which consists of line
gadget, variable gadget, and clause gadget.
Line gadget. For a given integer �, a line gadget of length �
consists of � + 1 crescents and its barrier with 4(� + 1) lines sur-
rounding the crescents (Fig. 4 (a)). In the gadget, the barrier plays
a role of an obstacle to crescents, and hence each crescent can
view at most two other crescents. We call each visible crescent
neighbor, and two crescents are adjacent if they are neighbors
with each other. By drawing 2c − 1 lines between two adjacent
crescents, we can obtain 2c − 2 triangles. The barrier prevents us
from drawing a line between nonadjacent crescents.

Suppose that we are required to obtain i(2c − 2) triangles by
drawing i(2c − 1) lines (0 < i ≤ ��/2�). By an argument similar
to one in the basic gadgets, loss should be at most i. We cannot
obtain i(2c − 2) triangles, if we connect two lines in the barrier,
if we connect a crescent and a line in the barrier, or if we connect
three or more consecutive crescents along the barrier. The only
way to obtain i(2c − 2) triangles is to connect i pairs of two con-
secutive crescents in the barrier. For example, Fig. 4 (a) is a line
gadget of length 4, and we can obtain i(2c − 2) triangles only if
we connect two pairs of crescents by 2(2c − 1) lines as shown in
Fig. 4 (b) or (c).

Fig. 4 Line gadget.

To simplify, we abbreviate Fig. 4 (a) as in Fig. 4 (d). The points
in Fig. 4 (d) denote crescents, and the (solid) edges denote the
adjacency between the crescents. The dotted rectilinear polygon
in Fig. 4 (d) denotes the barrier: Each line segment of the dotted
polygon corresponds to a line, and we have a short line at each
corner of the dotted polygon. Since each crescent can be con-
nected with at most one adjacent crescent, the connected pairs of
crescents in Fig. 4 (a) correspond to a matching of the graph in
Fig. 4 (d).

Line gadgets have flexibility on their shapes: We can extend or
shorten the distance between any two adjacent crescents. We can
select a direction at each bend of the gadget. We can also set any
angles at the bends within 90 degrees.
Variable gadget. As illustrated in Fig. 5 (a), we arrange ci line
gadgets of length 2� + 1 (ci = 3 and 2� + 1 = 9 in the figure).
As in Fig. 4 (d), the dotted polygons denote barriers. The up-
permost line gadget crosses the remaining ci − 1 line gadgets.
We have 8(ci − 1) crossing points, each of which requires eight
additional lines as barriers. Since a non-crossing line gadget re-

Fig. 5 Variable gadget.
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quires 4(2� + 2) lines of barriers, a variable gadget with ci line
gadgets requires 4(2�+2)ci+8 ·8(ci−1) = O(�ci) lines of barriers.

A unique non-crossing maximum matching of Fig. 5 (a) is, as
illustrated in the bold lines in Fig. 5 (b), achieved by taking � + 1
matching edges in each line gadget. In case we are not allowed
to use crescents at both ends of the line gadgets, a unique non-
crossing maximum matching for the remaining crescents is, as
illustrated in the bold lines in Fig. 5 (c), achieved by taking �
matching edges in each line gadget. As the rule of the Sankaku-
tori prohibits crossing lines, matching edges for Fig. 5 (a) cannot
cross each other. Thanks to this property, as in Fig. 5 (b) and (c),
we can synchronize the selection of vertical or horizontal match-
ing edges among all line gadgets in a variable gadget.
Clause gadget. As illustrated in Fig. 6 (a), we share the cres-
cents at the ends of three line gadgets of length 2�+1. Since each
clause has three literals, we use the line gadgets corresponding to
them. A clause gadget has 6� + 2 crescents. The crucial part is
on the top of the clause gadget, whose details are illustrated in
Fig. 6 (b). We note here that the number of barriers in a clause
gadget is the same as that of (non-sharing) three line gadgets.

In case one of the three line gadgets takes both of the top two
crescents to realize the matching in Fig. 5 (b), the other two line
gadgets cannot use the top crescents. This means that the maxi-
mum matching for the other two is the matching in Fig. 5 (c). In
this case, the number of matching edges is 3� + 1, which is a
perfect matching on 6� + 2 crescents.

If no line gadgets take either of the top two crescents, we can-
not obtain a perfect matching. If two line gadgets take one of
the top two respectively, each of them has unmatched crescents,
which means we cannot obtain a perfect matching. In this case,
we can observe that we have no profit; when one edge is miss-

Fig. 6 Clause gadget.

ing from a matching as shown in Fig. 7 (a), we cannot obtain any
other profit from the other part. On the other hand, even we flip
some edge into one of the top crescents as shown in Fig. 7 (b),
we have no profit from this gadget. Thus, in total, we will miss
one matching edge if we have inconsistency at the clause gadget.
Thus, we can obtain a perfect matching if and only if one of the
three line gadgets takes the top two crescents, and the other two
do not take any.
Reduction. Let ci denote the number of occurrences of literal
xi in ϕ (i = 1, 2, . . . , n). As illustrated in Fig. 5 (a), a variable
gadget for xi has ci line gadgets of length 2� + 1. Since we have
3m literals in ϕ, n variable gadgets have 3m line gadgets in total.
Since line gadgets have flexibility on their shape, line gadgets are
arranged along the planar embedding of G(ϕ).

Each clause has variable gadgets as illustrated in Fig. 6 (a),
which consists of three line gadgets corresponding to the three
literals in the clause. Since ϕ has m clauses, we have m clause
gadgets with (6� + 2)m crescents and O(�m) barriers. Two magic
numbers are set to k = (3�+1)m(2c−1) and t = (3�+1)m(2c−2).

If ϕ is satisfiable in the sense of POSITIVE 1-IN-3-SAT, by
the following strategy, we can obtain t triangles. For literals as-
signed true, the corresponding line gadgets take the two crescents
at both ends of the gadgets and achieve the maximum matching
as illustrated in Fig. 5 (b). For literals assigned false, as illustrated
in Fig. 5 (c), the corresponding line gadgets do not take the two

Fig. 7 Inconsistency gives no profit.
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crescents at both ends of the gadgets and achieve the maximum
matching for other crescents. The formula ϕ has m literals as-
signed true, and they satisfy all clauses in the sense of POSITIVE
1-IN-3-SAT. This means that, for every clause gadget, exactly
one line gadget takes the top two crescents, and no two line gad-
gets take the same crescents at the same time. From the argument
above, each clause gadget has one line gadget with � + 1 match-
ing edges and two line gadgets with � matching edges. Thus, we
have (3� + 1)m matching edges in total, which means we can ob-
tain t = (3�+1)m(2c−2) triangles by drawing k = (3�+1)m(2c−1)
lines. The opposite direction is clear from the above discussion.

As mentioned before, line gadgets have flexibility on their
shapes. Using this fact, it is easy to see that all gadgets can be
joined appropriately by polynomial number of line gadgets. Thus
this is a polynomial time reduction.

Therefore, we complete the proof of Theorem 1.

4. Convex Position

In this section, the main theorem is the following.
Theorem 2 Let p1, . . . , pn be a point set S in convex position.

Then the first player R has a winning strategy.
To prove the theorem, we describe a winning strategy for R

in Lemma 3. Once the first player R draws a line pi p j in the
first move, we have two intervals I1 = [pi, pi+1, . . . , p j−1, p j] and
I2 = [p j, p j+1, . . . , pi−i, pi]. Then any point p in I1 can be joined
to the other point q if and only if q is in I1 when the points
are in convex position. That is, each line segment separates an
interval of the points into two independent intervals. The win-
ning strategy is an inductive one that consists of three substrate-
gies. We note that the strategy in Lemma 3 is applied simulta-
neously in each interval. For example, suppose that R has two
strategies S 1 and S 2 on intervals I1 = [pi, pi+1, . . . , p j−1, p j] and
I2 = [p j, p j+1, . . . , pi−i, pi], respectively. If B joins two points in
I1, R uses S 1 on the interval I1, and then, if B joins two points in
I2, R now uses S 2 on the interval I2, and so on. Since the points
are in convex position, they can apply their strategies indepen-
dently in each interval.

Lemma 3 Suppose that, at a certain point of the game, B
has to move and there are some intervals in Cases 1, 2, and 3
in Figs. 8, 9, and 10, respectively. (The dotted line indicates
there are some (possibly zero) points along this line.) Then, after
two moves, R can replicate the same configuration without losing
points. Moreover, if the number of vertices in an interval is odd,
at the end it is possible for R to get one more point.
Proof. We prove the lemma by an induction for the number of
turns of the game. As mentioned in Preliminaries, if we have n

points in convex position, the number of turns is exactly 2n − 3.
In the figures, dotted lines illustrate the isolated points. In base
cases, dotted lines mean that no points are there. We can check
the claims in Lemma 3 in base cases by simple case analysis.
Now we turn to general cases.
(Case 1) Player B has two choices. If B joins pi and p j with
1 < i < j < n, R joins p1 and p j and obtain (Case 2). There-
fore, without loss of generality, we assume that B joins p1 and pi

with 1 < i < n. In this case, R can join pi and pn, and obtain
the triangle p1 pi pn. Moreover, (Case 1) applies to both intervals

Fig. 8 Case 1.

Fig. 9 Case 2.

Fig. 10 Case 3.

[p1..pi] and [pi..pn]. Therefore, by induction, R wins in this case
because R already obtains +1 by the triangle p1 pi pn.
(Case 2) The same analysis of (Case 1) can be applied in the in-
terval [pi..p j]. Therefore, by inductive hypothesis, B cannot take
an advantage in this interval. Without loss of generality, we can
assume that B plays in interval [p1..pi]. Essentially, B has four
choices.

(Subcase 2-1) If B joins p1 and pi, R joins p j and pn, and they
have three intervals in (Case 1). Then it is easy to check that the
claim holds.

(Subcase 2-2) If B picks pi′ with 1 < i′ < i and joins it to ei-
ther p1 or pi, R again joins p j and pn. Then we have two intervals
[pi..p j] and [p j..pn] in (Case 1). If B joins p1 and pi′ , we have
an interval [p1..pi′ ] in (Case 1), and the other interval [pi′ ..pi] in
(Case 3). The other case (B joins pi′ and pi) is symmetric. In any
case, by inductive hypothesis, the claim holds.

(Subcase 2-3) If B joins p j and pi′ for some 1 < i′ < i, R joins
pi′ to pi. Then R obtains the triangle pi p j pi′ , and two intervals
[pi′ ..pi] and [pi..p j] are in (Case 1), and two intervals [p1..pi′ ] and
[p j..pn] together essentially in the same case as (Case 2). There-
fore, R wins in this case.

(Subcase 2-4) The last case is that B picks up two points pi′

and pi′′ with 1 < i′ < i′′ < i and join them by an edge. Then
R joins pi′ to p j, and obtain two intervals [p1..pi′ ] and [p j..pn]
together in (Case 2), an interval [pi′′ ..pi] with an edge (pi′′ , pi′ )
in (Case 3), and two intervals [pi′ ..pi′′ ] and [pi..p j] in (Case 1).
Therefore, we have the claim in this case again.
(Case 3) Now we have three subcases.

(Subcase 3-1) B joins two points in {p1, p2, pn−1, pn}. If B
joins p2 and pn−1, R joins p1 and pn−1, and obtain two triangles
(p1 p2 pn−1 and p1 pn−1 pn), and they end up in Case 1. On the
other hand, if B joins p1 and pn−1, R joins p2 and pn−1 and ob-
tains (Case 1). The other cases are symmetric. Thus we have
the claim.

(Subcase 3-2) B joins one point in {p1, p2, pn−1, pn} and an-
other one pi with 2 < i < n − 1. If B joins p1 and pi, R joins
pi and p2 and obtain the triangle p1 p2 pi. Then they also have an
interval [p2..pi] in (Case 1) and [pi..pn] with p1 in (Case 3) again.

c© 2017 Information Processing Society of Japan 712
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Thus we have the claim. If B joins p2 and pi, R now joins pi and
p1 and get the same situation. The other two cases are symmetric.

(Subcase 3-3) B joins two points pi and p j with 2 < i < j <

n − 1. In the case, R joins pi and pn. Then both of the inter-
val [p1..pi] with pn and the interval [pi..pn] are independently in
(Case 3). Therefore, we again use the induction.

By the induction for the number of points, we have the lemma.
�

Now we prove Theorem 2:
Proof (of Theorem 2). When n = 2k + 1 for some k > 1, R joins
p1 and pk. Then two intervals [p1..pk] and [pk..pn] are both in
(Case 1) in Lemma 3. Moreover, one of two intervals consists of
odd number of points. Thus R obtains at least one more triangle
than B.

When n = 2k for some k > 1, R joins p1 and p3. Then two
intervals [p1..p3] and [p3..pn] are both in (Case 1), and they are
of odd length. Thus R obtains at least two more triangles than B.

In any case, R always wins. �

5. Convex Position with One More Point

In this section, we extend the case in Theorem 2 to convex
cases with one more point. That is, the point set S consists of
n points p1, . . . , pn in convex position, and one more point q in-
side of the convex hull of p1, . . . , pn. In this case, interestingly,
the second player B has an advantage, which is contrary to The-
orem 2.

Example 4 When S = {p1, p2, p3, q}, it is easy to see that B
has a winning strategy, who can take 2 points, while R takes only
one. On the other hand, if S = {p1, p2, p3, p4, q}, R can end in a
tie when it first joins q and p1, but R has no winning strategy (by
an exhaustive search).
We generalize it and obtain the following theorem:

Theorem 5 Let S be the set of points {p1, . . . , pn, q}. We as-
sume that p1, . . . , pn are in convex position, and q be a point in-
side of the convex hull of S \ {q}. Then the first player R does not
have a winning strategy.

Let q be the central point in this point set. In order to deal with
the central point, we introduce closest lines as follows: First, we
draw all line segments joining pi and p j with i � j. Then we
have unique convex polygon Q that includes q. The line segment
pi p j is said to be a closest line to q if it contains an edge of the
convex polygon including q. For a closest line pi p j to q, we have
the following proposition:

Proposition 6 Assume that pi p j is a closest line to q and the
convex polygon formed by pi, pi+1, . . . , p j−1, p j includes q. Then
both triangles pi p j pi+1 and pi p j p j−1 include q. In other words,
we cannot draw any line segment pi′ p j′ between the point q and
the line segment pi p j.

To show the main theorem, we first consider two simple cases:
Lemma 7 If R draws a line segment qpi as the first move for

any i, R cannot win. If R draws one of the closest lines as the first
move, then R cannot win.
Proof. (1) Without loss of generality, we assume that R draws a
line segment qp1 at the first move. The line qp1 intersects one of
edges of the Q, which is formed by the closest lines. Therefore,
there exists a closest line pi p j that does not intersect qp1. The

Fig. 11 Case 2e.

Fig. 12 Case 4.

second player choose any closest pi p j that does not intersect qp1.
This case is similar to Case 2 in Fig. 9 except (potential) triangle
piqp j (see Fig. 11). If we have two lines piq and p jq, this is the
same as Case 2.

WhenR chooses one of piq and p jq, thenB takes the other one.
Taking care of the triangles formed by piqpi′ with 1 ≤ i′ ≤ i − 1,
p jqp j′ with j + 1 ≤ j′ ≤ n, and piqp j, we can observe that R
cannot win in this case. Now we consider R does not choose any
of piq and p jq and B has to choose one of them. This time, B
takes any of them, and R eventually takes the other. But this is
not a winning strategy for R.

(2) In this case, since p1, . . . , pn are in convex position, B can
take one point pk such that pkq does not intersect the closest line
R chosen. Then we can apply the same argument as in (1). �

By Lemma 7, it is sufficient to consider the case that the first
player R joins two points pi p j that is not a closest line to q.
Without loss of generality, we assume that 1 ≤ i < j ≤ n

and the point q is included in the convex polygon formed by
p1, p2, . . . , p j−1, p j. Then the following lemma covers the last
case.

Lemma 8 Assume that R joins two vertices pi p j which is not
a closest line to q at the first move. Then it is not a winning strat-
egy for R.
Proof. Since q is the central point in convex shape formed by
p1, . . . , pn, we can assume that we have at least one point pk with
i < k < j (Fig. 12). We select pk so that the triangle pi pk p j con-
tains q but pi pk+1 p j does not (we may have k + 1 = j). (Note
that the line segment itself may not be the closest line to q in the
original points.) Then B draws the line pi pk. Now we have two
Case 1s in two intervals [i..k] and [ j, j + 1, . . . , n, 1, 2, . . . , i].

Let p� and pm be two points between pk and p j. That is,
k < � < m < j, and they may not exist. We now describe the
strategy of B depending on what R chooses by pairing; see Ta-
ble 1. In the table, each pair describes one move by R and the
corresponding move by B. For example, if R draws the line qp j,
B draws the line qpi in the next move. Then we have Case 5 (de-
scribed later) and B obtains one point by the triangle qp j pi. The
other entries are similar. We note that these pairs are not disjoint.
For example, when R draws the line piq, then B has three choices
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Table 1 Strategy for B for Case 4.

Pairs {qp j, qpi} {qpk , qpi} {qp�, qpi} {p j p�, pi p�} {pk p�, p j p�} {p� pm, pi p�}
Case(s) of B/Score Case 5/+1 Case 5/+1 Cases 3 & 5/0 Cases 1 & 4/+1 Cases 1 & 1 & 6/0 Cases 1 & 3 & 4/0

Table 2 Strategy for B for Case 5.

Pairs {qp2, pn p2} {qpi, pn pi} {p2 pi, qp2} {p1 pi, p2 pi} {pi p j, qpi}
Case(s) of B/Score Case 1/+1 − 1 = 0 or Case 1/+2 Cases 1 & (3 or 5)/+1 Cases 1 & 3/+1 Cases 1 & 5/+1 Cases 1 & 3 & (3 or 5)/0

Fig. 13 Case 5.

Fig. 14 Case 6.

qp j, qpk, and qp�, and B can choose any.
Hereafter, we show that R cannot win in any case. In each case

below, the points are relabeled to simplify.
(Case 5): In this case, we have some points between p2 and pn,
and the line segment p2 pn does not intersect with qpn and p1q. In
this case, Table 2 gives the strategy for B.
(Case 6): In this case, we have a convex quadrilateral with central
point q. As in Example 4, it is easy to see that R has no winning
strategy in this case.

In each case, the number of points is decreasing, and R has no
winning strategy, which completes the proof. �

6. Conclusion

In this paper, we formalized a combinatorial game that is an old
pencil-and-paper game for two players played in Western Japan.
This game has a similar flavor to “Games on Triangulations” in-
vestigated by Aichholzer et al. [1]. We have only showed the
computational complexity in a few restricted cases of the game.
Along the line in Ref. [1], we have a lot of unsolved variants in
our game. For example, the hardness of a two-player variant of
this game in general position is not settled. By Theorem 2, we
show that the first player has a winning strategy if all points are
in convex position. The strategies for the points in convex po-
sition with (fixed) k > 1 points inside of the points in convex
position is one natural extension. If we follow the same line as
the analysis of the case where k = 1, the proofs will be quite
complicated. In Theorem 5, we showed that the first player does
not have a winning strategy. In some positions, the second player
has a winning strategy, and in some positions the game ends in
tie. We note that there is an unsettled problem here; for any given
position in Theorem 5, we only say that the first player does not
have a winning strategy. That is, we cannot decide if this position
will make in tie or the second player has a winning strategy. To

solve this problem, we need more careful analysis or new ideas.
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game, Discrete Applied Mathematics, article in press (2013).

[6] Mulzer, W. and Rote, G.: Minimum-weight triangulation is NP-hard, J.
ACM, Vol.55, No.2 (2008).

[7] Horiyama, T., Kiyomi, M., Okamoto, Y., Uehara, R., Uno, T., Uno,
Y. and Yamauchi, Y.: Sankaku-Tori: An Old Western-Japanese Game
Played on a Point Set, International Conference on FUN WITH AL-
GORITHMS, Lecture Notes in Computer Science, Vol.496, pp.230–239
(2014).

Takashi Horiyama received B.E. and
M.E. degrees in information science
and Ph.D. in informatics from Kyoto
University, Kyoto, Japan in 1995, 1997
and 2004, respectively. He was a research
associate at Nara Institute of Science and
Technology from 1999, and a research
associate at Kyoto University from 2002.

Since 2007, he is an associate professor at Saitama Univer-
sity. His current interests include computational geometry and
algorithm design.

Takashi Iizuka received B.E. degree
from Tokyo City University in 2014,
and M.E. degree from Japan Advanced
Institute of Science and Technology in
2016. He is now working for IBM Global
Services Japan Solution and Services
Company.

c© 2017 Information Processing Society of Japan 714



Journal of Information Processing Vol.25 708–715 (Aug. 2017)

Masashi Kiyomi recieved B.E. and M.E.
degrees from The University of Tokyo in
2000, and 2002, respectively. He recieved
Ph.D. degree from National Institute of In-
formatics (in Japan), in 2006. He was
an assistant professor at School of Infor-
mation Science, Japan Advanced Institute
of Science and Technology during 2006–

2012. He is an associate professor at International College of Art
and Sciences, Yokohama City University.

Yoshio Okamoto received Ph.D. degree
from ETH Zurich in 2005. He was an
assistant professor at Toyohashi Univer-
sity of Technology from 2005 to 2007, an
associate professor at Tokyo Institute of
Technology from 2007 to 2010, a research
associate professor at Japan Advanced In-
stitute of Science and Technology from

2010 to 2012, and an associate professor at the University of
Electro-Communications from 2012 to 2017. Since 2017, he has
been a professor at the University of Electro-Communications.
His research focuses on discrete mathematics and theory of com-
putation, especially problems on graphs and discrete geometry.

Ryuhei Uehara is a full professor in
School of Information Science, Japan Ad-
vanced Institute of Science and Technol-
ogy (JAIST). He received B.E., M.E.,
and Ph.D. degrees from the University of
Electro-Communications, Japan, in 1989,
1991, and 1998, respectively. He was a
researcher in CANON Inc. during 1991–

1993. In 1993, he joined Tokyo Woman’s Christian University
as an assistant professor. He was a lecturer during 1998–2001,
and an associate professor during 2001–2004 at Komazawa Uni-
versity. He moved to JAIST in 2004. His research interests in-
clude computational complexity, algorithms and data structures,
and graph algorithms. Especially, he is engrossed in computa-
tional origami, games and puzzles from the viewpoints of theo-
retical computer science. He is a member of IPSJ, IEICE, and
EATCS.

Takeaki Uno received Ph.D. degree
(Doctor of Science) from Department
of Systems Science, Tokyo Institute of
Technology Japan, 1998. He was an
assistant professor in Department of
Industrial and Management Science in
Tokyo Institute of Technology from 1998
to 2001, and have been an associate

professor of National Institute of Informatics Japan, from 2001.
His research topic is discrete algorithms, especially enumeration
algorithms, algorithms on graph classes, and data mining algo-
rithms. On the theoretical part, he studies low degree polynomial
time algorithms, and hardness proofs. In the application area,
he works on the paradigm of constructing practically efficient
algorithms for large scale data that are data oriented and theo-
retically supported. In an international frequent pattern mining
competition in 2004 he won the Best Implementation Award. He
got Young Scientists’ Prize of The Commendation for Science
and Technology by the Minister of Education, Culture, Sports,
Science and Technology in Japan, 2010.

Yushi Uno received B.E., M.E. and Ph.D.
degrees in engineering from Kyoto Uni-
versity, in 1987, 1989 and 1995, respec-
tively. Currently, he is working at Divi-
sion of Computer Science and Intelligent
Systems, Graduate School of Engineer-
ing, Osaka Prefecture University, Japan.
His research interests include combinato-

rial optimization, algorithmic graph theory, operations research,
discrete structures and algorithms, design and analysis of algo-
rithms. He is a member of Association for Computing Machinery,
Operations Research Society of Japan and IPSJ.

Yukiko Yamauchi is an associate pro-
fessor of the Graduate School and Fac-
ulty of Information Science and Electrical
Engineering, Kyushu University, Japan.
She received her M.E. and Ph.D. degrees
from Osaka University, Japan in 2006 and
2009, respectively. She was an assistant
professor during 2009–2011 at NAIST,

Japan, and an assistant professor during 2011–2017 at the Grad-
uate School and Faculty of Information Science and Electrical
Engineering, Kyushu University, Japan. Her research interests
include distributed algorithms, fault tolerant systems, and graph
algorithms. She is a member of IPSJ and IEICE.

c© 2017 Information Processing Society of Japan 715


