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1 Introduction

When one wishes to consider the notion of negation in logic, a good strategy
would be to start from a logic with a relatively weaker negation. Thus arises as
a candidate the system of intuitionistic logic, a logic which identifies truth with
provability and first formalised by Heyting(1930) [6]. Intuitionistic logic has a
weaker negation than the more common classical logic, in that it invalidates
the inference of double negation elimination ¬¬A→ A. But one can in fact go
weaker, and if he does so soon he aquaints himself with another system called
minimal logic.

Minimal logic is first formulated by Johansson(1937) [7]. It is born out of
his dissatisfaction with Heyting’s acceptance of the law of ex falso quodlibet in
his formulation of intuitionistic logic [8]. Informally, this law states that every
proposition is inferable from a contradiction. Formally, we can express this as
(A ∧ ¬A)→ B.

The validity of ex falso has been questioned by various people, and many
alternative logics have been proposed to overcome this. Minimal logic is one
such logic. It is obtained simply by dropping ex falso from intuitionistic logic.
This gives minimal logic a flavour very similar to intuitionistic logic, but there
are a few significant differences. The most notable amongst them is the loss of
disjunctive syllogism: [(A∧B)∧¬A]→ B. On the other hand, a fragment of ex
falso still remain in minimal logic; the negation of any proposition is inferable
from a contradiction, viz. (A ∧ ¬A)→ ¬B.

This last feature is controversial still, as it makes negations trivial once a
contradiction is obtained. Odintsov(2008) [9] attempted to avoid this negative
ex falso, by restricting one of the formulas used to derive it, (A → B) ∧ (A →
¬B) → ¬A. In order to achieve this, He weakenend the negation by splitting
up the contradiction ⊥ into contradiction operators C(A) for each formula A.
The negation ¬A is then defined as A→ C(A).

In minimal logic, there are two ways to define negation. One is to take ¬
as primitive. The other is to take ⊥ as primitive, and define ¬A as in A → ⊥.
In the former case, it turns out that the formula (A → B) ∧ (A → ¬B) → ¬A
above defines the negation of minimal logic, whereas in the latter case, no ax-
iom for ⊥ exists. It thus becomes apparent, that by weakening this axiom we
can also obtain logics weaker than minimal logic. This is exactly the direction
taken in A. Colacito(2016) [2] and A. Colacito et al.(2017) [3]. There, such
subsystems are named subminimal logics, and the weaker negations subminimal
negations. They took as the basic system IPC+ + N, where IPC+ is the pos-
itive fragment of intuitionistic logic and N is the subminimal negation axiom
(A ↔ B) → (¬A ↔ ¬B). On this basis proof systems and semantics for some
subminimal systems are given, as well as metalogical results like completeness
and cut-elimination.

Subminimal logic is a relatively unstudied area of mathematical logic. It
however has a huge potential in facilitating our understanding of negation. By
not altering the behaviour of other connectives, it allows us to investigate nega-
tion in isolation. This enables us to see more finely the relationship among vari-
ous inferences concerning negation. It is therefore of interest to mathematicians
and philosophers alike. In addition, it is also conceivable that the logics shed
light on the nature of negative expressions in natural language. Furthermore, it
can contribute to the enhancement of our understanding of logical paradoxes, as

3



negation plays a significant role in many paradoxes, including the liar paradox.
Paradoxes are one of the sources for the popular appreciation of logic, so this is
potentially an important application.

In this paper, we shall begin with providing some preliminary information
about propositional minimal logic and its fragment, positive logic. Then we
move on to investigate properties of subminimal logics. Our investigation is
threefold. In the first part, the relationship among subminimal axioms are
studied, using proof-theoretic approach. In the second part, the correspondence
between subminimal axioms and kripke frames is studied. In the third part,
the relationship between subminimal logic and Odintsov’s logics with multiple
contradictions is studied. Finally, we conclude with remarks on possible future
directions.
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2 Positive and Minimal Logic

In this section, we shall provide some basic information about the syntax and
semantics of a formalisation of propositional minimal logic, MPC¬ (PC stands
for Propositional Calculus), formulated in [2] and [3]. Along with it, we shall
also introduce a simpler system called PPC, which is a formalisation of the
negation-less fragment of minimal logic(positive logic).

2.1 Proof theory for Positive and Minimal Logic

Let us start with specifying the language. We specify the symbols (vocabulary)
to use, and declare what concatenations of them (formulas) we shall deem well-
formed.

Definition 2.1.1 (vocabulary of PPC/MPC¬).
The vocabulary of PPC consists of the following symbols.

· Countable number of propositional variables p0, p1, p2, . . ..
· Connectives ∧,∨,→.
· Parentheses (, ).

MPC¬ in addition contains an additional connective ¬.

Definition 2.1.2 (formulas of PPC/MPC¬).
We inductively define the formulas of PPC/MPC¬ as follows.

· Each propositional variable is a formula.
· If A, B are formulas, then (A ∧B), (A ∨B). (A→ B) are formulas.
· If A is a formula, then ¬A is a formula. [MPC¬ only]

We shall use the abbreviation A↔ B for (A→ B) ∧ (B → A).

As for proof system, we shall employ Hilbert-type systems. A proof of a
formula A from a set of formulas(assumptions) Γ is a finite sequence A1, . . . An

of formulas, where An ≡ A. Each Ai is either an axiom, an assumption or
obtained from previous terms by a deduction rule. We denote Γ ` A if such a
sequence exists.

Definition 2.1.3 (Hilbert-type system for PPC/MPC¬).
The proof system for positive logic contains the following axioms and a deduc-
tion rule.

Axioms
A→ (B → A); (A→ (B → C))→ ((A→ B)→ (A→ C));
A→ (A ∨B); B → (A ∨B); (A→ C)→ ((B → C)→ (A ∨B → C));
A ∧B → A; A ∧B → B; A→ (B → (A ∧B)).

Rule
MP: If Γ ` A and Γ ` A→ B, deduce Γ ` B.
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The system for MPC¬ is identical, except that we have an additional axiom
called M: (A→ B) ∧ (A→ ¬B)→ ¬A.

Henceforth, we shall denote these systems as hPPC and hMPC¬. When it
needs differentiating, we shall denote `P, `M¬ etc.. The same convention ap-
plies to other consequence relations as well.

It is also worth mentioning a few things about classical/intuitionistic logic. They
have the same language as MPC¬ (when ¬ is primitive). In Hilbert-type proof
system, intuitionistic logic has an additional axiom (A∧¬A)→ B, and classical
logic further has ¬¬A→ A.

2.2 Semantics for Positive and Minimal Logic

Let us now turn our attention to the semantics for these logics.

Definition 2.2.1 (Kripke frame for PPC).
Let W be an inhabited set, and ≤ be a partially ordered set on W . We shall
call (W,≤) a Kripke frame for PPC.

Definition 2.2.2 (Kripke model for PPC).
Let F = (W,≤) be a kripke frame, and let V be a mapping(valuation) from the
propositional variables of PPC to the subsets of W , satisfying what is called
the persistency of valuation:

- for all w,w′ ∈W , if w ∈ V(p) and w ≤ w′ then w′ ∈ V(p).

We shall write w ∈ V(p) also as w P p (or more explicitly, (F ,V), w P p).
We now extend V to non-atomic formulas by setting:

(F ,V), w P A ∧B ⇔ (F ,V), w P A and (F ,V), w P B.

(F ,V), w P A ∨B ⇔ (F ,V), w P A or (F ,V), w P B.

(F ,V), w P A→ B ⇔ for all w′ ≥ w, if (F ,V), w′ P A then (F ,V), w′ P B.

We call the pair (F ,V) a Kripke model for PPC.

Definition 2.2.3 (validity for PPC).
We write (F ,V) �P A if (F ,V), w P A for all w ∈W .
We write F �P A if (F ,V) �P A for all V.
We write Γ �P A if (F ,V) is such that (F ,V) �P B for all B ∈ Γ, then
(F ,V) �P A. In particular, if Γ = ∅ we write � A.

Definition 2.2.4 (Kripke frame for MPC¬).
A Kripke frame for MPC¬ is a triple (W,≤, F ), where (W,≤) are as in PPC,
and F is an upward closed subset of W .

Definition 2.2.5 (Kripke model for MPC¬).
A Kripke model for MPC¬ is a pair (F ,V), where:

- F is a Kripke frame for MPC¬.
- V is defined like PPC, but with the following valuation for negation:

(F ,V), w M¬ ¬A⇔ for all w′ ≥ w, if (F ,V), w′ M¬ A then w′ ∈ F.
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The validity for MPC¬ is defined analogously to that of PPC. To understand
how this semantics works, let us see an example.

Example 2.2.1 (validity of M).
�M¬ (A→ B) ∧ (A→ ¬B)→ ¬A

Proof.
Let (F ,V) be a model and w ∈ W . Suppose (F ,V), w′ M¬ (A → B) ∧
(A → ¬B) for w′ ≥ w. Then if (F ,V), w′′ M¬ A, (F ,V), w′′ M¬ B and
(F ,V), w′′ M¬ ¬B. So w′′ ∈ F . Thus (F ,V), w′ M¬ ¬A, and consequently
(F ,V), w M¬ (A→ B)∧ (A→ ¬B)→ ¬A. As (F ,V) and w are arbitrary, we
conclude �M¬ (A→ B) ∧ (A→ ¬B)→ ¬A

The following theorem provides the necessary connection between the semantics
and the proof theory.

Theorem 2.2.1 (Soundness and Completeness of PPC/MPC¬ [3]).
(i) Γ `P A⇔ Γ �P A.
(ii) Γ `M¬ A⇔ Γ �M¬ A.

Proof.
The left-to-right directions (soundness) are demonstrable by induction on the
depth of deduction of Γ ` A. The right-to-left directions (completeness) are
slight variations of the proof for AnPC presented in Chapter 5. We postpone
the details until then. The proof there is smoothly transferable to the present
cases once we tweak the canonical models: For (i) simply omit Φ from the model,
and for (ii) use F := {∆|A ∈ ∆ and ¬A ∈ ∆ for some A} instead of Φ.

The semantics for intuitionistic logic is obtained from the one for MPC¬ by
imposing F = ∅. The one for classical logic is then obtained by restricting W
to singletons.

3 Proof Theory for Subminimal Logics

In this section, we consider some properties of subminimal axioms, and sub-
minimal logics employing (combinations of) such axioms. We take PPC as
the basic system when we consider the inter-deducibility of subminimal axioms.
For the sake of simplicity, whenever we add subminimal axioms to PPC, we
assume that the language is implicitly expanded by the negation symbol. For
example, Given an axiom containing negation symbol, Ax, the language of the
system PPC+Ax is the language of PPC plus ¬, and ¬A→ ¬A is among the
derivable formulas of the system, while not in PPC.

The structure of this section is as follows. In 3.1, we introduce subminimal
axioms from the previous research [2] and [3], and then introduce consider some
combinations of subminimal axioms which are equivalent to the negation axiom
of MPC⊥, [(A→ B)∧ (A→ ¬B)]→ ¬A. In 3.2, We concentrate on the axiom
NeF (negative ex falso), and see how this axiom relates to other axioms. In 3.3.,
We turn our eyes on negation axioms for classical/intuitionistic logic (which we
shall call superminimal negation axioms), and see their connection with sub-
minimal axioms. In 3.4, we change our proof system to sequent calculus, and
give some separation results among others.
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Because proofs in Hilbert-type systems are rather tedious, the proofs here-
after are given in sketches. They are given in tree-form, and the basic unit of
these sketch-proofs are consequences of the form Γ ` A. Whenever clarifica-
tion is needed in the deduction, we show the main axiom/rule used in square
brackets. We use double lines to indicate abbreviations of deduction.

3.1 Subminimal and Minimal Axioms

Definition 3.1.1 (known subminimal axioms [3]).
The following subminimal axioms are considered in [3].

An: (A→ ¬A)→ ¬A Co: (A→ B)→ (¬B → ¬A)
NeF: (A ∧ ¬A)→ ¬B N: (A↔ B)→ (¬A↔ ¬B)
DN: (A→ ¬¬A)

Among these axioms, the following relations are known to hold.

Proposition 3.1.1 (Known relations among subminimal axioms [2], [3]).
(i) Co⇒NeF, Co⇒N, Co⇒ ¬¬¬A→ ¬A
(ii) N+An⇔ M

Proof.
(i)

’Co⇒NeF’

A ∧ ¬A `P (B → A) ∧ ¬A
[Co]

A ∧ ¬A `P ¬B
`P (A ∧ ¬A)→ ¬B

’Co⇒N’

A↔ B `P A→ B
[Co]

A↔ B `P ¬B → ¬A
A↔ B `P B → A

[Co]
A↔ B `P ¬A→ ¬B

A↔ B `P ¬A↔ ¬B
`P (A↔ B)→ (¬A↔ ¬B)

’Co⇒ ¬¬¬A→ ¬A’

[NeF, deducible from Co by above]
A,¬A `P ¬¬A
A `P ¬A→ ¬¬A [Co]

A `P ¬¬¬A→ ¬¬A
¬¬¬A `P A→ ¬¬A

[Co]¬¬¬A `P ¬¬¬A→ ¬A
`P ¬¬¬A→ ¬A

(ii) We show the right implication.

A, (A→ B) ∧ (A→ ¬B) `P A↔ B
[N]

A, (A→ B) ∧ (A→ ¬B) `P ¬B → ¬A
A, (A→ B) ∧ (A→ ¬B) `P ¬A

(A→ B) ∧ (A→ ¬B) `P A→ ¬A
[An]

(A→ B) ∧ (A→ ¬B) `P ¬A
`P (A→ B) ∧ (A→ ¬B)→ ¬A
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Let us observing some other axioms and combinations, which are equivalent to
M. But before that, let us see that the axiom DN can be strengthened while
remaining subminimal.

Definition 3.1.2 (axioms wM, IDN).
wM: (¬A→ B) ∧ (¬A→ ¬B)→ ¬¬A
IDN: (¬A→ A)→ ¬¬A

Proposition 3.1.2 (wM and IDN are subminimal).
(i) M⇒ wM, M⇒ IDN.
(ii) IDN⇒ DN

Proof.
(i) wM is an instance of M, and IDN is obtained from wM by taking B := A.
(ii) If A, then ¬A→ A. So by IDN, ¬¬A. hence A→ ¬¬A.

Proposition 3.1.3 (axioms equivalent to M).
(i) (A→ ¬B)→ (B → ¬A)⇔ M.
(ii) (A→ B) ∧ (B → ¬B)→ ¬A⇔ M.
(iii) NeF + An⇔ M.
(iv) DN + Co⇔ M.

Proof. We shall give proof sketches.
(i) ’⇐’:

A→ ¬B `M¬ A→ ¬B
B `M¬ B

B `M¬ A→ B

A→ ¬B,B `M¬ (A→ ¬B) ∧ (A→ B)
[M]

A→ ¬B,B `M¬ ¬A
`M¬ (A→ ¬B)→ (B → ¬A)

’⇒’: Note that (A→ ¬B)→ (B → ¬A)⇒ NeF. Thus:

A→ B,A→ ¬B `P A→ (B ∧ ¬B)
[NeF]

A→ B,A→ ¬B `P A→ ¬(A→ B)

A→ B,A→ ¬B `P (A→ ¬(A→ B)) ∧ (A→ B)

`P (A→ ¬(A→ B))→ ((A→ B)→ ¬A)

`P [(A→ ¬(A→ B)) ∧ (A→ B)]→ ¬A
[MP]

A→ B,A→ ¬B `P ¬A
`P (A→ B) ∧ (A→ ¬B)→ ¬A

(ii)
’⇐’: Immediate since from A→ B and B → ¬B we obtain A→ ¬B.
’⇒’: It suffices to show (A→ B)→ (B → ¬B)→ ¬A⇒ Co + An.
-Co

(A→ B) ∧ ¬B `P (A→ B) ∧ ¬B
(A→ B) ∧ ¬B `P (A→ B) ∧ (B → ¬B) `P (A→ B) ∧ (B → ¬B)→ ¬A

[MP]
(A→ B) ∧ ¬B `P ¬A
`P (A→ B) ∧ ¬B → ¬A
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-An

[Take B := A]
`P (A→ A) ∧ (A→ ¬A)→ ¬A

`P (A→ ¬A)→ ¬A

(iii) It suffices to show the right direction.
’⇒’:

(A→ B) ∧ (A→ ¬B) `P A→ (B ∧ ¬B)
[NeF]

`P (B ∧ ¬B)→ ¬A
(A→ B) ∧ (A→ ¬B) `P A→ ¬A

[An]
`P (A→ ¬A)→ ¬A

[MP]
(A→ B) ∧ (A→ ¬B) `P ¬A
`P (A→ B) ∧ (A→ ¬B)→ ¬A

(iv) It suffices to show the right direction.
’⇒’: It suffices to show DN + Co⇒ An

A→ ¬A,A `P (A→ ¬A)→ ¬A
[Co]

A→ ¬A,A `P ¬¬A→ ¬(A→ ¬A)
[DN]

A→ ¬A `P A→ ¬(A→ ¬A)
[Co]

A→ ¬A `P ¬¬(A→ ¬A)→ ¬A
[DN]

A→ ¬A `P ¬A
`P (A→ ¬A)→ ¬A

3.2 The Axiom NeF

As we have mentioned in the introduction, NeF stands out among the sub-
minimal axioms introduced in [3] for its counter-intuitivity. We can partially
illuminate the nature of this axiom by observing some related axioms.

Definition 3.2.1 (axioms related to NeF).
We define the following axioms:
EC: (A↔ ¬A)→ ¬B
D: (A ∧ ¬A)→ (B → ¬B)

Note that we can think of EC as an instance of the liar paradox, if we regard
the equivalence of A as giving the definition of its meaning. Then EC says that
if any A is defined by its negation ¬A (i.e. this sentence is false), we can deduce
any ¬B, which immediately implies contradiction, and in particular A ∧ ¬A.

Proposition 3.2.1 (deducibility for EC and D).
(i) NeF⇒ D, N⇒ D, D + An⇒ M.
(ii) M⇒ EC, EC⇒ NeF.
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Proof.
(i)
NeF⇒ D

[NeF]
`P (A ∧ ¬A)→ ¬B

`P (A ∧ ¬A)→ (B → ¬B)

N⇒ D

A ∧B `P A↔ B
[N]

`P (A↔ B)→ (¬A→ ¬B)
[MP]

A ∧B `P ¬A→ ¬B
A ∧ ¬A `P B → ¬B

`P (A ∧ ¬A)→ (B → ¬B)

D + An⇒ M: It suffices to show D + An⇒ NeF, for NeF + An⇒ M.

[D]
A ∧ ¬A `P B → ¬B

[An]
A ∧ ¬A `P ¬B

`P (A ∧ ¬A)→ ¬B

(ii)
M⇒ EC

[IDN]¬A→ A `M¬ ¬¬A
[An]

A→ ¬A `M¬ ¬A
A↔ ¬A `M¬ ¬A ∧ ¬¬A [NeF]

A↔ ¬A `M¬ ¬B
`M¬ (A↔ ¬A)→ ¬B

EC⇒ NeF

A ∧ ¬A `P A↔ ¬A
[EC]

`P (A↔ ¬A)→ ¬B
[MP]

A ∧ ¬A `P ¬B
`P (A ∧ ¬A)→ ¬B

This result shows that among negative inferences, NeF is situated below the
liar paradox EC. It also shows that D is derivable from N, which does not ex-
press a particularly negative meaning; it merely states that the unary operator
is extensional. D, however, appears as problematic an axiom as NeF; if we allow
ourselves a natural reading, the principle says that a single contradictory propo-
sition turns all true propositions into false ones. This suggests that the root of
counter-intuitivity of NeF does not specifically lie in the negative meaning we
assign to ’¬’. Further, we cannot eliminate all counterintuitive inferences in
minimal logic by merely removing NeF.

It has been pointed out by authors like Došen [5], that it is possible to think
¬ as a modal operator. If we couple this reading with the above, we informally
observe the following.
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Observation
Let P be a property for propositions that is faithfully expressible by means of an
extensional modal operator �. Then If there exists a true proposition satisfying
the property P, (i.e.. A∧�A), then all true proposition have that property, (i.e.
B → �B).

It would be a matter of debate how logically acceptable this principle is. How-
ever it is prima facie unclear, at least, why this must hold for any such P .

3.3 Superminimal Axioms

Let us now move attention to negation axioms that are classically/intuitionistically
valid, but not derivable in minimal logic. Let us call them superminimal axioms,
and investigate their relationship with minimal and subminimal axioms.

Definition 3.3.1 (superminimal axioms).
We introduce the following axiom.
DNE: ¬¬A→ A LEM: A ∨ ¬A
CM: (¬A→ A)→ A EFQ: (A ∧ ¬A)→ B

As already mentioned, M+EFQ defines the negation of intuitionistic logic, and
M+EFQ+DNE (or M+EFQ+LEM) defines the negation for classical logic.

It is known that DNE ⇒ LEM, EFQ; LEM+EFQ ⇒ DNE; and LEM⇔ CM;
all over minimal logic [4]. But it is not guaranteed these relations still hold
without minimal negation (i.e. axiom M). In what follows, we shall investigate
deducibility over PPC, so without assuming M.

Lemma 3.3.1 (deducibility for CM+EFQ).
(i) CM+EFQ⇒DNE
(ii) CM+EFQ⇒LEM

Proof.
(i)

¬A `P ¬A ¬¬A `P ¬¬A
¬A,¬¬A `P ¬A ∧ ¬¬A

[EFQ]
`P (¬A ∧ ¬¬A)→ A

[MP]¬A,¬¬A `P A

¬¬A `P ¬A→ A
[CM]

`P (¬A→ A)→ A
[MP]¬¬A `P A

`P ¬¬A→ A

(ii)

¬(A ∨ ¬A) `P ¬(A ∨ ¬A)

[DNE (by (i))]
¬¬A `P A

¬¬A `P A ∨ ¬A
¬¬A,¬(A ∨ ¬A) `P (A ∨ ¬A) ∧ ¬(A ∨ ¬A)

[EFQ]
`P [(A ∨ ¬A) ∧ ¬(A ∨ ¬A)]→ ¬A

[MP]
¬¬A,¬(A ∨ ¬A) `P ¬A

¬(A ∨ ¬A) `P ¬¬A→ ¬A · · · (a)
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(a)
¬(A ∨ ¬A) `P ¬¬A→ ¬A

[CM]
`P (¬¬A→ ¬A)→ ¬A

[MP]
¬(A ∨ ¬A) `P ¬A
¬(A ∨ ¬A) `P A ∨ ¬A

`P ¬(A ∨ ¬A)→ A ∨ ¬A · · · (b)

(b)
`P ¬(A ∨ ¬A)→ A ∨ ¬A

[CM]
`P [¬(A ∨ ¬A)→ (A ∨ ¬A)]→ (A ∨ ¬A)

[MP]`P A ∨ ¬A

Lemma 3.3.2 (deducibility of subminimal axioms from LEM, CM+EFQ).
(i) LEM⇒An
(ii) CM+EFQ⇒M

Proof.
(i)

A `P A A→ ¬A `P A→ ¬A
[MP]

A,A→ ¬A `P ¬A
A `P (A→ ¬A)→ ¬A

¬A `P ¬A
¬A,A→ ¬A `P ¬A
¬A `P (A→ ¬A)→ ¬A

A ∨ ¬A `P (A→ ¬A)→ ¬A
`P A ∨ ¬A→ [(A→ ¬A)→ ¬A]

[LEM]`P A ∨ ¬A
MP`P (A→ ¬A)→ ¬A

(ii) This follows from (i), CM+EFQ ⇒ LEM, EFQ ⇒ NeF and An+NeF ⇒ M.

Using these lemmas, we obtain the following theorem about the relationship
among super/subminimal axioms.

Theorem 3.3.1 (hierarchy of super/subminimal axioms).
(i) EFQ+An defines the intuitionistic negation.
(ii) CM+EFQ defines the classical negation.
(iii) C: (¬A→ B) ∧ (¬A→ ¬B)→ A also defines the classical negation

Proof.
(i) We have seen that NeF+An⇔ M. NeF is clearly and instance of EFQ.
(ii) This follows from (i) and the above lemma.
(iii) ’⇒’ We show C⇔CM+EFQ.
CM

[C]
`P (¬A→ A) ∧ (¬A→ ¬A)→ A

`P (¬A→ A)→ A

EFQ

B ∧ ¬B `P (¬A→ B) ∧ (¬A→ ¬B)
[C]

B ∧ ¬B `P A

`P (B ∧ ¬B)→ A

13



’⇐’

(¬A→ B) ∧ (¬A→ ¬B) `P ¬A→ (B ∧ ¬B)
[EFQ]

(¬A→ B) ∧ (¬A→ ¬B) `P ¬A→ A
[CM]

(¬A→ B) ∧ (¬A→ ¬B) `P A

`P (¬A→ B) ∧ (¬A→ ¬B)→ A

This result hints that CM, EFQ(NeF) and An play a substantial role in
defining negation. We see that NeF is a weaker version of EFQ, and paired
with An, which seems to constitute a couple with CM (though the conclusion
is weaker), to define the minimal negation. Thus it appears that the pairs of
axioms allow us to naturally descend to weaker negations. But it is not clear
if we can consider the minimal negation the bottom of this descent. After all,
EFQ can be weakened still by adding more negations to the conclusion. It is
a natural question then, to ask if we can climb down this ladder of classical-
intuitionistic-minimal negation any further. The below result shows that this is
possible: we can generalise CM, EFQ and An so that we can indefinitely obtain
weaker negations.

Definition 3.3.2 (generalisation of CM, EFQ and An).
Let (CMi)i∈N, (EFQi)i∈N, (Ani)i∈N be as follows.

CMi: (¬(2i+1)A→ ¬(2i)A)→ ¬(2i)A
EFQi: (A ∧ ¬A)→ ¬(i)B
Ani: (¬(2i)A→ ¬(2i+1)A)→ ¬(2i+1)A

For instance, CM0 =CM, EFQ0=EFQ, EFQ1=NeF and An0=An.

Lemma 3.3.3 (generalised double negation elimination).
(i) CMi + EFQ2i ⇒ ¬(2i+2)A→ ¬(2i)A
(ii) Ani + EFQ2i+1 ⇒ ¬(2i)A→ ¬(2i+2)A

(iii) Ani + EFQ2i+1 ⇒ ¬(2i+3)A→ ¬(2i+1)A

Proof.
(i)

[EFQ2i]`P ¬(2i+1)A ∧ ¬(2i+2)A→ ¬(2i)A
¬(2i+2)A `P ¬(2i+1)A→ ¬(2i)A

[CMi]
`P (¬(2i+1)A→ ¬(2i)A)→ ¬(2i)A

[MP]
¬(2i+2)A `P ¬(2i)A
`P ¬(2i+2)A→ ¬(2i)A

(ii)

[EFQ2i+1]
`P (¬(2i)A ∧ ¬(2i+1)A)→ ¬(2i+2)A

¬(2i)A `P ¬(2i+1)A→ ¬(2i+2)A
[Ani]

`P (¬(2i+1)A→ ¬(2i+2)A)→ ¬(2i+2)A
[MP]

¬(2i)A `P ¬(2i+2)A

`P ¬(2i)A→ ¬(2i+2)A
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(iii)

[(ii)]
¬(2i+3)A,¬(2i)A `P ¬(2i+2)A ∧ ¬(2i+3)A

[EFQ2i+1]
¬(2i+3)A,¬(2i)A `P ¬(2i+1)A

¬(2i+3)A `P ¬(2i)A→ ¬(2i+1)A
[Ani]

¬(2i+3)A `P ¬(2i+1)A

`P ¬(2i+3)A→ ¬(2i+1)A

Proposition 3.3.1 (deducibility of CMi, Ani via EFQi).
(i) CMi + EFQ2i ⇒ Ani

(ii) Ani + EFQ2i+1 ⇒ CMi+1

Proof.
(i)

[(i), lemma]
`P ¬(2i+2)A→ ¬(2i)A ¬(2i)A→ ¬(2i+1)A `P ¬(2i)A→ ¬(2i+1)A

¬(2i)A→ ¬(2i+1)A `P ¬(2i+2)A→ ¬(2i+1)A
[CMi]

¬(2i)A→ ¬(2i+1)A `P ¬(2i+1)A

`P (¬(2i)A→ ¬(2i+1)A)→ ¬(2i+1)A

(ii)

¬(2i+3)A→ ¬(2i+2)A `P ¬(2i+3) → ¬(2i+2)A
[(ii), lemma]

`P ¬(2i+2)A→ ¬(2i+4)A

¬(2i+3)A→ ¬(2i+2)A `P ¬(2i+3)A→ ¬(2i+4)A
[Ani]

¬(2i+3)A→ ¬(2i+2)A `P ¬(2i+4)A · · · (a)

(a)
¬(2i+3)A→ ¬(2i+2)A `P ¬(2i+4)A

[(iii), lemma]
`P ¬(2i+4)A→ ¬(2i+2)A

¬(2i+3)A→ ¬(2i+2)A `P ¬(2i+2)A

`P (¬(2i+3)A→ ¬(2i+2)A)→ ¬(2i+2)A

Hence CMi + EFQ2i and Ani + EFQ2i+1 defines weaker versions of classical
and minimal negation, with Ani + EFQ2i in between defining weaker intuition-
istic negations. If we write them as Ci, Ii and Mi, then the negations are
weakening in the order:

C0 ⇒ I0 ⇒M0 ⇒ C1 ⇒ I1 ⇒M1 ⇒ C2 . . .
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3.4 Subminimal Axioms and Sequnt Calculus

In what follows, we shall investigate some axioms with the tool of sequent calcu-
lus. Sequent calculus is a proof system wherein a logical consequence (a sequent)
is taken to be the basic unit of deduction. This is different from Hilbert-type
system, which takes a formula as the basic unit of deduction. We begin with
an observation on the provable sequents in classical logic. (with ⊥ taken as
primitive: CPC⊥).

Definition 3.4.1 (sCPC⊥, sequent calculus for CPC⊥ (G1cp in [11])). A
proof in sCPC⊥ is a labeled finite tree with a single node, such that the top
nodes are instances of axioms, and other nodes are suitable instances of one of
the rules.

Axioms:

Ax A⇒ A L⊥ ⊥ ⇒

Structural rules:

Γ⇒ ∆
LW

Γ, A⇒ ∆
Γ⇒ ∆

RW
Γ⇒ A,∆

Γ, A,A⇒ ∆
LC

Γ, A⇒ ∆

Γ⇒ A,A,∆
RC

Γ⇒ A,∆

Rules for connectives:

Γ, Ai ⇒ ∆
L∧ (i ∈ {0, 1})

Γ, A0 ∧A1 ⇒ ∆

Γ⇒ A,∆ Γ⇒ B,∆
R∧

Γ⇒ A ∧B,∆
Γ, A⇒ ∆ Γ, B ⇒ ∆

L∨
Γ, A ∨B ⇒ ∆

Γ⇒ Ai,∆
R∨ (i ∈ {0, 1})

Γ⇒ A0 ∨A1∆

Γ⇒ A,∆ Γ, B ⇒ ∆
L→

Γ, A→ B ⇒ ∆

Γ, A⇒ B,∆
R→

Γ⇒ A→ B,∆

(Γ,∆ finite multisets of formulas)

We now divide the formulas into two classes, the class of positive formulas and
negative formulas.

Definition 3.4.2 (positive/negative formulas). We define the class of posi-
tive/negative formulas F+ and F− as follows

F+ ::= p|P1 ∧ P2|P ∨A|A ∨ P |A→ P |N → A
F− ::= ⊥|N ∧A|A ∧N |N1 ∨N2|P → N
(P ∈ F+, N ∈ F−)

Note that F+ ∩ F− = ∅, F+ ∪ F− = FORM(CPC⊥).

The proposition below shows that there exists a constraint for deducing
negative formulas. This means that we cannot allow a negation axiom that
defies this constraint.
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Proposition 3.4.1 (derivability of negative formulas in sCPC⊥).
If `C Γ⇒ ∆, and all the formulas in ∆ are negative, then there exists a negative
formula in Γ.

Proof.
We prove by induction on the depth of deduction.

Basis:
Ax Suppose the deduction ends with an instance of Ax:

A⇒ A

Then if A is negative in the consequent, so it is in the antecedent.

L⊥ The statement vacuously holds.

Inductive step:
LW Suppose the deduction ends with an instance of LW:

Γ⇒ ∆
LW

Γ, A⇒ ∆

If all formulas in ∆ are negative, then by I.H. Γ contains a negative formula.
So {A} ∪ Γ contains a negative formula.

RW Suppose the deduction ends with an instance of RW:

Γ⇒ ∆
RW

Γ⇒ A,∆

Then if all formulas in ∆∪{A} are negative, all formulas in ∆ are negative. So
by I.H., Γ contains a negative formula.

LC Suppose the deduction ends with an instance of LC:

Γ, A,A⇒ ∆
LC

Γ, A⇒ ∆

Then if all formulas in ∆ are negative, by I.H. Γ ∪ {A,A} contains a negative
formula. So Γ ∪ {A} contains a negative formula.

RC Suppose the deduction ends with an instance of RC:

Γ⇒ A,A,∆
RC

Γ⇒ A,∆

Then if all formulas in ∆ ∪ {A} are negative, ∆ ∪ {A,A} contains a negative
formula. So by I.H., Γ contains a negative formula.

L∧ Suppose the deduction ends with an instance of L∧:

Γ, Ai ⇒ ∆
L∧ (i ∈ {0, 1})

Γ, A0 ∧A1 ⇒ ∆
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Then if all formulas in ∆ are negative, by I.H., either Ai is negative, or Γ con-
tains a negative formula. If the former, A0 ∧A1 is also negative.

R∧ Suppose the deduction ends with an instance of R∧:

Γ⇒ A,∆ Γ⇒ B,∆
R∧

Γ⇒ A ∧B,∆
Then if all formulas in ∆ ∪ {A ∧ B} are negative, A ∧ B is negative; so either
A is negative or B is negative. Either way, by I.H. Γ contains a negative formula.

L∨ Suppose the deduction ends with an instance of L∨:

A,Γ⇒ ∆ Γ, B ⇒ ∆
L∨

Γ, A ∨B ⇒ ∆

Then if all formulas in ∆ are negative, by I.H. either Γ contains a negative
formula, or A,B are both negative. If the latter, A ∨B is also negative.

R∨ Suppose the deduction ends with an instance of R∨:

Γ⇒ Ai,∆
R∨ (i ∈ {0, 1})

Γ⇒ A0 ∨A1,∆

Then if all formulas in ∆∪{A0∨A1} are negative, A0∨A1 is negative. So both
A0 and A1 are negative. Hence by I.H., Γ contains a negative formula.

L→ Suppose the deduction ends with an instance of L→:

Γ⇒ A,∆ Γ, B ⇒ ∆
L→

Γ, A→ B ⇒ ∆

Then if all formulas in ∆ are negative, by I.H. either B is negative, or Γ contains
a negative formula. If the former, then if A is positive, A→ B is negative. On
the other hand, if A is negative, ∆ ∪ {A} are all negative. So Γ contains a
negative formula by I.H..

R→ Suppose the deduction ends with an instance of R→:

Γ, A⇒ B,∆
R→

Γ⇒ A→ B,∆

Then if all formulas in ∆ ∪ {A → B} are negative, A is positive and B is
negative. So by I.H., Γ contains a negative formula.

To see that this proposition holds for MPC¬, we must check that the prop-
erty holds for the rules N and An, devised in [2]. Also note that the result holds
for the Cut rule

Γ⇒ A Γ′, A⇒ B
Cut

Γ,Γ′ ⇒ B

even in subminimal systems where it is not admissible; if it does not, we can
derive a sequent (in CPC⊥) whose consequents only contain negative formulas,
while the antecedent containing only positive formulas, contradicting the last
proposition.
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Definition 3.4.3 (sPPC, a sequent calculus for PPC).
Axioms:

Ax: A⇒ A

Structural rules:

Γ⇒ C
LW:

Γ, A⇒ C
Γ, A,A⇒ C

LC:
Γ, A⇒ C

Rules for connectives:

Γ, Ai ⇒ C
L∧: (i ∈ {0, 1})

Γ, A0 ∧A1 ⇒ C
Γ⇒ A Γ⇒ B

R∧:
Γ⇒ A ∧B

Γ, A⇒ C Γ, B ⇒ C
L∨:

Γ, A ∨B ⇒ C

Γ⇒ Ai
R∨: (i ∈ {0, 1})

Γ⇒ A0 ∨A1

Γ⇒ A Γ, B ⇒ C
L→:

Γ, A→ B ⇒ C

Γ, A⇒ B
R→:

Γ⇒ A→ B

(Γ a finite multiset of formulas)

In [2], there is an additional axiom R>: ⇒ >. > is only required in proving
the base case for the interpolation theorem, in place of ⊥ → ⊥. For our purpose
the presence of this axiom is negligible, so it is dropped. Also, the formulation
of L∧ is slightly different, but each formulation is easily shown to be admissible
under the presence of the other.

It is easily shown by induction on the depth of deduction, that:

`sP Γ⇒ A if and only if Γ `hP A

and so the two systems are equivalent.

The Sequent calculus sMPC¬ for MPC¬ is sPPC plus rules N and An below.

Definition 3.4.4 (N, An).
N, An refer to the following rules.

Γ, A⇒ B Γ, B ⇒ A
N

Γ,¬A⇒ ¬B
Γ, A⇒ ¬A

An
Γ⇒ ¬A

The equivalence of these rules to the corresponding axioms (over the systems
for PPC) has been shown in [2]. In general, establishing the correspondence
between a Hilbert-type axiom Ax and a sequent calcural rule Ru is straight-
forward: From Ax to Ru, we show ` ⇒ Ax is deriveble with the presence of
Ru; from Ru to Ax, we show that given the premises of Ru, the conclusion of
Ru is derivable with the presence of Ax. (Strictly speaking, we need to prove
Γ `Hilbert A if and only if `Seq.Calc. Γ⇒ A by induction, and the above consti-
tutes a part of this).

Now as claimed earlier, we shall show the above result about negative for-
mulas hold for sMPC¬ as well.

Definition 3.4.5 (positive/negative formulas for MPC¬).
We define the class of positive/negative formulas F+ and F− in MPC¬ as:
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F+ ::= p|¬N |P1 ∧ P2|P ∨A|A ∨ P |A→ P |N → A
F− ::= ¬P |N ∧A|A ∧N |N1 ∨N2|P → N
(P ∈ F+, N ∈ F−)

Proposition 3.4.2 (derivability of negative formulas in sMPC¬).
If ` Γ⇒ A, and A is negative, then there exists a negative formula in Γ.

Proof.
It suffices to check the cases for N and An.

N Suppose the deduction ends with an instance of N:

Γ, A⇒ B Γ, B ⇒ A
N

Γ,¬A⇒ ¬B
Then if ¬B is negative, B is positive, so by I.H. either Γ contains a negative
formula, or A is negative. If the latter, by I.H. Γ has to contain a negative
formula, as B is positive.

An Suppose the deduction ends with an instance of An:

Γ, A⇒ ¬A
An

Γ⇒ ¬A
Then if ¬A is negative, A is positive, so by I.H. Γ has to contain a negative
formula.

As explained earlier, any subminimal axiom has to observe this condition.
Note however that this condition is not sufficient, as ¬p⇒ ¬q is not valid.

We can also obtain some separation results for subminimal axioms, by slightly
adjusting the notion of positive/negative formulas.

Definition 3.4.6 (formally positive/negative formulas).
We define the class of formally positive/negative formulas F+ and F− in MPC¬
as follows

F+ ::= p|P1 ∧ P2|P ∨A|A ∨ P |A→ P |N → A
F− ::= ¬A|N ∧A|A ∧N |N1 ∨N2|P → N
(P ∈ F+, N ∈ F−)

Definition 3.4.7 (An−).
We define the following axiom:

Γ, A⇒ ¬A
An− Γ,¬B ⇒ ¬A

Let us call An− + N + sPPC as sAn−PC. In the corresponding Hilbert-type
system, An− can be expressed as (A → ¬A) → (¬B → ¬A). As usual, it is
straightforward to show the equivalence between the two versions.
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Proposition 3.4.3 (formal negativity and An−PC).
If An−PC ` Γ⇒ A, where A is formally negative, then Γ contains a formally
negative formula.

Proof. We prove by induction on the depth of deduction. Most of the cases
proceed as in the previous proposition. N is treated slightly differently, and
An− needs to be checked upon.

N Suppose the deduction ends with an instance of N:

Γ, A⇒ B Γ, B ⇒ A
N

Γ,¬A⇒ ¬B
Then ¬B is formally negative, but so is ¬A.

An− Suppose the deduction ends with an instance of An−:

Γ, A⇒ ¬A
An− Γ,¬B ⇒ ¬A

Then ¬A is formally negative, but so is ¬B.

Corollary 3.4.1 (relationship between An and An−).
(i) An + PPC derives An−.
(ii) An−PC does not derive An.

Proof.

(i)
Γ, A⇒ ¬A

[An]
Γ⇒ ¬A [LW]

Γ,¬B ⇒ ¬A
(ii) If An−PC derives An, then An−PC is equivalent to MPC¬. But then
An−PC ` ⇒ ¬(p∧¬p), where the consequent is formally negative but with-
out formally negative antecedent. This contradicts the previous proposition.

Let us now observe how An− relates to other subminimal axioms.
We start with axioms Co and NeF. In sequent calculus, they are each realised
as follows [2].

Γ, A⇒ B
Co

Γ,¬B ⇒ ¬A
Γ⇒ A

NeF
Γ,¬A⇒ ¬B

Proposition 3.4.4 (An− and Co).
(i) An−PC derives Co.
(ii) An− + NeF + PPC derives Co.

Proof.
(i)

Γ, A⇒ B
[LW]

Γ, A.A⇒ B

A⇒ A
[LW]

Γ, A,B ⇒ A
[N]

Γ, A,¬B ⇒ ¬A
[An−]

Γ,¬B,¬B ⇒ ¬A
[LC]

Γ,¬B ⇒ ¬A
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(ii)

Γ, B ⇒ A
[NeF]

Γ, B,¬A⇒ ¬B
[An−]

Γ,¬A,¬A⇒ ¬B
[LC]

Γ,¬A⇒ ¬B

Hence we see that An−PC = An− + NeF + PPC, as Co derives NeF and N.

Next we consider the axiom DN. It is easy to see that the axiom DN is realised
in sequent calculus as:

Γ⇒ A
DN

Γ⇒ ¬¬A

Proposition 3.4.5 (An− and DN).
An−PC does not derive DN.

Proof.
If An−PC derives DN, then:

⇒ p→ p
[DN]

⇒ ¬¬(p→ p)

Γ, A⇒ ¬A
[An−]

Γ,¬¬(p→ p)⇒ ¬A
[Cut]

Γ⇒ ¬A
And so An becomes admissible in An−PC, a contradiction.

Thus in particular, we see that Co does not derive DN, as we saw An−PC
derives Co.

We now move on to another topic. In [9], an operator C(φ) satisfying the axiom
C(φ) → φ over positive logic is considered. There it is shown that if negation
is defined as ¬φ := φ→ C(φ), then

C(p)↔ p ∧ ¬p

is provable, and
(p→ q)→ ((p→ ¬q)→ ¬p)

is provable if and only if

C(p ∧ q)↔ C(p) ∧ q, C(p ∧ q)↔ p ∧ C(q)

are provable.

Using the first equivalence, we can translate the last two formulas into:

((p ∧ q) ∧ ¬(p ∧ q))↔ ((p ∧ ¬p) ∧ q), ((p ∧ q) ∧ ¬(p ∧ q))↔ (p ∧ (q ∧ ¬q))

These are then (over positive logic) equivalent to:

((p ∧ q)→ (¬p↔ ¬(p ∧ q)), ((p ∧ q)→ (¬q ↔ ¬(p ∧ q))
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When expressed as sequent-calculal rules, these axioms become:

(RCN):
Γ⇒ A ∧B

Γ,¬A⇒ ¬(A ∧B)
;

Γ⇒ A ∧B
Γ,¬B ⇒ ¬(A ∧B)

(LCN):
Γ⇒ A ∧B

Γ,¬(A ∧B)⇒ ¬A ;
Γ⇒ A ∧B

Γ,¬(A ∧B)⇒ ¬B

Let us call these rules collectively as CN. The question to ask now is where these
rules lie compared with other subminimal axioms.

Proposition 3.4.6 (deducibility of CN).
(i) CN + PPC derives D
(ii) NeF + PPC derives CN

Proof.
(i) Note that the axiom D is equivalent to (A∧B)→ (¬A→ ¬B). So as a rule,
we can express D as:

Γ⇒ A Γ⇒ B[D]
Γ,¬A⇒ ¬B

Then:

Γ⇒ A Γ⇒ B [R∧]
Γ⇒ A ∧B [RCN ]

Γ,¬A⇒ ¬(A ∧B)

Γ⇒ A Γ⇒ B [R∧]
Γ⇒ A ∧B [LCN ]

Γ,¬(A ∧B)⇒ ¬B
[Cut,LC]

Γ,¬A⇒ ¬B

(ii)

(RCN)
Γ⇒ A ∧B

Γ⇒ A [NeF]
Γ,¬A⇒ ¬(A ∧B)

(LCN)
Γ⇒ A ∧B [NeF]

Γ,¬(A ∧B)⇒ ¬A
and analogous for the other cases.

Thus it is revealed that CN lies between NeF and D. As D+An ⇔ M, we
expect that C(φ) version of D,

C(p)→ (q → C(q))

also proves equivalent to

(p→ q)→ ((p→ ¬q)→ ¬p)

Proposition 3.4.7 (D and Odintsov’s system).
C(p)→ (q → C(q)) holds if and only if (p→ q)→ ((p→ ¬q)→ ¬p) holds.

Proof.
’⇒’

23



p→ q, p→ ¬q `P p→ [p ∧ (q ∧ ¬q)]
[q ∧ ¬q ↔ C(q)]

p→ q, p→ ¬q `P p→ [p ∧ C(q)]
[C(q)→ (p→ C(p))]

p→ q, p→ ¬q `P p→ C(p)
[¬p := p→ C(p)]

`P (p→ q) ∧ (p→ ¬q)→ ¬p
’⇐’

C(p), q `P p ∧ ¬p
C(p), q `P (q → p) ∧ (q → ¬p)

[(q → p) ∧ (q → ¬p)→ ¬q)]
C(p), q `P ¬q

`P C(p)→ (q → ¬q)

4 Subminimal Correspondence Theory

In this section, we shall turn our attention to the semantic side of subminimal
logics. In terms of semantics, [2] and [3] take the basic subminimal system
to be N+PPC (hereafter called NPC). A key element in the semantics of
NPC and its extensions is a mapping between the set of upward closed sets of
worlds, N . Given the set of worlds in which a proposition is true, N returns the
set of worlds in which the negation of that proposition is true. Moreover, by
giving adequate restrictions on N , we can validate corresponding subminimal
axioms. This means we can ask the question of what characterisations for
Kripke frames correspond to the validity of subminimal axioms. We shall call
this enquiry subminimal correspondence theory, after similar frameworks for
modal&intermediate logics.

In what follows, we first describe the semantics for NPC. After that, we
investigate subminimal corresponding theory, restricting our attention to axioms
containing a single type of propositional variables. We abbreviate this and call
them as stpv formulas. So for instance, p→ (¬p∧ p) is a stpv formulas because
it contains only one type (albeit three tokens) of propositional variable, p. On
the other hand, p ∨ ¬q is not a stpv formula, because it contains two types
(albeit one token each) of propositional variables, p and q.

4.1 Subminimal Semantics

We start with describing the Kripke semantics for NPC.

Definition 4.1.1 (Kripke frame for NPC).
A Kripke frame for NPC is a triple (W,≤,N ), where(W,≤) is as in PPC, and
N is a mapping from the set U(W ) of all upward closed subsets of W to itself.
Additionally, N satisfies the restriction:

- w ∈ N (U)⇔ w ∈ N (U ∩R(w)) for all w ∈W
(where R(w) := {w′ ∈W |w′ ≥ w} is the upward closed subset generated by w.)

Kripke models for NPC is a slight modification from that of MPC. The valu-
ation for negation is now defined as:
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- (F ,V), w N ¬A⇔ w ∈ N (V(A)).
(where V(A) := {w ∈W |(F ,V), w N A})

The soundness and completeness of NPC is verified in [3]. It is appropriate
here to give an example of how this semantics works.

Example 4.1.1 (Validity of D).
�N (A ∧ ¬A)→ (B → ¬B)

Proof.
Let (F ,V) and w ∈W be given. Suppose (F ,V), w′ N A∧¬A for w′ ≥ w. We
wish to show (F ,V), w′ N B → ¬B, so assume (F ,V), w′′ N B for w′′ ≥ w′.
Note that w′′ ∈ V(¬A) = N (V(A)) and V(B) ∩R(w′′) = V(A) ∩R(w′′).
We then observe:

(F ,V), w′′ N ¬B ⇔ w′′ ∈ N (V(B)) [dfn]

⇔ w′′ ∈ N (V(B) ∩R(w′′)) [rest. on N ]

⇔ w′′ ∈ N (V(A) ∩R(w′′)) [V(B) ∩R(w′′) = V(A) ∩R(w′′)]

⇔ w′′ ∈ N (V(A)) [rest. on N ]

and so (F ,V), w′′ N ¬B. Therefore (F ,V), w′ N B → ¬B and so (F ,V), w N

(A ∧ ¬A) → (B → ¬B). Since (F ,V) and w are arbitrary, we conclude
�N (A ∧ ¬A)→ (B → ¬B).

4.2 Subminimal Correspondence Theory for stpv Formu-
las

Now we are going to investigate the correspondence between axioms and re-
strictions on frames. As discussed earlier, given such a restriction for a formula,
a frame validates the formula if and only if the frame satisfies the condition
specified by the formula. We shall restrict ourselves to formulas containing a
single type of variable, p.

Before moving on to our analysis, we mention known correspondences veri-
fied in [2].

Proposition 4.2.1 (known correspondences [2]).
The following conditions correspond to the axioms NeF and Co1.

(i) F �N (p ∧ ¬p)→ ¬q ⇔ ∀U,U ′ ∈ R(W )[U ∩N (U) ⊆ N (U ′)]
(ii) F �N (p→ q)→ (¬q → ¬p)⇔ ∀U,U ′ ∈ R(W )[U ⊆ U ′ ⇒ N (U ′) ⊆ N (U)]

Proof.
(i) ’⇒’
Let U,U ′ ∈ R(W ) and suppose w ∈ U ∩ N (U). Choose V s.t. V(p) = U and
V(q) = U ′. Then V(¬p) = N (U), and (F ,V), w N p ∧ ¬p. So by assumption,
(F ,V), w N ¬q. Hence w ∈ N (U ′)

’⇐’
Let V be a valuation and w ∈W . Suppose (F ,V), w′ N p∧¬p for w′ ≥ w. Then

1Here given in terms of propositional variables.
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w′ ∈ V(p)∧N (V(p)). Hence by assumption w′ ∈ N (V(q)), i.e. (F ,V), w′ N ¬q.
So (F ,V), w N (p ∧ ¬p) → ¬q. Since V, w are arbitrary, we conclude
F �N (p ∧ ¬p)→ ¬q.

(ii) ’⇒’
Let U,U ′ ∈ R(W ) and suppose U ⊆ U ′. Choose V s.t. V(p) = U and V(q) = U ′.
Then if w ∈ N (U ′), we see (F ,V), w N p → q and (F ,V), w N ¬q. So by
assumption, (F ,V), w N ¬p. Thus w ∈ N (U).

’⇐’
Let V be a valuation and w ∈ W . Suppose (F ,V), w′ N p → q for w′ ≥ w.
Then V(p) ∩ R(w′) ⊆ V(q). So by assumption N (V(q)) ⊆ N (V(p) ∩ R(w′))
Now if (F ,V), w′′ N ¬q for w′′ ≥ w′, w′′ ∈ N (V(q)) ⊆ N (V(p) ∩ R(w′)). By
restriction on N ,

w′′ ∈ N (V(p) ∩R(w′))⇔ w′′ ∈ N ([V(p) ∩R(w′)] ∩R(w′′))

⇔ w′′ ∈ N (V(p) ∩ [R(w′) ∩R(w′′)])

⇔ w′′ ∈ N (V(p) ∩R(w′′))

⇔ w′′ ∈ N (V(p))

hence (F ,V), w′′ N ¬p. So (F ,V), w′ N ¬q → ¬p and (F ,V), w N (p →
q)→ (¬q → ¬p). Since V, w are arbitrary, we conclude F �N (p→ q)→ (¬q →
¬p).

We shall try now to define frame conditions for stpv formulas inductively.
To achieve this, we shall begin with defining some classes for the formulas.

Definition 4.2.1 (B,E ,I,L).
We define the following four classes of formulas.

B ::= p|B1 ∧B2|B ∧ E|E ∧B|B ∧ I|I ∧B|B ∧ L|L ∧B|B1 ∨B2

E ::= ¬B|¬E|¬I|¬L|E1 ∧ E2|E ∧ I|I ∧ E|I1 ∧ I2|E ∧ L|L ∧ E
|I ∧ L|L ∧ I|L1 ∧ L2|B ∨ E|E ∨B|E1 ∨ E2|B ∨ I|I ∨B|E1 ∨ E2

|I ∨ E|I1 ∨ I2|B ∨ L|L ∨B|E ∨ L|L ∨ E|I ∨ L|L ∨ I|L1 ∨ L2

I ::= B1 → B2|B → E|E → B|E1 → E2

L ::= B → I|I → B|E → I|I → E|I1 → I2|B → L|L→ B|E → L

|L→ E|I → L|L→ I|L1 → L2

(B ∈ B, E ∈ E , I ∈ I, L ∈ L)

Each stpv formula belongs to one of the classes. We shall establish the
correspondence for the last three classes of formula, E ,I,L. (The validity of
formulas in the class B essentially depends on the valuation, so no meaningful
correspondences can be established.)

In the remainder of this section, we aim to is to prove the following theorem
giving the general correspondence for stpv formulas.

Theorem 4.2.1 (correspondence for stpv formulas).
Let F = (W,≤,N ) be a frame.
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Let A be a formula with a single type of propositional variable, p.

(i) If A ∈ B ∪ E , then for each U ∈ U(W ), there exists ΣU
A ∈ U(W ), such that:

- (a) If V is a valuation s.t. V(p) = U , then (F ,V), w N A⇔ w ∈ ΣU
A.

- (b) Further, if A ∈ E , F �N A⇔ ∀U [ΣU
A = W ].

(ii) If A ≡ A1 → A2 ∈ I (where Ai ∈ B ∪ E), then:
- (a) If V is a valuation s.t. V(p) = U , then (F ,V), w N A⇔ R(w)∩ΣU

A1
⊆ ΣU

A2

- (b) F �N A⇔ ∀U [ΣU
A1
⊆ ΣU

A2
].

(iii) If A ∈ L, then there exists a proposition λ
(U,w)
A such that:

- (a) If V is a valuation s.t. V(p) = U , then (F ,V), w N A⇔ ∀w′ ≥ w[λ
(U,w′)
A ].

- (b) F �N A⇔ ∀U∀w[λ
(U,w)
A ].

The proof of this theorem is done by induction on the complexity of A. We
shall split it into several lemmas.

Firstly, we shall consider the case for the class B. Note that throughout
the following lemmas, we are assuming the inductive hypothesis of the main
theorem.

Lemma 4.2.1 (B).
Let F = (W,≤,N ) be a frame and let B ∈ B.
Then there exists ΣU

B ∈ U(W ) such that V(p) = U ⇒ V(B) = ΣU
B .

Proof. We consider by cases.

B ≡ p
Let ΣU

B := U . Then V(B) = V(p) = U = ΣU
B .

B ≡ B1 ∧B2

Let ΣU
B1∧B2

:= ΣU
B1
∩ ΣU

B2
.

(Recall that upward closed sets are closed under union and intersection.)
Then if V(p) = U ,
V(B1 ∧B2) = V(B1) ∩ V(B2) = ΣU

B1
∩ ΣU

B2
[I.H.].

B ≡ B′ ∧ E,E ∧B′
Let ΣU

B′∧E ,Σ
U
E∧B′ := ΣU

B′ ∩ ΣU
E .

Then if V(p) = U ,
V(B′ ∧ E) = V(E ∧B′) = V(B′) ∩ V(E) = ΣU

B′ ∩ ΣU
E [I.H.].

B ≡ B′ ∧ I, I ∧B′ (where I ≡ A1 → A2 for A1, A2 ∈ B ∪ E)

Let ΣU
B′∧I ,Σ

U
I∧B′ := ΣU

B′ ∩ {w|R(w) ∩ ΣU
A1
⊆ ΣU

A2
}.

(Notice that {w|R(w) ∩ ΣU
A1
⊆ ΣU

A2
} is an upward closed set.)

Then if V(p) = U ,
V(B′ ∧ I) = V(I ∧B′) = V(B′) ∩ V(I) = ΣU

B′ ∩ {w|R(w) ∩ ΣU
A1
⊆ ΣU

A2
} [I.H.].

B ≡ B′ ∧ L,L ∧B′

Let ΣU
B′∧L,Σ

U
L∧B′ := ΣU

B′ ∩ {w|∀w′ ≥ w(λ
(U,w′)
L )}.

(Notice that {w|∀w′ ≥ w(λ
(U,w′)
L )} is an upward closed set.)
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Then if V(p) = U ,

V(B′ ∧ L) = V(L ∧B′) = V(B′) ∩ V(L) = ΣU
B′ ∩ {w|∀w′ ≥ w(λ

(U,w′)
L )} [I.H.].

B ≡ B1 ∨B2

Let ΣU
B1∨B2

:= ΣU
B1
∪ ΣU

B2
.

Then if V(p) = U ,
V(B1 ∨B2) = V(B1) ∪ V(B2) = ΣU

B1
∪ ΣU

B2
[I.H.].

Next, we consider the cases for E .

Lemma 4.2.2 (E).
Let F = (W,≤,N ) be a frame and let E ∈ E .
Then there exists ΣU

E ∈ U(W ), such that:
- (a) If V is a valuation such that V(p) = U , then V(E) = ΣU

E .
- (b) F �N E ⇔ ∀U [ΣU

E = W ].

Proof. We consider by cases.

E ≡ ¬B
Let ΣU

¬B := N (ΣU
B).

(a) If V(p) = U , then by I.H, V(B) = ΣU
B . So V(¬B) = N (V(B)) = N (ΣU

B).

(b) ’⇒’
Let U ∈ U(W ) and w ∈W . Let V be s.t. V(p) = U .
Then (F ,V), w N ¬B by assumption. Also by I.H, V(B) = ΣU

B .
To show ∀U [N (ΣU

B) = W ], it suffices to show w ∈ N (ΣU
B).

(F ,V), w N ¬B ⇔ w ∈ N (V(B))

⇔ w ∈ N (ΣU
B) [I.H.]

’⇐’
Let V be a valuation and w ∈W . Then Σ

V(p)
¬B = W by assumption.

So w ∈ Σ
V(p)
¬B . As Σ

V(p)
¬B := N (Σ

V(p)
B ), we see:

w ∈ N (Σ
V(p)
B ) = N (V(B)) [I.H.]

= V(¬B)

Hence (F ,V), w N ¬B. As V, w are arbitrary, F �N ¬B.

E ≡ ¬E′
Let ΣU

¬E′ := N (ΣU
E′).

(a) If V(p) = U , then by I.H. V(E′) = ΣU
E′ . So V(¬E′) = N (V(E′)) = N (ΣU

E′).

(b) ’⇒’
Let U ∈ U(W ) and w ∈W . Let V be s.t. V(p) = U .
Then (F ,V), w N ¬E′ by assumption. Also by I.H, V(E′) = ΣU

E′ .
To show ∀U [N (ΣU

E′) = W ], it suffices to show w ∈ N (ΣU
E′).

(F ,V), w N ¬E′ ⇔ w ∈ N (V(E′))

⇔ w ∈ N (ΣU
E′) [I.H.]
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’⇐’
Let V be a valuation and w ∈W . Then Σ

V(p)
¬E′ = W by assumption.

So w ∈ Σ
V(p)
¬E′ . As Σ

V(p)
¬E′ := N (Σ

V(p)
E′ ), we see:

w ∈ N (Σ
V(p)
E′ ) = N (V(E′))[I.H.]

= V(¬E′)
Hence (F ,V), w N ¬E′. As V, w are arbitrary, F �N ¬E′.

E ≡ ¬I(where I ≡ A1 → A2 for A1, A2 ∈ B ∪ E)
Let ΣU

¬I := N ({w|R(w) ∩ ΣU
A1
⊆ ΣU

A2
}).

(a) If V(p) = U , then by I.H, V(Ai) = ΣU
Ai

for i ∈ {1, 2}.
So V(¬I) = N (V(I)) = N (V(A1 → A2)) = N ({w|R(w) ∪ V(A1) ⊆ V(A2)}) =
N ({w|R(w) ∪ ΣU

A1
⊆ ΣU

A2
}).

(b) ’⇒’
Let U ∈ U(W ) and u ∈W . Let V be s.t. V(p) = U .
Then (F ,V), u N ¬I by assumption. Also by I.H, V(Ai) = ΣU

Ai
for i ∈ {1, 2}.

To show N ({w|R(w)∩ΣU
A1
⊆ ΣU

A2
}) = W , it suffices to show u ∈ N ({w|R(w)∩

ΣU
A1
⊆ ΣU

A2
}).
(F ,V), u N ¬I ⇔ u ∈ V(¬(A1 → A2))

⇔ u ∈ N (V(A1 → A2))

⇔ u ∈ N ({w|R(w) ∩ ΣU
A1
⊆ ΣU

A2
})[I.H.]

’⇐’
Let V be a valuation and u ∈W .
Then Σ

V(p)
¬I = W by assumption. So u ∈ Σ

V(p)
¬I .

As Σ
V(p)
¬I := N ({w|R(w) ∩ Σ

V(p)
A1
⊆ Σ

V(p)
A2
}) we see:

u ∈ N ({w|R(w) ∩ Σ
V(p)
A1
⊆ Σ

V(p)
A2
}) = N (V(A1 → A2))

= N (V(I)) [I.H.]

= V(¬I)

Hence (F ,V), u N ¬I. As V, u are arbitrary, F �N ¬I.

E ≡ ¬L
Let ΣU

¬E′ := N ({w|∀w′ ≥ w(λ
(U,w′)
L )}).

(a) If V(p) = U , then by I.H, V(L) = {w|∀w′ ≥ w(λ
(U,w′)
L )}.

So V(¬L) = N (V(L)) = N ({w|∀w′ ≥ w(λ
(U,w′)
L )}).

(b) ’⇒’
Let U ∈ U(W ) and u ∈W . Let V be s.t. V(p) = U .

Then (F ,V), u N ¬L by assumption. Also by I.H, V(L) = {w|∀w′ ≥ w(λ
(U,w′)
L )}.

To show ∀U [N ({w|∀w′ ≥ w(λ
(U,w′)
L )}) = W , it suffices to show u ∈ N ({w|∀w′ ≥

w(λ
(U,w′)
L )}).

(F ,V), u N ¬L⇔ u ∈ N (V(L))

⇔ u ∈ N ({w|∀w′ ≥ w(λ
(U,w′)
L )})[I.H.]
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’⇐’
Let V be a valuation and u ∈W .
Then Σ

V(p)
¬L = W by assumption. So u ∈ Σ

V(p)
¬L .

As Σ
V(p)
¬L := N ({w|∀w′ ≥ w(λ

(V(p),w′)
L )}), we see:

u ∈ N ({w|∀w′ ≥ w(λ
(V(p),w′)
L )}) = N (V(L))[I.H.]

= V(¬L)

Hence (F ,V), u N ¬L. As V, u are arbitrary, F �N ¬L.

E ≡ A1 ∧A2(where Ai ∈ E ∪ I ∪ L).
Let ΣU

A1∧A2
:= ΠU

A1
∩ΠU

A2
, where:

ΠU
C =


ΣU

C if C ∈ B ∪ E ,
{w|R(w) ∩ ΣU

C1
⊆ ΣU

C2
} if C ≡ C1 → C2 ∈ I,

{w|∀w′ ≥ w(λ
(U,w′)
C )} if C ∈ L.

By inductive hypothesis, V(p) = U ⇒ V(Ai) = ΠU
Ai

.

(a) Suppose V(p) = U . Then V(A1 ∧A2) = V(A1) ∩ V(A2) = ΠU
A1
∩ΠU

A2
.

(b) ’⇒’
Let U ∈ U(W ) and w ∈W . Let V be s.t. V(p) = U .
Then (F ,V), w N A1 ∧A2 by assumption.
So (F ,V), w N A1 and (F ,V), w  A2.
⇔ w ∈ V(A1) and w ∈ V(A2).
⇔ w ∈ ΠU

A1
and w ∈ ΠU

A2
. [I.H.]

⇔ w ∈ ΠU
A1
∩ΠU

A2
.

Hence ΠU
A1
∩ΠU

A2
= W . Since U,w are arbitrary, we conclude ∀U [ΠU

A1
∩ΠU

A2
=

W ].

’⇐’
Let V be a valuation, and w ∈W .

Then Π
V(p)
A1
∩Π

V(p)
A2

= W by assumption.
So V(A1) ∩ V(A2) = W by I.H..
⇒ w ∈ V(A1) ∩ V(A2)
⇔ w ∈ V(A1 ∧A2)
⇔ (F ,V), w N A1 ∧A2

Since V, w are arbitrary, we conclude F �N A1 ∧A2.

E ≡ A1 ∨A2(where not both of A1 and A2 are in B).
Let ΣU

A1∨A2
:= ΠU

A1
∪ΠU

A2
.

(a) Suppose V(p) = U . Then V(A1 ∨A2) = V(A1) ∪ V(A2) = ΠU
A1
∪ΠU

A2
.

(b) ’⇒’
Let U ∈ U(W ) and w ∈W . Let V be s.t. V(p) = U .
Then (F ,V), w N A1 ∨A2 by assumption.
So (F ,V), w N A1 or (F ,V), w N A2.
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⇔ w ∈ V(A1) or w ∈ V(A2).
⇔ w ∈ ΠU

A1
or w ∈ ΠU

A2
. [I.H.]

⇔ w ∈ ΠU
A1
∪ΠU

A2
.

Hence ΠU
A1
∪ΠU

A2
= W . Since U,w are arbitrary, we conclude ∀U [ΠU

A1
∪ΠU

A2
=

W ].

’⇐’
Let V be a valuation, and w ∈W .

Then Π
V(p)
A1
∪Π

V(p)
A2

= W by assumption.
So V(A1) ∪ V(A2) = W by I.H..
⇒ w ∈ V(A1) ∪ V(A2)
⇔ w ∈ V(A1 ∨A2)
⇔ (F ,V), w N A1 ∨A2

Since V, w are arbitrary, we conclude F �N A1 ∨A2.

These lemmas establish (i) of the theorem. We shall now move on to (ii),
namely the cases for I.

Lemma 4.2.3 (I).
Let F = (W,≤,N ) be a frame. Let A ≡ A1 → A2, where Ai ∈ B ∪ E . Then:
(a) If V(p) = U , then (F ,V), w N A1 → A2 ⇔ R(w) ∩ ΣU

A1
⊆ ΣU

A2

(b) F �N A1 → A2 ⇔ ∀U [ΣU
A1
⊆ ΣU

A2
]

Proof.
(a) ’⇒’
Let u ∈ R(w) ∩ ΣU

A1
. Then u ∈ R(w) ∩ V(A1) by I.H.. So (F ,V), u N A1 and

therefore (F ,V), u N A2 by assumption. Thus u ∈ V(A2) = ΣU
A2

.

’⇐’
Let w′ ≥ w be s.t. (F ,V), w′ N A1. Then w′ ∈ R(w)∩V(A1) = R(w)∩ΣU

A1
So

by assumption, w′ ∈ ΣU
A2

= V(A2). Hence (F ,V), w′ N A2, so (F ,V), w N I.

(b) ’⇒’
Let U ∈ U(W ). Choose V s.t. V(p) = U .
Now for any w ∈W , w ∈ ΣU

A1

⇔ w ∈ V(A1) [I.H.]
⇔ (F ,V), w N A1

⇒ (F ,V), w N A2 [by assumption, (F ,V), w N A1 → A2]
⇔ w ∈ V(A2)
⇔ w ∈ ΣU

A2
[I.H.]

Hence ΣU
A1
⊆ ΣU

A2
. As U is arbitrary, we conclude ∀U [ΣU

A1
⊆ ΣU

A2
]

’⇐’
Let V be a valuation, and w ∈W . Let w′ ≥ w.
Then (F ,V), w′ N A1

⇔ w′ ∈ V(A1)

⇔ w′ ∈ Σ
V(p)
A1

[I.H.]
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⇒ w′ ∈ Σ
V(p)
A2

[Assumption]
⇔ w′ ∈ V(A2)
(F ,V), w′ N A2

Hence (F ,V), w′ N A1 → A2.
As V, w are arbitrary, F �N A1 → A2.

This lemmas establishes (ii) of the theorem. Now we move on to the last
part of the theorem.

Lemma 4.2.4 (L). If L ∈ L, then there exists a proposition λ
(U,w)
L such that:

- (a) If V is a valuation s.t. V(p) = U , then (F ,V), w N L⇔ ∀w′ ≥ w[λ
(U,w′)
L ].

- (b) F �N L⇔ ∀U∀w[λ
(U,w)
L ].

Proof.
We define(where I, I1 ≡ A1 → A2, I2 ≡ A3 → A4):

λ
(U,w)
B→I = [R(w) ⊆ ΣU

B ]⇒ [R(w) ∩ ΣU
A1
⊆ ΣU

A2
]

λ
(U,w)
I→B = [R(w) ∩ ΣU

A1
⊆ ΣU

A2
]⇒ [R(w) ⊆ ΣU

B ]

λ
(U,w)
E→I = [R(w) ⊆ ΣU

E ]⇒ [R(w) ∩ ΣU
A1
⊆ ΣU

A2
]

λ
(U,w)
I→E = [R(w) ∩ ΣU

A1
⊆ ΣU

A2
]⇒ [R(w) ⊆ ΣU

E ]

λ
(U,w)
I1→I2

= [R(w) ∩ ΣU
A1
⊆ ΣU

A2
]⇒ [R(w) ∩ ΣU

A3
⊆ ΣU

A4
]

λ
(U,w)
B→L = [R(w) ⊆ ΣU

B ]⇒ [∀w′ ≥ w(λ
(U,w′)
L )]

λ
(U,w)
L→B = [∀w′ ≥ w(λ

(U,w′)
L )]⇒ [R(w) ⊆ ΣU

B ]

λ
(U,w)
E→L = [R(w) ⊆ ΣU

E ]⇒ [∀w′ ≥ w(λ
(U,w′)
L )]

λ
(U,w)
L→E = [∀w′ ≥ w(λ

(U,w′)
L )]⇒ [R(w) ⊆ ΣU

E ]

λ
(U,w)
I→L = [R(w) ∩ ΣU

A1
⊆ ΣU

A2
]⇒ [∀w′ ≥ w(λ

(U,w′)
L )]

λ
(U,w)
L→I = [∀w′ ≥ w(λ

(U,w′)
L )]⇒ [R(w) ∩ ΣU

A1
⊆ ΣU

A2
]

λ
(U,w)
L1→L2

= [∀w′ ≥ w(λ
(U,w′)
L1

)]⇒ [∀w′ ≥ w(λ
(U,w′)
L2

)]

We shall treat the cases E → I and L1 → L2. the arguments for the other cases
are analogous.

L ≡ E → I(where I ≡ A1 → A2)
(a) ’⇒’
Let w′ ≥ w and supposeR(w′) ⊆ ΣU

E . Let u ∈ R(w′)∩V(A1). By I.H., V(p) = U
implies ΣU

E = V(E), so (F ,V), w′ N E. Thus (F ,V), w′ N I by assumption,
and consequently (F ,V), u N I. As (F ,V), u N A1, (F ,V), u N A2. So
u ∈ V(A2) = ΣU

A2
.

’⇐’
Let w′ ≥ w be s.t. (F ,V), w′ N E. Then R(w′) ⊆ V(E). So R(w′) ∩ V(A1) ⊆
V(A2) by assumption. This is equivalent to (F ,V), w′ N A1 → A2. Hence
(F ,V), w N E → I.

(b) ’⇒’
Let U ∈ U(W ) and w ∈ W . Suppose R(w) ⊆ ΣU

E . Let u ∈ R(w) ∩ V(A1).
Choose V s.t. V(p) = U . Then by assumption, (F ,V), w N E → I. Also,

32



by I.H. ΣU
E = V(E). So u ∈ V(E). Hence u ∈ V(I), and consequently

u ∈ V(A2). By I.H. again, u ∈ ΣU
A2

. As U,w are arbitrary, we conclude

∀U∀x[R(w) ⊆ ΣU
E ⇒ R(w) ∩ ΣU

A1
⊆ ΣU

A2
]

’⇐’
Let V be a valuation and w ∈ W . Let w′ ≥ w be s.t. (F ,V), w′ N E. Then

R(w′) ⊆ V(E) = Σ
V(p)
E by I.H.. So by assumption, R(w′)∩Σ

V(p)
A1
⊆ Σ

V(p)
A2

. Thus
by I.H., R(w′) ∩ V(A1) ⊆ V(A2). So (F ,V), w′ N I. Therefore (F ,V), w N

E → I. As V, w are arbitrary, F �N E → I.

L ≡ L1 → L2

(a) We need to show: If V(p) = U ,

(F ,V), w N L1 → L2 ⇔ ∀w′ ≥ w[∀w′′ ≥ w′(λ(U,w′′)
L1

)⇒ ∀w′′ ≥ w′(λ(U,w′′)
L2.

)]

’⇒’
Let w′ ≥ w and suppose ∀w′′ ≥ w′(λ

(U,w′′)
L1

). Then by I.H., (F ,V), w′ N L1.

So (F ,V), w N L2 by assumption. Hence by I.H. again, ∀w′′ ≥ w′(λ(U,w′′)
L2

).

’⇐’
Let w′ ≥ w be s.t. (F ,V), w′ N L1. Then by I.H., ∀w′′ ≥ w′(λ

(U,w′′)
L1

). So

∀w′′ ≥ w′(λ
(U,w′′)
L2

) by assumption. Hence by I.H. again, (F ,V), w′ N L2.
Therefore (F ,V), w N L1 → L2.

(b) We need to show:

F �N L1 → L2 ⇔ ∀U∀w[∀w′ ≥ w(λ
(U,w′)
L1

)⇒ ∀w′ ≥ w(λ
(U,w′)
L2.

)]

’⇒’
Let U ∈ U(W ) and w ∈W . Let V be s.t. V(p) = U . Suppose ∀w′ ≥ w(λ

(U,w′)
L1

).
Then by I.H., (F ,V), w N L1 So by assumption, (F ,V), w N L2. By I.H.

again, ∀w′ ≥ w(λ
(U,w′)
L2

). Since U,w are arbitrary, we conclude ∀U∀w[∀w′ ≥
w(λ

(U,w′)
L1

)⇒ ∀w′ ≥ w(λ
(U,w′)
L2.

)].

’⇐’
Let V be a valuation and w ∈ W . Suppose for w′ ≥ w, (F ,V), w′ N L1. then

by I.H., ∀w′′ ≥ w′(λ
(V(p),w′′)
L1

). so by assumption, ∀w′′ ≥ w′(λ
(V(p),w′′)
L2

). By
I.H. again, (F ,V), w′ N L2. Hence (F ,V), w N L1 → L2. Since V, w are
arbitrary, F � L1 → L2.

This completes the whole proof. It is now possible to calculate the frame
properties corresponding to stpv formulas.

For instance to the axiom (p → ¬p) → ¬p ∈ L corresponds the property

∀U∀w[λ
(U,w)
((p→¬p)→¬p)], where:

λ
(U,w)
((p→¬p)→¬p) = [R(w) ∩ ΣU

p ⊆ ΣU
¬p]⇒ [R(w) ⊆ ΣU

¬p]

= [R(w) ∩ U ⊆ N (U)]⇒ [R(w) ⊆ N (U)]
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5 Multi-Absurdity Logic

In this section, we shall consider logical systems where each formula A has its
own absurdity/contradiction operator ⊥A. As we briefly mentioned in section
3.4, Odintsov [9] has already treated such a logic. He in fact had two operators
C(φ) and A(φ), where C(φ) satisfies the formula C(φ) → φ, while A(φ) does
not. His motive in splitting contradiction was to identify the condition it has
to satisfy in order to validate the negative ex falso. Along this enquiry he
discovered the results discussed in 3.4, and as a corollary

φ,¬φ `L ¬ψ if and only if C(p ∧ q)↔ C(p) ∧ q, C(p ∧ q)↔ C(p) ∧ q ∈ L.

for such logic L and ¬φ := φ→ C(φ).
The aim of this section is to investigate how logics with multiple contradic-

tions correspond to subminimal logics. Let us call them multi-absurdity logics.
We begin with considering multi-absurdity version of MPC¬. After that, We
look for the multi-absurdity version of the logic AnPC defined as An+PPC.

5.1 MPC¬ and Multi-Absurdity

We shall now explain how to split ⊥ into ⊥A for each A. This is achieved by
expanding the language of PPC with the clause:

-If A is a formula, then ⊥A is a formula.

¬A is now defined as A→ ⊥A. If we add the axiom ⊥A → A, this definition of
⊥A becomes identical to Odintsov’s C(φ) we discussed earlier.

Odintsov mentions that minimal negation can be defined by setting ¬φ :=
φ→ C(φ) (p.108, [9]), although no proof is given. He however proves that if M
holds with this definition of negation, then C is extensional (p.110, ibid.), i.e.

φ↔ ψ

C(φ)↔ C(ψ)

Let us begin with checking the converse, namely that extensional ⊥A defines
minimal negation. For this, we need to see that the logic with multiple absurdi-
ties is equivalent to the minimal logic. So let us introduce a logical system with
multiple contradictions.

Definition 5.1.1 (MPC⊥∗).
We introduce the following rules:

Γ, A⇒ B Γ, B ⇒ A
N⊥ Γ,⊥A ⇒ ⊥B

L⊥∗ ⊥A ⇒ A

We call N⊥ + L⊥∗+PPC as MPC⊥∗ .

The next proposition shows that if we read A ∧ ¬A as ⊥A in MPC¬ and
A→ ⊥A as ¬A in MPC⊥∗ , then we can interpret ¬A and ⊥A as equivalent to
A→ ⊥A and A ∧ ¬A, respectively.

Proposition 5.1.1 (equivalence for ¬A and ⊥A).
(i) `M¬ ⇒ ¬A↔ [A→ (A ∧ ¬A)]
(ii) `M⊥∗ ⇒ ⊥A ↔ [A ∧ (A→ ⊥A)]
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Proof.
(i)
’→’

A⇒ A [LW]
A,¬A⇒ A

¬A→ ¬A [LW]
A,¬A⇒ ¬A

[R∧]
A,¬A⇒ A ∧ ¬A

[R→]
¬A⇒ A→ (A ∧ ¬A)

[R→]
⇒ ¬A→ [A→ (A ∧ ¬A)]

’←’

A⇒ A

¬A⇒ ¬A [L∧]
A ∧ ¬A⇒ ¬A [LW]
A,A ∧ ¬A⇒ ¬A

[L→]
A→ (A ∧ ¬A), A⇒ ¬A

[An]
A→ (A ∧ ¬A)⇒ ¬A

[R→]
⇒ [A→ (A ∧ ¬A)]→ ¬A

(ii)
’→’

⊥A ⇒ ⊥A [LW]
A,⊥A ⇒ ⊥A

[R→]⊥A ⇒ A→ ⊥A
[L⊥∗]⊥A ⇒ A
[R∧]

⊥A ⇒ A ∧ (A→ ⊥A)
[R→]

⇒ ⊥A → [A ∧ (A→ ⊥A)]

’←’

A⇒ A

⊥A ⇒ ⊥A [LW]
A,⊥A ⇒ ⊥A

[L→]
A,A→ ⊥A ⇒ ⊥A

[L∧]
A,A ∧ (A→ ⊥A)⇒ ⊥A

[L∧]
A ∧ (A→ ⊥A), A ∧ (A→ ⊥A)⇒ ⊥A

[LC]
A ∧ (A→ ⊥A)⇒ ⊥A

[R→]
⇒ [A ∧ (A→ ⊥A)]→ ⊥A

From here we study the relationship between MPC¬ and MPC⊥∗ . To
prepare fore this, we must introduce some definitions.

Definition 5.1.2 (faithful embedding).
Let L1 and L2 be two logical systems in languages L1 and L1. We say L1 is
faithfully embeddable into L2, if there exists a mapping(translation) t : L1 → L2

such that for all L1 formula A,

`L1
Γ⇒ A if and only if `L2

Γt ⇒ At

(where Γt = {Gt|G ∈ Γ})
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Definition 5.1.3 (definition equivalence).
Let L1 and L2 be two logical systems in languages L1 and L1. We say L1 is def-
inition equivalent to L2, if there exist translations t : L1 → L2 and s : L2 → L1

such that:

(i) L1 is faithfully embeddable into L2 via t.
(ii) L2 is faithfully embeddable into L1 via s.

(iii) `L1
⇒ A↔ Ats and `L2

⇒ B ↔ Bst for all L1 formula A and L2 formula
B.

We are going to prove the definition equivalence between MPC¬ and MPC⊥∗ ,
via translations † and ? described below. We first give the embeddability of each
logic to the other.

Lemma 5.1.1 (embedding of MPC⊥∗ into MPC¬).
`M⊥∗ Γ⇒ A implies `M¬ Γ† ⇒ A†, where:

p† ≡ p
(⊥A)† ≡ A† ∧ ¬A†
(A ◦B)† ≡ A† ◦B†, ◦ ∈ {∧,∨ →}

Proof. We prove by induction on the depth of deduction.

Base
Ax: Immediate.

L⊥∗: Assume the deduction ends with an instance of L⊥∗.

⊥A ⇒ A

We need to show `M¬ A† ∧ ¬A† ⇒ A†.

A† ⇒ A† [L∧]
A† ∧ ¬A† ⇒ A†

Inductive step
LW, LC, LR∧, LR∨, LR→: Immediate.

N⊥: Assume the deduction ends with an instance of N⊥.

Γ, A⇒ B Γ, B ⇒ A
N⊥ Γ,⊥A ⇒ ⊥B

We need to show `M¬ Γ†, A† ∧ ¬A† ⇒ B† ∧ ¬B†. By I.H., we know `M¬
Γ†, A† ⇒ B†, `M¬ Γ†, B† ⇒ A†.

Γ†, A† ⇒ B†
[L∧]

Γ†, A† ∧ ¬A† ⇒ B†

Γ†, A† ⇒ B† Γ†, B† ⇒ A†
[N]

Γ†,¬A† ⇒ ¬B†
[L∧]

Γ†, A† ∧ ¬A† ⇒ ¬B†
[R∧]

Γ†, A† ∧ ¬A† ⇒ B† ∧ ¬B†
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Lemma 5.1.2 (embedding of MPC¬ into MPC⊥∗).
`M¬ Γ⇒ A implies `M⊥∗ Γ? ⇒ A?, where:

p? ≡ p
(¬A)? ≡ A? → ⊥A?

(A ◦B)? ≡ A? ◦B?, ◦ ∈ {∧,∨ →}

Proof.
We prove by induction on the depth of deduction.

Base
Ax: Immediate.

Inductive step
LW, LC, LR∧, LR∨, LR→: Immediate.

N: Assume that the deduction ends with an instance of N.

Γ, A⇒ B Γ, B ⇒ A

Γ,¬A⇒ ¬B
We need to show `M⊥∗ Γ?, A? → ⊥A? ⇒ B? → ⊥B? . By I.H., we know
`M⊥∗ Γ?, A? ⇒ B?, `M⊥∗ Γ?, B? ⇒ A?

Γ?, B? ⇒ A?

Γ?, A? ⇒ B? Γ?, B? ⇒ A?

[N⊥]
Γ?,⊥A? ⇒ ⊥B?

[LW]
Γ?, B?,⊥A? ⇒ ⊥B?

[L→]
Γ?, B?, A? → ⊥A? ⇒ ⊥B?

[R→]
Γ?, A? → ⊥A? ⇒ B? → ⊥B?

An: Assume that the deduction ends with an instance of An.

Γ, A⇒ ¬A
Γ⇒ ¬A

We need to show `M⊥∗ Γ? ⇒ A? → ⊥A? . By I.H., we know `M⊥∗ Γ?, A? ⇒
A? → ⊥A?

Γ?, A? ⇒ A? → ⊥A?

A? ⇒ A?

⊥A? ⇒ ⊥A?

[LW]
A?,⊥A? ⇒ ⊥A?

[L→]
A?, A? → ⊥A? ⇒ ⊥A?

[Cut]
Γ?, A?, A? ⇒ ⊥A?

[LC]
Γ?, A? ⇒ ⊥A?

[R→]
Γ? ⇒ A? → ⊥A?

We have to prove the other directions to establish faithful embeddings; these
are obtainable once we show that the last condition of definition equivalence hold
with respect to † and ?.

Lemma 5.1.3 († and ?).
(i) `M⊥∗ A⇔ (A†)?

(ii) `M¬ A⇔ (A?)†
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Proof.
We prove by induction on the complexity of formula.
(i) If A ≡ p, then (A†)? ≡ A. If A ≡ B ◦ C, ◦ ∈ {∧∨ →}, then by I.H.
` B ⇔ (B†)? and ` C ⇔ (C†)?. Also, (A†)? ≡ (B†)? ◦ (C†)?. We consider by
cases.

∧

B ⇒ B†
?

[L∧]
B ∧ C ⇒ B†

?

C ⇒ C†
?

[L∧]
B ∧ C ⇒ C†

?

[R∧]
B ∧ C ⇒ B†

? ∧ C†?

The other direction is similar.
∨

B ⇒ B†
?

[R∨]
B ⇒ B†

? ∨ C†?
C ⇒ C†

?

[R∨]
C ⇒ B†

? ∨ C†? [L∨]
B ∨ C ⇒ B†

? ∨ C†?

The other direction is similar.
→

B†
? ⇒ B

C ⇒ C†
?

[LW]
B†

?

, C ⇒ C†
?

[L→]
B → C,B†

? ⇒ C†
?

[R→]
B → C ⇒ B†

? → C†
?

The other direction is similar.

If A ≡ ⊥B , then A†
? ≡ (B†∧¬B†)? ≡ B†?∧(B†

? → ⊥B†? ). By I.H., ` B ⇔ B†
?

.
We have:

[L⊥∗]⊥B ⇒ B B ⇒ B†
?

[Cut]
⊥B ⇒ B†

?

B ⇒ B†
?

B†
? ⇒ B [N⊥]⊥B ⇒ ⊥B†? [LW]

⊥B , B
†? ⇒ ⊥B†? [R→]

⊥B ⇒ B†
? → ⊥B†? [R∧]

⊥B ⇒ B†
? ∧ (B†

? → ⊥B†? )

B†
? ⇒ B†

?

B ⇒ B†
?

B†
? ⇒ B [N⊥]⊥B†? ⇒ ⊥B

[LW]
B†

?

,⊥B†? ⇒ ⊥B
[L→]

B†
?

, B†
? → ⊥B†? ⇒ ⊥B

[L∧,LC]
B†

? ∧ (B†
? → ⊥B†? )⇒ ⊥B

(ii) If A ≡ p, A?† ≡ A. If A ≡ B ◦C: ◦ ∈ {∧,∨,→}, then A?† ≡ B?† ◦C?† . The
statement can be shown by the same argument as (i).

If A ≡ ¬B, then A?† ≡ (B? → ⊥B?)† ≡ B?† → (B?† ∧ ¬B?†). By I.H.

` B?† ⇔ B. We have:
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B?† ⇒ B?†

[LW]
¬B,B?† ⇒ B?†

B ⇒ B?† B?† ⇒ B [N]
¬B ⇒ ¬B?†

[LW]
¬B,B?† ⇒ ¬B?†

[R∧]
¬B,B?† ⇒ B?† ∧ ¬B?†

[R→]
¬B ⇒ B?† → (B?† ∧ ¬B?†)

B ⇒ B?†

B ⇒ B?† B?† ⇒ B [N]
¬B?† ⇒ ¬B [LW]
B,¬B?† ⇒ ¬B

[L∧]
B,B?† ∧ ¬B?† ⇒ ¬B

[L→]
B,B?† → B?† ∧ ¬B?† ⇒ ¬B

[An]
B?† → B?† ∧ ¬B?† ⇒ ¬B

Theorem 5.1.1 (faithful embeddings for MPC¬ and MPC⊥∗).
(i) `M⊥∗ Γ⇒ A iff `M¬ Γ† ⇒ A†

(ii)`M¬ Γ⇒ A iff `M⊥∗ Γ? ⇒ A?

Proof. The left-to-right directions are already established. For the other direc-
tion, in (i), `M¬ Γ† ⇒ A† then `M⊥∗ Γ†

? ⇒ A†
?

, so `M⊥∗ Γ ⇒ A by the
preceding lemma. Similarly for (ii).

This establishes faithful embeddings, and so the definition equivalence be-
tween MPC¬ and MPC⊥∗ .

5.2 AnPC and Multi-Absurdity

We shall now consider the system obtained from MPC⊥∗ by dropping N⊥. We
claim that this system is equivalent to AnPC:=An+PPC, albeit in a weaker
sense than the equivalence between MPC⊥∗ and MPC¬. They are faithfully
embeddable to each other, but not definition equivalent. We shall call this non-
extensional system as AnPC⊥. To establish the equivalence, we have to make
use of semantic tools.

We start by outlining the semantics for each logic. In addition, we go back
to Hilbert-type proof systems for the sake of convenience in proving soundness
and completeness.

The following gives the Kripke semantics for AnPC.

Definition 5.2.1 (Kripke frame for AnPC).
A Kripke frame for AnPC is a triple (W,≤,Φ), where (W,≤) is a partially
ordered set and Φ is a mapping Φ : FORM → U(W ). (recall that U(W ) is the
set of all upward closed sets of W )

Definition 5.2.2 (Kripke model for AnPC).
Let F be a frame. Then a Kripke model is a pair (V,F), where V is a persistent
valuation for the propositional variables. The valuation for negation is defined
as:
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(F ,V), w An ¬A if and only if ∀w′ ≥ w[w′ An A implies w′ ∈ Φ(A)].

We check that some desired properties hold with this semantics.

Proposition 5.2.1 (persistence).
w An A and w ≤ w′ implies w′ An A

Proof.
We prove by induction on the complexity of formula. We only need to check
the case for negation.

w An ¬A
⇔ ∀w′′ ≥ w[w′′ An A implies w′′ ∈ Φ(A)]
⇒ ∀w′′ ≥ w′[w′′ An A implies w′′ ∈ Φ(A)]
⇔ w′ An ¬A

Lemma 5.2.1 (validity of An).
�An (A→ ¬A)→ ¬A

Proof. Let (F ,V) be given, and w ∈ W . Suppose for w′ ≥ w, w′ An A →
¬A.Then for any w′′ ≥ w′, w′′ An A implies w′′ An ¬A. So for any w′′′ ≥ w′′,
w′′′  A implies w′′′ ∈ Φ(A). Thus in particular, w′′ An A implies that
w′′ An A ⇒ w′′ ∈ Φ(A). So w′′ An A implies w′′ ∈ Φ(A). Therefore
w′ An ¬A, and so w An (A→ ¬A)→ ¬A.

Now we are going to check the soundness and completeness.

Proposition 5.2.2 (soundness).
`An A⇒�An A

Proof.
We need to prove that:
(i) the axioms of AnPC are valid.
(ii) MP preserves validity.

(i) That the positive axioms are valid is readily checked. By the previous lemma,
An is valid.

(ii) Suppose Γ �An A and Γ �An A → B. Let M be s.t. M �An G for all
G ∈ Γ, and w ∈ W be arbitrary. Then M, w An A and M, w An A → B.
So M, w An B. Thus Γ �An B.

Definition 5.2.3 (saturation).
Let Γ be a set of formulas. Γ is called saturated, if:
(i) Γ ` A⇒ A ∈ Γ
(ii) Γ ` A ∨B ⇒ Γ ` A or Γ ` B

Lemma 5.2.2 (Lindenbaum lemma).
Suppose Γ 0An A. Then there is a saturated Γω ⊇ Γ s.t. Γω 0An A.

Proof.
We define (Γn)n∈ω, and set Γω :=

⋃
n∈ω Γn.
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Let (Bi ∨Ci)i∈ω be an enumeration of all disjunctions with infinite repetitions.
Then:

Γ0 := Γ

Γi+1 :=


Γi ∪ {Bi} if Γi `An Bi ∨ Ci and Γi ∪ {Bi} 0An A.

Γi ∪ {Ci} if Γi `An Bi ∨ Ci and Γi ∪ {Ci} 0An A.

Γi otherwise.

We confirm that Γω satisfies (i), (ii) and Γω 0An A.
(i) Suppose Γω `An B. Then (as proofs are finite objects), there is k ∈ ω
s.t. Γk `An B. Since disjunctions are infinitely repeated, there is k′ ≥ k s.t.
Bk′ ∨ Ck′ = B ∨B. As Γk′ `An B ∨B, we have B ∈ Γk′+1 ⊆ Γω.

(ii) If Γω `An B ∨ C, then for some k, Γk `An B ∨ C. So there must be k′ ≥ k
s.t. B ∈ Γk′+1 or C ∈ Γk′+1. Hence Γω `An B or Γω `An C.

Γω 0An A
Assume Γω `An A. Then Γk `An A for some k, which is impossible by our
choice of (Γn)n∈ω.

Definition 5.2.4 (canonical model for AnPC).
A canonical model for AnPC is (W,≤,Φ.V), where:

W := {∆|∆ is saturated}
≤:=⊆
Φ := {(A, {∆|A ∈ ∆ and ¬A ∈ ∆})}
V := {(p, {∆|p ∈ ∆})}

Theorem 5.2.1. (completeness for AnPC)
Γ �An A⇒ Γ `An A

Proof.
We prove the contraposition. Assume Γ 0An A. Then by Lindenbaum lemma,
there exists a saturated Γ0 ⊇ Γ s.t. Γ0 0An A.

We construct a canonical model w.r.t. Γ, as Mn = (W,≤,Φ,V), where
W := {∆ ⊇ Γ|∆ is saturated}. Then for all B ∈ Γ and ∆ ∈ W , B ∈ ∆. As-
suming B ∈ ∆ iff ∆ An B (CLAIM), it follows Mn �An B. Now, Γ0 ∈ W ,
but A /∈ Γ0. So Γ0 1An A by CLAIM. Hence Mn 2An A. Therefore Γ 2An A.

proof of CLAIM
We prove by induction on the complexity of B.

’p’: When B ≡ p,

p ∈ ∆⇔ ∆ ∈ V(p) [definition of V]

⇔ ∆ An p
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’∧’: When B ≡ B1 ∧B2,

B1 ∧B2 ∈ ∆⇔ ∆ `An B1 ∧B2 [∆ is saturated]

⇔ ∆ `An B1 and ∆ ` B2

⇔ B1 ∈ ∆ and B2 ∈ ∆ [∆ is saturated]

⇔ ∆ An B1 and ∆ An B2 [I.H.]

⇔ ∆ An B1 ∧B2

’∨’: When B ≡ B1 ∨B2,

B1 ∨B2 ∈ ∆⇔ ∆ `An B1 ∨B2 [∆ is saturated]

⇔ ∆ `An B1 or ∆ `An B2 [∆ is saturated]

⇔ B1 ∈ ∆ or B2 ∈ ∆ [∆ is saturated]

⇔ ∆ An B1 or ∆ An B2 [I.H.]

⇔ ∆ An B1 ∨B2

’→’:
’⇒’ Suppose B ≡ B1 → B2 ∈ ∆. Then ∆ `An B1 → B2. Now, if ∆′ An B1

for ∆′ ≥ ∆, then B1 ∈ ∆′ by I.H.. Thus ∆′ `An B1 and so ∆′ `An B2 by MP.
This means B2 ∈ ∆′, so by I.H. ∆′ An B2. Hence ∆ An B1 → B2.

’⇐’
Suppose ∆ An B1 → B2 and assume B1 → B2 /∈ ∆. Since ∆ is saturated,
∆ 0An B1 → B2. Then ∆ ∪ {B1} 0An B2, so by Lindenbaum lemma there ex-
ists a saturated ∆0 ⊇ ∆∪{B1} s.t. ∆0 0An B2. As ∆0 is saturated, this means
B1 ∈ ∆0 but B2 /∈ ∆0. by I.H., ∆0 An B1 but ∆0 1An B2, contradicting
∆ An B1 → B2. Therefore B1 → B2 ∈ ∆.

’¬’:
’⇒’ Suppose B ≡ ¬B1 and assume ¬B1 ∈ ∆. Then ∆ `An ¬B1. Now
if ∆′ An B1 for ∆′ ≥ ∆, by I.H. B1 ∈ ∆′. Also, ∆ `An ¬B1 means
¬B1 ∈ ∆ ⊆ ∆′. Adding the two, we see ∆′ ∈ Φ(B1) if ∆′ An B1. Thus
∆ An ¬B1

’⇐’ Suppose ∆ An ¬B1 and assume ¬B1 /∈ ∆. Then ∆ 0An ¬B1 as ∆ is
saturated. Since ∆ `An (B1 → ¬B1) → ¬B1, we have ∆ 0An B1 → ¬B1

and so ∆ ∪ {B1} 0An ¬B1. By Lindenbaum lemma, there exists a saturated
∆0 ⊇ ∆∪ {B1} s.t. ∆0 0An ¬B1. Because B1 ∈ ∆0, by I.H. ∆0 An B1. Also,
∆0 0An ¬B1 implies ¬B1 /∈ ∆0. Hence by definition of Φ, ∆0 /∈ Φ(B1). Thus
∆ 1An ¬B1, a contradiction. Hence ¬B1 ∈ ∆.

We shall now turn our attention to AnPC⊥.

Definition 5.2.5 (Kripke frame/model for AnPC⊥).
A Kripke frame for AnPC⊥ is identical to that of AnPC, and a Kripke model
has a valuation V, where the valuation for contradiction is defined as:

w An⊥ ⊥A if and only if w ∈ Φ(A) and w An⊥ A

As with AnPC, we need to check that various properties hold.
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Proposition 5.2.3 (persistence).
w An⊥ A and w ≤ w′ implies w′ An⊥ A.

Proof.
We shall only check the case for contradiction.

w  ⊥A ⇔ w ∈ Φ(A) and w An⊥ A [dfn]

⇔ ∀w′′ ≥ w[w′′ ∈ Φ(A) and w′′ An⊥ A] [I.H.]

⇒ w′ An⊥ ⊥A

Lemma 5.2.3 (validity of L⊥∗).
�An⊥ ⊥A → A

Proof.
Let (F ,V) and w ∈ W be given. Suppose for w′ ≥ w, w′ An⊥ ⊥A. Then by
definition, w′ An⊥ A. So w An⊥ ⊥A → A.

The proofs of soundness and completeness are largely analogous to those of
AnPC.

Proposition 5.2.4 (soundness).
`An⊥ A⇒�An⊥ A

Proof.
That the axioms of AnPC⊥ are valid follows from the previous lemma. That
MP preserves validity is checkable as in AnPC.

Definition 5.2.6 (canonical model).
The canonical model for AnPC⊥ is the same as that of AnPC, except that Φ
is defined as:
Φ := {(A, {∆|⊥A ∈ ∆})}

Theorem 5.2.2 (completeness for AnPC⊥).
Γ �An⊥ A⇒ Γ `An⊥ A

Proof.
The proof proceeds as in AnPC. The only difference is to establish A ∈ ∆ ⇔
∆ An⊥ A for A ≡ ⊥B .

’⇒’ Suppose ⊥B ∈ ∆. Then ∆ `An⊥ ⊥B . As ∆ `An⊥ ⊥B → B, ∆ `An⊥ B.
As ∆ is saturated, B ∈ ∆ and thus by I.H. ∆ An⊥ B. Also, ⊥B ∈ ∆ implies
∆ ∈ Φ(B). Hence ∆ ∈ Φ(B) and ∆ An⊥ B. So ∆ An⊥ ⊥B .

’⇐’ Suppose ∆ An⊥ ⊥B . Then ∆ ∈ Φ(B) and ∆ An⊥ B. So in particular
⊥B ∈ ∆ from the definition of Φ.

Now we are ready to check the faithful embedding. We mainly rely on
semantic argument, and so the statements take the following form.

Theorem 5.2.3 (faithful embedding between AnPC⊥ and AnPC).
(i) Γ �An⊥ A⇔ Γ† �An A

†

(ii) Γ �An A⇔ Γ? �An⊥ A
?

(†, ? as before.)
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Proof.
(i) ’⇐’
Given an AnPC⊥ model (F ,V), we define an AnPC model (F ′,V ′) s.t.:

(W ′,≤′) := (W,≤)

Φ′(A†) := Φ(A)

V ′(p) := V(p)

Assume Γ† �An A
†. Let (F ,V) be an AnPC⊥ frame s.t. (F ,V) �An⊥ G for all

G ∈ Γ. We shall prove by induction on the complexity of A, that

(F ,V), w An⊥ A⇔ (F ′,V ′), w An A
†.(CLAIM)

Then,

(F ,V) �An⊥ G for all G ∈ Γ⇔ (F ′,V ′) �An G
† for all G† ∈ Γ†

⇒ (F ′,V ′) �An A
†

⇔ (F ,V) �An⊥ A

and so Γ �An⊥ A, as required.

proof of CLAIM

- When A ≡ p, A† ≡ p. As V and V ′ coincide in the valuation of propositional
variables,

(F ,V), w An⊥ p⇔ (F ′,V ′), w An p

- When A ≡ A1 ∧A2, A† ≡ A†1 ∧A
†
2.

(F ,V), w An⊥ A1 ∧A2 ⇔ (F ,V), w An⊥ A1 and (F ,V), w An⊥ A2

⇔ (F ′,V ′), w An A
†
1 and (F ′,V ′), w An A

†
2 [I.H.]

⇔ (F ′,V ′), w An A
†
1 ∧A

†
2

- When A ≡ A1 ∨A2, A† ≡ A†1 ∨A
†
2.

(F ,V), w An⊥ A1 ∨A2 ⇔ (F ,V), w An⊥ A1 or (F ,V), w An⊥ A2

⇔ (F ′,V ′), w An A
†
1 or (F ′,V ′), w An A

†
2 [I.H.]

⇔ (F ′,V ′), w An A
†
1 ∨A

†
2

- When A ≡ A1 → A2, A† ≡ A†1 → A†2.

(F ,V), w An⊥ A1 → A2 ⇔ ∀w′ ≥ w[(F ,V), w′ An⊥ A1 implies (F ,V), w′ An⊥ A2]

⇔ ∀w′ ≥ w[(F ′,V ′), w′ An A
†
1 implies (F ′,V ′), w′ An A

†
2] [I.H.]

⇔ (F ′,V ′), w An A
†
1 → A†2
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- When A ≡ ⊥B , A† ≡ B† ∧ ¬B†.

(F ,V), w An⊥ ⊥B ⇔ (F ,V), w An⊥ B and w ∈ Φ(B) [dfn]

⇔ (F ,V), w An⊥ B and ∀w′ ≥ w[(F ,V), w′ An⊥ B implies w′ ∈ Φ(B)]

⇔ (F ′,V ′), w An B
† and ∀w′ ≥ w[(F ′,V ′), w′ An B

† implies w′ ∈ Φ′(B†)] [I.H.]

⇔ (F ′,V ′), w An B
† ∧ ¬B†

’⇒’
Given soundness and completeness of the systems, we can give a proof-theoretic
proof. Then it turns out that this direction is materially contained in the proof
of embeddability of MPC⊥∗ to MPC¬. (Notice that there in the cases other
than N⊥, we did not appeal to the now omitted rule N; so the same derivations
are available in establishing embeddability for the present case.)

(ii) ’⇐’
For any AnPC model (F ,V), define an AnPC⊥ model (F ′,V ′) s.t.

(W ′,≤′) := (W,≤)

Φ′(A?) := Φ(A)

V ′(p) := V(p)

Assume Γ? An⊥ A
? and let (F ,V) be an AnPC model s.t. (F ,V) �An G for

all G ∈ Γ. We shall show (F ,V) �An A.

As in (i), it suffices to prove

(F ,V), w An A⇔ (F ′,V ′), w An⊥ A
? for all w ∈W

The cases for A ≡ p and A1 ◦A2, ◦ ∈ {∧,∨,→} are similar to (i).

- When A ≡ ¬B, A? ≡ B? → ⊥B? .

(F ,V), w An ¬B ⇔ ∀w′ ≥ w[(F ,V), w′ An B implies w′ ∈ Φ(B)] [dfn]

⇔ ∀w′ ≥ w[(F ,V), w′ An B implies (F ,V), w′ An B and w′ ∈ Φ(B)]

⇔ ∀w′ ≥ w[(F ′,V ′), w′ An⊥ B
? implies (F ′,V ′), w′ An⊥ B

? and w′ ∈ Φ′(B?)] [I.H.]

⇔ (F ′,V ′), w An⊥ B
? → ⊥B? [dfn]

’⇒’
This direction is materially contained in the proof of embbedability of MPC¬
to MPC⊥∗ . (there in the cases other than N, we did not appeal to the now
omitted rule of N⊥, so again the same derivations are available for establishing
embeddability for the present case).

Lastly we show that † and ? do not define definitional equivalence between
the two systems.
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Proposition 5.2.5 (AnPC⊥ and AnPC are not definition equivalent via †,
?).
(i)2An A↔ (A?)†

(ii)2An⊥ A↔ (A†)?

Proof.

(i) We shall show 2An ¬¬p→ (¬¬p)?† .

(¬¬p)?
†
≡ p→ (p ∧ ¬p)→ [p→ (p ∧ ¬p) ∧ ¬(p→ (p ∧ ¬p))]

Let M be a model s.t.

W := {w,w′}
≤ := {(w,w), (w,w′), (w′, w′)}
Φ(p) := {w′}
Φ(¬p) := {w,w′}
Φ(p→ (p ∧ ¬p)) := ∅
V(p) := {w′}

Then w′ An p and w′ ∈ Φ(p). So w An ¬p. As w ∈ Φ(¬p), this implies
w An ¬¬p. Now, as w′ An p and w′ ∈ Φ(¬p), w An p → (p ∧ ¬p). But
w /∈ Φ(p → (p ∧ ¬p)). Hence w 1An p → (p ∧ ¬p) → [p → (p ∧ ¬p) ∧ ¬(p →
(p ∧ ¬p))]. Therefore w 1An ¬¬p→ (¬¬p)?† .

(ii) we shall show 1An⊥ ⊥⊥p
→ (⊥⊥p

)†
?

.

(⊥⊥p)†
?

≡ p ∧ (p→ ⊥p) ∧ [p ∧ (p→ ⊥p)→ ⊥p∧(p→⊥p)]

Let M be a model s.t. 

W := {w}
Φ(p) := {w}
Φ(⊥p) := {w}
Φ(p ∧ (p→ ⊥p)) := ∅
V(p) := {w}

Then w An⊥ p and w ∈ Φ(p), so w An⊥ ⊥p. In addition, w ∈ Φ(⊥p), so
w An⊥ ⊥⊥p . Further, it is easily seen than w An⊥ p ∧ (p → ⊥p). But
w /∈ Φ(p ∧ (p → ⊥p)) . So w 1An⊥ ⊥p∧(p→⊥p). Therefore w 1An⊥ ⊥⊥p →
(⊥⊥p

)†
?

.

6 Concluding Remarks

Let us briefly look back what we have discussed in the last three sections.
In section 3, we mainly considered various subminimal axioms. As a result,
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Figure 1: deducibility of subminimal axioms

we have obtained the above map of the deducibility relations among them
(including the known ones). We also dealt with superminimal axioms, and found
that An+EFQ, CM+EFQ each defines intuitionistic/classical negation.

In section 4, we considered subminimal correspondence theory. This was the
enquiry of the correspondence between subminimal axioms and Kripke frames.
We obtained a general method to give frame property for formulas with single
type of propositional variables.

In section 5, We looked at another way of getting logic weaker tha mini-
mal logic, by splitting up contradictions. We studied the relationship between
subminimal logics and multi-absurdity logics. We established the definition
equivalence between MPC¬ and MPC⊥∗ . We also showed the mutual faithful
embedding between AnPC and An⊥PC.

Given these results, we can raise several candidates for possible future research
directions.

One is to investigate the inter-derivability of subminimal axioms further. An
important task in this is to give separation results for the axioms. In 3.4 we gave
some such results by defining certain classes of formulas. It is worth considering
whether this approach can be generalised. We can also take a more standard,
semantic approach for giving separability. This makes it more reasonable to
study logics above NPC, because the current semantics assume the presence of
N. Alternatively, we can try to generalise the current semantics, so that more
axioms can be treated.

As to subminimal correspondence theory, we did not touch upon axioms with
more than two types of propositional variables. These axioms are obviously in
need of examination. In addition, we can turn our attention to the condition
N imposes, w ∈ N (U) ⇔ w ∈ N (U ∩ R(w)). This condition is the very
thing that makes the investigation of the current subminimal semantics difficult
(and interesting). Hence a closer study of it has potentially huge implication
for our understanding of the semantics. For example it is examined in[3] how
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this condition is affected inside a linear frame. It is of interest, among others,
to see how in general the condition is influenced by the shape of the frame
(corresponding to a certain subminimal axiom).

With regards to multi-absurdity logics, it is desirable to general the achieved
result, and clarify to what extent we can establish the correspondence between
subminimal logics, in terms of definition equivalence/faithful embedding and
other related conditions. Another, but related task would be to formulate a
general method for giving semantics to multi-absurdity logics, so as to enable
the semantic approach to the first task easier.
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