
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
振る舞いが完全にはわからないモジュールを含むシス

テムの設計手法 [課題研究報告書]

Author(s) 高橋, 聡樹

Citation

Issue Date 2018-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15215

Rights

Description Supervisor:青木　利晃, 情報科学研究科, 修士



Abstraction 

 

 In recent years, the importance of software is increasing and the functions carried by software also 

become complicated. Therefore, at the time of software design, we divide system into modules by functions, 

and realize the request of the user as software through the messages between the modules. The designer 

of software assumes user’s use cases and determines the patterns of the message transmission and 

reception between the modules. However, if the system has a module which cannot understand its 

internal structure and must grasp behavior only from interface specifications, software designer cannot 

finish grasping the behavior of the module and the unexpected patterns of the message transmission and 

reception between the modules cause problems. For examples, modules provided on business are open to 

external interfaces, but the internal structure is unknown. In such modules, natural language 

specifications are provided in the form of interface specifications, and the designer grasps the behavior of 

the module. However, since descriptions of natural languages often involve ambiguity, it is sometimes 

impossible for the designer to grasp the behavior of the module correctly. As a result, it leads to leakages 

of the patterns of the message transmission and reception between the modules and the unexpected 

problems. 

 In this research, we propose a method to detect unexpected problems. In the research, we focused on the 

fact that the unexpected problems was caused by the ambiguity of specifications, and analyzed existing 

specifications. In chapter 3, results of analysis, we arranged the information obtained at designing 

software from specification and defined the general form of the specifications. And, in chapter 4, we also 

defined a method for generating a state transition model from the general specifications. Next, in chapter 

5, in order to clarify how ambiguity affects model generation, we arranged the part where ambiguity is 

included in specifications and the influence on model generation. When ambiguity is included in the 

description of the specifications, it is not possible to reflect collect behavior of the module in the state 

transition model. If there is an omission of the reflection which behavior of the module is reflected in the 

model, there is a possibility that it will lead to unexpected behaviors. Therefore, in the proposed method, 

in order to eliminate the omissions of the reflection of module behavior on the model, we reflect all possible 

behavior of the module at the time of model generation. In chapter 6, in order to reflect the behavior 

formally, at the method, we patterned the reflection on the modules based on the arranged result of the 

part where ambiguity is included in specifications and the influence on model generation. As a result, the 

model reflects all the possible behaviors that can be read from the specifications on the model, and it has 

become possible to prevent omissions from ambiguity. However, this causes another problem. 

Incorporating all behaviors may cause too many patterns of the message transmission and reception 

between the modules to consider. Then, we model modules which make up the system and the messages 

between the modules, and apply model checking. Therefore, we can exhaustively verify by model checking 

and detect the patterns of messages between the modules as counter examples. 

 In chapter 7, we did an experiment of the research method. In the experiment, we targeted the embedded 

software development of in-vehicle audio system that I actually experienced in the past. The audio system 

consists of three layers of modules, one of which is provided on business with specifications. There are 



problems in the module to be designed latently. In the experiment, the three layers of modules ware 

represented by the state transition modules and applied model checking. In chapter 8, we considered the 

result of experiment. As a result, it was possible to detect the latent problems, and the effectiveness of 

the method was demonstrated. 


