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Abstract

This dissertation aims to propose a voice conversion (VC) approach that does not re-
quire parallel data or linguistic labeling for the training process. Speech conveys not only
the linguistic information but also the non- and para-linguistic information. Linguistic
information is the information that can be explicitly described by written language. Mean-
while, para-linguistic information refers to the information added deliberately by the user
to alter the linguistic information such as intonation. Lastly, non-linguistic information
represents the information related to emotion, speaker individuality, accent, etc... The
non-linguistic information is usually unintentionally added by the speaker.

Voice conversion is the process of manipulating the non- and para-linguistic informa-
tion of speech, such as speaker individuality, emotion, intonation, etc. Voice conversion
technique has a wide range of applications. For instance, voice conversion can be used gen-
erate emotional speech from neural speech to improve user experience in human-machine
interaction. For noisy environment such as train station, voice conversion can be applied
to announcement system for enhancing the speech intelligibility.

For another example, the voice conversion technique can be employed in Speech-to-
speech translator (S2ST) to generate personalized voice. S2ST is a device that translates
a spoken utterance in one language to a spoken output in another language. Conventional
S2ST systems focus on processing linguistic information only, ignoring the para- and non-
linguistic information of the input speech. In other words, the output voice always sounds
the same despite any input voice. It is known that non- and para-linguistic information
play an important role in human communication. Therefore, the ultimate goal of this
study is a cross-lingual voice conversion system that can be practically integrated into a
commercial Speech-to-speech translator.

One of the core-part of realizing a Personalized S2ST system is the cross-lingual voice
conversion. The cross-lingual voice conversion differs from conventional voice conversion
system that the training speech data are uttered in different languages, which means
that the source and target utterances have completely different linguistic information.
However, most of the current VC methods require parallel training data. Dictionary-
based voice conversion using NMF- factorization is one of the state-of-the-art VC methods
where the input spectrum is approximated by a weighted linear combination of a set
of dictionary (basis) and weights. However, the requirement for parallel training data
in those systems causes several problems: 1) limited practical usability when parallel
data are not available, 2) additional error from alignment process degrade output speech
quality. In order to alleviate these problems, this paper presents a novel dictionary-based
VC approach by incorporating a Variational Autoencoder to decomposed input speech
spectrum into speaker dictionary and weights without aligned training data. By replacing
the source speaker dictionary with target dictionary as similar to the conventional method,
the converted spectrum can be constructed. In our proposed method, we assume that the
weights should have normal distribution given a sufficiently large database. Moreover,
we believe that the linear combination method put a trivial limitation to dictionary-
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based voice conversion as the relation between speaker characteristic and output spectrum
should be non-linear in general. Therefore, we generalize the dictionary-based method by
utilizing the non-linearity of neural networks in the form of Variational Autoencoder as
it has a similar concept to our assumption.

The difference in vocal tract shape mostly corresponds to the speaker individuality in
speech. In the source-filter model of speech production, the shape of vocal tract reflects
the filter part. Therefore, in the first step of our system, the STRAIGHT vocoder is
utilized to decompose the speech waveform into the source-related part (pitch) and filter-
related part (spectrum and aperiodicity ). After that, 60 Mel-cepstral coefficients derived
from the STRAIGHT spectrum is used as the input acoustic feature of our system as it
shown the most significant impact on speech naturalness. In addition, according to the
previous studies, degradation of modulation spectrum severely affect the quality of output
speech. For that reason, we rewrite the training objective of Variational Autoencoder to
include the cost of modulation loss.

The proposed system can be divided into two main phases: training phase and con-
version phase. In the training phase, the obtained acoustic feature is used to train the
Variational Autoencoder model using Stochastic Gradient Descent method. In this phase,
the model parameters, source, and target dictionary are learned from the data. In the
conversion phase, the activation matrix derived from the source utterance is applied with
the target dictionary to generate the target utterance as similar to conventional dictionary
based VC method.

From the objective measurement result, the MS of the synthesized speech using pro-
posed training method is improved, indicating that the proposed training strategy is more
efficient compared with the conventional method. In addition, the formant frequencies
of the synthetic speech are close to those of target speech, indicating that the proposed
system can capture and transform the speaker individuality. The proposed system also
generate speech with lower Mel-cepstral distortion than the baseline system using NMF.
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Chapter 1

Introduction

In this first chapter, the research context, research objective as well as the contribution
of this dissertation is briefly introduced. For the beginning, we explain the definition
of Speech-to-speech translator and its significance. In the next parts, we describe the
problem statement of current studies. Then the motivation and the scope of our study is
presented. Finally, the structure of this dissertation is outlined.

1.1 Motivations

In our daily life, speech is the most common way for us to communicate to each other.
However, a common language between speakers must be shared to communicate with
others directly. As the world is more open, multinational environments where people
speak different languages are becoming ordinary. Therefore, language turns into the
major barrier for us to conduct an effective communication. One possible solution to
overcome this problem is a speech-to-speech translator (S2ST). The main functions of
the S2ST device is to convert a spoken utterance in one language to another language.
As shown in figure 1.1, a typical automatic S2ST device consist of 3 main components:
1) Automatic speech recognition (ASR) system translates spoken utterances to texts, 2)
Machine translation system convert recognized texts to target language texts, 3) Speech
synthesis system synthesizes the output speech from the target language texts.

Speech is an effective tool for the human to communicate because not only linguistic
information but also non- and para-linguistic information is conveyed in speech. The lin-
guistic information represents a discrete information which can be explicitly described by
written language. The lexical, syntactic, semantic and pragmatic information is contained
in linguistic information.

Para-linguistic information refers to the information intentionally added by the speakers
to alter the linguistic information such as intonation, intention, and attitude. Depends
on the para-linguistic information, the same sentence can be perceived in different ways.
For example, a raise at the end of sentence might indicate a question .
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Figure 1.1: An S2ST system described by [1]

On the other hand, non-linguistic information represents the information related to
the speaking styles, emotion, and speaker individuality. Non-linguistic information is
generally not controlled by the speaker but added without intention.

Although various commercial S2ST systems have been proposed, all of them focus on
processing linguistic information only, ignoring the para- and non-linguistic information
of the input speech. In other words, the output voice always sounds the same despite any
input voice. As stated in [1], para-linguistic information and non-linguistic information
play important roles in human communication. Therefore, developing an S2ST system
that can also translate para- and non-linguistic information is essential.

This study focuses on developing an S2ST system with personalized output voice. In the
Figure 1.2, the expanded S2ST system considers not only linguistic information but also
the non-linguistic information related to speaker individuality. One of the central parts
for realizing a personalized S2ST system is the cross-lingual voice conversion system.

1.2 Problem Statement

The ultimate goal of this study is a cross-lingual VC system that can be practically
integrated into a commercial S2ST system. Therefore, the method for constructing such
cross-lingual VC systems must satisfy these criteria: 1) The system can be trained using
non-parallel training data, 2) Produce high quality translated speech, 3) Require recorded
speech from users as few as possible.

Concatenation method often gives the best naturalness, but it requires an enormous
database to achieve this performance. Therefore, it is impractical for this method to be
applied in a real S2ST system. Recently, spectral mapping using ANN has reached a com-
parable performance as concatenation method using fewer data. However, when consider-
ing the cross-lingual voice conversion, the spectral mapping method shows its limitation
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Figure 1.2: A personalized S2ST system

as it cannot be used without parallel training data. This is because the cross-lingual voice
conversion must deal with training data containing completely different linguistic content
in the source and target utterances. Speech decomposition methods such as Eigenvoice
GMM and NMF assume that speech spectrum can be decomposed into two separate fac-
tors representing speaker identity and linguistic content. However, those methods still
require parallel utterances of the source and target speakers to train the model. The
quality of synthesized speech is still poor.

1.3 Research Objectives

The objective of this research is to proposed a voice conversion method that
does not require parallel training data for the Speech-to-Speech translator
device.

To achieve this goal, there are several problems must be solved. First, it is necessary to
build a model that can be trained using non-parallel data. Theoretically, speech decom-
position method need not use only parallel data. Therefore, the current work focuses on
expanding the speech decomposition method to use non-parallel training data. Based on
the same concept of NMF-based VC, we proposed a new method that can decomposed
speech into speaker individuality factor and content factor using autoencoder. Although
a method for dictionary update for NMF-based VC using autoencoder has been investi-
gated in [28], this method still requires parallel training data. In our method, we aim
to replace the conventional autoencoder with the more advance variational autoencoder
(VAE)[15]. Attempt to apply VAE model for speech is conducted in [29]. However, no
attempt has been made for speech decomposition using VAE model.
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In addition, the second issue of the previous NMF-based VC is the low quality of con-
verted speech. Previous studies of Dinh [6] have stated the significance of Modulation
Spectrum (MS) of the perceived naturalness of speech. Therefore, this work also incor-
porates MS to alleviate naturalness of the synthesized speech.

1.4 Structure of Thesis

The remained of this thesis is structured as follows:

• Literature Review (Chapter 2): We give an overview of voice conversion system,
Non-negative Matrix Factorization-based voice conversion, and the Variational Au-
toencoder model.

• Proposed method (Chapter 3): We describe our approach to building a Varia-
tional Autoencoder-based voice conversion system for using with non-parallel train-
ing data.

• Experimental and Results (Chapter 4): We carried out some objective measure-
ments to asset the correctness of the model. The purpose and detail procedure of
subjective test are also described in this chapter. Then we present the results of the
objective measurement and subjective test.

• Conclusion (Chapter 5): In this chapter, we summarize our work and give out the
contribution of our study. Finally, we describe the next steps of our research.
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Chapter 2

Literature Review

2.1 Definition of Voice Conversion

Voice conversion (VC) is the process of manipulating the non- and para-linguistic infor-
mation of speech, such as speaker individuality, emotion, intonation, etc. As shown in
Figure 2.1, a typical VC system comprises of two main parts related to two tasks:

• Training phase: The training phase contains two stages: the first stage deals with
obtaining the corpus of the source and target speaker, then the mapping between
phonetic classes and acoustic feature of both speakers is generated in the second
stage. The system learns the optimal parameters for spectral transformation using
the training data. Training data may contain not only utterance from source and
target speaker but other speakers as well.

• Conversion phase: Using the learned parameters from the Training phase, the source
spectrum into the target spectrum. Several spectral enhancement methods are
applied in this phase to improve the synthesized speech quality.

Several methods for voice conversion systems have been proposed. According to [2],
these methods can be classified into five categories: statistical techniques (e.g GMM,
HMM, PCA, K-means), cognitive technique (ANN), linear algebra technique (SVD), and
signal processing techniques (VQ, FW, DFW). A statistical method using GMM is consid-
ered to be the most widely used method [2]. Recently, the exemplar-based voice conversion
using non-negative matrix factorization has shown its successful to generate good quality
synthetic speech in small-data condition [16]. However, most of these methods require
pre-recorded parallel data for both source and target speaker, which is inconvenient and
expensive in practical application.

The cross-lingual VC is much challenging than the typical VC in the sense that the map-
ping of acoustical features cannot depend on time-aligned utterances from the source and
target speakers. To construct a personalized S2ST device, a cross-lingual voice conversion
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Figure 2.1: A typical voice conversion system

system must be achieved. One of the requirements of cross-lingual voice conversion sys-
tem is the capability of using non-parallel training data. For decades of research, various
methods for cross-lingual voice conversion have been studied so far such as concatenative
method, spectral mapping using Gaussian Mixture Model (GMM) or Artificial Neural
Network (ANN), speech decomposition using Non-negative Matrix Factorization (NMF)
or Eigenvoice GMM (EV-GMM). Table 2.1 summarizes the techniques for cross-lingual
voice conversion since the first proposal in 2003.

Table 2.1: Author and techniques in cross-lingual VC

Year Author Technique
2003 Kumar [8] GMM
2006 Duxans [10] GMM-CART
2006 Sundermann [11] Unit Selection
2007 Uriz [12] Frame selection-FW
2009 Zhang [14] VQ
2010 Erro [13] GMM
2013 Ariwardhani [3] ANN-Vocal tract mapping
2015 Percybrooks [4] HMM
2016 Rammani [5] GMM

Concatenation methods such as unit selection or frame selection often give the best
naturalness. However, they require an enormous database to achieve this high perfor-
mance. Therefore, it is impractical for these methods to be applied in a real S2ST device.
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Recently, a method based on vocal tract mapping using ANN has been proposed [3].
Nevertheless, the precondition of having vocal tract data greatly reduces its feasibility in
a real application.

Similar to conventional VC, GMM is the most widely used method for cross-lingual
voice conversion. The GMM method can generate acceptable quality of synthetic voice
with significant fewer data than the concatenation method. This characteristic enables
GMM to be the state-of-art method for cross-lingual voice conversion although there is
still a big gap between synthetic voice and natural voice.

Among conventional VC methods, speech decomposition using NMF-based method has
proved to be superior to GMM-based methods [16] [17]. However, these methods were
proposed for using with parallel data only. The speech decomposition method owns a
conceptual simplicity, which assumes that speech can be expressed by two separate fac-
tors corresponded to speaker identity and linguistic information. Therefore, this method
does not necessarily depend on the parallel training data. The current work focuses on
expanding the speech decomposition method to use non-parallel training data.

2.2 Background on NMF-based Voice Conversion

The basic concept of Dictionary-based VC is to decompose speech spectrum into two
separate factors representing speaker individuality and speech content. The most common
method to accomplished this task is Non-negative Matrix Factorization (NMF). The class
of VC methods uses NMF is called NMF-based VC.

For NMF-based VC, a sequence of spectral frames X = [x1,x2, ...,xN] are represented
as linear combinations of dictionary matrix A = [a1, a2, ..., aK] (related to speaker indi-
viduality) and activation weight matrix Z = [z1, z2, ..., zN] (related to speech content) as
follows:

X ≈ AZ (2.1)

The dictionary matrix A can be obtained by directly selecting spectral frames from
training utterances. This method requires no training phase and the selected spectral
frames are called the exemplars. At runtime, given the source spectrogram and the
source dictionary, we can derive the activation matrix Z. Then the activation matrix Z
can be applied to the target dictionary to generate corresponding target spectrogram.
The merits of this method are only limited data is required. Nevertheless, most of the
spectral frames from training utterances are crudely used as exemplars, implying that
a large dictionary is implemented. The large dictionary is beneficial for improving the
quality of synthesized speech but require a long conversion time, which is unsuitable for
applying in real-time application.

In another method, the matrix A and Z is learned from the training data by alterna-
tively updating one matrix while keeping the other matrix fixed. The size of constructed
dictionary using this method is greatly reduced compared to the exemplar-based NMF
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Figure 2.2: Illustration of NMF-based Voice Conversion

method, consequently improving the efficiency of online conversion process [17].
When applying in VC, firstly the source-target dictionaries A(X), A(Y ) is constructed

using parallel dataset. However, because of their different speech rate, the source and
target utterances may not align with each other. For that reason, Dynamic Time Warping
(DTW) is often used to obtain the frame-wise alignment of source-target utterances.

For generating converted spectrogram, in the next step, we assume the source and
target dictionary share the common activation matrix. Given the source spectrogram and
source dictionary, the activation matrix is estimated using equation 2.1. The converted
spectrogram is obtained by multiply the target dictionary matrix with activation matrix.
Figure 2.2 illustrates the detail of NMF-VC.

Ŷ = A(Y )Z (2.2)

2.3 Background on Variational Bayes Autoencoder

2.3.1 Artificial Neural Network

Artifical Neural Network (ANN) is the computation model inspired by the functions and
structure of biological neural networks. The most interesting of ANN is the learning
process of the network, which is reflected by the reconfiguration of network structure
by the information flow through it. The earliest ANN model dates back to 1950s when
Frank Rosenblatt proposed the perceptron model [30]. The perceptron was intended to
be a machine rather than a program. Figure 2.3 illustrate a simple perceptron model with
3 inputs.

In the modern sense, the perceptron is an algorithm for the binary classifier, which
means it takes one or more inputs x and outputs a value f(x) in range of [0, 1]:
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Figure 2.3: A perceptron with 3 inputs

f(x) =

0 ∑
wi.xi + b > threshold

1 ∑
wi.xi + b ≤ threshold

where wi is the weight corresponded to the input xi and b is the bias.
In case of one perceptron, the only weighted-sum operation can be represented, which

is not very helpful. To represent the more complicated functions, multiple perceptrons are
combined into a network as illustrated in Figure 2.4. This network has 3 layers. The first
layer receives the information from the input so we call it input layer. The second layer
takes information from the output of the first layer, therefore it can make more abstract
decisions than the input layer. This layer is called hidden layer. The last layer, which
is the output layer, receives the information from the hidden layer and has one output
perceptron.

Figure 2.4: A multilayer perceptron

The next important point that make the MLP be a powerful model is the non-linear
activation function. In this case, a non-linear function (sigmoid, tanh, etc..) on the
weighted-sum input of each perceptron.

Output = σ(∑wi.xi + b)

where σ() is a non-linear function. Several widely used non-linear functions are:

• Sigmoid: σ(z) = 1
1+e−z
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• Tangent hyperbolic (tanh): σ(z) = ez−e−z

ez+e−z

• Rectifier linear unit (ReLU): f(x) =

0 x < 0
x x ≥ 0

2.3.2 Autoencoder

Autoencoder is a special type of ANN where the output is the same as the input. It
means that the autoencoder is an unsupervised learning model, i.e. we only need to
know the input [33]. The aim of such network is to learn a representation of the set of
data, usually for reducing the dimensionality of the data space. Autoencoders were first
introduced in the 1980s by Rumelhart [32] to address the problem of ”backpropagation
without a teacher”, by using the input data as the teacher. A simple autoencoder is
illustrated in Figure 2.5, which consists a feed-forward and non-recurrent neural network.
An autoencoder always has two distinct parts: the encoder and decoder network.

Figure 2.5: A deep autoencoder

In the simplest case, when both encoder and decoder networks is made of a single layer,
the encoder stage takes the input x ∈ Rd and maps it to z ∈ Rp.

z = σ(Wx + b)

The image z is usually referred as latent variables, latent representation, or code. σ is
an element-wise activation function such as sigmoid or tanh. W is the weight matrix and
b is the bias vector of the encoder network. After that, the decoder network maps the
latent variables z to the reconstruction x′ of the same shape of x:

x′ = σ′(W′z + b′)

where σ′,W′,b′ may differs in general to the σ,W,b of the encoder network. Since the
error criterion of the autoencoder is the reconstruction criterion, this allows the autoen-
coder to learn an efficient coding of the data[31]. The most simplest training objective
for autoencoder is to minimize the mean-square error between the input and output:
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L(x, x′) = ‖x− x′‖2 = ‖x− σ′(W′(Wx + b) + b′)‖

If the dimension p of the latent variables is usually smaller than the dimension of x,
the latent variables z can be regarded as a compressed representation of the input x.

2.3.3 Variational Autoencoder

Variational Autoencoders (VAEs), which is a special variant of autoencoder, is a both
discriminative and generative model proposed by Kingma et al. and Rezende et al. in
2013 [15]. The VAE is different from the conventional autoencoder in several points.
Firstly, the variational autoencoder defines a probabilistic generative model:

pθ(x, z) = pθ(x|z)pθ(z) (2.3)

From Equation 2.3.3, the observed data x is assumed to be generated by a random
process involving some underlying random variables z. The latent variable z is assumed
to have a posterior distribution belongs to a much simpler distribution family (Gaussian
distribution):

p(z) ∼ N (0, I)

Secondly, the data x is assumed to be generated by directed graphical model p(x|z) and the
encoder is learning an approximation qφ(x|z) to the posterior distribution pθ(z|x) where
θ and φ denote the parameters of the encoder and decoder respectively. The objective
function of the VAE has the following form:

L(φ, θ,x) = DKL(qφ(z|x)||pθ(z))− Eqφ(z|x)(logpθ(x|z)) (2.4)

Where the first term DKL is the Kullback-Leibler divergence to regularize the distribution
of the latent variables. The second term is the reconstruction cost. Training process is
equivalent to iteratively estimate the autoencoder parameters θ and φ to maximize the
equation (2.3.3). However, back propagation is not possible through random sampling
(z ∼ N (0, I)). Therefore, a sampling trick is applied as follow:

z ∼ N (0, I)
z = µ+ σ � ε
ε ∼ N (0, I)

where ε can be regarded as a random input drawn from a normal distribution N (0, I).
By using this trick, the objective function of the VAE can be interpreted in a close form
as follows:
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Regularisation cost = −DKL(qφ(z—x)||pθ(z)) = 1
2
∑(1 + log(σ2

z)− µ2
z − σ2

z)
and

Reconstruction cost = −log(p(x—z) = ∑(
1
2 log(σ2

x) + (x−µ)2

2σ2
x

)
For a constant variance σx, the reconstruct cost becomes the least square error, similar

to the convention autoencoder cost function. Figure 2.6 illustrate the VAE network.

Figure 2.6: Illustration of VAE model
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Chapter 3

Non-parallel Voice Conversion using
Variational Autoencoder

3.1 Overview of Proposed System

In this section, the VC system proposed by the author is presented. The ultimate goal
of VC system is to transfer the speaker individuality contained in the target voice to the
source voice. As illustrated in figure 3.1, the proposed voice conversion system can be
separated into two main stages: the first stage corresponds to the training phase and
the second stage corresponds to conversion phase. Both stages share a common Acoustic
Feature Processing unit, which is responsible for extracting the acoustic features from
the input utterances. As illustrated in Figure 3.2, this unit consists of 3 smaller parts
including STRAIGHT analysis, Mel-cepstral analysis, and mean-variance normalization.
STRAIGHT, a high-quality vocoder system is used with the purpose to extract the spec-
trum from speech waveform. Then, the spectrum from STRAIGHT vocoder is trans-
formed into Mel-cepstral coefficients (MCC) using SPTK toolkit. The output acoustic
features are obtained by normalizing the MCC using mean-variance scaling.

The purpose of training phase of the proposed voice conversion system is to derive
parameters for VAE model (consists of encoder and decoder parts) and dictionaries for
target and source speaker. The detail of training process is mentioned in Section 3.5.

The conversion phase aims to generate the converted waveform (adapted to target voice)
from the source waveform. Using the target dictionary obtained from training phase
combine with the Activation matrix derived from source speech, the acoustic features of
target-adapted speech is constructed. Finally, the waveform generation unit, as shown in
Figure 3.3, does the reversal jobs to acoustic processing unit by taking the input acoustic
feature then generating the output waveform.
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Figure 3.1: Block diagram of proposed voice conversion system
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Figure 3.2: Block diagram of acoustic processing unit

Figure 3.3: Block diagram of waveform generation unit
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3.2 STRAIGHT Vocoder

The STRAIGHT system [18] is a high-quality vocoder based on the source-filter model.
A vocoder is a specific-coder for human voice signal that relies on speech models and is
focused on producing perceptually intelligible speech without necessarily matching the
waveform [19]. The central idea behind the STRAIGHT vocoder is to extract spectral
information that does not consist of the periodic structure in both the time and frequency
domains [20]. In other words, STRAIGHT decomposes the speech into source information
(pitch and aperiodicity) and spectral information (spectral envelope). With conceptual
simplicity plus the flexibility of controlling of speech parameters, STRAIGHT system is
a powerful tool for speech processing research as well as other speech-related application.

STRAIGHT, which stand for ”Speech Transformation and Representation using Adap-
tive Interpolation of weiGHTed spectrum), consist of analysis and synthesis parts as
illustrated in Figure 3.4. There are 3 fundamental concepts of STRAIGHT foundations.
The first one is the reconstruction of time-frequency surface by a two-step procedure: 1)
extract power spectra that minimize temporal variation by using a complementary set of
time windows, 2) removal of frequency domain periodicity caused by source interference
by inverse filtering in a spline space [18]. The second one is the accurate F0 extractor
based on instantaneous frequency. The third is an excitation source design base on phase
manipulation to reduce the buzzy timbre resulting from a conventional pulse excitation.
For a more detail mathematical implementation of STRAIGHT, please refer to [18].

There are two main reasons for applying STRAIGHT to our system. Firstly, STRAIGHT
provides a high-performance speech analysis/synthesis framework that is robust to speech
parameters manipulation without introducing further degradation. This vocoder has been
being applied in many speech application areas including voice conversion, speech recog-
nition, speech synthesis, etc.. Secondly, the obtain speech spectrum from STRAIGHT
is very smooth, which means that the MCC derived from the spectrogram are highly
correlated among frames, thus enhancing the accuracy in parameters generation process.

Figure 3.4: Flow chart of STRAIGHT vocoder system
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3.3 Acoustic Feature Processing

3.3.1 Mel-generalized Cepstral Coefficients

Cepstral analysis is a popular feature extraction techniques based on the frequency do-
main. The cepstrum coefficients are defined as the coefficients of the Inverse Fourier
transform of the log-magnitude spectrum:

S(ejω) = F [s(n)]
C(m) = F−1[log|S(ejω|]

where S(ejω) is the Fourier transform of signal s(n), C(m) is the cepstrum.

In the purpose of unifying the cepstral method with linear prediction method, a generalize-
cepstral analysis has been proposed [21]. In addition, since human ear has higher reso-
lution at low frequency, therefore a non-linear frequency scale is applied to compensate
for this characteristic. The cepstrum c(m) of a real sequence x(n) is defined as the in-
verse Fourier transform of the generalized logarithmic spectrum calculated on a non-linear
frequency scale βα(ω) as follows:

sγ(X(ejω)) = ∑∞
m=−∞ cα,γ(m)e−jβα(ω)m

The generalized logarithmic function is defined as:

sγ(ω) =
{

(ωγ − 1)/γ, 0 < |γ| < 1
log(ω), γ = 0

where X(ejω is the Fourier transform of x(n). The warped-scaled βα(ω) approximate
the non-linearity of auditory frequency scale and is defined as the phase response of an
all-pass system:

Ψα(z) = z−1−α
1−αz−1

∣∣∣
z=ejω

= e−jβα(ω) where βα = tan−1 (1−α2)sinω
(1+α2)cosω−2α

The speech spectrum H(ejω) can be represent by the M + 1 Mel-generalized cepstral
coefficients as follows:

H(z) =


(
1 + γ

∑M
m=0 cα,γ(m)Ψm

α (z)
)1/γ

, 0 < |γ| ≤ 1
exp

∑M
m=0 cα,γ(m)Ψm

α (z) , γ = 0
(3.1)

By selecting the appropriate (α, γ), the models spectrum will have the form of all-pole
representation (LPC) or cepstrum representation. Table 3.1 describe the form of spectrum
representation given the (α, γ) [21]. It is noted that the value of α is empirically selected
based on the sampling rate to give good approximation to human auditory scale.
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Table 3.1: Spectral representation based on Mel-generalized cepstrum

α = 0 |α| < 1
γ = −1 all-pole warped all-pole
γ = 0 cepstral Mel-cepstral
γ = 1 all-zero warped all-zero
|γ| ≤ −1 generalized cepstral Mel-generalized cepstral

In this thesis, the mel-cepstral representation (α = 0.42, γ = 0) of spectrum is used
since it shown the most influence on speech naturalness as described in [6]. Firstly,
the speech signal is processed using STRAIGHT vocoder to calculate the spectrum of
each frames. Smooth transition from frame to frame is ensured by overlapping of con-
secutive frames (the next and the previos frame). Then the obtained spectrum from
STRAIGHT is represented as 60 mel-cepstrum coefficients using the equation 3.3.1. The
Speech Signal Processing Toolkit (SPTK) [22] is used to calculate the Mel-cepstrum from
the STRAIGHT spectrum.

3.3.2 Modulation Spectrum

Spectral envelope is known as the prime carrier of the phonetic information as well as the
individuality of speaker. The modulation spectrum of speech is defined as the spectral
analysis of temporal trajectories of the spectral envelope. The modulation spectrum is
closely related to the dominant rate of change of the vocal tract shape. The modulation
spectrum of continuous speech between 2 Hz to 8 Hz is mostly related to the phonetic
information in speech [26]. Therefore, it is not surprising that the modulation spectrum
around 4 Hz is most sensitive to human auditory system.

Being one of the most important features, the modulation spectrum has a wide range
of application in speech research. In the automatic speech recognition field, the modu-
lation spectrum can be applied to yields higher accuracy rate in the noisy environment
[27]. In the field of speech synthesis, various studies have shown that the over-smoothing
effect of synthesized speech originated from the degradation of modulation spectrum [24]
[23]. Especially, the modulation spectrum also contributes to the speaker individuality as
described in [25]. Therefore, by compensating the modulation spectrum of the synthetic
speech for being close to the target natural speech, the quality of synthetic speech can be
improved.

In this study, the modulation spectrum of parameter sequence x is defined as follow:

s(X) =
[
s(1)>, · · ·, s(d)>, · · ·, s(D)>

]
(3.2)

s(d) = [sd(0), · · ·, sd(f), · · ·, s(Ds)] (3.3)
sd(f) = abs(FFT (x(d)) (3.4)
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3.4 Proposed Variational Autoencoder-based Voice
Conversion

3.4.1 Dictionary-based voice conversion using Variational Au-
toencoder

The major drawbacks of NMF-based voice conversion is the requirement of parallel train-
ing data. This implies the NMF-based voice conversion may not be suitable for personal-
ized S2ST device, where no parallel training is available. Furthermore, the use of DTW
for aligning source and target utterance may introduce additional error which degrade the
converted speech quality. Therefore, to overcome those issues, we aim to apply different
method to decompose speech for using non-parallel dataset.

There are three important points in our proposed method. Firstly, we expand spec-
trum decomposition into non-linearity domain by using neural network with non-linear
activation function (tangent hyperbolic):

X = fdec(A(X)Z) (3.5)

where fdec() is realized by a neural network.
In the next step, the activation matrix Z is extracted from the input spectrum also

using a neural network:
Z = fenc(X) (3.6)

The parameters of encoder network fenc and decoder network fenc can be learned by
jointly train the two networks as an Autoencoder. However, without any constraint on
the activation matrix, the source and target dictionary cannot share the same activa-
tion matrix. In other words, the converted spectrogram cannot be constructed by target
dictionary and activation matrix extracted from source spectrogram. Therefore, we intro-
duce one additinal constraint by assuming the activation matrix has the standard norm
distribution N(0, I) over the whole utterance. This leads the network to have the form of
Variational Autoencoder (VAE). The training objective function of our proposed network
have the similar form of VAE model [15] as follows:

L(θ, φ; xn) = −DKL(qφ(zn|xn)||p(zn)) + log pθ(xn|zn,A(X)) (3.7)

where the first term KLD is the Kullback-Leibler divergence constraining the activation
to have standard normal distribution, the second term is the log-probability of acoustic
features xn given the activation zn and speaker dictionary A. The speaker dictionary A is
obtained by multiply global dictionary Aglobal with speaker specific adjustment term AX
as equation 3.4.1. Each target and source have separate speaker adjust ment term AY
and AX respectively.

A = Aglobal · AX (3.8)
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Figure 3.5: Proposed speech decomposition method using VAE

Training process is equivalent to iteratively estimate the autoencoder parameters θ and
φ to maximize the equation (3.7):

{θ, φ} = argmax
θ,φ

L(θ, φ; xn) (3.9)

Similar to the conversion process of NMF-based voice conversion, in our proposed
method, the converted spectrogram is generated by multiply the target dictionary with
activation extracted from the source utterance.

3.4.2 Modulation Spectrum-constrained training

As stated in the Section 3.3.2, modulation spectrum is an important acoustic cues for
speech application. In the previous study by Dinh et al [6], a method for improving the
naturalness of HMM-based synthesized speech based on Asymetric Bilinear model (ABM)
is proposed. With the simmilar concept as NMF, ABM also factorizes the input data into
two separate factors. In Dinh’s study, various acoustic features are exchanged between
natural speech and synthesized speech for comparing their effect on speech naturalness and
intelligibility. The results from the subjective tests proved that the temporal modulation
spectrum of MCC sequences has the most significant impact on speech naturalness.

To improve naturalness of the synthesized speech, we also incorporate the MS in the
proposed model because of significance on speech naturalness [6][23]. In order to con-
strained the MS of output synthesized speech, an additional cost for MS is added to the
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training function of VAE model. The modified log-likelihood function for VAEs model
considering the MS is defined as follow:

Lms(θ, φ; xn) = −DKL(qφ(zn|xn)||p(zn)) + log pθ(xn|zn,yn)
+w.log p(s(x)|zn,yn)

(3.10)

The final term in (3.10) explicitly constrains the model to increase the log-likelihood of
the modulation spectrum conditioned on given latent variable zn and speaker identity yn.
Furthermore, we also assume that the modulation spectrum have a Gaussian distribution
with diagonal covariance matrix: s(x) ∼ N(s(x)|s(x), diag(σs)). Therefore the final log-
probability term in (3.10) can be expressed in closed-form:

log p(s(x)|zn,yn) = −1
2
∑(

log(2πσ2
s) + (s(x)− s(x))2

σ2
s

)
(3.11)

3.4.3 Pretraining Procedure

To optimize the network parameter for efficiently encoding the input acoustic feature to
the latent space z, the model is firstly pre-trained using global speaker dictionary only.
Therefore, the all the voices will share the same speaker dictionaries in the pre-training
phase. After the pre-training phase, the global speaker dictionary is multiplied with
corresponded speaker specific term in the training process.
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Chapter 4

Evaluation and Discussion

In this chapter, several objective measurements and subjective tests are conducted to
evaluate the performance of the system.

4.1 Objective measurement

4.1.1 Formant frequency measurement

To measure the adaptation ability of VAE model, the formant frequencies of the adapted
voice are compared with the original voice and target voice. The formant is the harmonic
resulted from the resonance in the human vocal tract. As different speaker have distinct
vocal tract shape, the formant frequencies can represent the speaker individuality. We
measure the formant frequencies only for vowel sound where the formant frequencies are
stable. The formant frequencies of vowel /o/ obtained from Pratt tool are reported in
table 4.1. It can be clearly seen that the formant frequencies of bdl voice is shifted to
those of slt voice. This proves that the proposed system can extract and transform the
speaker individuality.

Table 4.1: Formant of vowel /o/ of natural and adapted speech

Formant F1 F2 F3 F4
Natural bdl 862 1085 2272 3467
Natural slt 849 1433 3224 3994

bdl adapt to slt 875 1439 3164 4014

4.1.2 Pretraining evaluation

The purpose of this evaluation is to assess the effectiveness of pretraining method. In or-
der to obtained the adapted voice, the system must first be able to precisely reconstruct
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the source voice. We perform mel-cepstral distortion (MCD) measurement and the stan-
dardize Perceptual Evaluation of Speech Quality (PESQ) measurement from ITU [35] on
adapted voice from the system with and without pretraining. The MCD is calculated by
the following equation:

MCD[dB] = 10
log(10)

√√√√2
N∑
d=1

(cd − cd)2 (4.1)

where N is the number of cepstral coefficients, cd and cd are reference and generated MCC
respectively.

From the results in Figure 4.1 and 4.2, the mel-cepstral distortion and PESQ MOS
score of the system with pretraining are clearly better. Therefore, the pretraining phase
can improve the performance of the system.
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Figure 4.1: Mel-cepstral distortion of reconstructed speech from proposed system with
and without pretraining (lower is better)
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Figure 4.2: PESQ MOS score of reconstructed speech from proposed system with and
without pretraining (higher is better)
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4.1.3 Modulation Spectrum measurement

In order to assess the effectiveness of MS-constrained training, the MS of converted speech
from VAE model with and without- MS-constrained training is measured. In both cases,
the system is trained using the same set of data and training epochs. According to Figure
4.3,4.4 and 4.5, the MS of the 32th, 64th, 128th spectral sequence at 4 Hz , which carries
most of the linguistic information [36], from VAE model with MS-constrained training are
better which indicate the effective of our proposed method. From Figure 4.6 and 4.7, it
can be seen that the formant structure of synthetic speech using MS-constrained training
is much clearer than the other, which implies a better synthetic speech quality.
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Figure 4.3: Modulation spectrum measurement of 32th spectral sequence
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Figure 4.4: Modulation spectrum measurement of 64th spectral sequence

0 10 20 30 40

Frequency (Hz)

-10

-5

0

5

10

15

20

25

30

35

d
B

MS of 128-th spectral sequence

target natural

with MS constrained

no MS constrained

source natural

Figure 4.5: Modulation spectrum measurement of 128th spectral sequence
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Figure 4.6: Modulation spectrum measurement of 128th spectral sequence
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Figure 4.7: Modulation spectrum measurement of 128th spectral sequence
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4.1.4 Mel-cepstral distortion measurement

In this evaluation, we measure the MCD between the adapted speech and target speech
by the baseline and our proposed method trained on different amount of data. In order
to perform this test, the converted speech from the proposed method is aligned to target
speech to DTW. The converted speech from the baseline method is already aligned, there-
fore no further alignment process is conducted. The measure MCD from 20 utterances is
averaged to produce the final result. According to figure 4.8, the MCD of the proposed
method is significantly lower than the proposed method although un-aligned training data
is used.

20 30 40 50 60

Number of training utterances

0

2

4

6

8

10

M
C

D
 (

d
B

)

NMF

VAE (proposed)

Figure 4.8: Mel-cepstral distortion of synthesized speech from proposed and baseline
system using different amount of training utterances

4.2 Subjective measurement

4.2.1 Experimental setup

The baseline system

The baseline system is a NMF-based Voice Conversion using parallel data described in
[17]. The dictionaries have r = 100 bases. 50 utterances of 2 speaker bdl (male) and slt
(female) from CMU-ARCTIC database is used for training process. Alignment between
source and target utterance is done by DTW. For input acoustic feature, the baseline
method uses 513-dimension STRAIGHT spectrum. Aperiodicity (ap) remains unchanged
while logF0 is linearly scaled.
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The proposed system

The configuration of the proposed system is shown in table 4.2. The decoder part have
the same configuration of the encoder and in reverse order. The training database is the
same as the baseline system. For the input acoustic features, 60 MCCs extracted from
STRAIGHT spectrum using SPTK toolkit is used. Stochastic Gradient Descent (SGD)
algorithm is used to optimize the parameters. The network is trained through 400 epochs,
which takes approximately 20 minutes on GPU NVIDIA GTX1060.

Table 4.2: Network configuration

units activation
Input layer 128 linear

Encoder 1024-512-512-256-256 tanh
Output layer 180 linear

4.2.2 Similarity Test

In this experiment, the speaker similarity between natural voice and synthesized voice by
different methods is evaluated. There are 20 stimuli for each voice conversion method.
Each pair of stimuli contains one sample from natural voice and one sample from conver-
sion system. Those two samples are selected randomly and contain different sentences.
Not only the synthesized voice is compared to the target speaker but also the source
speaker and target speaker. In summary, there are total 140 pairs of stimuli as described
in table 4.3.

Table 4.3: Stimuli for each source-target pair in similarity test

Trials Number of pair
Source voice - Target voice 20
Source voice - Source voice 20
Target voice - Target voice 20

Baseline - Source voice 20
Baseline - Target voice 20
Proposed - Source voice 20
Proposed - Target voice 20

Total 140

For each time, the listener will listen to a pair of stimuli and judge whether if those
samples were produced by the same speaker or not. The listener is instructed to ignore the
distortion and concentrate on identifying the voice [34]. After that, the listener indicates
his/her confidence by a five-point scale:
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Figure 4.9: Graphic User Interface for Similarity Test

1. Completely different

2. Slightly different

3. Neither different nor same

4. Slightly same

5. Completely same

The GUI usage process for speaker similarity test is as follows:

1. Click Start to begin.

2. Listen to A and then B, wait until it finished.

3. Select one in five options base on the speaker similarity in two samples.

4. Then another pair of stimuli will be played automatically, wait until it finished.

5. Back to step 3 until the experiment is finished.
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The experiment is carried out using a graphic user interface designed in Matlab (GUIDE)
(figure 4.9). The listeners are seated in a soundproof room and listen to the sam-
ples through a headphone (HDA200, SENNHEISER) connected to an audio interface
(FIREFACE UCX, Syntax Japan). The volume is set to a comfortable level. Each stim-
ulus lasts for approximately 3 seconds. After every 50 pairs, the listener is asked to take
a 2-minute break. The total time for the experiment including break time is around 30
minutes.

The listeners are asked to fill out a short questionnaire after completing the experiment
with questions regarding name, student ID, gender, native language and any hearing
problems if they have.

4.2.3 Naturalness Test

In this experiment, the naturalness between natural voice and synthesized voice by differ-
ent methods is evaluated. There are 20 stimuli for each voice conversion method. Each
pair of stimuli contains two samples from different voice conversion methods or natural
voice. Those two samples are selected randomly and contain same sentences. In summary,
there are total 120 pairs of stimuli as described in table 4.4.

Table 4.4: Stimuli for each source-target pair in similarity test

Trials Number of pair
Baseline - Natural voice 20
Natural voice - Baseline 20
Proposed - Natural voice 20
Natural voice - Proposed 20

Baseline - Proposed 20
Proposed - Baseline 20

For each time, the listener will listen to a pair of stimuli A âĂŞ B (with A is the first
utterance, B is the second one) and decide which one is more natural. After that, the
listener select one of two options below:

1. A is more natural than B

2. B is more natural than A

The method of more natural sample receives the score of ’1’ while the other receives
none. The experiment is carried out using a graphic user interface designed in Matlab
(GUIDE) (figure 4.10). The listeners are seated in a soundproof room and listen to the
stimuli through a headphone (HDA200, SENNHEISER) connected to an audio interface
(FIREFACE UCX, Syntax Japan). The volume is set to a comfortable level. Each
stimulus lasts for approximately 3 seconds. After every 50 pairs, the listener is asked to
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Figure 4.10: Graphic User Interface for Similarity Test

take a 2-minute break. The total time for the experiment including break time is around
30 minutes.

The listeners are asked to fill out a short questionnaire after completing the experiment
with questions regarding name, student ID, gender, native language and any hearing
problems if they have.

The GUI usage process for naturalness test as follows:

1. Click Start to begin.

2. Listen to A and then B, wait until it finished.

3. Select one in five options base on the speaker similarity in two samples.

4. Then another pair of stimuli will be played automatically, wait until it finished.

5. Back to step 3 until the experiment is finished.
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4.2.4 Results

The results of subjective test with 95-percent confidence interval are shown in Figure
4.12,4.11, and 4.13. The two-tail student t-test is used for analyzing the statistical signif-
icance of the results.

Figure 4.11: Similarity to target speaker with 95-percent confidence interval (p = 0.44 >
0.05).

4.3 Discussion

From the results in Figure 4.12,4.11, and 4.13, the subjective evaluations demonstrated
significantly higher naturalness of the proposed VAE-based system over that of the NMF-
based system. Meanwhile, the speaker similarity between two methods is comparable.
These subjective results also conform with the objective results shown in Section 4.1.
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Figure 4.12: Similarity to source speaker with 95-percent confidence interval p = 0.69 >
0.55.
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Figure 4.13: Naturalness MOS score with 95-percent confidence interval (p = 0.04 < 0.05).
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Chapter 5

Conclusion

5.1 Summaries

In this study, we presented a dictionary-based voice conversion system for using with non-
parallel training data based on the deep learning model Variation Autoencoder. From the
experimental result, the MS of the synthesized speech using proposed training method is
improved, indicating that the proposed training strategy is more efficient compared with
the conventional method. The results from the subjective evaluation indicate that the
proposed method can give the intended speaker individuality perception similar to the
previous NMF-based VC system. And the naturalness of the converted speech using our
proposed system achieve the average score of 2.87/10, much better than the NMF-based
voice conversion whose average naturalness score is 1.75/10. However, when comparing
with the average score of natural speech (9.58/10), there is still much room for improve-
ment.

The advantage of this method is two-fold. Firstly, parallel training data are no longer
required for dictionary-based voice conversion. Second, this method outperforms the con-
ventional NMF-based voice conversion in term of naturalness while retaining comparable
speaker similarity.

In conclusion, a voice conversion system utilizing the Variational Autoencoder model
has been proved to achieve better-converted speech quality compared to the previous
NMF-based method.

5.2 Contributions

The voice conversion system utilizing Variational Autoencoder model is proposed in this
study. The proposed method can give the intended speaker individuality perception sim-
ilar to the previous method using NMF but with a better naturalness which is a great
enhancement. Although there is still much room for improvement, this study put the
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first step toward the realization of the personalized S2ST device. Moreover, this work
can contribute to much other application such as Story Teller System, Foreign Language
Learning apps, etc.., all of which can give great improvement to human daily life.

5.3 Remaining problems

The final goal of this research is to construct high-quality cross-lingual voice conversion
based on Deep Learning model. As the proposed method does not depend on linguistic
information, in the next step, we will generalize our method to use with the cross-lingual
dataset, making it suitable for personalized S2ST devices. In addition, since there is still
a big gap between synthetic speech and natural speech, the cause that degrades speech
quality must be further investigated. After that, a solution to improve speech quality will
be proposed.
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