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Abstract

Past mechanistic accounts of children’s word learning
claim that a simple type of cross-situational learning is
powerful enough to match observed rates of learning,
even in quite ambiguous situations. However, a limita-
tion in some of these analyses is their reliance on an un-
realistic assumption that the learner only hears a word in
situations containing the intended referent. This study
analyzed a more general type of cross-situational learn-
ing based on the relative frequency of word-object pairs,
and found it to be slower than the simple mechanism
analyzed in prior work. We then analytically explored
whether relative-frequency learning can be improved by
incorporating the mutual exclusivity (ME) principle–
an assumption that words map to objects 1-to-1. Our
analyses show that with a certain type of correlation in
word-to-word relationship, ME makes relative frequency
learning as efficient as fast-mapping, which can learn a
word in one exposure.

Keywords: Word learning; Cross-situational learning
models; Mutual exclusivity; Language acquisition

Introduction
To a new learner of a language with a completely
unknown word-referent mapping system, determining
which words refer to which referents in any given scene
may seem impossible on the face of it, since a word could
refer not only to an object (e.g., ‘apple’), but to a class
of objects (e.g., ‘fruit’), a property (‘red’), or any one of
endless possible combinations or configurations of fea-
tures in the scene–an unconstrained problem of logical
induction (Quine, 1960). In contrast to this theoretical
observation about referential uncertainty, children are
thought of as efficient learners, and in fact most human
children do learn to understand and use an impressive
number of words within the first years of life, achiev-
ing a vocabulary of roughly 60,000 by 18 years of age
(Bloom, 2000). Developmental researchers have theo-
rized that children use a variety of lexical constraints
to limit the number of possible mappings they consider,
and a number of empirical studies support these claims
(Clark, 1987; Markman, 1990, 1992; Golinkoff, Hirsh-
Pasek, Bailey, & Wegner, 1992). One lexical constraint,
used here as in past theoretical accounts–and supported
by empirical developmental data, is that learners are bi-
ased to map words to entire objects, rather than to a
feature of an object, or a group/configuration of objects
(Markman, 1990).

Beyond lexical constraints that reduce the number of
hypothesis meanings considered for a given word in a
given situation, another possible remedy for the contra-
diction between the difficulty of the unconstrained in-
ductive account of word learning and the ease of the
observed process is that learners also reduce uncer-
tainty in the word-object map by statistical inference
over time, based on observing word-object pairs across
multiple situations. Cross-situational learning (Pinker,
1984; Akhtar & Montague, 1999; Siskind, 1996) is a
type of learning based on this idea, which has been an-
alyzed both empirically and theoretically over decades
(Yu, 2008; Blythe, Smith, & Smith, 2010). Blythe et al.
(2010) formally quantified the effect of a type of cross-
situational learning in terms of the rate of vocabulary
growth. More recent studies (Blythe, Smith, & Smith,
2016; Vogt, 2012) further showed that this type of cross-
situational learning can be considerably slowed down for
certain types of word co-occurrence distributions, includ-
ing power-law distributions in which most words are seen
relatively rarely, which describe word frequency distribu-
tion in natural languages (Zipf, 1949).

These theoretical analyses are still quite limited in
their generality. The class of cross-situational learning
analyzed in these past studies is called eliminative learn-
ing. In this scheme, when a learner is exposed to a set
of referents, a correct word is spoken–never is a word
spoken when its intended referent is not present. In this
case, the learner can safely “eliminate” the possibility
of word A being associated to the object B, if he or
she experiences one episode that the word A is spoken
without the object B. As this special assumption does
not generally hold in real-world learning, the estimates
on the speed of cross-situational learning in past stud-
ies give only an optimistic upper bound for its learning
efficiency.

In this study, we consider a more general type of cross-
situational learning, called relative frequency learning,
of which eliminative learning is a special case. In the
relative frequency learning scheme, it is assumed that
a language system encodes the word-object pair with
frequency higher than the other candidate pairs as the
correct one, and the learner infers such relatively more
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frequent word-object pairs from the sample. Under this
assumption, the eliminative learning scheme is identified
with the special case of seeing the correct word-object
pair with probability 1. In general, however, the elim-
inative learning rule cannot apply (or will mislead the
learner if it is forced to apply) in word learning of a
relative-frequency language system.

Therefore, relative frequency learning is generally
slower than the eliminative learning. Thus, the main
problem considered in this study is what plausible fac-
tor might make this type of learning more efficient – and
can it be made efficient enough to be a realistic account
for children’s word learning? Specifically, we analyze the
beneficial effect of learners applying a general principle
of mutual exclusivity (ME), an assumption of a word-
object regularity requiring that no two objects are associ-
ated to one word. Application of a ME principle has long
been theorized to be a constraint that can speed chil-
dren’s word learning (Markman & Wachtel, 1988), and
has found empirical support in both children (Halberda,
2003) and adults (Yurovsky & Yu, 2008; Kachergis, Yu,
& Shiffrin, 2012). We then consider a word-word statis-
tical relationship in which a group of distractor objects
tend to co-occur with a word and thus slow learning.

In the following, we first outline the theoretical frame-
work in which we provide a series of analyses of relative
frequency learning. Second, we evaluate the basic learn-
ing efficiency in this scheme. Then we extend this eval-
uation of learning efficiency to multiple scenarios with
different word-to-word statistical relationships.

Relative-frequency learning

Basic framework

In this study, we consider the following word learning
scenario. The learner is exposed to multiple words and
objects in each situation. In each situation, the learner
does not know which word refers to which object, and
the correct word-object mapping can only be inferred
by integrating evidence across observations of multiple
situations. Let W = {1, . . . , n} be a set of words and
O = {1, . . . ,m} a set of objects (or referents) which
appear in these situations. In this study, we consider
a language structure with one-to-one word-object map-
ping, in which n = m and the word i refers to object
i. This is a quite strong assumption, which may not be
considered entirely realistic as it is. It offers, however, a
first approximation upon which we can base the analysis
and later extend it.

Here, we consider a particular word learning scheme,
called relative frequency learning, in which each object’s
to-be-associated (i.e., ‘correct’) word is spoken in its
presence with greater frequency than any other word.
This is a code in the sense of information theory – the
signal, the correct word-object mapping, is encoded in
the statistical regularity in observation across situations

(channel), and the learner decodes (infers) the correct
word-object map using the underlying regularity: the
correct word-object pair is the most frequent among the
others.

There are theoretical analyses of a special case of this
relative frequency learning, in which the correct word
is spoken only in the presence of the corresponding ob-
ject (i.e., p(object|word) = 1). In this special case, the
learner can use not only the knowledge that the correct
pair is more frequent, but also the quite strong rule that
any object which does not appear with a spoken word
cannot be the intended referent of that word. Thus, this
learning scheme, which eliminates any word-object pair
with probability less than 1 is called eliminative learning
(Blythe et al., 2010). In this study, beyond this special
case, we analyze a more general case of language and
learning coded on the basis of relative frequency.

Formulation

Denote the frequency of object o given word w by f(o |
w). Then, suppose the learner (decoder) declares that
the object o ∈ O is the referent of the word w ∈W with
probability

P (o | w) =
ef(o|w)∑

o∈{O} e
f(o|w)

.

In this scheme, the error, wrong declaration of the
correct object, for word w with the number of ob-
served situations n is proportional to ε(n,w) :=∑

o 6=w e
f(o|w)−f(w|w). The sum of the errors for all words

ε(n,w) :=
∑

w∈W ε(n,w) is an exponential function of
the number of situations. Let us denote the rate of
the exponential function as R, and thus ε(n) = e−Rn.
For a code with rate R encoding less than eRn signals,
limn

∑
w∈W P (o | w) = 1, and thus it is said to be learn-

able (reachable in information-theoretic terminology). If
the rate satisfies ε(n) = e−Rn < e−Cn for any code, the
constant C is said to be the capacity of this channel in
information-theoretic terms (Shannon, 1948). The rate,
or the exponent coefficient of the error function, is a fun-
damental characteristic of the language-learning system
when viewed as a signal transmitting process.

Efficiency

In the relative frequency learning scheme, the object o
with the second largest probability given the word w,
pw|w > po|w > po′|w for o′ 6= o, w, is a key parameter
giving the asymptotic time to learn the word w. With
objects with the largest and second largest probability,
the sample frequency can be written as follows. Let p =
1 − p. Specifically, consider that the sample frequency
fnow = fn(o|w) follows the binomial distribution

P (fnow|n, pow) =

(
n

fnow

)
pfnow
ow · pn−fnow

ow
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with probability pow.
Given this, the error probability in learning is char-

acterized as follows. The probability for the word w to
be associated with the object o is proportional to efnow .
For a sufficiently large n, the difference between the two
random variables asymptotically approaches

lim
n→∞

efnow−fno′w

en∆o,o′|w
= C,

where ∆o,o′|w := pow−po′w
pow p̄ow+po′w p̄o′w

. If there are m ob-

jects with the second largest probability pow > q >
maxo′ 6=w, po′w for the word w, the error probability is

1− P (w|w)→ Cme
−n

pow−p
o′w

powp̄ow+p
o′wp̄

o′w . Thus, the rate of
the relative-frequency code is R = minw ∆w|w where

∆o|w :=
pow −maxo′ 6=o po′w

powpow + maxo′ 6=o po′wmaxo′ 6=o po′w
.

This analysis implies that the word-object pair with the
smallest margin to second largest probability decides the
learning rate in the relative frequency code.

Incorporating mutual exclusivity (ME)

In the above analysis of the relative frequency code,
the lexical constraint of one-to-one word-object mapping
is not taken into consideration in the learning process.
However, if the learner exploits the fact that no two ob-
jects are associated with the same word, namely correct
word-object pairs are mutually exclusive, the learning is
expected to be more efficient than the alternative with-
out the knowledge. Let us call this ME learning. The
difference in the rate of learning assuming ME and gen-
eral relative frequency would be the effect of introducing
a ME constraint in cross-situational learning.

With ME, the learner can exclude object o when learn-
ing word w, if the object o is likely to be associated
with some other word w′ 6= w. Thus, the learning or-
der of the words has considerable impact in learning un-
der ME. As the previous analysis shows that the sec-
ond most probable objects for word w is the key fac-
tor giving the learning rate, let us call them distractors
against the word w, and denote the set of distractors by
D(w) := {w′|maxo 6=w fo|w = fw′|w}.

Best- and worst-case scenarios

Here let us analyze ME learning under a simplification
that the learning time for the words with no distractor
is T0 and that for the words with one more distractors
is T1. The former case with no distractor is said to be
fast mapping, in which a particular word-object pair is
presented alone in a situation, and the learner learns
the pair in a single shot (Carey & Bartlett, 1978). The
latter case is analyzed in the previous section in case of
the relative frequency learning. In this case, if all the
distractors has been eliminated, by the effect of ME, the

corresponding object can be uniquely identified, which
is effectively the same as fast mapping. Thus, the worst-
case learning time approaches that of relative frequency
learning, and the best-case learning time approaches that
of fast mapping, as the number of words is sufficiently
large.

Randomly distributed distractors

Random learning order Consider the case that each
word is learned in a serial order and each has k distrac-
tors. Furthermore suppose that the learning order is
a random permutation, namely any order is uniformly
sampled. Figure 1 shows a schematic co-occurrence ma-
trix of the five such word-object pairs (filled markers)
with k = 2 randomly distributed distractors (open mark-
ers) for each pair. In this case, one expects that one word
is likely to be learned after the k distractors with prob-
ability 1/(k + 1). This is exactly true, if the number of
words n approaches to infinitely large. Therefore, the
sum of expected learning time for all the words is

T = n

(
k

k + 1
T1 +

1

k + 1
T0

)
. (1)

Thus, when the learning order is a random permuta-
tion, the expected learning time is only the factor of

1
k+1 shorter than the original time nT1 at shortest.

Word Objects #D
“Circle” ● △ ☆ 2
“Triangle” ▲ □ ◇ 2
“Square” ○ △ ■ 2
“Star” ○ ★ ◇ 2
“Diamond” △ □ ◆ 2

Figure 1: A schematic word-object co-occurrence matrix
in the case with random learning order and randomly
distributed distractors.

Shared distractors

Best and worst learning order Let us consider the
best and worst case by manipulating which words the
k distractors are associated. In one of the best cases,
every word shares the same set D of k distractors. Fig-
ure 2 shows a schematic co-occurrence matrix of the five
such word-object pairs (filled markers), and each pair
has k = 2 distractors (open markers) and most of words
share the same two distractors. In this case, the short-
est learning time is obtained by a sequence of learned
words in which the k words with the k distractors as
their correct objects first (required about T1 time each)
and the others later (required T0 time each). In the ex-
ample (Figure 2), one of the best order is to learn the
word “Circle” and “Triangle” at the first two rows in the
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matrix, and then learn the other words. In this case, the
total learning time is

T = kT1 + (n− k)T0.

As the number of words n gets larger with a constant k,
the learning time approaches to that of the fast mapping
(T0 per word), which is the lower bound of learning time.

In one of the worst cases, on the other hand, the
longest learning time is obtained by the reversed se-
quence, in which the words with the k distractors as their
correct objects are learned last. In total, the longest
learning time is

T = nT1.

As the number of words n gets larger with a constant
k, learning time approaches that of relative frequency
learning, which is the upper bound of learning time.

Random learning order Thus, this analysis with the
best and worst case scenario suggests that the learning
order of words has a large impact on learning time. How-
ever, the expected learning time with the shared distrac-
tors is, again, exactly 1/(k+ 1), which is no better than
the learning time of the case with k random distractors
(Equation (1)):

T = n

(
k

k + 1
T1 +

1

k + 1
T0

)
.

This analysis suggests that even systematically shared
distractors cannot improve the learning time on average,
if the learning order is uniformly at random.

Word Objects #D
“Circle” ● △ □ 2
“Triangle” ○ ▲ □ 2
“Square” ○ △ ■ 2
“Star” ○ △ ★ 2
“Diamond” ○ △ ◆ 2

Figure 2: A schematic word-object co-occurrence ma-
trix in the case with random learning order and k = 2
distractors shared by all the words systematically.

Correlation in word-to-word relationship

Mixture of two groups of words

As the previous analysis suggests that the relative fre-
quency learning of a one-to-one word-object map in the
cross-situational setting is as slow as independent learn-
ing even by incorporating ME. This result is largely due
to the statistical structure of the word-word relationship
– in the previous analysis, each word has k other ran-
dom words as distractors. In this section, we consider a

specific class of statistical regularity in the word-word re-
lationship. Specifically, suppose there are two groups of
words: in the one group of words, each word has no dis-
tractor, and in the other group of words, each word has
k distractors, whose referring words have no distractor
(Figure 3). Thus, the learner is exposed to a mixture of
two groups of words with and without distractors. Fig-
ure 3 shows a schematic co-occurrence matrix of such
five word-object pairs, in which each of the first group of
words (“Circle” and “Star”) has no distractors, and each
of the other group of words has two distractors whose re-
ferring words are the members of the first group.

Although this statistical regularity in word-to-word
relationships looks similar overall to the previous case
(compare Figure 2 and 3), this new case is substantially
different from the previous cases. The key observation
here is that no distractor words have any distractors
against themselves. Thus, the first group of words (po-
tential distractors to the other group of words) would
be learned via fast mapping, and the other group would
be learned also via fast mapping after their distractors
are learned before their learning. The learning timing of
these two groups are probabilistic, but the first group of
words are expected to be learned earlier on average than
the other group.

Word Objects #D
“Circle” ● 0
“Triangle” ○ ▲ ☆ 2
“Square” ○ ■ ☆ 2
“Star” ★ 0
“Diamond” ○ ☆ ◆ 2

Figure 3: A schematic word-object co-occurrence matrix
in the case with the two groups of words. Each of the
first group of words (“Circle” and “Star”) has no distrac-
tors, and each of the second group of words (“Triangle”,
“Square” and “Diamond”) has k = 2 distractors, whose
referring words (“Circle” and “Star”) has no distractors.

Efficiency analysis

Specifically, suppose that each word in the group with
distractors is learned at the time step t by the probability

pt = (qt + qtp)pt−1,

where p is the probability to learn this word with dis-
tractors at each step, and qt is the probability to learn
it without distractor at step t, or is said the probability
for the learning at step t to be fast mapping. By set-
ting

∑∞
t=1(1 − p)pt−1t = T1 and qt = 0 for any t, this

learning time with k > 0 distractors is identified with
the previous analysis.
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Suppose that there are n0 words without distractors,
and t0 < t samples out of the all t−1 samples are drawn
from this group of words with equal probability. Then,
according to Hidaka (2014), as n0 →∞, the probability
to learn the m words of this group with the t0 samples
asymptotically approaches to the binomial distribution

n0∑
m=0

(
n0

m

)
rmt rt

n0−m

where rt := 1− (1− 1/n0)t0 . If each word in the group
with distractors is associated to k distractive words uni-
formly at random, the fast-mapping probability is

qt =

n0∑
m=0

(
n0

m

)
rmt rt

n0−m
(
m

k

)
/

(
n0

k

)
.

As the hypergeometric distribution1 approaches the bi-
nomial distribution as n0 →∞, we obtain∥∥∥∥∥

(
m

k

)
/

(
n0

k

)
−
(
m

k

)(
k

n0

)k (
1− k

n0

)m−k
∥∥∥∥∥→ 0.

Using these asymptotic distributions for n0 → ∞, we
obtain the binomial distribution

qt →
n0!

k!(n0 − k)!

(
rt
k

n0

)k (
1− rt

k

n0

)n0−k

.

With further transform for a sufficiently large n0, we
obtain the fast-mapping probability to be

qt ≈
(
t0
n0

)k

.

This expression thus implies that the probability qt of
learning via fast mapping with k distractors approaches
1, if the sample of the words without distractors t0 is
comparable to the number of such words n0.

Implications

Suppose the number of words without distractors is n0 =
γn with a certain constant 0 < γ < 1, and the number of
samples t0 = γt. In this case, as t0/n0 = t/n, after the
point when the number of samples is comparable with
the number of words, this learning is sufficiently treated
as the fast mapping. Thus, the learning time of a word
with k distractors asymptotically approaches the speed
of fast-mapping after some constant number of samples
for each word. In other words, in the long run, any
words would be considered learned in the fast-mapping
manner, if any distractor word has no distractors against
itself.

1Gives the probability of k successes in n draws, from a
population of size N with exactly K successes. Thus, similar
to the binomial distribution, but drawing without replace-
ment.

This analytic implication is striking in that cross-
situational learning on the basis of relative frequency,
which itself is as slow as independent learning with a
random word-word relationship, can become as efficient
as fast-mapping, up to a constant time per word. At the
very least, this analysis implies that the nature of the
word-to-word relationships is a critical factor in deter-
mining the efficiency of relative-frequency based cross-
situational learning.

Discussion

In this paper, we studied cross-situational word learn-
ing from a theoretical perspective as the formation of a
one-to-one word-object map. Our formulation of cross-
situational learning is defined as learning on the basis of
the relative frequency of objects for each word, which
is a more realistic alternative model than eliminative
learning, a model analyzed in past studies (Blythe et
al., 2010, 2016) that is anyhow a special case of rela-
tive frequency learning. Thus, our analysis of relative
frequency learning is both more general and more re-
alistic than previously-proposed frameworks. Our anal-
ysis shows that its total learning time depends on the
minimal difference between the most frequent and the
second-most frequent objects among all the words, and
that it is quite slow.

Given that relative frequency learning alone is ineffi-
cient, we next analyzed the case when the learner applies
the lexical constraint that no two referents are associated
to a single word. This principle of mutual exclusivity
(ME) has been hypothesized to be an important means
of reducing ambiguity for children learning language
(Markman & Wachtel, 1988; Markman, 1990, 1992), and
empirical work has found that both children (Golinkoff et
al., 1992; Halberda, 2003; Markman, Wasow, & Hansen,
2003) and adults in cross-situational word learning ex-
periments (Yurovsky & Yu, 2008; Kachergis et al., 2012)
show a preference for learning mappings consistent with
ME. Using ME, a word can be learned via fast mapping
(learned on its first sample), if all the distracting words
appearing with it are already learned. However, the ef-
fect of ME on the average learning time is quite limited
– the same (up to a constant multiplier) as that of in-
dependent relative frequency learning, if the distractors
for each word are distributed uniformly. In summary,
this analysis suggests that the order in which words are
learned is related to the statistical nature of the word-
to-word relationship–i.e., the structure among the co-
occurring distractors.

Therefore, we finally analyzed the case in which a set
of words is composed of two word groups: in one group,
each word has no distractors, and in the other group
each word has k distractors, which are the words with-
out any distractors. Here, it is not just a mixture of
two types of words, but the distracting words have no
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distractors to themselves, and thus they are likely to
be learned earlier than the other group. Thus, in this
schematic word structure, the expected learning order is
correlated to the number of distractors for the group of
words. We hypothesize that, with this statistical reg-
ularity, relative frequency learning can be as efficient
as learning via fast-mapping, which has been observed
in young children (Mervis & Bertrand, 1994; Gershkoff-
Stowe & Hahn, 2007). Our analysis suggests that this
hypothesis is supported: the learning time is comparable
with that of fast mapping learning up to a constant num-
ber of samples per word, when a certain ratio of words
has no distractors. We expect that this analytic result
can be extended to a more general case, such that there
are multiple groups with different numbers of distractors
up to k and a group of words with k distractors that has
no distractors which have k or more distractors against
themselves.

In summary, we have analyzed a more general and
more realistic class of word learning models, relative fre-
quency learning. Although we showed that learning in
this more general framework can be quite slow, we then
examined learning under assumptions of mutual exclu-
sivity and word-to-word correlations that might more
closely approximate learning situations in the natural
language environment. By modifying situations to in-
clude realistic variants of these two factors, we showed
that learning a full-sized vocabulary could be accom-
plished on a realistic timescale. Although this work is
preliminary, the analytical techniques employed here can
be applied to other, yet more realistic cross-situational
learning schemes, incorporating better approximations
of the language environment, of the problem faced by
the learner, and of the biases employed by the learner.
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