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Spatially self-organized resilient networks

by a distributed cooperative mechanism
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Abstract

The robustness of connectivity and the efficiency of paths are incompatible in many

real networks. We propose a self-organization mechanism for incrementally gener-

ating onion-like networks with positive degree-degree correlations whose robustness

is nearly optimal. As a spatial extension of the generation model based on coop-

erative copying and adding shortcut, we show that the growing networks become

more robust and efficient through enhancing the onion-like topological structure

on a space. The reasonable constraint for locating nodes on the perimeter in typ-

ical surface growth as a self-propagation does not affect these properties of the

tolerance and the path length. Moreover, the robustness can be recovered in the

random growth damaged by insistent sequential attacks even without any remedial

measures.
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1 Introduction

In modern society, our daily activities depend on energy supply, communi-

cation, transportation, economic, and ecological networks, however their in-

frastructure systems are complex and not constructed by a central control.

Unfortunately, natural and man-made disasters occur at many locations in

the world, sometimes they bring to the crises of such network infrastructures.

For the improvements with robust connectivity, it is expected to study the ad-

mirable self-organizations appeared in natural and social systems [1]. In par-

ticular, several fundamental mechanisms: preferential attachment [2], copying

[3,4], survival [5,6,7], subdivision (fragmentation) [8,9,10,11,12,13], or aggre-

gation [13,14] are attractive for generating networks in the interdisciplinary

research fields of physics, biology, sociology, and computer science.

With the break of complex network science in the beginning of 21st century, it

is well known that in many social, technological, and biological networks there

exists a common scale-free (SF) structure whose power-law degree distribution

is generated by the preferential attachment [2] likened to “rich-get-richer”

rule. The SF networks have the efficient small-world (SW) property [15] that

the path length counted by the hops through minimum intermediate nodes

between any two nodes is short even for a large network size, however they also

have an extreme vulnerability against intentional attacks in spite of having the

tolerance of connectivity against random failures [16]. The vulnerability comes

from a few existing of large degree hub nodes in a power-law distribution. Thus,

the efficiency of path and the robustness of connectivity are incompatible in

many real networks, such as Internet, power-grids, airline networks, metabolic

networks, and so on. If we do not persist the generation mechanism of real
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networks, we may find other more desirable mechanism to maintain both the

robustness and the efficiency.

Since the natural design methods are not limited to only the selfish rule for

a good network in efficiency, scalability, stability, adaptivity, or other criteria,

we consider a random copying process to generate complex networks as one of

other candidates for the design of future network infrastructure. We take into

account self-propagation in maintaining the robust network structure without

degrading the communication or transportation performance in the growth.

Although the duplication process has been so far considered to be fundamental

in a model of protein-protein interaction networks [3,4], its generation mech-

anism with some modifications may be applied to a self-organized design of

social and/or technological networks in urban planning, civil engineering, or

information system science.

On the other hand, by numerical and theoretical analysis, it has been shown

that [17,18,19] onion-like topological structure with positive degree-degree cor-

relations gives the optimal robustness against targeted attacks to hub nodes

in an SF network. For any degree distribution, the onion-like topology con-

sists of a core of highly connected nodes hierarchically surrounded by rings of

nodes with decreasing degree. In a related generation method in a family of

SF networks, a deterministic model called as mandala network that consist of

recurrently expanded intra- and inner-connections of ringed nodes has been

studied [20]; the robustness is improved by rewiring or adding links applied

to the outmost two rings of nodes from the core of connected hub nodes. Fur-

thermore, an efficient rewiring algorithm has been developed for generating

a network of onion-like topology with the nearly optimal robustness under

a given degree distribution [21]. However, these constructions are based on
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swapping endpoints of randomly chosen two links [17,18], expanding the rings

by simultaneously adding ni = 2ni−1 nodes for the i-th iterations [20], and

entirely rewiring of links [21] like a configuration model [22], an incremental

generation method was not found for the networks with onion-like topology.

Recently, an incrementally growing method of such networks with onion-like

topology has been proposed [23] as a modification of the duplication-divergence

(D-D) model [3,4] in enhancing the degree-degree correlations.

In this paper, we focus on a self-organized design for infrastructural communi-

cation and transportation network systems on a space, rather than the detail

technologies and facilities. In particular, we consider a spatial growth of net-

work with the robust onion-like topology. Although there are many types of

failures and attacks, e.g. locally spreading damages in a disaster, this paper

treats typical random and targeted removal of nodes for investigating the fun-

damental property of robustness. Instead, we take notice of the uncertainty:

whether the robust structure can be maintained or not in a spatial growing of

network, because the embedding on a space imposes some kind of constraints

on the construction of network topology. The organization of this paper is as

follows. In Sec. 2, we introduce a biologically inspired basic model [23] for gen-

erating onion-like topological structure with strong robustness. Without loss

of the robust onion-like topology, we extend it to spatial networks according to

surface growth. Such growth gives a hint for finding plausible self-propagation

mechanism in distributed network systems. In Sec. 3, we show good properties

for the robustness of connectivity and the efficiency of path on the growing

networks. In particular, it is attractive that the reasonable constraint on a

contact area of surface for locating nodes in the growth does not affect these

properties of robustness and efficiency. Moreover, we show the resilient connec-
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tivity. Even without any remedial measures, the robustness can be recovered

in the growth damaged by sequential attacks. Resilience [24] is an important

concept to heal over, repair, and recover the performance from a damaged

system, the recovery of robustness will give a first step to develop resilient

network systems. Some strategies for the resilient networks are discussed par-

ticularly in interdependent networks [25,26] recently. In Sec. 4, we summarize

these results, and mention several issues to make a more resilient network

system.

2 Spatially growing onion-like networks

2.1 Basic generation procedures

This subsection introduces a basic model of incrementally growing networks

with onion-like topology [23]. In the next subsection, we extend it to a spatial

model and explain how to locate a node on a space.

In the conventional D-D model [3,4], as the duplication process, a new node

added per time step links to connected neighbor nodes of a randomly cho-

sen node. Then deletion of the duplication links occurs with probability δ.

We modify the duplication process by non-trivial discovering ideas; the differ-

ences of our proposed network [23] from the D-D model are the adding of a

mutual link between new and randomly chosen nodes, and the simultaneous

progress of copying and adding shortcut links at a time-interval to enhance the

onion-like topological structure. We call the combination of a mutual link and

duplication links as copying. Shortcut means an analogy to random connec-

tions in the SW model [15]. The outline of network generation consists of (1)

5



At each time step, a new node is added at a position on a square lattice. (2)

As the copying process, the new node stochastically links to connected neigh-

bor nodes of a chosen node limited on the perimeter (surface) of a spatially

growing network. (3) In order to enhance the robustness of connectivity, we

consider having positive degree-degree correlations in the copying and adding

of shortcut links. These procedures are summarized as follows.

Step 0 Set an initial configuration of connected N0 nodes.

Step 1 At each time step t = 1, 2, . . ., a new node is added on a space. As

shown to the topological structure in Fig. 1(a), the new node i connects

to a randomly chosen node and to the neighbor nodes j with a probability

(1− δ)× p [21],

p
def
=

1

1 + a | ki − kj |
, (1)

where δ is a rate of link deletion, a ≥ 0 is a parameter, and ki and kj denote

the degrees of nodes i and j. Since the linking is a stochastic process for

the new node i, unknown ki in Eq.(1) is anticipatorily set as (1 − δ)× the

degree of the chosen node.

Step 2 Moreover, at every time-interval IT , shortcut links until the number

pscM(t) are added between randomly chosen nodes i and j according to

the probability of Eq.(1) in prohibiting self-loops at a node and duplicate

connections between two nodes 1 . Here, psc is a rate of adding shortcut

links, M(t) denotes the number of links in the network at that time t =

IT, 2IT, 3IT, . . ., and IT is defined by time steps greater than one.

Step 3 The above processes in Steps 1 and 2 are repeated up to a given size

N for N(t) = t+N0.

1 In the prohibitive case, selections of other nodes are tried in the same way.
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deletion

randomly
chosen

+ mutual link

new

j

i

j’

(a) Copying process

X

(b) Candidates of node’s location

Fig. 1. Basic topological and spatial processes. (a) Thick black and gray lines show

the generated links by the copying process. Then deletion of dashed line occurs

with probability δ × p. Thin lines show the already existing links. We remark that

such a bypath of nodes j’-i-j is created for the path of nodes j’-chosen-j. (b) Open

circles are selectable nodes, but one with cross mark is not. Shaded sites show the

perimeter as inserted locations of a new node.

We emphasize the following effects of copying and shortcut on the robustness.

• Local proxy function: by copying to make bypaths via another access point

of new node (see Fig. 1(a)) as a duplexing and the accumulated multiplexing

via other new nodes in the growth

• Complementary function: by adding shortcut links especially between small

degree (homophily) nodes to enhance the robustness

Note that the local redundancy with bypaths is often used in distributed

computer communication systems. Our generation method is based on a co-

operation mechanism that consists of the above functions and the linking of

similar degree nodes as homophily. Each part constructed by the copying and

adding shortcut links helps each other with the division of roles to be a ro-

bust network in taking into account positive degree-degree correlations. More

precisely, we explain the roles as follows. Since the double random selections
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for the neighbor nodes j contribute to an equivalent effect of preferential at-

tachment [27,28], large degree nodes i and j tend to be connected together

when the chosen node has a large degree. However, such positive correlations

between small degree nodes are weak in the tree-like structure generated by

only the copying process [23]. Thus, in order to make an onion-like topological

structure, we further consider addition of shortcut links [15] between ran-

domly chosen nodes i and j with the probability of Eq.(1). The adding per

a time-interval IT instead of each time step is considered as non-dominant

(complementary) but necessary process for generating an onion-like topology.

It has already been shown that adding some shortcut links between randomly

chosen nodes improves the robustness in the theory for the small-world model

[29] and also in the numerical simulations for geographical networks: ran-

dom Apollonian networks [30], multi-scale quartered networks [31], and link

survival networks [7]. In addition, positive degree-degree correlations tend to

appear in randomly growing networks [32]. Therefore, in our network grown

by the simultaneous progress of the copying and adding shortcut links, it

is expected that the robustness becomes stronger due to enhancing positive

degree-degree correlations for emerging the onion-like topology.

2.2 Spatial networks generated by surface growth with robustness

In this subsection, we explain how to locate a new node in the network ac-

cording to typical models of surface growth.

There exist many complex pattern-formations far from equilibrium in nature

[33] as living open systems. Several models of fractal growing random pattern

have been studied for the growth of biological cell colonies, fluid displacing in
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a porous medium, dendritic solidification, dielectric breakdown, snowflake for-

mation, and bacterial colonies [33,34]. Some most important classes of surface

growth include Diffusion-Limited Aggregation (DLA) [35,36], Invasion Per-

colation (IP) [37], and Eden growth [38], which can be used as a basis for

understanding a wide range of pattern-formation phenomena with disorderly

growth.

Thus, we consider diffusively growing networks on surface with both onion-like

topological and fractal spatial structures. In our network, the position of new

node is determined by DLA, IP, and Eden models on a square lattice. Exactly,

only DLA and IP models at the critical threshold generate a fractal structure.

These models have the following processes [33] and explanations to give a new

insight of the self-organized design of spatial network.

DLA model As an idealization of the irreversible aggregation, the following

process forms a growing diffusive cluster. It is motivated from several phe-

nomena of biological interest for the surface growth with complicated shape,

which corresponds to a distributed local extension of technological or social

network system.

The initial configuration is a single occupied site on a lattice. At each gen-

eration step, the cluster of occupied sites is grown by launching a random

walker from outside of the occupied region, and allowing it to its random

walk path until it reaches a site that is adjacent to the occupied site. The

process is repeated with a new random walker.

IP model It is based on a transport process by the slow displacement of a

wetting fluid in a porous media. The percolation growth corresponds to an

extension in avoiding geographical obstacles engraved by longstanding rains

and winds for the network construction.
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Initially, random numbers or thresholds are assigned to the sites of a lattice.

They represent the capillary pressures for penetrating through the porous

medium or the difficulties (low priorities) to install network connections on

a geographical space. At each generation step, an unoccupied site with the

lowest threshold (smallest random number, highest priority) is selected as

an injection point on the perimeter, and occupied. Such process is repeated.

Eden model It imitates a cell division process, which corresponds to the

most local extension to neighbor space in a simple way.

Starting with an occupied cell (site), an occupied cell on the perimeter of

the cluster is randomly selected with equal probability. One of its nearest

neighbor unoccupied perimeter cell is selected and occupied. The cluster is

grown by adding the selected nearest neighbor at each generation step. Such

process is repeated for a new selection of cell with the division.

As a constraint in the surface growth, the inserted position of new node is

limited on the perimeter of connected cluster. Figure 1(b) shows that the in-

ternal node(s) marked by × can’t be selected, since the only neighbors marked

by © of shaded positions are the candidates. In other words, the selection of

a node is not uniformly at random (u.a.r) in the growing network. However,

the limitation is rather reasonable, since the perimeter is a contact area from

the outer world into the network through the growth. Moreover, although

u.a.r selection is not equivalent to independent one, the perimeter sites can

grow simultaneously in distributed processes on several places. These sites

autonomously perform the processes initiated by diffusive growing, own local

timers corresponded to thresholds 2 , or random numbers. It is an important

2 The threshold may be related to the amount of potential communication or trans-

portation requests which are proportional to a population density.
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(a) DLA Model: δ = 0.3, psc = 0.015

(b) IP Model: δ = 0.3, psc = 0.013

(c) Eden Model: δ = 0.3, psc = 0.009

Fig. 2. (Color online) Growing spatial networks for N(t) = 200, 500, 1000 and 2000

from left to right with arranged scales. Gradually colored node is according to its

degree: 1-3(cyan), 4-6(blue), 7-9(green), 10-12(magenta), and the larger(red).

discussion point in this paper whether the constraint on the surface growth

hardly affect the emergence of an onion-like topological structure.

Typical shapes of the growing spatial networks are shown in Fig. 2. These

models form (a) dendritic, (b) porous, and (c) compact patterns, respectively,

on a square lattice. Large degree (magenta and red) nodes are spontaneously

interspersed in constructing densely connected parts. The rate psc of adding

shortcut links is regulated to be a same condition of the connection density

as 〈k〉 ≈ 5.6 at N = 2000 in all models. We also set initial complete graph

of N0 = 4, IT = 50, and a = 0.3. Since we want to investigate the effect

of the copying process with adding shortcut links on the robustness and the

efficiency, we use a small value of a which is different from 3.0 in the rewiring
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algorithm [21]. Too large value of a restricts linking in the copying process,

only the mutual link may be remained at each time step in the growing. This

point will be mentioned again in subsection 3.1.

Figures 3(a)-(c) show the degree distributions in the onion-like networks ac-

cording to DLA, IP, and Eden models. We remark that the largest degree kmax

is bounded around 20 with the exponential tail for N = 2000 (see Inset). The

load at a node for maintaining links becomes smaller than that in SF net-

works, since there is no huge hubs. We compare Figs. 3(a)-(c) with the result

for the previous generation method of spatial growing networks [23] without

the constraint in the surface growth, in which a new node is located on random

radius between rmin and rmax with a random direction [39] from the position

of a uniformly randomly chosen node in order to make proximity connections

heuristically. Figure 3(d) shows the distribution with slightly larger kmax but

the exponential tail is more clear in the spatial growing networks without the

constraint in the surface growth. The smaller kmax in Fig 3(a)-(c) is probably

caused by the constraint.

We shows the average degree 〈knn〉 of the nearest neighbor nodes of node

with degree k in Fig. 4. The increasing slope represents positive degree-degree

correlations which are necessary to be onion-like topology. The drops in k ≥ 15

are ignorable because of finite-size effect (see the tails of p(k) in Fig. 3). Note

that the case of δ = 0.1 has also positive degree-degree correlations in spite

of the tree-like structure without onion-like topology. From top to bottom

in Fig. 5, we show examples of tree-like and onion-like topological structures

visualized by Pajek [40] in ignoring the spatial positions of nodes on the surface

growth. In particular, from the 2nd row to the bottom for δ = 0.3, 0.5, 0.7,

and 0.9, high degree nodes concentrate on the center area while low degree
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(d) Spatial growing model

Fig. 3. (Color online) Degree distribution in the networks according to (a) DLA, (b)

IP, (c) Eden, and (d) Spatial growing models for N = 2000 with 〈k〉 ≈ 5.6. Inset

shows the exponential decay of tail part approximated by a straight line in semi-log

plot. These results are averaged over 100 samples.

nodes surround them.

3 Robustness and efficiency on the growing networks

We investigate the robustness against random failures and malicious attacks

in subsection 3.1, the growing behavior in subsection 3.2, and the efficiency

of path in subsection 3.3. In the malicious attack, nodes are removed in de-

creasing order of the current degrees through the recalculations [41]. We also

discuss the resilience against sequential attacks in subsection 3.4.
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Fig. 4. (Color online) Distribution of the average degree 〈knn〉 of the nearest neighbor

nodes of node with degree k in the networks according to (a) DLA, (b) IP, and (c)

Eden models from left to right for N = 2000 with 〈k〉 ≈ 5.6. Positive degree-degree

correlations appear except the tails with finite-size effect in all cases. These results

are averaged over 100 samples.

3.1 Robustness of connectivity on the growing networks

We consider following two measures for the robustness of connectivity and the

degree-degree correlation in a network. For the robustness, we investigate an

index [17,18,21]:

R =
1

N

1∑

q=1/N

S(q), (2)

where S(q) denotes the number of nodes in the giant component (GC: largest

connected cluster) after removing qN nodes, q is a fraction of removed nodes

by random failures or malicious attacks. The range of R is [0, 0.5], where R = 0

corresponds to a completely disconnected network consisting of isolated nodes,

and R = 0.5 corresponds to the most robust network. As a measure of degree-

degree correlation, we investigate the assortativity [42,43]

r =
S1Se − S2

2

S1S3 − S2
2

,
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(a) DLA model (b) IP model (c) Eden model

Fig. 5. Visualization of the topological structures of the networks according to (a)

DLA, (b) IP, and (c) Eden models from left to right. A tree-like structure appears at

the top for δ = 0.1, in otherwise onion-like structures with a core area of high degree

nodes surrounded by low degree nodes appear from the 2nd row to the bottom for

δ = 0.3, 0.5, 0.7 and 0.9. The node size is proportional to its degree.

where S1 =
∑

i ki, S2 =
∑

i k
2

i S3 =
∑

i k
3

i , Se =
∑

ij Aijkikj, Aij denotes

the i-j element of the adjacency matrix. The range of r is [−1, 1] as the

Pearson correlation coefficient for degrees. Nodes with similar degrees tend to
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be connected as r > 0 is larger. Note that onion structure and assortativeness

with a large r > 0 are distinct properties [17]: Not all assortative networks

have onion structure but all onion networks are assortative [21]. Therefore,

the value of r > 0 is relatively large in an onion-like network.

Table 1 shows the average values over 100 samples for our networks with

a = 0.3 in the 4-6th columns and the corresponding rewired version recon-

structed by Wu and Holme’s algorithm [21] with a = 3.0 in the 7-9th columns.

R:failures andR:attacks denote the robustness index defined by Eq. (2) against

random failures and malicious attacks, respectively. Note that the rate psc of

adding shortcut links is regulated to be 〈k〉 ≈ 5.6 with a same connection

density. We remark that, with higher values of R, the robustness is improved

from the tree-like network generated by only the copying process for δ = 0.1 to

the networks for δ = 0.3 ∼ 0.9. These networks have an onion-like topological

structure with high assortativity r, since the values of R are slightly smaller

but almost coincide with R = 0.436 ∼ 0.444 against random failures and

R = 0.307 ∼ 0.326 against malicious attacks in the rewired version [21] to be

an onion-like network with the nearly optimal robustness. Although the assor-

tativity r in the rewired version becomes larger in all cases, the improvement

on the robustness from our networks is small. Table 2 shows the results for

comparison between the cases of a = 0.3 and a = 3.0. In order to be 〈k〉 ≈ 5.6

in the case of a = 3.0, larger rates psc are necessary especially for large rates

δ of deletion. The setting of psc means that the effect of the copying process

becomes very weak within limited strong degree-degree correlations, because

almost all of duplication links are failed as deletion at each time step as similar

to the case of δ = 0.9. Not surprisingly, a larger assortativity r is obtained in

Table 2 because of stronger degree-degree correlations by larger a than that
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Fig. 6. (Color online) Robustness against (a)(c) malicious attacks and (b)(d) random

failures in the networks according to DLA model for N = 2000 with 〈k〉 ≈ 5.6.

The top:(a)(b) shows the relative size S(q)/N of the giant component (GC) versus

fraction q of removed nodes, and the bottom:(c)(d) shows the average size 〈s(q)〉

of isolated clusters except the GC. Similar graphs are obtained for IP and Eden

models.

for each corresponding case in Table 1. However, the value of robustness index

R in Table 2 is at a same level as that for each corresponding case in Table

1. There are no notable differences among these results for DLA, IP, Eden

models from top to bottom in both Tables. Thus, the setting of a = 0.3 does

not lose the intrinsic property for the robustness in our networks, moreover

the effect of the copying process remains.

In the following until the end of next section, we set a = 0.3 unless otherwise

noted. Figure 6 shows typical results of the robustness. Inset (cyan line) shows

17



 0

 0.1

 0.2

 0.3

 0.4

 0  1000  2000

r

N(t)

δ = 0.1
δ = 0.3, psc = 0.015
δ = 0.5, psc = 0.026
δ = 0.7, psc = 0.035
δ = 0.9, psc = 0.042

 1

 2

 3

 4

 5

 6

 7

 0  1000  2000

<
k>

N(t)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000

R

N(t)

 0

 0.1

 0.2

 0.3

 0.4

 0  1000  2000

r

N(t)

δ = 0.1
δ = 0.3, psc = 0.013
δ = 0.5, psc = 0.025
δ = 0.7, psc = 0.035
δ = 0.9, psc = 0.042

 1

 2

 3

 4

 5

 6

 7

 0  1000  2000

<
k>

N(t)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000

R

N(t)

 0

 0.1

 0.2

 0.3

 0.4

 0  1000  2000

r

N(t)

δ = 0.1
δ = 0.3, psc = 0.009
δ = 0.5, psc = 0.022
δ = 0.7, psc = 0.034
δ = 0.9, psc = 0.042

 1

 2

 3

 4

 5

 6

 7

 0  1000  2000

<
k>

N(t)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000

R
N(t)

Fig. 7. (Color online) Time-courses of assortativity r, average degree 〈k〉, robust-

ness index R against the malicious attacks in the growing networks according to

(top) DLA, (middle) IP, (bottom) Eden models for the size N(t). These results are

averaged over 100 samples.

the vulnerability in the case of tree-like networks for δ = 0.1. Note that the

value of R defined by Eq.(2) corresponds to the area under the line of S(q)/N .

The peak of 〈s〉 corresponds to the critical point qc at the breaking of the GC

(dropping point of S(q)/N). Although a larger qc indicates a more robust

network, R is generally a more precise index than qc. Because different values

of R can exist for a same value of qc depending on the steepness of dropping

curve of S(q)/N .
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3.2 Growing behavior

We investigate the growing behavior of our proposed networks. In Fig. 7 left,

middle, and right, for the time-courses of assortativity r, average degree 〈k〉,

and robustness index R, we obtain similar results in the networks according

to DLA, IP, and Eden models. They are consistent with the behavior in the

spatially growing model [23] without the constraint in the surface growth. As

shown at the left of Fig. 7 top, middle, and bottom, r is almost constant

through the growing except the cases of δ = 0.7 and 0.9 denoted by dashed

(blue) and dotted (magenta) lines. At the middle column of Fig. 7 top, middle,

and bottom, 〈k〉 increases for the the growing size N(t) = t + 4. The slope

(increasing rate) becomes steeper as the deletion rate δ is larger. At the right

of Fig. 7 top, middle, and bottom, while R also increases in the simultaneous

progress of the copying and adding shortcut links, it decreases in the cases

of δ = 0.1 without shortcuts in the tree-like network denoted by the dashed

(cyan) lines. In general, larger 〈k〉 with more links tends to lead to higher

robustness. Indeed, the increasing of 〈k〉 corresponds to the increasing of R in

Fig. 7 top, middle, and bottom. Note that the decrease of R in the first stage

of small N(t) is due to the tree-like structure before shaping an onion-like

topological structure. Thus, our proposed networks become more robust in

the growth with the enhancement of onion-like topology. We remark that the

case of δ = 0.1 seems to be good with high R in the first stage of small N(t)

while the cases of δ = 0.7 and 0.9 (blue and magenta lines) seem to be good

with larger increasing around the last stage of large N(t). The case of δ = 0.3

(red line) is comparatively stable with smaller fluctuation in the entire stage.
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Fig. 8. (Color online) Rank plot of link lengths measured by the Euclidean distance

in the networks for N = 2000 with 〈k〉 ≈ 5.6. These results are averaged over 100

samples.

3.3 Efficiency of path on the growing networks

Next, we investigate the communication or transportation efficiency in the

growing networks. Obviously, shorter links and paths are better with both

less construction and maintenance costs. Figure 8 shows the rank plot of link

lengths. The order of shorter links is (c) Eden model < (b) IP model < (a)

DLA model < (d) Spatial growing model [23] without the constraint in the

surface growth, however the difference between (b) and (a) is very small. This

order of link lengths is reasonable because Eden model tends to be compact

while IP model tends to percolate making some holes as porous structure and

DLA model tends to spread widely along dendritic edges. The tops of Figs. 9,

10, and 11 show the average path length 〈Lij〉 counted by hops between two
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Fig. 9. (Color online) Average path length 〈Lij〉 counted by hops (top:(a)(b)) and

the average distance 〈Dij〉 measured by Euclidean distance (bottom:(c)(d)) in the

growing networks according to DLA model. The left:(a)(c) and right:(b)(d) show

the results for the minimum hop paths and the shortest distance paths between two

nodes, respectively. These results are averaged over 100 samples.

nodes on the paths of (left) minimum hop and (right) shortest distance. We

obtain in the tree-like networks (cyan line) monotone increasing curves, while

in the onion-like networks (other color lines) convex curves with up-down,

whose parts in decreasing the number of hops on both paths are related to

the increasing of 〈k〉 with more links as shown at the middle column of Fig.

7. It is remarkable that almost constant path length even for the growing size

is better than O(logN) of the SW property.
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Fig. 10. (Color online) Average path length 〈Lij〉 counted by hops (top:(a)(b)) and

the distance 〈Dij〉 measured by Euclidean distance (bottom:(c)(d)) in the growing

networks according to IP model. The left:(a)(c) and right:(b)(d) show the results

for the minimum hop paths and the shortest distance paths between two nodes,

respectively. These results are averaged over 100 samples.

The bottoms of Figs. 9, 10, and 11 show the average path distance 〈Dij〉

measured by the sum of link lengths as Euclidean distances on the paths of

(left) minimum hop and (right) shortest distance. We remark that evident

difference does not appear in 〈Dij〉 for varying δ in each of Figs. 9, 10, and 11

except the tree-like networks for δ = 0.1 (cyan line).

The orders of efficient shorter paths are Fig. 11: Eden model < Fig. 10: IP

model < Fig. 9: DLA model in the measures of both 〈Lij〉 and 〈Dij〉, however
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Fig. 11. (Color online) Average path length 〈Lij〉 counted by hops (top:(a)(b)) and

the distance 〈Dij〉 measured by Euclidean distance (bottom:(c)(d)) in the growing

network according to Eden model. The left:(a)(c) and right:(b)(d) show the results

for the minimum hop paths and the shortest distance paths between two nodes,

respectively. These results are averaged over 100 samples.

the difference among them is small especially in 〈Lij〉 for δ = 0.3 ∼ 0.9. In

addition, all of them in Figs. 9, 10, and 11 slightly deviate from straight lines

of O(logN) in semi-log plot as the SW property, although the SW property

is obtained in the spatial growing networks [23] without the constraint in

the surface growth. Thus, our proposed networks are efficient because the

increasing rates of the average path lengths and distances are suppressed in

the growing size. Note that the length 〈Lij〉 on the minimum hop path (left)

is shorter than that on the shortest distance path (right), while the distance
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〈Dij〉 on the minimum hop path (left) is longer than that on the shortest

distance path (right), in each figure.

3.4 Resilient connectivity against sequential attacks

Through this paper, we discuss dynamics of network configuration itself at

the most basic infrastructure for communication or transportation systems,

in which temporal and/or fixed (corresponding to wireless and/or wired) con-

nections are possible depending on the time-scale for changing the connection

structure in a network. The quick change results in ad hoc networks, while

the slow change is treated as an incremental modification of network. Both

cases and the mixed one are not excluded, however we have assumed that each

node or link is persisted once it is added unless removed by failures or attacks

to simplify the discussion. While other dynamics of information flows, rumor

spreading, opinion formation, synchronization, or logistics on a network, is

significant for applications in wireless, sensor, mobile communication systems

or autonomous transportation systems, in which operation protocols for birth

and death of communication or transportation request, routing, avoidance of

congestion, task allocation, queuing, awareness of location, monitoring of sys-

tem’s states or conditions, and so on [44], are necessary. We have pointed out

the issues of rethinking packet generation according to population, decentral-

ized routing strategy, and link hierarchy among long and short ranges with

high and low transfer speeds [45] in the state-of-the-art network technologies.

In addition, although several models have been proposed for the coevolution of

network formation and opinion spreading [46,47] and for the coupled dynam-

ics with network evolution and packet flows [6,7,48,49,50], they are beyond
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our current scope because of more complex dynamics between network gen-

eration and information flow in various protocols, device technologies, users,

and situations of utilization.
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Fig. 12. (Color online) Time-courses of assortativity r, average degree 〈k〉, robustness

index R against the malicious attacks in the networks damaged by sequential attacks

at every 10 time steps. These results are averaged over 100 samples according to

(top) DLA, (middle) IP, (bottom) Eden models.

On the other hand, we consider an interaction of network generation with

a change of environment, especially in sequential attacks. We show that our

proposed networks have resilient connectivity even in the previously described

growing scheme of constant δ, psc, and IT , without any remedial measures for

insistent attacks. Figure 12 shows the time-courses of r, 〈k〉, and R against

the further attacks in the networks damaged by sequential attacks. We set

the same values of δ, psc, and IT in the previous subsection, and the largest

25



degree node with its links is removed through the recalculation of degrees at

every 10 time steps. At the left of Fig. 12 top, middle, and bottom for DLA,

IP, and Eden models, respectively, the damaged networks by the sequential

attacks have positive degree-degree correlations around r ≈ 0.2 somehow or

other. At the middle and right of Fig. 12, the robustness is recovered with

slowly increasing 〈k〉, since R is decreasing in the first stage of small N(t) but

increasing after a time. We obtain similar behavior in these spatial growth

models as shown in Fig. 12 from top to bottom, and the case of δ = 0.3

(red line) with the stronger effect of the copying is better than other cases of

δ = 0.5, 0.7, and 0.9 (green, blue, and magenta lines). In particular, in the

case of δ = 0.9 (magenta line), R does not increase until N(t) ≈ 500 due

to the insistent attacks. All values of r, 〈k〉, and R in Fig. 12 are smaller,

as compared with the results for the pure growing networks in Fig. 7. Thus,

even the damaged networks maintain the robust onion-like topology in the

growing scheme. We remark that in the sequential attacks the robustness is

protected locally by the copying, and enhanced globally in connecting isolated

clusters by adding shortcut links between randomly chosen nodes. Remember

the local proxy and complementary functions in subsection 2.1. When more

severe attacks in shorter interval at every 5 time steps are given, around the

robustness index R ≈ 0.15 ∼ 0.2 against the further attacks, the networks

no longer have an onion-like topological structure because of the assortativity

r ≈ 0.0 or r < 0.0 in this growing scheme of constant δ, psc, and IT without

any remedial measures.
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4 Conclusion

We have proposed a spatial design method of robust and efficient networks

with typical surface growth patterns. It is self-organized through the simul-

taneous progress of the copying and adding shortcut links [23] taking into

account linking homophily to make an onion-like topological structure with

positive degree-degree correlations. For the copying, the selection of node is

not uniformly at random but limited to the neighbors of the perimeter of con-

nected cluster in the growing network on a space. In spite of the constraint

on the surface growth, we have obtained that the robustness against random

failures and malicious attacks is nearly optimal of slightly weaker than the

entirely rewired version [21]. Moreover, the efficiency of path measured in the

hop count is better than O(logN) of the SW property but one measured in

the Euclidean distance slightly degraded from the SW property. In particular,

the growing network becomes more robust and efficient in time-course. How-

ever, we may have to consider a resource allocation problem for the increasing

of 〈k〉 required with more links. On the other hand, we have also found that

there are no huge hubs bounded by an exponential tail of degree distribution,

and that large degree nodes are spontaneously interspersed on a space.

Moreover, we have shown that the robust onion-like topological structure re-

mains even in the random growth damaged by the sequential attacks. When a

node is removed by serious disasters or insistent attacks, more effective strate-

gies than a constant random growth can be considered to repair the damaged

parts. If a new node is added near the removed node as the proxy of it instead

of the random location on a neighbor site on the perimeter in the surface

growth, the network is probably more effectively healed over. If the parame-
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ters of δ, psc, and IT are regulated according to the damages, the network is

recovered to the original level of performance for the communication or the

transportation. These trials will require further study with healing and recov-

ering processes, e.g. we should consider which parts of network have priorities

to prevent spreading damages in topological and spatial importance. In a re-

alistic situation such as disaster or battle-field, resources for the strategies are

limited and should be allocated effectively in the priorities.

In summary, our growing network models suggest that robust and efficient

onion-like topological structure can emerge even when the positions of nodes

are limited in the contact area of the spatial network. In the cooperative

growing mechanism, the local proxy and complementary robust functions by

the copying and adding shortcut links will be useful for temporal evolution of

resilient network and a repair strategy in large-scale disasters or system crises.

However, it is an issue in general what type of constraint for locating nodes

on a space is an obstacle to the emergence of onion-like topology. It may be

related to limited facilities from geographical and economical viewpoints.
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Table 1

Average values over 100 samples in the networks for N = 2000 on the surface growth

according to DLA, IP, and Eden models from top to bottom. The 4-6th columns

show the results for our networks with a = 0.3, and the 7-9th columns show the

results for the corresponding rewired version [21] with a = 3.0 from our networks

with a = 0.3.

DLA our networks with a = 0.3 rewired version with a = 3.0

δ psc 〈k〉 r R:failures R:attacks r R:failures R:attacks

0.1 0.0 5.663790 0.428085 0.11414846 0.08546072 0.570401 0.44257568 0.32097051

0.3 0.015 5.693130 0.306182 0.42286182 0.27909878 0.563234 0.44446583 0.32624905

0.5 0.026 5.683880 0.315288 0.43330392 0.28798839 0.566574 0.44266511 0.32195528

0.7 0.035 5.560350 0.317886 0.43543737 0.28620190 0.568082 0.43890241 0.31470397

0.9 0.042 5.592120 0.321879 0.43776842 0.28822588 0.573602 0.43836274 0.31299371

IP our networks with a = 0.3 rewired version with a = 3.0

δ psc 〈k〉 r R:failures R:attacks r R:failures R:attacks

0.1 0.0 5.980630 0.394308 0.11528832 0.08374447 0.577101 0.44597737 0.32535835

0.3 0.013 5.656150 0.277479 0.41909362 0.27702885 0.561372 0.44345529 0.32521399

0.5 0.025 5.691770 0.289450 0.4337521 0.28823022 0.569636 0.44294242 0.32367072

0.7 0.035 5.616860 0.301741 0.43641043 0.28870629 0.574130 0.44029968 0.31788086

0.9 0.042 5.606670 0.305765 0.43796751 0.28855921 0.571790 0.43886147 0.31492539

Eden our networks with a = 0.3 rewired version with a = 3.0

δ psc 〈k〉 r R:failures R:attacks r R:failures R:attacks

0.1 0.0 6.644020 0.420114 0.19868989 0.11501878 0.600332 0.45091269 0.33193373

0.3 0.009 5.635930 0.304668 0.41034536 0.25781734 0.567774 0.439060744 0.31314427

0.5 0.022 5.648480 0.285373 0.43086621 0.27727353 0.568454 0.43895619 0.31237012

0.7 0.034 5.657810 0.283205 0.43680778 0.28117685 0.572352 0.43777281 0.30982738

0.9 0.042 5.658680 0.290042 0.43891585 0.28344713 0.566763 0.43673314 0.30796406
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Table 2

Average values over 100 samples in the networks for N = 2000 on the surface growth

according to DLA, IP, and Eden models from top to bottom. The 4-6th columns

show the results for comparison between the cases of a = 0.3 and a = 3.0 that is

different parameter setting form Table 1, and the 7-9th columns show the results for

the corresponding rewired version [21] with a = 3.0 from our networks with a = 3.0.

DLA our networks with a = 3.0 rewired version with a = 3.0

δ psc 〈k〉 r R:failures R:attacks r R:failures R:attacks

0.1 0.0 2.834040 0.437167 0.04345627 0.03607689 0.437008 0.32199987 0.18107685

0.3 0.035 5.650160 0.457448 0.43313566 0.2979080 0.583822 0.43888272 0.31681199

0.5 0.039 5.629190 0.457572 0.43389278 0.29740136 0.579910 0.43849948 0.31413023

0.7 0.043 5.594100 0.453034 0.43468667 0.29602458 0.585048 0.43675333 0.31164826

0.9 0.045 5.651210 0.454004 0.43586855 0.29712904 0.582588 0.43772334 0.31261318

IP our networks with a = 3.0 rewired version with a = 3.0

δ psc 〈k〉 r R:failures R:attacks r R:failures R:attacks

0.1 0.0 2.970500 0.400235 0.04522621 0.03565373 0.435406 0.33601715 0.19365666

0.3 0.034 5.635630 0.436601 0.43351504 0.29754534 0.581092 0.43953115 0.31804051

0.5 0.038 5.561670 0.430161 0.43346665 0.29522308 0.582158 0.43758882 0.3138613

0.7 0.043 5.601620 0.430950 0.4351622 0.29589068 0.582668 0.43698282 0.31191742

0.9 0.045 5.662410 0.437168 0.43656923 0.2982953 0.585400 0.43781393 0.31344812

Eden our networks with a = 3.0 rewired version with a = 3.0

δ psc 〈k〉 r R:failures R:attacks r R:failures R:attacks

0.1 0.0 3.167770 0.384913 0.07280454 0.0402646 0.445969 0.35275171 0.19681491

0.3 0.032 5.666700 0.425713 0.43319376 0.29233634 0.580907 0.43759013 0.31193571

0.5 0.037 5.629740 0.422828 0.4342548 0.29071317 0.582505 0.43608627 0.3089480

0.7 0.043 5.663520 0.419765 0.43617703 0.29168745 0.582820 0.43608627 0.30800115

0.9 0.045 5.664820 0.420572 0.43666387 0.2916347 0.579751 0.43535101 0.30689578
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