
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An architecture for supporting RAS on Linux-based

IoT gateways

Author(s) Pham, Cu; Le, Tan; Lim, Yuto; Tan, Yasuo

Citation
2017 IEEE 6th Global Conference on Consumer

Electronics (GCCE): 1-5

Issue Date 2017-10-24

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/15273

Rights

This is the author's version of the work.

Copyright (C) 2017 IEEE. 2017 IEEE 6th Global

Conference on Consumer Electronics (GCCE), 2017,

1-5. Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

An Architecture for Supporting RAS on
Linux-based IoT Gateways

Cu PHAM, Tan LE, Yuto LIM and Yasuo TAN
School of Information Science, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi City, Ishikawa Prefecture, Japan
{cupham, tanld, ylim, ytan}@jaist.ac.jp

Abstract—With the rapid advances in IoT technologies, the
role of IoT gateways becomes even more important. Therefore,
improving the reliability, availability and serviceability (RAS) of
IoT gateways is crucial. Nowadays, Linux is widely adopted for
core enterprise systems not only because it is a free operating
system but also because it offers advantages in regards to
operational stability. With many Linux distribution targeting
gateways and hubs, a Linux-based IoT gateway is an important
part of the future IoT solutions. In this research, an architecture
to monitor and mine RAS data from Linux-based IoT gateways
is introduced. The proposed framework aims to improve RAS
for IoT gateways by handling critical gateway errors as reported
by the Linux kernel and provide an error database for further
error analysis.

Index Terms—RAS, Reliability, IoT Gateway, Linux

I. INTRODUCTION

IoT gateways are emerging as the key element of connecting
devices to IoT networks and performing critical functions
such as device connectivity, protocol translation, data pro-
cessing, network management and others as described in [1].
Adding IoT gateways with Reliability, Availability, Service-
ability (RAS) features would allow the gateways to protect
data integrity and help them stay available for longer periods
of time.

RAS originated as a hardware-oriented term introduced by
IBM to measure mainframe robustness. However, RAS has
been extended to other general systems, including software.
An overview of RAS is depicted in Fig. 1. Reliability is
crucial in every system, event if it comes at the expense of
system performance. Slowness can be an acceptable trait of a
system, but failure and data loss are unacceptable. Downtime
is equally unacceptable, lending to the obvious importance of
availability. Finally, serviceability contributes to both of the
aforementioned traits, and should help to reduce the ongoing
cost of running the system. Many system vendors understand
the value of RAS and have introduced RAS solutions in their
commercial server offerings. However, there is no vendor-
independent RAS solution for IoT gateways, the lack of which
can have a significant negative impact on the stability of
current and future IoT systems.

In this paper, an architecture that supports RAS features
specially for IoT Gateway is introduced. The proposed archi-
tecture includes: i) a common layer that is independent from
hardware manufacturer to handle critical RAS events/data
(errors affect RAS) of IoT Gateways locally, ii) a scalable

good system design
methodologies

Simplicity and t ime to
repair or maintain a system

detect ing and reparing
hardware faults

Probability that a system is
operat ional at a givent t ime

avoiding, detecting, reparing
hardware faults

Probability that a system will
produce correct outputsIBM

Serviceabil ity

Availabil i ty

Reliabil ity

RAS

R

A

S

enhances by

measures by

measures by

enhances by

enhances by

measures by

is a set of atrributes

was introduced by

stands for

stands for

stards for

Fig. 1. RAS Overview

solution to monitor RAS data from large number of IoT
gateways and iii) an infrastructure ready for future big-data
integration. A prototype which is based on this proposed
architecture was implemented and preliminary results show
that this framework was able to locally collect and handle RAS
events as well as remotely record RAS data from multiple IoT
gateways.

II. BACKGROUND

A. RAS Features

As mentioned above, in practice, there is a lot of commer-
cially available hardware that supports RAS features. All of
these features are bound to specific vendor platforms and are
constrained by Operating System (OS), CPU type, RAS event
types such as CPU temperature and so on. In order to support
RAS for IoT gateways in a unified manner, these limitations
must be accommodated by implementing a common layer
that can be: i) independent from hardware manufacturers, ii)
supports operating systems utilized for gateways, iii) handles
specific RAS events of gateways.

As shown in Fig. 2, an IoT gateway primarily maintains con-
nections, aggregates data and manages IoT devices. To ensure
uninterruptible operation, it is critical to improve the RAS of
the IoT gateway. Presently, besides Unix, Linux has a number
of features to support RAS. Additionally, there are many
Linux distributions with the primary goal of being deployed as
gateways, such as OpenWRT, Tizen, etc. Presently, a number
of implementations for reporting errors from kernel space

MANAGEMENT
SERVER

IoT DEVICE

Store
device
information

Aggreate data
Manage IoT
devices

Mainta in
connections

M e m o r y

CPU

Network
Inter face

IoT GATEWAY

connection path

Fig. 2. IoT Gateway Overview

modules to various user space tools already exist for Linux.
However, in order to achieve a true interoperable solution, the
usage of RAS events reported directly from kernel seems to
be the most promising solution. Some kernel space modules
that are capable of detecting RAS events from critical features
of a gateway are listed as bellow:

• MCE (Machine Check Exception) detects and reports
errors related to CPU (processor, cache errors) and de-
pending on the processor it can also provide information
regarding memory and bus errors [2].

• EDAC (Error Detection and Correction) is a set of Linux
kernel modules for handling hardware-related errors. Its
major focus has been ECC memory error handling, while
also being able to detect and report PCI bus parity errors
[3].

• PCIe AER (Peripheral Component Interconnect Express
Advanced Error Reporting) reports AER errors from PCIe
hardware (such as network interface card) via a kernel
trace event or to console [4].

B. Messaging Technologies

Beside the RAS common layer, a solution to monitor RAS
messages from network of gateways must be considered. There
are two main approaches in messaging technologies:

• A Broker model that utilizes message brokers to decouple
message senders and receivers in order to achieve better
scalability and availability. However, it requires excessive
amount of network communication and in some cases the
broker may become a performance bottleneck.

• A Brokerless model that utilizes direct communication
between senders and receivers. This architecture is ideal
for applications with a need for low latency and/or
high transaction rate as it removes the broker (and one
extra network hop) which can be a potential bottleneck.
However, in real world enterprise environment with hun-

MANAGEMENT SERVER

Applications

IoT GATEWAY

Data Mining
Module

Big Data Supported
Layer

Data Processing
Module

Message
Broker

RAS
Monitor ing

Server

Broker

File System

Graphic User
Inteface

RAS Database

Fast Access Layer

Broker
ConnectorRAS Handler RAS Data

Collector

Network
Inter face

M e m o r y CPU

RAS
Common

Layer

Operat ing
System

Hardware

Kernel modules

MCEEDACPCIe AER

Connection path

RAS handling path

RAS reporting path

Fig. 3. Proposed Architecture

dreds of interconnected elements, this architecture would
quickly become unwieldy and difficult to manage.

III. PROPOSED ARCHITECTURE

The objective of this paper is to introduce a RAS common
layer to enable RAS features for IoT gateways in a hardware
and vendor independent fashion, capable of handling a variety
of RAS data and events related to critical functions of a
gateway. Furthermore, an architecture to remotely collect and
monitor RAS data recorded by the common layer from net-
works of IoT gateways is proposed. By deploying the proposed
architecture, a RAS database can be built for big data analysis
purposes (at the time of writing this paper, there is no such
RAS database). The proposed architecture includes two main
components: i) a RAS Common Layer, ii) a RAS Monitoring
Server and a scalable solution to connect these two main
components using Message Broker as shown in Fig. 3.

A. RAS Common Layer

The RAS common layer will be installed into gateways for
locally collecting, monitoring and handling RAS data reported
by kernel. The overview is illustrated in Fig. 4. It consists of
the following 3 modules:

1) RAS Data Collector (RDC): This module collects logs
generated by kernel modules as input, filters them and classi-
fies hardware events related to critical features of a gateway.
This module only outputs RAS data related to operation
critical hardware of the IoT gateway

IoT GATEWAY

Broker Connector

RAS Handler

RAS Data Collector

Hardware

Operat ing System

Publish message to broker

System
log

(6) Report RAS information to

Message
PublisherKernel Log

Monitor Daemon

RAS
Extractor

Log Monitor
Daemon

RAS Data Classifier

(5) Execute scripts corresponding to

RAS Events
Hanlder

RAS Data
Analyzer

(4) Extract RAS
information from

(2) Report RAS data
t o(1) Collect RAS data

f rom

Kernel

Fig. 4. RAS Common Layer Overview

2) RAS Handler (RH): This module monitors the RAS data
reported by RDC module. From this data it extracts RAS
information. RH is able to understand the root causes and
apply hardware scripts to handle the corresponding errors by
hot-swapping defective components or applying fault tolerance
patterns.

3) Broker Connector (BC): This module works as a mes-
sage producer to create and publish messages reported by RH
to broker.

B. RAS Monitoring Server

The RAS Monitoring Server (RMS) supports two main
modules: i) a fast access layer is responsible for collecting,
storing and reporting RAS information to users or adminis-
trators via a user-friendly interface; ii) a big data layer is
responsible for storing raw data for future applying of big data
techniques to analyze RAS data distribution, predict RAS data
patterns and so on. Information gained from big data analytic
module can be valuable to systems administrators in the future.
The detail design of RMS is illustrated in Fig. 5.

C. Message Broker

Currently, the following message brokers can be used to
fulfill the purpose of the messaging system:

• Kafka is a distributed messaging system providing fast,
highly scalable and redundant messaging through a
publisher-subscriber model. The distributed design of
Kafka has several advantages. First, Kafka allows a
large number of permanent or ad-hoc consumers. Second,
Kafka is highly available and resilient to node failures
and supports automatic recovery. In real world data
systems, these characteristics make Kafka an ideal fit for
communication and integration between components of
large scale data systems.

• RabbitMQ implements the Advanced Message Queuing
Protocol (AMQP) to act as a message broker. RabbitMQ
focuses on the delivery of messages to consumers with
complex routing and per-message delivery guarantees.

MANAGEMENT SERVER

Broker Connector

User/ Administrator

Fast Access Layer

Supports data
for

Store raw
RAS data to

Big Data Supported
Layer

Graphic User
Inteface

Data Processing
Module

Send RAS
messages to

RAS Database

Subcribe message from broker

Message
Consumer

Data Mining
Module

File System

Fig. 5. RAS Monitoring Server Overview

RabbitMQ is more focused on ingesting and persisting
massive streams of updates and ensuring that they are
delivered to consumers in the correct sequence (for a
given partition).

• Apache ActiveMQ is a Java based message broker which
include a Java Message Service (JMS) client. As with
RabbitMQ, the advantage offered by Apache ActiveMQ
is the ingesting and persisting of massive streams of data.

IV. IMPLEMENTATION

To evaluate the proposed architecture, a RAS supported
prototype which includes RAS Common Layer and RAS
Monitoring Server by utilizing Kafka ecosystem for Linux-
based IoT gateway was implemented. The implementation
model is illustrated in Fig. 6.

• RAS Local Monitoring Layer is a combination of ras-
daemon [5] for RAS Data Collector and fluentd [6] as
RAS Handler and Kafka [7] as Server Connector.

• RAS Monitoring Server is a Nodejs server [8] which
includes Kafka module to communicate and exchange
RAS data with clients. Data can be stored in a MongoDB
database [9] in order to be easily accessible via a Graphic
User Interface (GUI) or stored long-term in a Hadoop File
System (HDFS) [10] to be applied data mining techniques
in the feature.

• In order to achieve high scalability, the broker model was
selected for connecting IoT gateway and RAS Monitoring
Server. In this implementation Kafka is the selected
broker model.

V. SIMULATION AND RESULTS

The deployment diagram of this simulation is visualized in
Fig. 7. To verify the prototype system, fake hardware errors
must be generated at the IoT gateway, since it is hard to

MANAGEMENT SERVER

Broker Connector
Broker

IoT GATEWAY

Broker ConnectorRAS Handler RAS Data Collector

Hardware

Operat ing System

Fast Access LayerBig Data Supported
Layer

Consumer RAS
information from

Publish RAS information to

RAS Data ClassifierMessage Publisher

Kernel Log MonitorRAS Extractor

Log Monitor Daemon

RAS Events Handler

RAS Data Analyzer

Linux Kernel

Message Consumer RAS Database

Data Processing Module

Graphic User IntefaceFile System

ka fka

HadoopFS jquerry, chart. js
socket. io

mongonoose

mongodbkafka-node

rasdaemon

rasdaemon

f luentd:
f luent-kafka-plugin

fluentd: exec

f luentd:
rewrite_tag_fi l ter

f luentd: parser

fluentd: in_tail

EDACMCE

Fig. 6. Prototype Implementation Model

produce and replicate real hardware errors without specialized
equipment.

Detail numbers of injected and detected errors are shown
in Fig. 8. The result confirmed that the RAS Common Layer
was not only able to monitor all RAS data reported by the
kernel, but also various type of RAS data. The number of
errors recorded by RAS Monitoring Server is reduced when
the RAS Local Handler is enabled. This is because the RAS
Local Handler disables the faulty hardware and suppresses the
reporting of errors already detected by previous RAS events.

An experiment regarding the time necessary for an error to
propagate through the system was conducted. The time from
when an error was reported by kernel until it was recognized
by RDC module was 73 ms, until it was recognized by RH
module was 1653 ms. It takes a total of 5023 ms for the BC
to sent RAS gateway information to the broker. It takes 27 ms
for the BC at server side to receive the RAS message from the
time it was sent by BC at gateway and 35 ms more to display
the information to user via GUI. The average total time for
one error reporting cycle is about 5085 ms.

A. Limitations

Some limitations of this prototype are listed below:
• Since errors related to PCIe-AER are not able to be

injected, RAS data related to PCIe-AER can not be
simulated.

• Kafka ecosystem is well known for its scalability. How-
ever, an experiment involving a large number of clients
has not yet been conducted.

• HDFS works efficiently for the analysis and transfor-
mation of very large data sets. However, the prototype
can not provide such large data sets (lack of experiment
machines) in order to verify the effectiveness of HDFS.

RAS Monitoring
Server

Nodejs 7.7.2
Mongo 2 .6 .2

Ubuntu 16.04.LTS
Kernel 4 .9 .4

«execution environment»

zookeeper server

kafka broker

Broker

Java 1.8.0_121
Kafka_2.10-0.10.2 .0

Ubuntu 16.04.LTS
Kernel 4 .9 .4

«execution environment»

rasdaemon

fluentd

IoT GATEWAY

ruby 2 .3 .1p112
Ubuntu 16.04.LTS

Kernel 4 .9 .4

«execution environment»

rasdaemon

fluentd

IoT GATEWAY

ruby 2 .3 .1p112
Ubuntu 16.04.LTS

Kernel 4 .9 .4

«execution environment»

Consume RAS
information from

Publish RAS information to

IP: xxx.xxx.174.105
PORT: 3002

IP: xxx.xxx.174.105
PORT: 2181

IP: xxx.xxx.174.105
PORT: 9092

v 0 . 5 . 8

td -agent
v 0 . 1 2 . 3 1

PC: TOSHIBA magnia lite41se bs

IP: xxx.xxx.174.105

PC: TOSHIBA dynabook r731c

IP: xxx.xxx.174.137

v 0 . 5 . 8

td -agent
v 0 . 1 2 . 3 1

Fig. 7. Deployment Model of the Prototype

VI. CONCLUDING REMARKS

The importance of IoT gateways is increasing as they are
responsible for bridging billions of IoT devices to the Internet.
Due to this, improving RAS for IoT gateways is of the utmost
importance. Currently, there are various solutions to support
RAS for commercial server machines. However, there is no
hardware independent layer to support RAS feature of the IoT
gateway and it still lacks an architecture that is capable of
remotely handling RAS data from network of local devices.

This project proposes a complete architecture to monitor and
collect RAS data for Linux-based IoT gateways. The proposed
architecture provides a RAS Common Layer which is able
to monitor various types of RAS data from kernel, support
local RAS handler functions to react to hardware errors and
is able to report RAS information to the monitoring server.
The RAS Monitoring Server is also introduced to allow users/
administrators remotely monitoring RAS features of networks
of IoT gateways. Moreover, the proposed architecture supports
extensible and scalable infrastructure for supporting RAS data
mining in the future by utilizing the Kafka and HadoopFS

Fig. 8. Experiment Result: number of injected errors and detected errors

ecosystem.
Data mining techniques which are used to learn and mine

RAS data for better error patterns recognition should be
extended as future work.

ACKNOWLEDGMENT

This work was partly supported by Toshiba R&D depart-
ment (IoT Technology Center) through the project to improve
reliability for embedded-Linux.

REFERENCES

[1] Common requirements and capabilities of a gateway for Internet of
things applications, Telecommunication standardization sector of ITU,
06/2014.

[2] mcelog. [Online]. Available: http://www.mcelog.org/
[3] EDAC Project. [Online]. Available: http://bluesmoke.sourceforge.net/
[4] T. L. N. Yanmin Zhang, “Enable PCI Express Advanced Error Reporting

in the Kernel,” 2007 Linux Symposium, vol. 2, pp. 297–304, 2007.
[5] rasdaemon. [Online]. Available:

https://github.com/sujithshankar/rasdaemon
[6] fluentd. [Online]. Available: https://api.ai/
[7] kafka. [Online]. Available: https://kafka.apache.org/
[8] Nodejs. [Online]. Available: https://nodejs.org/
[9] MongoDB. [Online]. Available: https://www.mongodb.com/

[10] Hadoop. [Online]. Available: http://hadoop.apache.org/

