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Recursive Matrix Oblivious RAM: An ORAM
construction for constrained storage devices

Steven Gordon, Xinyi Huang, Atsuko Miyaji, Chunhua Su, Karin Sumongkayothin, and Komwut Wipusitwarakun

Abstract—Oblivious Random Access Machine (ORAM) con-
structions can be used to hide a client’s access pattern from a
trusted but curious storage server. The privacy provided comes at
the cost of increasing communication overhead, storage overhead,
and computation overhead of the system. Recursive Matrix-
based ORAM (RM-ORAM) is a new ORAM construction which
is designed for constrained storage space devices. RM-ORAM
significantly reduces the client storage usage by using recursion
while the computational and bandwidth overhead are slightly
increased as a trade-off. However, it can achieve better overall
asymptotic performance compared with other existing ORAM
schemes, e.g. recursive Path ORAM. In this paper, we present the
construction and its theoretical analysis. In addition, we present
how to select the appropriate number of data blocks which are
being downloaded per level of recursion and the appropriate
size of reserved space on the client. We provide theoretical
security and performance analysis, as well as experimental results
to illustrate how RM-ORAM satisfies security requirements
and provides improved performance compared to other ORAM
schemes.

Index Terms—ORAM, secure communication, secure access
pattern

I. Introduction

DESPITE the many benefits and widespread use of cloud
computing, security still remains a major drawback.

Encryption by the client is to ensure data confidentiality at
the cloud service provider, however additional techniques are
needed to allow the full benefits of secure cloud computing.
For example, searchable encryption can be used to search an
encrypted database without revealing the contents. Although
many searchable encryption algorithms have been presented
(e.g. [1]–[4]), it is still possible for an adversary to observe and
analyse the access patterns between client and server [5], [6].
Private information retrieval [7]–[9] can hide access patterns,
but is designed for the client reading (not writing) data on the
server. One method that allows reading and writing, and keeps
both the data and access patterns confidential is Oblivious
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Random Access Machine (ORAM). In this paper, we present
a new ORAM construction called Recursive Matrix ORAM
(RM-ORAM) which uses M-ORAM [10] as its basis. RM-
ORAM can reduce client storage space requirement without
significantly increasing computational overheads.

A. Oblivious RAM

Oblivious RAM [11] was first introduced as a technique
for hiding communication patterns between CPU and memory.
More recently [10], [12], [12]–[27] ORAM has been applied
for networked computing, in particular for a client to access
a server without any disclosures of access pattern or data
being accessed. The key components of an ORAM system are:
storage on the server, storage on the client, and an algorithm
for the client to access the server. We will explain these
components via an example of the client uploading data to
the server.

Suppose the client has N data blocks kept on the server. The
server’s storage, which we refer to as DataORAM, is logically
organised as N fixed sized blocks; and the ORAM client
accesses the blocks using address b j, where j ∈ {1, 2, . . . ,N}.
At the client side, we distinguish between a user and the
ORAM client software acting on behalf of the user. The user
has data of interest di with unique identifier IDi to upload to
the server, where i ∈ {1, 2, . . . ,N}. Both download or upload
operations by the user triggers the ORAM client to perform
an access operation which consists of a series of downloads
and uploads from/to the server. For example, the ORAM client
uploads data with IDi to block b j on the server. The ORAM
client stores a mapping of IDi to block b j in a position map.
When the ORAM client downloads data, it is temporarily
stored locally in a stash.

The detailed design of storage organisation, use of position
map and stash, and the access algorithm distinguishes the
many different ORAM systems [10]–[12], [12]–[25]. They all
aim to achieve the security requirements, while minimising
performance overheads in three areas: bandwidth incurred by
the extra downloads/uploads; storage necessary for client and
server; and computations performed on client and server. A
broad classification of ORAM systems is those that require sig-
nificant client/server computations [11], [12], [12]–[21], [23]–
[25], and those that don’t [10], [22]. We focus on the latter,
which are appropriate for devices with constrained resources.
However such systems require moderate to large client storage
space for the position map and stash. A general approach to
further reduce the client storage space requirements is to store
the position map on the server (in ORAM) and have a second,
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smaller position map on the client. This leads to recursive
ORAM.

B. Recursive Oblivious RAM

Recursive ORAM first appeared in [20]. It reduces the
position map size on a client to O(1) while incurring loga-
rithmic growth of bandwidth overhead according to the size
of ORAM. Contrary to a non-recursive ORAM construction
which has to retain the position map on the client, a recursive
ORAM construction stores most of the position map on the
server. Therefore, server storage may be viewed in two parts
as DataORAM that stores N data blocks, and PosORAM that
stores N’ position map blocks. PosORAM can be divided into
i groups of position map blocks, each group referred to as
Posmapi. The number of groups is one less than the number
of levels of recursion. The recursive operation is explained
with the aid of Figure 1, where the circled numbers in
Figure 1 indicate the order of steps in downloading. Let every
position map block contains m tuples, called pointer tuple.
Each pointer tuple contains a pointer, and the pointers of the
current level are an injective mapping to position map blocks
of the next level of recursion. To download data of interest
from DataORAM, a client looks for the associated pointer
in Posmapi which points to a position map block located
somewhere in Posmapi+1. Then the client downloads that block
and stores it in the storage named stash. The operation will
start from Posmap0 and repeatedly goes on until the data of
interest is downloaded from DataORAM. After finishing the
download, the client uploads blocks back to the server. The
procedure to upload the information depends on which ORAM
algorithm is applied.

C. Related Work

Proposed ORAM algorithms can be classified by their
storage structure—hierarchical [12]–[20], tree [21], [22], [24],
[25], and matrix [10]—which have different trade-offs of
bandwidth, client’s space requirement and computational com-
plexity. Some of these algorithms also define a recursive
construction to reduce the client storage space requirement.

The first ORAM algorithm [11] was introduced in a format
of hierarchical data structure to hide the access pattern between
CPU and memory. A top level of ORAM has smaller capacity
compared to its lower level, and the topmost level is most fre-
quently accessed by the CPU. The recently accessed data will
be put on the topmost level and it is continuously pushed down
to deeper levels if it is not accessed by the CPU in a specific
period of time. To push the information down, the CPU has to
perform obfuscation sorting and merging of the data which are
stored in consecutive levels, and then the merged data will be
written to the next lower level. During an access operation,
to hide the data of interest from the adversary, the CPU
performs dummy scanning of every subsequent level even
though the data of interest has been found. The CPU keeps
only the data of interest, therefore the first ORAM algorithm
requires O(1) for stash buffer but incurs O(log3 N) bandwidth
cost. ORAM revisited by Pinkas et. al [12] and introduced
as an algorithm for hiding the access pattern between client
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Fig. 1: General recursive operation for ORAM

and server. However, some researchers [28] have pointed out
a security flaw in Pinkas’s construction. Partition ORAM or
SSS-ORAM is an altered hierarchical structure ORAM that
was introduced by Stefanov et. al [20]. SSS-ORAM separates
single ORAM of N blocks to

√
N partitions which can be

concurrently accessed via its corresponding stash. Although
SSS-ORAM incurs O(log2 N) bandwidth overhead, which is
less than [11], it requires O(

√
N) blocks in the client.

Binary tree ORAM was introduced by Shi et. al [21].
Similar to hierarchical ORAM, the client uploads the recently
accessed data to the top level (root) of binary tree ORAM and
it will be continually pushed down close to lowest level (leaf)
on the binary tree if it has not been accessed for a period
of time. Unlike hierarchical construction, once the data from
the top level is pushed down to the next lower level, it is
randomly pushed to one of the two nodes (either left or right
child) and dummy data will be written to another node. To
define the location of data of interest, Shi’s ORAM keeps the
information called leaf ID within a client. Leaf ID is unique
for each leaf of binary tree data structure, and a data item is
associated with one of them. The leaf ID tells a client the path
to root on which the associated data is located. Shi’s ORAM
incurs O(N) client storage and O(log2 N) bandwidth cost. Path
ORAM [22] use the leaf ID to identify the path of interest in
the same way as [21]. However, it reduces the computational
complexity by downloading every block within the path to the
client instead of scanning on the server. The leaf ID of the
data of interest is randomly changed after download, and then
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the client will try to upload the data within its stash back to
the server. By using simpler operations and incurring O(log N)
bandwidth cost, Path ORAM has a significant advantage over
hierarchical ORAMs and Shi’s scheme. However, Path ORAM
still requires O(N) blocks on a client to contain a position
map. Therefore the recursion technique introduced in [20] is
applied to Path ORAM which can reduce the client storage
space requirement from O(N) to O(log N) · ω(1) while the
bandwidth cost is increased from O(log N) to O(log2 N).

Hierarchical and binary tree ORAM have common disad-
vantages. System bandwidth overhead depends upon the height
of the ORAM construction which is increasing, according to
the growing size of ORAM. Unlike any existing schemes,
the ORAM of [10] builds upon the matrix data structure
which is called M-ORAM. When the size of ORAM is
growing, the width of the construction is increasing instead
of height. In the same way as the hierarchical and binary tree
ORAM, the bandwidth overhead of M-ORAM is dependent
upon the height of the construction. Therefore, the bandwidth
is constant even though the size of ORAM is varied. The
disadvantage of M-ORAM is it requires N blocks of position
map on the client. [29] outlines an idea for a recursive
construction of M-ORAM, and gives the theoretical analysis
over computation complexity, security, and bandwidth cost.
However, the previous design has some limitations and lacks
experimental results. Hence, in this paper, we present an
improved design, new performance analysis, and results from
the experiments.

D. Our Contribution
This research proposes a new ORAM construction which

dramatically reduces the storage space requirement of a client
but does not significantly increase the overhead of bandwidth
and computation complexity of the system. Our major contri-
butions are:
• Design of RM-ORAM construction. We present the

detailed design of recursive M-ORAM (RM-ORAM) and
show how it can operate in a constrained storage space
environment.

• Optimise bandwidth cost, calculation overhead,
and client’s storage usage. We introduce the ORAM
construction which can achieve O(log N) costs for all
three important factors.

• Efficient storage usage. In our construction, every block
in reserved space can be real information rather than
dummy as used by other ORAM constructions.

• Theoretical security analysis. We give the theoretical
analysis of RM-ORAM security which includes the
randomness of access pattern, probability of secret key
re-use, and the minimum number of blocks downloaded
per level of recursion, demonstrating RM-ORAM can
achieve the same security level as Path ORAM.

• Theoretical performance analysis. We give a proof for
RM-ORAM compared with Path ORAM under the same

TABLE I: Notation

Parameter Description
DataORAM ORAM which contains data block.
PosORAM ORAM which contains position map block.
StashData Stash which contains data block downloaded

between download/upload.
StashPath Stash which contains position map block downloaded

between download/upload.
StashPos Stash of Path ORAM which contains position map block

downloaded between download/upload.
N Size of DataORAM (block unit).
N’ Size of PosORAM (block unit).
Posmapi A group of position map blocks which is accessed at

level i of recursion.
IDi Identifier of data i.
di Content of data i.
pi Content of position map i.
bi Logical address of block i on the server.
h Number of data blocks which are being downloaded

uploaded per level of recursion.
m Number of pointer tuples within each of position

map block.
r Number of levels of recursion.
o Number of old blocks which will be chosen for next

access operation.
l Number of blocks from history list which will be chosen

for next access operation.
s Size of stash data after finish download operation.
c Size of counter.

conditions to define the appropriate number of blocks
that should be downloaded from DataORAM per access
request. In addition, we give the theoretical performance
models of RM-ORAM in three aspects: the storage usage
efficiency, bandwidth cost and computational overhead.

• Experimental analysis. To provide further insights into
RM-ORAM performance and security which are not
given by the theoretical analysis, we have implemented
RM-ORAM and provide experimental analysis of the
random movement of information and size of storage used
for the stash.

E. Paper Organization

The remainder of this paper is structured as follows. Details
of construction and operation of Recursive M-ORAM are
introduced in Section II. Theoretical analysis of RM-ORAM
security is presented in Section III, while the theoretical
analysis of performance is given in Section IV. Experimental
results from our implementation compared with Path ORAM
are given in Section V, and we conclude in Section VI.
Notation used in this paper is summarised in Table I.

II. RecursiveM-ORAM Construction and Operation
RM-ORAM inherits components of matrix-based ORAM,

of which the key concepts are presented in Section II-A. Then
a top-level view of RM-ORAM design is given in Section II-B,
followed by details of the data structures in Section II-C and
access operations in Section II-D.

A. Basic Principle of M-ORAM

A matrix based ORAM (M-ORAM) was introduced by
Gordon et al. [10], where the server storage of N blocks was
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TABLE II: Differentiation of M-ORAM and RM-ORAM

Structure/Operation M-ORAM RM-ORAM
ORAM DataORAM DataORAM, PosORAM
stash h stashes with

fixed size
h stashes for data block with
fixed size, h stashes for position
map block with O(log N) size

position map N O(log N)
Download Download h

data blocks
Download h blocks per down-
load of dlogm(N)e performed
downloads.

Upload Upload random
h data blocks

Upload random h ∗ dlogm(N)e
blocks

organised as a xa-by-yN/a matrix as shown by the DataORAM
structure in Figure 2. The motivation of the structure was to
optimize bandwidth usage during information retrieval. The
client locally stores the address (i.e. row and column) of all
N blocks in a position map. To access (either download or
upload) a block of interest, xa blocks are accessed (i.e. a
block from each row), where a small number of columns are
from the previous access, and the remainder are randomly
chosen columns. The xa blocks are downloaded and stored
in a stash on the client. Then xa random blocks are chosen
from the stash for upload to DataORAM (they may or may
not include the block of interest). The key strength of M-
ORAM is the bandwidth overhead during access operation is
kept small as the size of the DataORAM grows. However M-
ORAM requires large client storage of N blocks, unsuitable
for clients with limited storage space.

B. Overview of RM-ORAM

The aim of RM-ORAM is to reduce the client storage
space compared to M-ORAM. This is achieved by recursively
storing the position map blocks on the server. To support
this recursive operation, changes to M-ORAM are needed
as summarised in Table II. Specifically, RM-ORAM requires
additional storage on the server for blocks related to the
position map (i.e. PosORAM). The structure of the storage
is described in Section II-C. Also, to ensure the security
properties are met while keeping the bandwidth low, a different
algorithm for download/upload is necessary. This is described
in Section II-D.

As a light-weight ORAM, M-ORAM and Path ORAM have
similar design concepts. Therefore, the performance aspects
of M-ORAM were compared with Path ORAM in [10]. Since
both RM-ORAM and recursive Path ORAM are inherited from
their original constructions, recursive Path ORAM is used as
a reference to measure the performance of RM-ORAM. The
performance comparison of both constructions is illustrated in
Section IV and Section V.

C. RM-ORAM Storage Structure

RM-ORAM storage (Figure 2) consists of two types of
ORAM on a server: DataORAM and PosORAM; and four
types of storage on a client: StashData, StashPath, Posmap0
and history list. DataORAM and PosORAM may differ by
block size and number of blocks, the values of which are
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known by the server. Similar to other recursive ORAM con-
structions, DataORAM and PosORAM of RM-ORAM are
used to store data blocks and position map blocks, respectively.
While PosORAM contains Posmap1 through to Posmaplogm N−1
(see Figure 1), the position map blocks are actually randomly
distributed within PosORAM. Each position map block con-
sists of m tuples called pointer tuple, and each tuple consists
of four parts: counter, index, pointer, and common share seed
which are used for generating an encryption key. A data block
consists of only data content (see Figure 3). StashPath and
StashData are used to store downloaded position map blocks
and data blocks, respectively. Posmap0 contains pointer tuples
which have a pointer pointing to the blocks in PosORAM.
The size of PosORAM is

∑r−1
i=1 mi and must be greater than

Posmap0. The size of StashData is greater than the number of
data blocks downloaded during an access operation. History
list is a constant size buffer which contains the list of addresses
having been accessed by a client. Block addresses in the
history list are sorted from oldest access to newest access.

D. RM-ORAM Access Operation

Algorithms 1, 2, and 3 illustrate the details of operation
when the client wants to access a data block of interest. Once a
client wants to access (either download or upload) a data block,
it starts by checking the data blocks remaining in StashData
as shown in line 1-7 of Algorithm 1. If data of interest is
in StashData, the client performs a local access. If it is not,
the client randomly chooses h − 1 other data and the data of
interest to be downloaded. Among the h−1 other data, there are
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TABLE III: Function and Parameter Description for Algo-
rithm 1, 2 and 3

Function / Parameter Description
{x} Set of parameter x.
ID ID of data of interest.
IDall ID of data in DataORAM.
IDprev ID of data in previous download operation.
IDold Random ID chosen from IDprev.
IDhist Random ID chosen from history list.
IDnew ID of data excluded {IDold} and {IDprev}.
dID Content of data of interest that has

unique identifier ID.
dID_i Content of position map block at ith level

of recursion which leads to data of
interest.

doth_i Content of position map block at ith level
of recursion which leads to other data.

d* Content to update.
doth Content of other data.
bID_i Address of position map block or data

block of data of interest of at ith level
of recursion.

both_i Address of position map block or data
block of other data at ith level of
recursion.

ReadStashData(IDi) Read data which belongs to IDi from
stash. Return: di.

UpdateStashData(ID, data∗) Update content of data ID in stash.
RndSelect({ID}, x) Random select x IDs from set of IDs.

Return: {ID} size x.
ReadPos(pointer, ID) Read data of ID from PosORAM which

is pointed by pointer. Return: {d} of {ID},
{b} to block of next level of recursion.

ReplaceHist({ID}) Randomly replace l elements in {IDhist}

with {ID}.
AppendStashPath(x) Append parameter x to StashPath.
AppendStashData(x) Append parameter x to StashData.
ReadData({b}) Read data from DataORAM from {b}.

Return: {data}.
RndRetrievStashData(x) Retrieve x data blocks from StashData.

Return: {IDprev},{drnd}.
RndAssignNewPointer(x) Random assign new pointer and address

for parameter x. Return: {brnd}.
WriteData() Write data blocks to DataORAM.
WritePos() Write position map blocks to PosORAM.
UploadOperation() Upload selected blocks to DataORAM

and PostORAM.
ClearStashPath() Clear content from StashPath.

o data blocks selected from data blocks of previous uploads,
and l data blocks (not the data blocks of previous uploads)
are selected from the history list. Once h blocks have been
chosen, the client is looking for all corresponding pointers of
the data blocks being downloaded in Posmap0 (line 9). Then
the list of the oldest blocks in the history list is replaced by
the list of new selected blocks (line 10). The pointers retrieved
from Posmap0 tell the location of position map blocks to be
downloaded within Posmap1, then the client downloads those
blocks to StashPath. The downloaded position map blocks are
distributed to h StashPaths (line 14-16). The same procedures
are repeated until blocks within Posmap2, which correspond
to the pointers retrieved from Posmap1, are downloaded. After
downloading, the downloaded position map block is stored
next to its previous position map block in the same StashPath.
Recursion is carried out until the pointers of h data blocks
in DataORAM are retrieved (line 18-19). Finally, the selected
data blocks are downloaded to StashData (line 23).

Algorithm 1 RM-ORAM’s download operation
1: Input: ID, d∗

2: if ID in StashData then
3: dID ← ReadStashData(ID)
4: if update then
5: dID ← d∗

6: UpdateStashData(ID, d∗)
7: end if
8: else
9: {IDold}, {IDhist}, {IDnew} ← SelectBlocks(ID,{IDprev}) #See. Algorithm 3

10: ReplaceHist({IDnew})
11: for i ∈ {r | 0 ≤ r ≤ dlogm Ne − 1} do
12: dID_i, bID_(i+1) ← ReadPos(bID_i, ID)
13: {doth_i}, {both_(i+1)} ← ReadPos({both_i}, {IDnew} ] {IDhist_list} ] {IDold})
14: if i < dlogm Ne − 1 then
15: AppendStashPath(dID_i, {doth_i})
16: end if
17: end for
18: dID ← ReadData(bint_dlogm Ne)
19: {doth} ←ReadData({both_dlogm Ne})
20: if update then
21: dID ← d∗

22: end if
23: AppendStashData(dID, {doth})
24: end if
25: UploadOperation()
26: return dID

Algorithm 2 RM-ORAM’s upload operation (UploadOpera-
tion())

1: {IDprev} ← RndRetrievStashData(h)
2: RndAssignNewPointer({StashPath},Posmap0)
3: WriteData()
4: WritePos()
5: ClearStashPath()

In the next phase of the access operation, the same number
of downloaded blocks is uploaded to the server (Algorithm 2).
The client randomly chooses h data blocks from StashData
(line 1). Since the size of StashData is greater than h blocks,
there is no guarantee that the selected blocks are the same
blocks of previous download. The addresses that have been
accessed in DataORAM and PosORAM from the download
operation are randomly assigned to selected data blocks and
position map blocks, respectively. The pointer in selected
position map blocks is set to point to the new corresponding
address (line 2). Finally, all of the selected data blocks and
position map blocks are uploaded to the DataORAM and
PosORAM, respectively, according to their new location (line
3-4).

Algorithm 3 SelectBlocks()
1: Input: ID, {IDprev}

2: if ID ∈ {IDprev} then
3: {IDold} ← RndSelect({IDprev} \ ID, o − 1)
4: else
5: {IDold} ← RndSelect({IDprev}, o)
6: end if
7: if ID ∈ {{IDhist_list} \ {IDprev}} then
8: {IDhist} ← RndSelect({IDhist_list} \ {{IDprev} ] ID}, l − 1)
9: else

10: {IDhist} ← RndSelect({IDhist_list} \ {IDprev}, l)
11: end if
12: if ID ∈ {{IDall} \ {{IDhist_list} ] {IDprev}}} then
13: {IDnew} ← RndSelect({IDall} \ {{IDprev} ] {IDhist_list} ] ID}, h − o − l − 1)
14: else
15: {IDnew} ← RndSelect({IDall} \ {{IDprev} ] {IDhist_list}}, h − o − l)
16: end if
17: return {IDold}, {IDhist}, {IDnew}
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III. Security Analysis

In this section, we state the security requirements of ORAM
and then explain why RM-ORAM achieves the requirements.

A. ORAM Security Requirements

The general security requirements of ORAM are:
1) Server cannot observe the relationship between the data

and its address.
2) Server cannot distinguish between updated and non-

updated data when it is written back to the server.
3) Server cannot differentiate the data of interest of the

different access operations.
4) Randomness of sequence of an access request is secure

under polynomial-time adversary.
To achieve first and second requirements, the content of data

before download and after upload must look different. One of
the solutions is re-encrypting the content with a different secret
key. These two requirements are covered by the security proof
in Section III-B which gives a discussion about the probability
of using the same secret key on the same content of RM-
ORAM construction. For the third and fourth requirement,
the access pattern generated by a client must look random
from a server’s perspective. To strengthen the security analysis
of random access pattern over RM-ORAM in Section III-E,
we start by introducing the appropriate number of blocks
selected from the previous access operation in Section III-C.
RM-ORAM requires downloading some blocks which were
accessed in the previous access operation. If this wasn’t the
case, if the client consecutively accesses a different set of
blocks, then the set of blocks accessed would be distinct. Then
the history list is introduced in Section III-D to cover the issue
of distinguishable access pattern in specific circumstances.

B. Random Re-encryption

The client encrypts each data item di with a generated secret
key k(i,t) before uploading to the server. Encrypting the same
data item with the same key multiple times is undesirable
because the encryption of non-updated content will reveal the
identity of information to the server. Therefore, k(i,t) must not
equal k(i,t+1).

To generate the secret key, the index, counter and shared
secret seed are used as the inputs of a strong pseudo-random
function (PRF). Index and counter are the information within
the pointer tuple as shown in Figure 3. Index tells what
data block is relevant to its pointer which is always updated
during an access operation, according to which data block is
associated with the pointer. Counter is a random number which
will be increased whenever its corresponding block (either
data block or position map block) is accessed. The generated
secret key is used for both decrypting and encrypting the block
pointed to by the pointer. Seed is a parameter which the client
keeps as a secret, and used to make the key generator to be
more flexible. As the PRF is deterministic, and the same values
of index and counter may be used as input, the seed should
change periodically. To determine the period of changing the
seed, we measure it as the number of upload operations.

Let c be the size of the counter, counter ∈ {i | 0 < i <
c, i ∈ Z} , s be the size of StashData after download operation,
and h be the number of data blocks downloaded during the
access operation. Assume the client repeatedly requests one
specific data block without changing the content. The period
of changing the secret seed is given in Theorem 1.

Theorem 1. Let T denotes the time period (number of upload
operations) to change a secret seed. Suppose a counter has
size c bits and StashData has size equal to s blocks. P(X = t) is
the probability that the client spends t trials until at least one
data block is assigned to the same block as it was during the
download operation with probability of success p. Therefore,
the expected period of time to change a seed is:

T = c ·
∞∑

t=1

tp(1 − p)t−1 (1)

where p =
(s−h)!

s! ·
∑h

i=1
(−1)i+1·h!

i!

Proof. Since PRF is deterministic function, the same input
value must be used to generate the same output. The c bits
of counter must take c uploads before the same value of the
counter will return. Hence, the data block must be successfully
chosen c times before the same secret key is reused. Therefore,
we use the geometric distribution to accurately calculate T .
From the expected value of the geometric distribution, the
equation of expected value of x failure attempts to get the
first success with a probability of success p is:

E(X = x) =

∞∑
x=1

xp(1 − p)x−1

Since the encryption function is deterministic, the same en-
crypted data will be generated when the same data content
is encrypted by the same secret key. Furthermore, the same
secret key will be generated by PRF if every input has the
same value. As an index at the last level of recursion relates
to one of data blocks in DataORAM, there is an position
map block containing the same value of index if at least one
of downloaded data block is selected to be uploaded to its
previous location. For now let the counter does not change
over the time. The number of solutions which at least one
data block is assigned to the same block where it used to be
during the download operation is

h∑
i=1

(−1)i+1 ·C(h, i) · (h − i)!

Let S1DW be the event of the same h data blocks are chosen
from StashData size s, and at least one data block is assigned
to the same block where it used to be during the download
operation. Therefore, the probability of S1DW is:

Pr(S1DW)=
(s − h)! · h!

s!
·

∑h
i=1

(−1)i+1·h!
i!

h!

=
(s − h)!

s!
·

h∑
i=1

(−1)i+1 · h!
i!
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Hence, the expected value of number of uploads is:

T =

∞∑
t=1

tp(1 − p)t−1

where p = Pr(S1DW)
However, the counter has changed over time when a data

block is uploaded to the server. Suppose the counter is size
c bits, a system needs to have exactly c successes to retrieve
data of interest from stash when the same secret key is reused.
Therefore, the expected value of number of uploads is:

T = c ·
∞∑

t=1

tp(1 − p)t−1

where p = Pr(S1DW). Hence, the expected number of upload
operations before the secret seed has to be changed is as in
Theorem 1. 2

C. Choosing the Previous Accessed Block

According to the requirement in Section III-A, RM-ORAM
is required to download some blocks which were accessed
in the previous access operation. To accurately determine the
proper number of the blocks having to be chosen, we compare
our construction with Path ORAM. We first define o as the
number of blocks in current operation which were also ac-
cessed in the previous operation, and o is the average number
of o which will be accessed during an access operation.

Theorem 2. The average number of overlapped blocks across
two consecutive access operations of Path ORAM is 2 when
the height of binary trees tends to infinity.

lim
H→∞

opath_oram = 2 (2)

Proof. Figure 4, shows the binary-tree structure of Path
ORAM with height H. Since the binary-tree has 2H−1 leaf
nodes, there are 2H−1 possible paths in total from a leaf node
to a root node. Suppose the path chosen during the previous
access operation is represented as the gray circles of Figure 4,
and the path of next access operation is the path that is
associated with a node of interest. As the node of interest
is assigned to a path uniformly at random (according to [22]),
there is only one possible path that could be chosen out of
2H−1 that results in H duplicate nodes (i.e. the exact same
path as the previous operation). If the exact same path is not

chosen, then there are 2i−1 possible paths that result in H − i
duplicate nodes, where i ∈ {1, 2, . . . ,H − 1}. Therefore, the
average number of duplicate nodes/blocks is:

opath_oram =
1

2H−1 H +

H−1∑
i=1

2i−1

2H−1 (H − i)

=

∑H
i=0 2i

2H−1 (3)

Considering as a geometric series, as H tends to infinity, then
opath_oram tends to 2. 2

Therefore, to achieve the same or better security level of
Path ORAM, the number of o having to be accessed by RM-
ORAM must be equal to or greater than 2.

D. Distinguishable Series of Accesses in Specific Circum-
stance

In some specific circumstances the different access se-
quences over RM-ORAM can be distinguishable. The vul-
nerability occurs when the blocks having been accessed are
requested to be accessed again in a short period of time. For
example, let two sequences of accesses be A′ and A′′. Suppose
A′ and A′′ consist of sequence of reading d1, d2, and d3;
and d1, d2, and d1, respectively. Therefore, A′ and A′′ can
be represented as follows:

A′ = Read(d1),Read(d2),Read(d3)

A′′ = Read(d1),Read(d2),Read(d1)

Suppose d1 was uploaded back to a server after finishing the
first access operation, and it is not chosen as old blocks of
the second access. Therefore, the probability that d1 will be
chosen to be read during the third request of reading d3 is
(h− o)/N. On the other hand, as d1 is requested to be read by
client on the third access of A′′, the probability that d1 will
be read is 1. Since the two probability values are obviously
distinguishable, the server can predict with high probability
which block is interested. However, the client is the person
who controls the pattern of access requests. Therefore, client
can design how often the same information will be repeatably
requested. It leads to two solutions that can be used to solve
this problem.

1) Do not request same block address twice more often
than one time of N/(h − o) accesses: To make the
block selection looks like a uniform distribution, a client
has to limit the number of accesses to the block that
has been accessed. Therefore, the number of accesses to
those blocks should be approximately 1 time of N/(h−o)
accesses according to the example given in the beginning
of this section.

2) Random selecting from the history list: Another
solution to keep A′ indistinguishable from A′′ is to
create the history list. History list contains list of blocks
having been accessed in the past, and a client randomly
chooses l blocks from this list as additional blocks for
each access operation. To create history list, a client
starts with the ‘warm-up access’ at the very beginning
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of its first communication with a server. This warm-up
access is dummy accesses for constructing the history
list before starting the real communication. It occurs
only once when a new client joins the system. By the
fact that, if a new list is continually added, the number
of blocks in the history list will be eventually equal to
N. Therefore, oldest l blocks in the history list will be
removed and be replaced by the set of recently accessed
blocks after reaching a predefined number of accesses.
This number varies according to how much frequency
that client wants to access the same block location.
However, the number of accesses before replacing is
bounded by N/(h − o) to make sure that the probability
of accessing the oldest set of blocks in the history list
is not greater than (h − o)/N.

Considering the two proposed solutions, the first solution is
limited by a frequency of accessing the information. A client
has to control the average number of accesses not more than
1 of N/(h − o) which is impractical. On the other hand, the
second solution is more flexible and practical. The trade-off

is client has to perform warm-up accesses to construct the
history list. However, the warm-up method will be performed
once on new communication which is negligible for long-term
communication. Regarding the appropriate number of l chosen
from history list; it is defined in Theorem 3.

Theorem 3. The appropriate number of blocks chosen from
the history list, l when N � h is:

1 ≤ l ≤
(h − o)

2
(4)

Proof. Suppose h blocks are chosen to be accessed in each
access request. o blocks come from the previous access and
l blocks are chosen from the history list. Hence, the number
of blocks which have never been accessed since N/(h − o)
accesses ago are h− l−o blocks, which is referred as new list.
Recall that the h− l−o lists in the history list will be replaced
by the new lists after at most (N/(h − o))th access. Therefore,
the number of block addresses in the history list is:

number of block list ≤
(

N
(h − o)

× (h − l − o)
)

(5)

According to the security issue that has been discussed at
the beginning of this section, the frequency of accessing the
history list must be equal to or more often than accessing
the new list. Therefore, to define the upper bound of l, the
maximum number of block addresses contained in the history
list is taken into consideration. At the maximum number of
block addresses in the history list, the average frequency of
accessing the history list is equal to the new list. In other
words, the probability of data of interest coming from the
chosen block from the history list is equal to the probability
of data of interest coming from the chosen block from the new
list. Suppose that N � h > o, from Equation 5 we can derive
the possible solution of l as:

N
2

=

(
N

(h − o)
× (h − l − o)

)
l =

(h − o)
2

(6)

The probability of data of interest coming from the history
list depends on a ratio of l and the number of block addresses
contained in the history list. Therefore, the number of l holds
by Equation 4. 2

E. Randomness Over Access Pattern

Recall from Section II-C, the block size of PosORAM
and DataORAM might differ and are known by a server.
Therefore, once an access operation has been executed, a
server knows which type of ORAM is being accessed by client.
The randomness of access pattern is therefore considered into
two parts which are the randomness of access pattern over
DataORAM and PosORAM.

Suppose A is an access sequence length i where each
access (either upload or download) reveals a block address,
adr j[data j] to a server. Let adr j[data j] be the block address
revealed during jth access where j ∈ {1 ≤ x ≤ i | x ∈ Z}.
Hence, A can be illustrated as Equation 7.

A =(adri[datai], adri−1[datai−1], . . . , adr1[data1]) (7)

Since the block size of PosORAM and DataORAM might
differ and are known by the server, the set of block addresses
having been accessed and seen by the server during jth access
can be defined as:

adr j[data j] = AddrData j ] AddrPos j (8)

where AddrData j and AddrPos j are the set of addresses
that have been accessed during jth access on DataORAM
and PosORAM, respectively. Therefore, the series of access
requests A from Equation 7 can be separated to Adata and Apos

which are an access sequence length i on DataORAM and
PosORAM, respectively. We can define the Adata and Apos as:

Adata =(AddrDatai,AddrDatai−1, . . . ,AddrData1) (9)

Apos =(AddrPosi,AddrPosi−1, . . . ,AddrPos1) (10)

There are three possible patterns of two series of accesses A
and A′ generated by a client. Those patterns can be described
by Lemma 1, Lemma 2, and Lemma 3. To show the random
access pattern of RM-ORAM is secure, the access patterns are
proven case-by-case.

Lemma 1. Different access sequences on the same set of data
blocks of RM-ORAM are indistinguishable from the adversary
who has limited computational power to polynomial time
computation.

Proof. According to the Section III-B, the content of a series
of accessed blocks is indistinguishable from a random string
by randomised encryption whether or not the content has been
changed. In addition, since the content of data blocks of each
access is randomly changed according to RM-ORAM access
operation, a server cannot identify the relationship between the
content and the data block containing the content. Although
Adata and A′data access the same set of data blocks, the
uploaded content of both access sequences are not necessary
the same. Therefore Adata and A′data are indistinguishable by
the polynomial time adversary. 2
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Lemma 2. Different access sequences on completely different
data blocks of RM-ORAM are indistinguishable from the
adversary who has limited computational power to polynomial
time computation.

Proof. Suppose two access sequences length i: A and A′ access
on different data blocks. According to Section II-D, o blocks
are selected from the previous operation to be accessed in
current operation to make sure that two consecutive operations
do not access on a completely different set of data blocks. Fur-
thermore, the set of data blocks which has been downloaded
is randomly replaced by data within StashData which may or
may not be the same set of previous data. Hence, although
Adata and A′data access on different data blocks, it does not
mean that a client tries to access two different groups of data.
Therefore, Lemma 2 holds by the same proof of Lemma 1. 2

Lemma 3. Different access sequences on the some (not all) of
the same blocks of RM-ORAM are indistinguishable from the
adversary who has limited computational power to polynomial
time computation.

Proof. As discussed in Section III-D, two access sequences
can be distinguished if the frequency of accessing data blocks
which have been accessed is different. However, by varying the
size of the history list, a client can control the probability of
block that will be accessed in the ORAM. High probability
means the block is possible to be accessed more often,
although it does not contain a data of interest. Suppose the
probability of data of interest is among l chosen data blocks
from history list size L is l/L. It means the data of interest
is possibly selected every L/l accesses. By maintaining this
probability to be greater than or equal to l/L, two different
sequences of accesses will look similar from the server’s per-
spective although they have different frequencies of accessing
data of interest. Hence, Lemma 3 holds when the content of
data blocks is indistinguishable by randomised encryption. 2

Lemma 4. Different access sequences to position map blocks
of RM-ORAM are indistinguishable from the adversary who
has limited computational power to polynomial time compu-
tation.

Proof. Choosing the position map blocks to be accessed is
related to what data blocks are going to be downloaded.
Therefore, when l data blocks from history list are chosen,
the r × l blocks from the position map blocks that have
been accessed are also chosen but the order may be different.
In the same manner of proving in Lemma 1, 2 and 3, the
differentiation of Apos and A′pos is indistinguishable. 2

Theorem 4. The randomness of RM-ORAM’s access pattern
is secure from the adversary who has limited computational
power to polynomial time computation.

Proof. Suppose A and A′ are two different access patterns of
a client. BA and BA′ is the set of blocks accessed by A and A′,
respectively, which BA, BA′ ∈ BN where BN is a set of every
block in ORAM. By case analysis, there are three possible
cases of blocks accessed by two different access sequences
which are BA = BA′ , BA ∩ BA′ = ∅, and (BA ∩ BA′ , ∅)∧ (BA ,

TABLE IV: Performance Comparison of Different ORAM
Schemes

Scheme Client Storage
(#Block)

Bandwidth
Cost (#Block)

Computational
Overhead

Hierarchical Structure
GO-ORAM [11] O(1) O(log3 N) O(log3(N))
SSS-ORAM [20] O(N) O(log N) O(log2(N))
Recurisve SSS-ORAM [20] O(

√
N) O(log2 N) O(log3(N))

Tree Structure
Tree-ORAM [21] O(N) O(log2 N) O(log3(N))
Recursive Tree-ORAM [21] O(1) O(log3 N) O(log4(N))
Path ORAM [22] O(N) O(log N) O(log2(N))
Recursive Path ORAM [22] O(log N) ·ω(1) O(log2 N) O(log3(N))

Matrix Structure
M-ORAM O(N) O(1) O(1)
Recursive M-ORAM O(log N) O(log N) O(log N)

BA′ ). For the case BA = BA′ , it is addressed by Lemma 1 and
4; case BA ∩ BA′ = ∅ is addressed by Lemma 2 and 4; and for
the last case (BA ∩ BA′ , ∅) ∧ (BA , BA′ ), it is addressed by
Lemma 3 and 4. Therefore, any sequences of access pattern
are secure under the advisory whose computational power is
bounded by polynomial time. 2

IV. Performance Analysis

In this section, the performance of RM-ORAM is analysed
from three major aspects: storage efficiency, communication
overhead, and the client’s computational overhead. A key aim
of designing RM-ORAM is to use in constrained devices,
therefore we focus on maximising the efficiency of storage us-
age without significantly increasing the other two aspects. The
performance metric of RM-ORAM compared against other
ORAM schemes yields the results are per Table IV. Anal-
ysis of efficient storage usage is discussed in Section IV-A.
Analysis of bandwidth cost of RM-ORAM system is provided
in Section IV-B while analysis of computational overhead is
given in Section IV-C.

A. Storage Usage Efficiency

Efficiency of storage usage in ORAM is one of the important
performance aspect. Decreasing of storage space reservation
means increasing the number of operations to ensure the
designed data structure can achieve all of ORAM’s security
requirements. Generally, the storage of ORAM system can be
categorised into storage on a server and storage on a client as
it has been described in Section II-C. Therefore, the efficiency
analysis in this section is focused on the use of storage on the
client and server of RM-ORAM.

1) Client Storage Usage Efficiency: In M-ORAM, a client
stores N logical addresses of the data block in position map
and downloaded data’s content in stash. Stash has a constant
size while the size of position map varies according to the
size of ORAM. Therefore, there are O(N) blocks reserved on
the client. In RM-ORAM it requires only O(log N) blocks on
a client which consists of four types of storage: StashPath,
StashData, Posmap0 and history list. History list has a constant
size, which its size depends on the security thresholds as
defined in Section III-D. The space requirement for the history
list is small and it can be overlooked when compared with
other types of storage. The number of reserved blocks on
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client for StashData and Posmap0 is constant while StashPath
is varied according to the number of levels of recursion. As
the number of levels of recursion is dlogm Ne, it costs O(log N)
reserved blocks on a client.

2) Server Storage Usage Efficiency: Some ORAM con-
structions store both data and dummy information on a server
(e.g. [11] and [21]). The dummy information is necessary to
preserve the security requirement of upload and download,
however it may reduce the space available for storing data
on the server. In both M-ORAM and RM-ORAM, dummy
information is not used, and therefore the DataORAM can
store 100% data.

In RM-ORAM, besides DataORAM, PosORAM is also
stored on a server which contains the unused spaces in some
cases. Each position map block contained in PosORAM has a
constant number of pointers which each pointer points to the
position map block of the next level of recursion. Every recur-
sive ORAM construction shares the same position map block
structure but different Posmap data structure formats. For
example, RM-ORAM uses matrix data structure for Posmap
while Path ORAM uses binary tree data structure. In RM-
ORAM if N ∈ {mi | i ∈ Z+}, there are no unused spaces in
PosORAM. On the other hand, if not, there are some unused
pointer tuples. For Path ORAM, as the number of nodes in a
binary tree is 2h−1 where h ∈ Z+\{1}, it will have unused space
in PosORAM when 1 < m·(2hi−1)

(2hi+1−1) < 2, where hi is height of the
binary tree Posmap of ith level of recursion and hi+1 > hi.
Since RM-ORAM and recursive Path ORAM have same r
when they have the same number of m and N (Page 9 of [22]
and Lemma 7), we show in Theorem 5 that the number of
non-used spaces in PosORAM of RM-ORAM is equal to or
less than the number of non-used spaces in PosORAM of Path
ORAM when both constructions share the same r.

Lemma 5. For xi+1, xi,m ∈ Z+, xi < xi+1, and m ≥ 2. There
are some xi which:

m · xi ≤ xi+1 < m · (xi + 1) (11)

Lemma 6. For yi+1, yi,m ∈ Z+, 2yi < 2yi+1 , and m ≥ 2. There
are some yi which:

m · (2yi − 1) ≤ 2yi+1 − 1 < m · (2yi+1 − 1) (12)

Theorem 5. Let the number of blocks in binary tree Posmap
and the number of blocks in RM-ORAM’s Posmap at the ith

level of recursion be |BPosi| and |RPosi|, respectively. The
number of non-used pointer tuples in PosORAM of binary tree
ORAM are equal to or greater than the number of non-used
pointer tuples in PosORAM of RM-ORAM.

r−1∑
i=1

(m · |BPosi| − |BPosi+1|) ≥
r−1∑
i=1

(m · |RPosi| − |RPosi+1|) (13)

Proof. Suppose there are xa blocks (nodes of binary tree) in
Posmapa, and each position map block has m pointer tuples.
Lemma 5 and Lemma 6 represent the range of increasing the
number of position map blocks in Posmapi to cover every
position map block in Posmapi+1. Let xi+1 = z = 2yi+1 − 1, we
can derive Equation 11 and Equation 12 to:

m ≥ m · (xi + 1) − z > 0 (14)

m · 2yi ≥ m · (2yi+1 − 1) − z > 0 (15)

As z represents |BPosi+1| and |RPosi+1|, while m · (xi + 1) and
m·(2yi−1) is m· |RPosi| and m· |BPosi|, respectively, Theorem 5
holds when Equation 14 and Equation 15 are true. 2

B. Bandwidth Cost

In RM-ORAM the new client has to construct the history
list from the very beginning of communication to server.
It does so by generating the dummy accesses to a server
called warm-up communication. However, once the history
list is already created, the warm-up communication is no
longer necessary. Therefore, the bandwidth cost of the dummy
accesses can be ignored for long term communication. In RM-
ORAM the bandwidth spent in real communication depends
on 2 parameters: h and r. A client must download and upload
h data blocks plus h · (r−1) position map blocks for an access
operation. The number of levels of recursion (r) can calculate
as shown in Lemma 7. Let the number of blocks accessed
per upload/download operation be h, therefore the asymptotic
bandwidth cost of RM-ORAM is O(log N) as described in
Theorem 6.

Lemma 7. The number of levels of recursion of RM-ORAM
construction is:

r = dlogm Ne (16)

Proof. Suppose Posmap0 has m pointer tuples containing
a pointer. Each pointer points to position map blocks in
Posmap1. As there are m pointer tuples per position map block,
the total number of position map blocks of Posmap1 pointed
by the pointers is m. With the reason that every position map
block has m pointer tuples, the number of pointers contained
in Posmap1 is m2. Those m2 pointers will point to m2 position
map blocks in Posmap2 which contain other m3 pointer tuples
and so on. In the other words, the number of pointers grows
exponentially by a factor of m per each level of recursion.
We know that the last Posmap must contain at least N pointer
tuples or N/m position map blocks to cover N data blocks in
DataORAM. Suppose it needs r levels of recursion to reach the
DataORAM, the last Posmap will contain mr pointer tuples.
Therefore, mr = N and it can be derived to be Equation 16. 2

Theorem 6. Let BW refer to bandwidth cost of RM-ORAM:

BW = O(log N) (17)

Proof. As h and m are constant and independent of the size
of ORAM they do not impact on the bandwidth cost. The
number of levels of recursion, r, and the position map block’s
index header are dependent on N. However the index header
is very small compared to the position map size, therefore
the bandwidth cost depends primarily on r. Therefore using
Lemma 7, the asymptotic bandwidth of RM-ORAM is bound
by O(log N). 2
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C. Computation Overhead

We measure the computation overhead in terms of time
complexity of the operations. From Section II-D, the main
operations to be performed in RM-ORAM and their costs are:
• Pseudo random number generation: We suppose that

the PRNG which is used in our construction is efficient.
Therefore, it has cost O(1) time complexity.

• Searching for particular information in StashData: It
costs O(1) because stashdata has a constant size.

• Randomly choose h blocks from StashData: Range of
random numbers is bounded by s, where s is a constant
number of elements within StashData. Therefore, it has
cost O(1).

• Randomly assign the new address: This operation
causes the client to randomly select the new address for
the chosen h blocks in StashData, and h logm N blocks
of position map (StashPath and Posmap0). Therefore, the
time complexity of this operation is bounded by O(log N).

• Updating the pointer in position map block: This
operation causes the client to access h logm N blocks for
updating their content. Therefore, it has cost O(log N).

• Randomly choose some old blocks during the down-
load operation: To achieve ORAM security require-
ments, random o from h blocks of previous operation are
chosen. Since o and h are constant, the cost of randomly
choosing a number of elements from a finite set is O(1).

• Randomly choose some blocks from history list: As the
cost of randomly choosing a certain number of objects
from finite set is O(1), the computation overhead of
random choosing l blocks from the history list which is
a finite set is also O(1), where l is constant.

• Randomly choose new blocks during the download
operation: Range of random numbers is bounded by h−
o− l, where o, l and h are constant. Therefore, it has cost
O(1)

Total computational cost is the sum of the above operations,
which gives the time complexity (TC) of RM-ORAM opera-
tion is:

TC = O(log N) (18)

D. Suggested Value of h

Recall from Section III and Section IV, h is significant to the
security and performance of RM-ORAM system. As a lower
limit to ensure the server cannot identify the data of interest
from other data items, h−o must be greater than or equal to 2.
Furthermore, Theorem 2 shows that to provide the equivalent
average number of accessed old data blocks as Path ORAM, o
should be 2 or more. In addition, according to Theorem 3, the
number of chosen new blocks and chosen blocks from history
list should be equal, and each should be greater than or equal
to 1. Therefore h must be greater than or equal to 4.

As our aim is to provide equal or better performance than
Path ORAM, we consider h that makes RM-ORAM consume
less bandwidth than Path ORAM when both constructions
share the same number of N and m. Section II-D shows RM-
ORAM has to download constant h data blocks per access

request while Path ORAM has to download log N data blocks.
With a large number of N, the bandwidth cost of downloading
data blocks of Path ORAM will exceed RM-ORAM. For
now let’s suppose RM-ORAM and Path ORAM download h
data blocks, therefore the overall bandwidth cost of the both
systems is only varied by the number of position map blocks
which are downloaded.

Theorem 7. RM-ORAM requires fewer downloaded position
map blocks compared with Path ORAM when:

h · (r − 1) ≤
⌈
log

(N
m

+ 1
)⌉

+

r−2∑
i=1

(Hi) (19)

where Hi =
⌈
log

(
2(Hi+1)−1

m + 1
)⌉

, r = dlogm Ne

Proof. RM-ORAM and Recursive Path ORAM share the same
number of levels of recursion (Page 9 of [22]). RM-ORAM’s
client has to download h position map blocks per each level of
recursion, therefore the total number of position map blocks is
h ·(r−1). For recursive Path ORAM, client accesses a different
binary tree Posmap for each level of recursion. At each level,
the number of position map blocks that client has to download
is equal to the height of binary tree of this level. Recursive Path
ORAM has a binary tree at level i of height

⌈
log

(
2(Hi+1)−1

m + 1
)⌉

and the height of the last binary tree (level dlogmNe − 1) is⌈
log

(
N
m + 1

)⌉
. Suppose RM-ORAM and recursive Path ORAM

have same N and m, RM-ORAM will achieve equal to or less
than a number of downloaded position map blocks of recursive
Path ORAM when:

h · (r − 1) ≤
r−1∑
i=1

(Hi)

h · (r − 1) ≤
⌈
log

(N
m

+ 1
)⌉

+

r−2∑
i=1

(Hi) (20)

where Hi is height of the binary tree ORAM of each level of
recursion. 2

By applying the different values of N, m and h to Equa-
tion 19, the comparison of the number of downloaded position
map blocks per access operation between RM-ORAM and
recursive Path ORAM is as illustrated in Figure 5. Even though
Path ORAM has fewer downloaded position map blocks than
RM-ORAM when m is equal to or greater than 10000, RM-
ORAM has an advantage over recursive Path ORAM when
m is equal to or less than 1000. Furthermore, at h = 5, the
difference of the total number of position map blocks down-
loaded per access request between RM-ORAM and recursive
Path ORAM is only 1 block, while the difference of the total
number of downloaded data blocks between RM-ORAM and
recursive Path ORAM is equal to or greater than 8. Therefore,
the total number of blocks downloaded by recursive Path
ORAM exceeds RM-ORAM. Considering the implementation
of RM-ORAM from the experimental results, 4 ≤ h ≤ 7 is a
recommended value.

V. Experimental Results
Section III presented the security analysis, followed by the

theoretical performance analysis of RM-ORAM in Section IV.
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Fig. 5: Number of position map blocks downloaded per access request of different m

Since Path ORAM has the lowest computational overhead
over other existing recursive ORAM constructions, we use
Path ORAM as a standard for our experiment. In this section
additional experimental results using an implementation of
RM-ORAM and recursive Path ORAM are provided. These
results provide insights about the stash usage in RM-ORAM.
We implement recursive Path ORAM according to the algo-
rithm in [22]. Both recursive Path ORAM and RM-ORAM
are implemented in Python. We use AES-CBC with 256 bit
key from the library Crypto to encrypt both the data blocks
and position map blocks. Experiments are performed on a PC
running Windows 7 64 bit on Intel i3 3.3 GHz CPU with 8GB
of RAM. Despite RM-ORAM being designed for constrained
storage devices, as the experiments focus on bandwidth cost
and storage space which are measured in block sizes, the
results are independent of hardware architecture. Therefore a
PC is used due to ease of implementation and testing.

A. Suggested Size of StashData

In addition to storing the downloaded data block, StashData
data structure is beneficial for random selection of data to be
uploaded. In other words, the size of StashData impacts the
data relocation and it should be large enough to allow the
movement of data block to achieve random relocation. As an
experiment, we move a specific block (e.g. data ID1) after it
has been consecutively accessed (downloaded then uploaded)
for 1,000,000 times. The block locations (bi) that data ID1 has
been stored are recorded as an experimental result dataset. The
experiment is run over m is equal to 5, 6, and 7 with h = 6. We
use chi-square (χ2) for testing the randomness of three result
datasets of different sizes of DataORAM: 3125, 1296 and 2401
blocks with m equal to 5, 6, and 7, respectively. We use the
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Fig. 6: p-value of χ2 test over varied size of StashData

standard from National Institute of Standards and Technology
(NIST) [30] to measure the randomness of the experimental
result. According to NIST, the significant level (α) > 0.01
means the sequence of sample is random. Figure 6 illustrates
the p-value from χ2 test of the different StashData sizes. After
s = 30 + h the movement of data block can be considered as
uniform random. Therefore, the suggested size of StashData
after finishing an upload operation is greater than 30 blocks.

B. Comparison of Stash Usage

This section compares the stash space requirements of RM-
ORAM and recursive Path ORAM. Figures 7a to 7d show
the maximum number of position map blocks stored in stash
during a download operation. We refer to the size of the stash



GORDON et al.: RECURSIVE MATRIX OBLIVIOUS RAM: AN ORAM CONSTRUCTION FOR CONSTRAINED STORAGE DEVICES 13

34 255 1023 4093
N (block)

0

50

100

150

200

250

300

M
ax

im
um

 st
as

h
p
a
th
(s

ta
sh

p
os
) u

sa
ge

 (b
lo

ck
)

10

42

103

269

10 15 20 25

Recursive Path ORAM
RM-ORAM, h=5

(a) m=5

34 255 1023 4093
N (block)

0

50

100

150

200

250

M
ax

im
um

 st
as

h
p
a
th
(s

ta
sh

p
os
) u

sa
ge

 (b
lo

ck
)

8

36

83

212

5
15 15 20

6
18 18 24

Recursive Path ORAM
RM-ORAM, h=5
RM-ORAM, h=6

(b) m=6

34 255 1023 4093
N (block)

0

20

40

60

80

100

120

140

160

180

M
ax

im
um

 st
as

h
p
a
th
(s

ta
sh

p
os
) u

sa
ge

 (b
lo

ck
)

6

31

68

164

5 10 15 20

6
12

18
24

7
14

21
28

Recursive Path ORAM
RM-ORAM, h=5
RM-ORAM, h=6
RM-ORAM, h=7

(c) m=7

34 255 1023 4093
N (block)

0

20

40

60

80

100

120

140

160

M
ax

im
um

 st
as

h
p
at

h
(s

ta
sh

p
os
) u

sa
ge

 (b
lo

ck
)

5

24

61

142

5
10

15 15
6

12
18 18

7
14

21 21

8
16

24 24

Recursive Path ORAM
RM-ORAM, h=5
RM-ORAM, h=6
RM-ORAM, h=7
RM-ORAM, h=8

(d) m=8

34 255 1023 4093
N (block)

0

200

400

600

800

1000

1200

M
ax

im
um

 st
as

h
d
at

a u
sa

ge
 (b

lo
ck

)

21
88

290

1021

37 37 37 37

Recursive Path ORAM: bucket size = 1
RM-ORAM: w=37

(e) h=7,s=37

Fig. 7: Maximum stash usage of Recursive Path ORAM and RM-ORAM with different m

to store the position map blocks and data blocks as Np and
Nd, respectively.

For the thesis, you need to present the analysis better. You
should first explain what the figures show, and then explain
the reasons for the results

As Path ORAM uses leaf-ID of data to identify a path which
contains data of interest, there are some data (whether it is
position map block or data block) that cannot be uploaded
back to the path when their leaf ID has been changed. Those
data are left in the stash. The number of data items remaining
in the stash is increasing when the size of DataORAM of Path
ORAM is growing, therefore the space requirement for stash
is also increasing. In RM-ORAM, although Np is also growing
when the size of DataORAM is increasing, it grows by a factor
of logm N which is significantly slower than Path ORAM as
shown in Figures 7a to 7d. Figure 7e shows the comparison
of the maximum number of Nd which is constant for any N
of RM-ORAM while it is increasing when N is growing in
Path ORAM. RM-ORAM requires constant space for storing a
data block. Since h data blocks are downloaded, the random h
data blocks of StashData are being uploaded back to a server
whether or not it is the same set of data blocks. On the other
hand, Nd of Path ORAM is growing according to the size of
ORAM which is increasing.

VI. Conclusion

RM-ORAM is a novel ORAM structure which is designed
for constrained storage devices. It uses recursion to reduce the
space that is required for storing the location of information on
the server. By designing the construction based on M-ORAM,
RM-ORAM consumes O(log N) blocks on the client instead
of O(N) as required in M-ORAM. However, the recursion

introduces additional bandwidth and computational overhead:
in M-ORAM both are O(1), while in RM-ORAM they increase
to O(log N).

Future work includes evaluating the computational com-
plexity of RM-ORAM by optimising the implementation for
constrained devices, i.e. phones, embedded computers. One
avenue of optimisation is using a parallel architecture to
improve the performance of operations on the matrix. Further
study is also needed in how RM-ORAM can be used with
multiple servers and/or multiple clients.
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