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Abstract

Active contours (snakes) are an efficient method for segmentation of ultrasound (US) images

of breast cancer. However, the method produces inaccurate results if the seeds are initialized

improperly (far from the true boundaries and close to the false boundaries). Therefore, we pro-

pose a novel method to overcome drawbacks of snakes including initialization sensitivity and

noise robustness based on the fusion of conventional US image with Elastography and Power

Doppler images. The integrated information extracted from the three types of images provides

better initialization and more tolerate to noise, consequently, leads to better segmentation. The

proposed fusion method (FM) has been tested against four state-of-the-art initialization methods

on 90 ultrasound images from a database collected by the Thammasat University Hospital of

Thailand. The ground truth was hand-drawn by three leading radiologists of the hospital. The

reference methods were center of divergence (CoD), force field segmentation (FFS), Poisson

Inverse Gradient Vector Flow (PIG), and quasi-automated initialization (QAI). Using a variety

of measures, the results prove the following advantages of the FM. For the raw US images the

percentage of correctly initialized contours of FM is 94.2% ,whereas, COD, FFS, PIG, and QAI

are 0%, 0%, 26.7%, 42.2% respectively. Besides the proposed initialization method, we intro-

duced a robust external force field applying to strong noise named fusion radial force (FRF).

The combination of the fusion and radial force outperforms the Vector Field Convolution (VFC)

and the Adaptive Diffusion Flow (ADF). The percentage of correctly converge to boundaries of

tumors is 84.4% for FM, whereas, VFC and ADF are 56.62% and 43.30% respectively.

Keywords: breast cancer segmentation, initialization for active contours, ultrasound,

Elastrography, Doppler
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Chapter 1

Introduction

1.1 Overview of active contour model in breast cancer detec-

tion using ultrasonography image modalities

The annual check for breast cancer includes mammogram, and (if necessary) ultrasound exam-

ination of breast. Along with conventional US (US) imagery the modern US machines produce

Elastography and Power Doppler images which in many cases improve the quality of the di-

agnosis [1]. Elastography distinguishes breast masses based on their stiffness and is used as

a adjunct technique to help in discrimination between non-cancerous mass and breast cancer

mass. Power Doppler is another non-invasive US modality which supplements a US. The Power

Doppler images visualize the appearance and morphology of blood vessels associated with the

mass. The Doppler analysis uses the fact that a non-cancerous mass has a little or no vascular

flow whereas the breast cancer mass increases the blood flow in the vicinity of the tumor.

Along with the conventional US imagery, the modern US machines produce Elastography

and Doppler images, which in many cases improve the quality of the diagnosis [2]. Elastog-

raphy is used as an adjunct technique to help in discrimination between benign and malignant

masses, based on their stiffness [3]. Power Doppler is another non-invasive US modality which

supplements the conventional US. Doppler images visualize the appearance and morphology of

blood vessels associated with the mass. The analysis uses the fact that a benign mass has little

or no vascular flow, whereas a malignancy increases the blood flow in the vicinity of the tumor

[4]. Since the Elastography and Power Doppler images are usually available in cases when can-

cer is suspected, we propose to use them, along with a conventional US image to improve the

1



quality of automatic segmentation of breast tumors. In particular, we focus on the integration of

the US, Elastography, and Power Doppler images in the framework of active contours (snakes).

The active contours are one of the most popular segmentation techniques applied to many

image processing problems, originating from different applications. The most successful mod-

ifications of the active contours are the gradient vector flow (GVF) snakes [5], generalized

gradient vector flow snakes (GGVF) [6], and multidirectional GGVF snakes [7], Vector Field

convolution snakes (VFC) [8] and the recent Adaptive Diffusion Flow snakes (ADF) [9]. How-

ever, the accuracy and computational time of the above mentioned models depend on the initial

location (seed snakes). Unfortunately, if the seeds are far from the boundary of the object, the

snake can attach itself to false boundaries. On the other hand, the modern US/sharewave ma-

chines generate three types of above mentioned images. Each of them helps the radiologists to

localize and classify the tumor i.e. the tumors are characterized by a low intensity of the gray

level in the US image, high stiffness in the elasticity image and by an increased vascularity in

the Doppler images. Therefore, we introduce a novel initialization method based on the fusion

of the conventional US, elasticity and Doppler images. The proposed algorithm combines the

images by means of the distance transform and a low intensity mask, and generates a suitable

initial contour.

One of the popular ideas is analysis of the vector field generated by the GVF-type model.

For instance applies force field segmentation (FFS) [10] to divide the image domain into dis-

jointed regions representing the capture range of the external force field. However, the algorithm

transforms the image segmentation problem into the vector field segmentation problem, which

is difficult to solve if strong noise is present. Therefore, the idea to initialize the snakes at the

centers of divergence (CoD)) [11] of the GVF-type vector field was introduced. The Poisson

Inverse Gradient Vector Flow (PIG) [12] model has been proposed for automatic initialization

of ACM. The model establishes the relationship between the external force field and the under-

lying external energy field via the solution of the corresponding Poisson equation. However, the

model may suffer from incomplete isolines as well as from over segmentation. Quasi automatic

initialization (QAI) [13, 14], the method employs the CoDs combined with a tracing procedure

to create a ”skeleton” of the object, consisting of centers of strong and weak divergence. The

initial snake is generated around the skeleton. However, the initialization is not entirely au-

tomatic. The algorithm still requires at least one manually generated point inside the object.
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Moreover, in some cases the skeleton can evolve outside the boundary of the object. The initial-

ization algorithms for the US images usually rely on gray levels and textures, to place the seed

points inside the tumor. A few papers related to a specific medical image processing task use a

typical position of a human organ in a US images. However, these models are image dependent

and may not work if strong noise is present.

This paper proposes a new algorithm for automatic segmentation, uses not only the gray

level/ texture which characterize the tumor but the corresponding Elasticity and Power Doppler

images as well. The initialization procedure combines distance transforms generated using the

binarized edge map, Elastography, and Power Doppler images. The techniques combined with

a conventional thresholding makes it possible to locate the initial contour inside the tumor and

close enough to the boundaries to ensure convergence of the ACM to the true boundaries. The

paper also introduces a modification of the balloon type active contour based on a combination

of an artificial (balloon) radial force and the gradient at actual boundary. Therefore, the main

contribution of this paper is a new fusion based method to automatically initialize active con-

tours in the US images of breast cancer. The proposed technique has been tested against three

state-of-the-art models, namely, COD, FFS, PIG, and QAI for automatic initialization and VFC

and ADF for external force evaluation.

1.2 Research Problem and Motivations

Breast cancer is the most common category of cancers in woman around the world. It is age

diversity, especially the average age at diagnosis of breast cancer in limit-resource countries

(LRCs) is approximately ten years younger than that in the developed world. Regular exami-

nation of breasts may prevent and help to cure at early stages when it is treatable. Therefore, a

breast cancer screening modality being sensitive to dense breasts and suitable for general people

in LRCs like Ultrasonography imaging modality, is strongly required.

The effective breast screening modality, Ultrasonography imaging and its adjunct modalities

including conventional US, Elastography, and Power Doppler have been used in medical image

processing for many years. Some researches use only conventional US while others prefer

to US-based imaging modalities fusion. The combination of these images in feature analysis

would give benefits as same as in the breast cancer diagnosis done by a radiologist. However, the

combination made in the previous works are related the classification method to distinguish non-
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cancer from cancer masses utilizing either the fusion of conventional US and Power Doppler or

the combination of conventional US and Elastography. Unlike previous method, we proposed

the new combination that are conventional US, Elastography, and Power Doppler in the domain

of image segmentation. The research aims to detect breast cancer with high accuracy using

US-based imaging modalities fusion.

Parametric active contour model is used as a main method for breast cancer mass segmen-

tation. One of the crucial stage that affects its performance is initialization. Although, several

researches have been proposed for an automatic initialization, their purpose are for multiple-

object initialization. Normally, there is only one irregular hypoechoic mass presenting in con-

ventional US. Therefore, the previous works may not be satisfied in breast cancer mass segmen-

tation. We propose the method that is able to estimate only one initial contour located on the

breast cancer mass correctly. Not only an automatic initialization is contributed in this research

but also a new type of external energy of active contour model called radial force field. Refer

to common external force, GVF and its extension forces extend the extra force in order to im-

prove capture range from gradient of the edge map. The force is strong close to the gradient

and become weaker when it is far from the edge map. In addition, when the edges are not so

far from each other, the force often direct active contour model to converge to the wrong region

of interest. The proposed force differs from previous force fields as the strength of the force

is adaptive corresponding to the distance from the center of the mass to the masss boundary.

The force is strong close to the masss center while weak near the boundary of the mass. The

characters of the new force make active contour model robust to noise and improve iteration

numbers to converge to the feature of interest.

1.3 Research Vision, Purpose and Objectives

The research vision is to improve performance of active contour model method in breast cancer

segmentation.

The research purpose is to introduce an integration of ultrasonic imaging modalities includ-

ing conventional US, Elastography and Power Doppler images. Their integration improves a

performance of active contour model for initialization as well as an external force. Therefore,

the results of breast cancer segmentation using active contour model have high accuracy.

The objectives of this research can be summarized as below.
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1. The new approach of the integration of US-based images in image segmentation utilizing

parametric active contour model in order to overcome drawbacks of the segmentation

method.

2. Automatic initialization of parametric active contour model designed for only one initial

contour.

3. Alignment of the integrated images to find the common area as suspicious region of a

breast cancer mass.

4. Accurate segmentation of parametric active contour model utilizing new vector force field

map.

1.4 Dissertation Scope

This research focuses on parametric active contour model applying on ultrasound imaging

modalities including conventional US, Elastography and Power Doppler images.

1.5 Dissertation Outline

In this research, we developing the system for breast cancer segmentation using active contour

model as a main method. The main purpose of this paper is to develop an automatic initialization

and accurate segmentation of active contour model by extracting significant information from

Ultrasonography based images including conventional US, Elastography, Power Doppler. There

are two significant contributions in this research utilizing the US-based imaging modalities

fusion; an automatic initialization and vector force field map called radial force field as an

external energy for active contour model. Therefore, the description flow will be directed by

the implementation of these contributions respectively. The overall processes of the proposed

method is shown in Figure 1.1.

• US-based imaging modalities: the conventional US, Elastography, and Power Doppler

was performed by Ultrasound scanner. Each breast mass dataset was first examined by

conventional US and then by Elastography and Color Doppler respectively during the

same session. The examination is conducted from expert radiologists.
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• Materials: all obtained datasets require preprocessing techniques for getting rid of all

artifacts from the diagnosis such as image inpainting, image registration.

• Edge map: due to the drawbacks of conventional US, it is not possible to utilize simple

edge detection methods so fuzzy c-means algorithm is applied.

• High stiffness segmentation: first the image is converted from RGB color to HSV and

then thresholding technique is applied in Hue channel to detect the light red and dark red

interval representing the high stiffness area in Elastography image.

• Vascular flows segmentation: basically, in gray-scale regions, the intensity values of R,

G, and B channels are almost same. Contrast with the color objects which have different

intensity values in the three channels with big variance. Thus, color vascular flows are

segmented based on the color objects properties.

• Dark gray region mask: Under the assumption that the dark gray area would likely to

be the mass region and the light gray should represent for normal tissue. The dark gray

regions are detected by applying Gaussian blur and following by thresholding technique

to create binary image.

• Soft intersection using distance transform function: we utilize the integration of distance

transform outputs, as a method to find common area among the US-based imaging modal-

ities including edge map from conventional US, and the common areas between dark gray

region in conventional US and high stiffness regions in Elastography as well as vascular

flow regions in Power Doppler.

dF (P ) = wPdU(P ) + wEdE(P ) + wDdD(P ).

• An initial contour: to find the boundaries of the common area from the integration of

distance transform; first, it could be done by thresholding method to generate binary

image. After that, the boundaries of all dark regions in binary image could be traced.

The prospective boundary could be extracted by considering; it should has common area

with the Power Doppler region; its center should be close to the center of Power Doppler

region.
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• Proposed external force filed: the internal energy is designed based on the initial contour

from last process to create appropriate force based on coarse shape of a mass in order to

improve wrong convergence and number of iteration for convergence of active contour

model. The position of a snake parametrically by v(s) = (x(s), y(s)), we can write its

energy function as

E =

∫ 1

0

d1
2

(α · |vs(s)|2 + β · |vss(s)|2) + Eext(v(s))e ds.

The proposed external force Eext(v(s)) is composted of,

Eext(v(s)) = E1
ext(v(s)) + E2

ext(v(s)).

Where,

E1
ext(v(s)) = −|∇I(x, y)|2.

And proposed external force field g(x, y),

E2
ext(v(s)) = g(x, y).

Examples and comparisons with three state-of-the-art automatic initialization methods (cen-

ter of divergence COD, fast field segmentation-FFS, and Poisson inverse gradient-PIG) are

demonstrated to present the advantages of the proposed method. Whereas, the accurate segmen-

tation is evaluated by comparison of proposed method with a novel external energy, adaptive

diffusion force active contour model (ADF). From the evaluation results show high accuracy of

initialization as well as fast convergence to features of interest as shown in the last page.
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Figure 1.1: Over all process for improving performance of active contour model in breast cancer

detection using ultrasonography image modalities
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Chapter 2

Related work

2.1 Related Work

Segmentation of breast abnormalities has received considerable attention in the literature. An

extensive review by Noble and Boukerroui [15] mentions that such segmentation can be treated

as a general image processing problem, as well as include a priori information of ultrasound.

The segmentation algorithms include numerous modifications of the conventional thresholding,

neural networks (see a concise survey in [16]), watershed techniques [17], statistical meth-

ods [18, 19] , active contours (see extended surveys [20, 21], and a large list of references

compiled in [22]), level set method (see recent surveys in [23, 24]), and graph-based segmenta-

tion refined by active contours [25]. Excellent results have been obtained combining a modified

watershed model and all tissue classification for segmentation of 3D US images [26].

However, among these segmentation techniques, neural networks and other AI based meth-

ods require feature selection and training. Initial seeds are required for the watershed, and

graph-based methods, as well as for the active contours and the level-set methods. Finally, an

unsupervised Fuzzy C-means method (FCM) is a good alternative to techniques requiring prior

information, training, and initial contours (see, a concise review in [27]). In particular [27]

develops a new modification of the FCM based on Hausdorff distance and an adaptive selection

of the neighbor region of each pixel for distance measurement and centroid updating. However,

the classical disadvantages of the FCM are still a long computational time and relatively high

sensitivity to the initial guess.

Apart from active contours, the proposed FM is potentially applicable to all of the above men-
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tioned techniques, in particular to the watershed, level set initialization, and even to conven-

tional or adaptive thresholding. We may conjecture that the FCM could also benefit from the

FM since basically, the initial contour provides additional information about a possible location

of the tumor. However, such combinations lie out of the scope of this paper. Our focus is the

initial seeds for the active contours.

Let us review some ideas developed specifically for the active contours. One of the most

popular techniques is analysis of the vector field generated by the GVF-type model [5]. For

instance, [10] applies FFS to divide the image domain into disjointed regions representing the

capture range of the external force field. The snakes can be individually initialized within each

of the enclosures and moved to the targeted object boundary within it, avoiding being attracted

by other objects. However, the algorithm transforms an image segmentation problem into a

vector field segmentation problem, which is difficult to solve if strong noise is present.

The idea to initialize the snakes at the CoD of the GVF-type vector field was first mentioned

in [28]. Further, Ge and Tan [11] define the CoD by analyzing relative directions of the vector

field in a sliding 2x2 window (a generalization to larger windows is not available). He et al. [29]

uses Phase Portrait Analysis (PPA) [30] to detect the critical points of the vector field and a rule

that ”the initial contours should be set to contain all of the node points in the object area and

none of the others”. Although PPA has been used in a variety of image processing applications,

e.g. [30–35], the standard PPA classifier based on ”if then” rules often can not be adapted to the

case of snake initializations characterized by irregular nodes corrupted by noise.

The similarity of the GGVF and the Navier-Stokes equations makes it possible to use the

analogy of a flow through a porous medium. Consequently, [36] treats the initial snakes as

sources of flow, emitting normal unit vectors into the image domain. The authors also noticed

critical points of the flow and proposed to merge multi-snakes initialized around those points

for segmentation of the MRI images of lungs.

A competing idea is placing the seed points uniformly or randomly over the entire image,

evolving them from each seed point, and analyzing the resulting configuration [37]. However,

the required classifier to validate the final configuration must be trained, which makes the model

image-dependent.

A partial solution to the problem is the above mentioned QAI method by Tauber et al [13,

14]. The method employs the CoDs combined with a tracing procedure to create a ”skeleton”

10



of the object, consisting of centers of strong and weak divergence. The centers of weak diver-

gence are the points where the vectors of the GVF diverge in one (either horizontal or vertical)

direction. The centers of strong divergence feature both horizontal and vertical divergences.

The initial snake is generated around the skeleton. However, the initialization is not entirely

automatic. The algorithm still requires at least one manually generated point inside the object.

Moreover, in some cases the skeleton can evolve outside the boundary of the object.

The above mentioned PIG model [12] establishes the relationship between the external

force field and the underlying external energy field via the solution of the corresponding Poisson

equation. The model has been applied to 2D and 3D cases for a variety of medical images. The

isoline of the minimum energy is selected as the initial contour. However, the model may suffer

from incomplete isolines, as well as from over segmentation.

An automatic initialization method has been proposed in [38] for PET images of the liver.

The candidate contours are generated by Canny edge detection and subsequently classified by

a genetic algorithm. The algorithm has been applied to segmentation of face contours in video

files [39]. A similar idea was introduced in [40] for detection of the synovial boundaries in US

images. However, the proposed initial snakes selected from the edge map are not robust and

may not be applicable to multiple objects.

The idea of trial snakes (TS), combined with PPA, was applied to US images of breast can-

cer in [41]. The PPA makes it possible to detect the centers of convergence and divergence,

as well as the attracting and repelling nodes. The algorithm differentiates between the internal

and external seeds by running multiple TS from the critical points and checking their intersec-

tions with the boundary of the image. The most serious drawback of TS is that they require a

considerable amount of computational time.

The initialization algorithms for the US images often rely on gray levels and textures, to

place the seed points inside the tumor [42–44]. Saliency and feature maps have been proposed

in [45]. [46] introduces a special vector field to hybridize the GVF and the texture. A Chan-Vese

type model is proposed in [47]. A few papers related to a specific medical image processing task

use the typical position of a human organ in the US images (see, for instance, [48]). However,

these models are image dependent and may not work if strong noise is present.

Therefore, this paper proposes a new fast algorithm for automatic initialization, which com-

bines the conventional grayscale US image with the corresponding elasticity and Doppler im-
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ages. The technique makes it possible to locate the initial contour inside the tumor, close enough

to the true boundaries to ensure convergence of the active contour. The paper also introduces

a modification of the balloon type active contour, based on a combination of the radial force

derived from the fusion image and the GVF-type force.
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Chapter 3

Background

3.1 Introduction

Breast cancer is ranked as the most common disease in woman around the world. Especially

the patients is increasing dramatically in developing countries. Breast cancer is treatable when

it is examined at early stages. Although regular examination of breasts may prevent and help

to cure, almost the cases of breast cancers in developing countries or low resource countries

(LRCs) are detected in the advance stages. It is likely not possible for the treatment. The

examination of adequate breast screening techniques is not considered only for the cost but also

the rate of abnormality detection in age diversity because breast cancer patients include adults

and teenagers both. Ultrasonography imaging modality, is sensitivity and likely to improve

screening accuracy in dense breast [49, 50]. It is more affordable, portable, comfortable and

easy accessibility. In addition, there are various kinds of adjunct US-based imaging modalities

provided for improving accuracy of breast cancer diagnosis such as Elastography and Color

Doppler.

The state-of-the-art method for feature segmentation especially in medical image modalities,

active contour model or snake has been known for decades. Numerous researches have been

conducted to improve the drawbacks of traditional snake such as concavity convergence, noise

robustness, weak edge preserving, and initialization insensitivity [5], [8], and [51]. However,

an initialization as an important step that affects the ultimate active contour model performance

has not been investigated dramatically. Specificity related to US image modality, there are only

the semi-automatic initialization in conventional US [13], and the application applied to 3D
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Elastography for liver segmentation [52]. However, in realistic diagnosis especially in LRCs

the 2D Ultrasonography imaging modalities are more effective.

The main purpose of this paper is to improve performance of parametric ACM by integrat-

ing significant information from US, Elastography, and Power Doppler to estimate a location

for setting an initial contour as well as developing a suitable external force field be able to drive

ACM passing speckle noises. Unlike previous methods are proposed for multi-object segmen-

tation [11], [10], and [12]. We introduce the method estimating only one initial contour because

generally there is only one suspicious mass in the conventional US image. It is very challenging

due to the drawbacks of conventional US including sparkle noise, shadows, and non-uniform in

contrast of certain structure.

3.2 Applying Ultrasonography imaging modalities in breast

cancer screening

World Health Organization reports the breast cancers as the most common category of cancers in

women both in the developed and the developing world. In addition, the cases of breast cancers

in developing countries are increasing due to the increase in life expectancy, urbanization, and

western lifestyles [53]. Breast cancer is defined as a cancer that develops in the interval between

routine screening. Hence, regular examination of breasts may prevent and help to cure because

breast cancers are detectable at early stages when they are treatable. Therefore, an appropriate

breast screening modality is strongly required. Although, there are many non-invasive imaging

techniques existing to diagnose breast cancer such as computed tomography (CT), magnetic

resonance imaging (MRI), the most common methods have been used are mammography and

ultrasound. Considering to the cost-effective and practical methodology, mammography may

not be appropriate in LRCs. Although it has proved to be effective and worked well in high-

resource countries (HRCs), it is not a feasible option as a screening modality for the common

population in LRCs [54]. Moreover, the most breast cancer patients are detected in relatively

advance stage when a treatment is less possible to be successful due to the limited breast cancer

awareness as well as weak health systems [55].

The examination of adequate breast screening techniques is not considered only for the cost

but also the rate of abnormality detection in age diversity because breast cancer patients include
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adults and teenagers both. Especially, the average age at diagnosis of breast cancer in LRCs

is approximately ten years younger than that in the developed world [56]. Normally, screen-

ing sensitivity is mostly based on breast density which relate to age groups. The woman is

younger than 50 has dense breast (the proportion of breast value) and since, mammography is

less effective in woman below the age of fifty. Therefore, it has been considered relatively un-

satisfactory in young woman. Hence, recall of the disadvantages of mammography technique

which is expensive, requires skilled manpower and stringent quality control, is on the whole

complex screening test, and is less sensitivity in dense breast screening, it may not be an ap-

propriate technique for breast cancer screening test in LRCs. In contrast with, Ultrasonography

imaging modality (US), is considered sensitivity, and likely to improve screening accuracy in

dense breast [49], [50], and [57]. Moreover, it is more affordable, portable, more comfortable

compared to mammography as well as easy accessibility. Therefore, the ultrasound is most

likely be appropriate for breast cancer screening modality in LRCs [54] and [55]. Thus, the

research focusing on ultrasound imaging modality in the domain of computer aided diagnosis

system may help in breast cancer control and improve the survival rates especially in LRCs.

3.3 The integration of Ultrasonography imaging modalities

in improving sensitivity and specificity

Traditionally, the assessment processes recommended for symptomatic woman are physical as-

sessment (palpation), screening and diagnosis (imaging modalities), and fine-needle aspiration

cytology (biopsy) consequently. As a median process, the effective imaging modality, a support-

ing tool for radiologist to acquire accurate diagnosis is needed in order to decrease the unnec-

essary biopsy rate. Although US image provides numerous benefits as mention in the previous

section, the quality of US image may not be satisfied according to speckle noise, shadows, and

low or non-uniformity in contrast of certain structure. Therefore, using only US image might

cause the increase in false-positive diagnosis. Consequently, the supplement imaging modalities

in US using as adjunct to conventional US are invented in the purpose of improving diagnosis

accuracy which are Ultrasonographic Elastography and Power Doppler Ultrasonography.
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3.3.1 Conventional Ultrasound

Ultrasonographic Elastography (Elastography)

Elastography is a non-invasive medical imaging modality that distinguishes breast masses based

on their stiffness. The visualization of Elastography method is similar to the palpation assess-

ment that evaluates the hardness of a breast mass. Consequently, it is used as a adjunct technique

to help in discrimination of benign and malignant breast mass especially when the mass is non-

palpable [58]. Referring to strain pattern scoring [59], score 1, completely blue color mass

refers to a soft and loose structure. Score 2, blue and green color mass refers to a soft-rigid in-

ternal structure. Score 3, red and dark red in the center of the mass and green in periphery refers

to harder in its center and softer on the outside. Score 4, completely red and dark red color mass

refers to whole mass being hard and tight. Finally, a score 5, red and dark red color covering

the mass and the surrounding tissue refers to hard structure in both mass and its surrounding

area. The color bar that represent the stiffness of a breast mass is showing in Figure 3.1. Ac-

cording to the mass characteristic, benign lesions tend to be harder than normal breast tissue

but significant softer than malignant lesions. The score 1, 2, and 3 represent benign features

whereas the masses scoring 4 and 5 are interpreted as malignant. The US machine displays a

color Elastography image as follows:

Score 1: blue color indicates soft and loose structures.

Score 2: a combination of blue and green indicates soft-rigid structures.

Score 3: red and dark red at the center of the mass and green at the periphery indicates a hard

to soft mass.

Score 4: red and dark red indicates a hard and tight mass.

Score 5: red and dark red covering the mass and the surrounding tissue refers to a hard expand-

ing mass. Scores 1, 2, and 3 represent benign features, whereas masses scoring 4 and 5 are

likely to be malignant.

In order to improve sensitivity (discrimination of benign and malignant) as well as speci-

ficity (a necessity of biopsy), the combining of conventional US and Elastography for breast

cancer diagnosis is required and it has shown satisfied results [58], [60], and [61].
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Figure 3.1: Color bar shows stiffness of a breast mass in Elastography.

Color Doppler or Power Doppler Ultrasonography (Power Doppler)

Power Doppler is also a non-invasive image modality supplement to conventional US. It can

support to visualize the appearance and morphology of blood vessels associate with the breast

mass. The Power Doppler is under the assumption that neoangiogenesis within a malignant

mass may enable differentiation from benign mass by considering the demonstration of vascular

flow. Normally, a benign mass has a little or no appearance of vascular flow. The advantages

of Power Doppler are high sensitivity to slow flow, no angle dependency, and no aliasing [62]

and [63]. Therefore, it is wildly used as an adjunct image modality for beast cancer diagnosis

in distinguishing benign from malignant mass and the optimistic results have shown in [62] and

[64].

The integration of conventional US, Elastography, and Power Doppler

Basically, evaluation of breast cancer in conventional US considering to mass shape, boundaries,

location, echogenicity, appearance of acoustic strengthening, and calcification content which

is not sufficient enough to reduce false-positive diagnosis. According to the benefits of the

supplement US imaging modalities; Elastography and Power Doppler, the combination of them

improve the accuracy of radiologists in terms of sensitivity and specificity [4]. From fig. 3.2, a

mass which appears as dark region in conventional US, and presents as red and dark red shed

covering a whole part of the dark area (hard tissue) in Elastography, and also emerges of a

number of vascular flows at the dark area in Power Doppler should be classified as a malignant

mass.

Integration of the imaging modalities in clinical practice

The efficiency of combined US, Doppler, and elasticity imaging in diagnosing breast malig-

nancy is still controversial. For instance, [65] reports that “using the Doppler image alone

has little value in differentiating between malignant and benign breast lesions”. The research

conducted by [66] concludes that Doppler imaging does not contribute to categorization of
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(a) (b) (c)

Figure 3.2: US images in a patient at Thammasat university hospital show high suspicious of

malignant mass. (a) Conventional US shows an irregular hypoechoic mass. (b) Elastography

shows the entire mass as red and dark red. (c) Power Doppler shows increased vascularity.

solid breast masses. However, there is growing evidence that analysis of a combination of im-

ages improves the characterization of breast lesions. [67] reports that sensitivity/specificity was

96%/68% for US, 100%/40% for US and mammography, and 96%/80% for the combined mode,

including Doppler. [4] characterizes the results obtained from 5 readers by the area under the

receiver operated characteristic curve Az as follows: “the Az of the US mode, elastography, and

Doppler US (average, 0.844; range, 0.797-0.876) was greater than that of the US mode alone

(average, 0.771; range, 0.738-0.798) for all readers”. [68] reports “the specificity of making the

decision for biopsy increased from 6.5% to 38.7% when US was combined with color Doppler

and elasticity without a statistically significant change in sensitivity”. [69] shows that a com-

bined use of US, elasiticity, and color Doppler achieved an NPV of 95% “thus allowing sparing

of unnecessary invasive diagnostic procedures”. In summary, there is enough evidence that a

combination of the conventional US, elastography, and Doppler images improves the accuracy

of diagnosis. Therefore, the above imaging modalities will be increasingly used in clinical

conditions to allow for computerized segmentation and classification of tumors.

3.3.2 The integration of Ultrasonography imaging modalities in medical

image processing

One of the targets for medical image processing is to develop computer aided diagnosis sys-

tem (CAD) which is the software invented to assist physicians and radiologists in examination

of medical images. The processes in CAD system are started from image enhancement and
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restoration, registration and fusion of multi-modality images, segmentation of feature interest,

classification of image feature, quantitative measurement of image features and interpretation of

the measurement, and finally, the development of integrated systems for the clinical sector [70].

Based on the advantages of combining conventional US, Elastography, and Power doppler in

breast cancer diagnosis, it could be applied in medical image processing. Most of researches

conducted in the US images fusion is in the classification of image feature process for distin-

guishing benign from malignant masses. The combination could be either conventional US and

Elastography [71] and [72], or conventional US and Power Doppler [73], [74], [75], and [76].

Only one research for segmentation was conducted in 3D Elastography using active contour

model [52]. However, there is no full combination of images (conventional US, Elastography,

and Doppler image modalities).

3.3.3 Segmentation of breast cancer

According to the benefits of the US-based imaging modalities fusion for differentiating the

breast cancer mass (malignant) from normal lesion (benign), it make optimistic improvement

of fault-positive diagnosis in terms of sensitivity and specificity. Although, the images were

applied widely for classification, it was only few researches using them for segmentation. Es-

pecially, there is none in the combination of the all three images. Therefore, we originally

propose the Ultrasonography imaging modalities fusion for malignant mass segmentation using

active contour model. By extracting the significant image features from each image to identify

the most likely to be malignant mass including the dark region in conventional US, the red and

dark red shed in Elastograpy, and the emerging area of vascular flow in Power Doppler. The

common of all three areas should represent the most possible location for malignant mass.

3.4 Active contour Model

The energy driving algorithm, active contour models or snakes have been used dramatically

in image segmentation, feature recovery, as well as tracking. There are two main types of

snakes: parametric snakes [5, 77–79] and geometrical [80–83] ACMs. This research focuses

on parametric snakes working based on parameterized contour and then the snake deforms by

evaluating its positions on the predetermined spline contour points until it reaches the region of
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interest (ROI) where is the equilibrium position. The traditional snake [84] composes of two

energy term to perform energy minimization including internal and external energy forces. The

position of a snake parametrically by v(s) = (x(s), y(s)), we can write its energy function as

E =

∫ 1

0

d1
2

(α · |vs(s)|2 + β · |vss(s)|2) + g(v(s))e ds.

where the subscripts denote partial derivatives, α and β are weighting parameters to control

the snake’s tension and rigidity and g(v(s)) is the external force.

3.4.1 An automatic initialization of parametric active contour model

The critical problem of active contour model, setting of the initial contour is started from as-

signing by the user. The popular way to initiate a contour is creating simple shape such as

rectangle and circle either inside or outside the ROI. This method is uncomplicated but it may

cause a big number of iterations from starting point to the desired boundary. It also could make

wrong segmentation, when there are more than one objects and\or noisy image. According

to the static force field map, ts make these drawbacks be challenge. The sensitivity of the di-

rection of force fields could cause wrong segmentation when an initial contour is placed in

an inappropriate location. Therefore, the research focusing in an automatic initialization has

been increasingly investigated. The first attempt method [85] relies on the distant end points

given by a user. After the successful contribution of GVF, there are dramatic interest in de-

veloping an automatic initialization methods related to the gradient vector flow. For example,

semi-algorithm [29] analyzed the critical points in the force field for estimating the position

for initial contour. Contrast to the previous works, targeting for multiple objects, the multiple

automatic initialization [11] utilized the center of divergence of the force field as appropriate lo-

cations to place the small initial contours. Li and others [10] proposed automatic initialization

by inventing external force field and solved the complex shape boundaries by splitting method.

The same research team of VFC snake [12] invented the method that can specify the number

of the object for automatic initialization using Poisson inverse gradient analysis. Specificity,

previous works related to US image modality, the semi-automatic initialization in conventional

US [13], requiring a user to select a point in the ROI, the method estimated the position to set

up an initial curve by evaluating strong and weak divergence. Another one applied to 3D Elas-

tography for liver segmentation [52], the coarse-to-fine method used Gaussian pyramid to find
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an appropriate position for curve initialization.

One of the purposes of this paper is to develop an automatic initialization of active contour

model by extracting significant information from the US images to find the appropriate position

for locating an initial contour of snake based on static map deformation. It is challenging due

to the drawbacks of conventional US including sparkle noise, shadows, non-uniform in contrast

of certain structure. Moreover, beast screening in conventional US image modality normally

presents more than one dark region which might be masses, shadows, cysts, and\or muscles. In

very noisy images, it is even more difficult to distinguish a mass from noise by an expert. That’s

why, Tauber’s work [13] required a user to select a point in the area of segmentation target. In

addition, generally there is only one suspicious mass in the conventional US image. Thus, the

automatic initialization methods for multiple objects [11] [10] would not be much appropriate

to be applied in breast cancer detection. Hence, we originally propose an automatic initialization

for parametric active contour model base on static-map of vector flow analysis to find only one

specific region representing a malignant mass by extracting useful information from the fusion

of Ultrasonography imaging modalities including conventional US, Elastography, and Power

Doppler. Nevertheless, our propose method is specific to parametric snake which evaluate its

position base on vector flow thus the proposed method may not be benefit to geometric snake.

3.4.2 An internal force of ACM.

From above equation, the combination of two forces leads ACM to desired boundaries including

internal and external-force. The internal-force is calculated from the position of contour in each

iteration as follow,

Eint = (α(s)|vs(s)|2 + β(s)|vss(s)|2)/2.

The energy is composed of a first-order (elastic) term to control by α(s) for energy weighing

and a second-order (bended) term controlled by β(s).

To improve performance of ACM, many researches have been utilized to improve the exter-

nal of ACM to overcome the its disadvantages including deep and narrow concavity, weak edge

leaking, capture range and noise robustness.

21



3.4.3 An external force of ACM.

The ACM is attracted to the desired boundary from a fairly large distance away because of the

internal energy term. This type of convergence is rather common for ACM. If part of ACM

finds a low-energy image feature, the spline function will pull neighboring parts of the ACM

toward a possible continuation of the feature which called a good local minimum. The simplest

useful image functional for external force to guild ACM to local minimum, is the edge energy

function defined as,

Eext1 = −(Gσ ∗ ∇2I)2

Although the edge energy is satisfied for energy minimizing, it is poor for far large distance

of ACM development. It causes disadvantages of ACM as following;

• Small capture range.

• Deep and narrow concavity.

• Weak edge leaking.

• Noise robustness.

A number of research groups have generalized [86] via replacing the standard external force

by the sum of other forces generated from the image and/or the contour [5, 6, 87, 88]. Instead

of a standard energy minimization problem, the solution of the ACM is formulated as a force

balance equation. Different external forces have been proposed to improve the performance of

ACM. The external forces can be generally classified as dynamic forces and static forces [5].

The dynamic forces are those that depend on the ACM and, as a result, change as the ACM

deforms. The static forces are those that are calculated from the image, and remain unchanged

as the ACM deforms. The static forces can be further classified based on the force sources.

Edge-based static forces are calculated from the image edges, whereas region-based static forces

are computed using the region intensity and/or texture information [89]. The pressure force, also

known as the inflation force, used in balloon models is an useful dynamic force that pushes the

ACM either outward (inflation) or inward (deflation) [86, 87, 90–92]. Although the pressure

force can avoid spurious edges, the pressure force causes leakage problem when there are sig-
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nificant gaps in the edges. Another limitation of the ACM using a pressure force is that it must

be initialized either inside or outside the targeted object.

The most successful modifications of the active contours are Gradient Vector Flow (GVF)

snakes [5], the Generalized Gradient Vector Flow snakes (GGVF) [6], multidirectional GGVF

snakes [7] and the non-linear diffusion model [93]. Recent GVF-type models are Normal Gradi-

ent Vector Flow [94], Infinity Laplacian [95], Harmonic Gradient Vector Flow [96], Convolution

Vector Flow [8], Dynamic Directional Gradient Vector Flow [97], Adaptive Diffusion Flow [9],

and Multi Feature Gradient Vector Flow [98].

Numerous researches have been conducted to improve the drawbacks of traditional snake

such as concavity convergence, noise robustness, weak edge preserving, and initialization in-

sensitivity. The gradient vector flow or GVF snake [5] is one of the most successful algorithms

to improve capture rank of snakes and then the massive of its extension are lunched in the pur-

pose of overcoming the snake’s drawbacks for example, the vector field convolution (VFC) [8]

succeeding in handing the superior noise, the integration of GVF and the prior directional infor-

mation provided by user to guide the snake’s deformation in desired direction [99], the adaptive

diffusion flow active contour model (ADF) [51] overcoming all of the problems, etc. The force

field applied in snake’s deformation is categorized into two type; static map-the force field map

has been provided before snake starts evaluating such as GVF, VFC, and ADF; and dynamic

map-the force field is modified and\or developed while snake deforming for instant [100]. Al-

though, many drawbacks of snake have been mentioned and solved, an important disadvantage

of snake is still being concerned, the automatic initialization of snake.

Not only an automatic initialization is contributed in this research but also a new type of

external energy of active contour model. Refer to common external force, GVF and its extension

forces extend the extra force in order to improve capture range from gradient of the edge map.

The force is strong close to the gradient and become weaker when it is far from the edge map.

In addition, when the edges are not so far from each other, the force often direct active contour

model to converge to the wrong region of interest. The proposed force differs from previous

force fields as the strength of the force is adaptive corresponding to the distance from the center

of the mass to the masss boundary. The force is strong close to the masss center while weak

near the boundary of the mass. The characters of the new force make active contour model

robust to noise and improve iteration numbers to converge to the feature of interest.
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Chapter 4

Ultrasonographic imaging modalities

preprocessing and registration

Since all datasets of ultrasonic images including conventional US, Elastography, and Power

Doppler were obtained from scanning machine via radiologist. The images were investigated

for breast cancer diagnosis by radiologist which contain undesirable masks as well as different

alignment of ROI due to obtaining in different time. Therefore, methods for image processing

such as image inpainting, image transformation, and image registration are needed. The pipe

line of image preprocessing and image registration is shown in Figure 4.1.

4.1 Materials

4.1.1 Sequence of ultrasonic imaging modalities

The conventional US, Elastography, and Power Doppler was performed by Ultrasound scanner

Sumsung RS80A, 2D mode, Power Doppler(PD), and ElastoScan Mode with linear array L3-

12A probe.The 90-dataset are obtained by expert radiologists who have experience for more

than three years for breast cancer diagnosis and obtaining the image modalites at Radiology

department, Thammasat university hospital, Pathumthani, Thailand. Each breast mass dataset

was first examined by conventional US and then by Elastography and Color Doppler respec-

tively during the same session. Example of ultrasonographic imaging modalities dataset that is

obtained from the scanner is shown in Figure 4.2.
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Figure 4.1: The process of image preprocessing for ultrasonographic imaging modalities.

4.1.2 Ground truth of conventional US

Since conventional US is used as information for external force of ACM for breast cancer seg-

mentation. Therefore, evaluation of FM is done by comparing the segmented results from FM,

FFS, COD, and PIG with ground truth form expert radiologist who has experience for breast

cancer diagnosis for more than five years at Radiology department, Thammasat university hos-

pital, Pathumthani, Thailand. An example of ground truth is shown in Figure 4.3.

4.2 Preprocessing process

Since Power Doppler and Elastography were obtained from scanning machine while diagnosis

processes. Therefore, the images contain undesirable masks so that image inpainting and im-

age transformation are required to get rid of undesirable marks and transform the images into

suitable size for reducing time in image processing techniques.

4.2.1 Image inpainting

According to processes for breast cancer diagnosis performing by radiologists, Power Doppler

and Elastography images have some undesirable marks which have to remove shown in Fig-
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ure 4.5 to Figure 4.7 (a). Therefore image inpainting or image interpolation is required. In this

work, a simple region-based image segmentation, region growing technique [101] is applied

first for undesirable features segmentation following by linear interpolation [102] for filling

texture using nearby texture information. Example process for image inpainting in Elastog-

raphy is shown in Figure 4.4. The results of the images after image inpainting are shown in

Figure 4.5 to Figure 4.7 (b).

4.2.2 Image resize

The actual size of ultrasonic imaging modalities obtaining from the machine is quite huge (996×

812). Therefore, all datasets are resized to be 25% of their actual size which is performed

by effective image resize technique [103] still preserving all important features. Example of

original and resized images for conventional US, Power Doppler, and Elastography are shown

in Figure 4.8 to Figure 4.11 respectively.

4.3 Image registration

Although, breast mass dataset was first examined by conventional US and then by Elastography

and Power Doppler respectively during the same session, it causes slightly different position of

a mass in each image shown in Figure 4.12. Hence, thin plate spline method [104] is conducted

for manual registration between convention US, Power Doppler, and Elastography images. Ac-

cording to the images produced from the scanner provide corresponding features in conven-

tional US, Power Dopplwer, and conventional US in Elastography mode which could be used

for image registration. Therefore, the conventional US image is used as a main corresponding

features for manual registration with Power Doppler and Elastography.

The process of image registration using thin plate splines, given two images to deform

an image so it matches another one. The manual process is done by user providing set of

corresponding points on the two images.

4.3.1 Thin plates spline

There are quite a few techniques out there that provides a smooth interpolation between a set of

control points. Thin plate splines is one of such techniques. It interpolates a surface that passes
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through each control point. As set of three points will thus generate a flat plane. The control

points are as position constraints on a bending surface. The ideal surface is on that bends the

least. The least bent surface is given by the following equation,

f(x, y) = a1 + a2x+ a3y +
n∑
i=1

wiU(|Pi − (x, y)|).

The first three terms correspond to the linear part which defines a flat plane that best matches

all control points (this can be seen as a least square fitting). The last term corresponds to the

bending forces provides by n control points. There is a coefficient wi for each control point.

Also |Pi − (x, y)| is the distance between the control points Pi and a position (x, y). This

distance is used in the function U defined by U(r) = r2log r.

The unknown are the coefficients a1, a2, a3, and wi for every control point. All wi forms the

vector W . These unknowns are defined by,

L−1V = (W |a1a2a3)T .

What is known are the control point positions (xi, yi) of all points Pi and their heights vi. Where

the control point position is defined as,

P =


1 x1 y1

1 x2 y2

...

1 xn yn

 .

And the control point heights, padded with 0s,

Y =



v1

v2

...

v2

0

0

0


.

Matrix K is definded for evaluating the function U(rij) where rij is the distance between

two control points, rij = |Pi − Pj|,
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K =


U(r11) U(r12) ...

U(r21) U(r22) ...

... ... U(rnn)

 .
The matrix L mentioned earlier is composed with the matrix K on its top-left corner, with

the matrix P on its right side, with the matrix P T on its bottom side, and with zeros on it

bottom-right corner,

L =

K P

P T 0

 .
To find the unknown coefficients, that is the matrix (W |a1 a2 a3), we can either find the

inverse L−1, or solve L(W |a1 a2 a3) = Y which is a linear system. Since L is by definition

symmetric, the last system can be easily solved with for instance a LU decomposition.

Once (W |a1 a2 a3) is computed, then substitute back and find the height v = f(x, y) for

any point (x, y).

In this research focuses on a 2D point, but the method can be extended to N-D by adding

more term ai and by using a larger vector P . The result would still be the interpolation of height

of the hypersurface, that means a 1D variable.

4.3.2 Image registration between conventional US and Power Doppler

The flow of conventional US and Power Doppler is shown in Figure 4.13. The results of the

manual registration are shown in Figure 4.14.

4.3.3 Image registration between conventional US and Elastography

The flow of conventional US and conventional US which was produced simultaneously with

Elastography is shown in Figure 4.15. The results of the manual registration are shown in

Figure 4.16.
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(a)

(b)

(c)

Figure 4.2: (a) Conventional US. (b) Power Doppler. (c) conventional US and Elastrogrpahy

were produced simultaneously.

(a) (b)

Figure 4.3: (a) Conventional US. (b) Ground truth is obtained from expert radiologist.
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(a) (b)

Figure 4.4: Example of image inpainting in Elastography (a) Original image. (b) Mark seg-

mentation is performed by region growing technique. (c) The green circle is replaced by nearby

pixel applying linear interpolation.

(a) (b)

Figure 4.5: Example of image inpainting in Power Doppler (a) Undesirable mark is shown as

green rectangle. (b) Undesirable mark is replaced by inpainting.
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(a) (b)

Figure 4.6: Example of image inpainting in convention US is produced with Elastogrpahy si-

multaneously. (a) Undesirable mark is shown as green circle. (b) Undesirable mark is replaced

by inpainting.

(a) (b)

Figure 4.7: Example of image inpainting in Elastography (a) Undesirable mark is shown as

green circle. (b) Undesirable mark is replaced by inpainting.
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(a) (b)

Figure 4.8: (a) Original size of conventional US image 996 × 812. (b) 25% of actual size

249× 203.

(a) (b)

Figure 4.9: (a) Original size of Power Doppler image 996× 812. (b) 25% of actual size 249×

203.
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(a) (b)

Figure 4.10: (a) Original size of Elastography image 639×870. (b) 25% of actual size 160×218.

(a) (b)

Figure 4.11: (a) Original size of Elastography image 639×870. (b) 25% of actual size 160×218.
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(a) (b)

(c) (d)

Figure 4.12: (a) convention US image. (b) Power Doppler image. (c) and (d) are conventional

US and Elastography which are obtained simultaneously.

Figure 4.13: Image registration between conventional US and Power Doppler.
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(a) (b)

Figure 4.14: (a) Original Elastography. (b) The result of image registration between conven-

tional US and Power Doppler.

Figure 4.15: Image registration between conventional US and Elastography.
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(a) (b)

Figure 4.16: (a) Original Elastography. (b) The result of image registration between conven-

tional US and Elastography.
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Chapter 5

Methodology

Active contours models are an efficient method for segmentation of ultrasound (US) images

of breast cancer. However, the method produces inaccurate results if the seeds are initialized

improperly (far from the true boundaries and close to the false boundaries). From [105] the

method for integration of conventional US and Power Doppler for initialization for ACM per-

forms good performance for correct initialization. However, its performance for the results

of the breast cancer segmentation is average due to speckle noises. Therefore, the integration

following breast cancer diagnosis is needed to improve the ability of ACM initialization and

segmentation. In this research, we propose a novel initialization method based on the fusion of

a conventional US image with Elastography and Power Doppler images.

5.1 Introduction

The goal of this paper is to set up the initial contour for active contour model in order to seg-

ment a malignant mass in a conventional US image. We invent the method by mocking up the

breast cancer diagnosis using the significant information from the three US image modalities;

conventional US, Elastography, Power Doppler images. At the beginning, these three images

are processed for extracting useful information separately. Later on, the combining process is

conducted to find the single common area as a representative of a breast cancer in conventional

US image. Consequently, the utilization of the three US imaging modalities will be described

separately until the the fusion process is invented. The overall process for US imaging modali-

ties fusion is shown in Figure 5.1.
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Figure 5.1: The process of developing an initial contour and proposed external force field of

ACM for breast cancer detection utilizing the ultrasonic imaging modalities integration.
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5.2 Binarized process

Since an integration process of these three images; conventional US, Ealastography and Power

Doppler is performed by distance transform function, significant features from these image have

to be attracted and transform to binary image.

5.2.1 Conventional US

Conventional US is used for two proposes; edge map for deriving external force for ACM; and

dark gray mask for finding coarse common area between irregular mass in convention US image

and Elastography image as well as in Power Doppler image.

Edge map of conventional US

The purpose of this paper is to segment malignant mass in conventional US image. Therefore,

the binary edge of the image that is used as a gradient map for external energy of active contour

model is required. Due to the sparkle noise and intensity inhomogeneities of the ROI, normal

edge detection method may not be sufficient. Hence, we utilize a clustering based method for

image segmentation, Fuzzy c-means (FCM) [106]. In addition, to compensate with the noise

sensitive of FCM, the smoothing image, Gaussian blur method is applied. The optimal partition

in image I can be obtained as follow,

IFCM =
n∑
k=1

c∑
i=1

(ui,k)
qd2(xk, vi).

Where X = {x1, x2, ..., xn} ⊆ <2, n is the number of data items, c is the number of clusters

with 2 ≤ c ≤ n, ui,k is the degree of membership of xk in the ith cluster, q is a weighing

exponent of each fuzzy membership, vi is the prototype of the center of cluster i, d2(xk, vi) is a

distance measure between object xk and cluster center vi. In order to set appropriate parameters

of FCM which could be compatible to all datasets, the common parameters in 15-dataset are

observed and then the parameters are tested again with other 30-dataset. The result of binary

image of edge map extracting from IFCM is showing in Figure 5.2 (a).
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(a) (b) (c)

Figure 5.2: (a) Conventional US. (b) Edge map. (c) Dark gray mask.

Dark gray region mask

Under the assumption that the dark gray region would likely to be the mass region and the light

gray should represent for normal tissue. First the conventional US is applied by Gaussian blur

to smooth noise, and then utilized by the thresholding technique to create binary image with

threshold value (tM ). The binary mask of dark gray scale region is shown in Figure 5.2 (b).

Similar to edge map, the common tM value is obtained from 30-dataset and follows testing by

other 60-dataset.

5.2.2 Elastography

As a benign mass is softer than malignant mass but harder than normal tissue, the possible color

in Figure 5.3 (a) and (b) that present high stiffness should be in the interval between light red

and dark red.

Segmentation of high stiffness region

For color segmentation of Elastography image Figure 5.3 (a), first the image is converted from

RGB color to HSV. Only Hue channel is used for the light red and dark red interval segmentation

using thresholding technique. The common threshold value (tH) is defined following the hue

channel color bar in Figure 5.3(c). The binary image after thresholding is shown in Figure 5.4

(a).
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(a) Elastography.

(b) Color bar for stiffness of breast.

(c) Color bar for hue in HSV.

Figure 5.3: Elastography image segmentation.

Filter the common area of between conventional US and Elastography

Finally, the output binary image shown in Figure 5.4 (b) is obtained by applying dark gray mask

in Figure 5.2 (c) to find roughly common area.

5.2.3 Power Doppler

The significant feature in Power Doppler is vascular flows that present as color areas in the

gray-scale image 5.5 (a).

(a) (b)

Figure 5.4: Example of (a) high stiffness segmentation and (b) common area of high stiffness

area and dark region area
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(a) (b) (c)

Figure 5.5: (a) Power Doppler image. (b) Binarized Power Doppler image. (c) Common area

of vascular flows area and dark region area.

Segmentation of vascular flows region

Basically, in gray-scale regions, the intensity values of R, G, and B channels are almost same.

Contrast with the color objects which have different intensity values in the three channels with

big variance. Therefore, the binary image (BW ) extracting from the Power Doppler image (I)

is done by finding non-identity value in the RGB-channel (IR, IG, IB) which has big variance.

The output image is showing in Figure 5.5 (b).

1. Input I

2. for each pixel i, j, let σ(i,j) =
√
V ar{IR(i,j), IG(i,j), IB(i,j)}

(a) if IR(i,j) 6= IG(i,j) 6= IB(i,j) and σ(i,j) ≥ tσ

i. Let BW(i,j) = 1

(b) else

i. Let BW(i,j) = 0

Filter the common area of between conventional US and Power Doppler.

Similar to Elastography image, the output binary image shown in Figure 5.5 (c) is obtained by

applying dark gray mask in Figure 5.2 (c) to find common area roughly.

Elimination of outliers in Power Doppler image

Based on reliable of region of Power dropper for automatic initialization. The outliers that

locate in very far from a common region have to be eliminated shown in Figure 5.6. Detection
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Figure 5.6: Binarized Power Doppler image after getting rid of outliers.

of outliers in D is performed by using Mahalanobis distance [107] as described following:

1. Input D-image.

2. Skeleton the vascular flows SD by considering a number of points (nD) in window size

n×m with thresholding value tv.

(a) If nD < tv, Skeleton→ p (1 pixel).

3. For each p in SD (sorted by column of D).

(a) Compute Mahalanobis distance for each point, MD(pi)

(b) Compute the 97.5%-Quantile Q of the Chi-square distribution.

i. If MD(pi) > Q&MD(pi) > td, outliers. Where td is a value used for verify

that pi is vary far from the common region.

5.3 Common area detection.

5.3.1 Soft intersection using distance transform algorithm

Following the over all assumption, a malignant mass should be located in the dark gray in

conventional US, high stiffness mass which is the interval between light red and dark red in

Elastography, as well as vascular flows regions present as color objects in Power Doppler. The

most likely to be position for setting an initial contour would be obtained by applying soft

intersection algorithm to the three binary images. In this paper, we utilize distance transform

function [108] as a method to find common area among the thee Ultrasonography imaging

modalities. Let G = {0, ..., n− 1}× {0, ...,m− 1} is a 2D grid, and f : G→ R is an arbitrary
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: The results of Euclidean distance transform of (a) Edge Map, (b) Binarized Elas-

tography, and (c) Binarized Power Doppler, are shown in (d)-(f) respectively.

function on the grid. The computation of the two dimensional Euclidean distance transform of

f in a binary image is defined as,

Df (x, y) = min
x′,y′

((x− x′)2 + (y − y′)2 + f(x′, y′)).

In order to find soft intersection area, these three distant transform outputs are added to-

gether,

DT (xi, yj) = WEDE(xi, yj) +WEGDEG(xi, yj) +WPDDPD(xi, yj).

The output of Euclidean distance transform of conventional US (DE), Elastography (DEG),

Power Doppler (DPD), are shown in Figure 5.7 (d)-(f) respectively.

The output of distance transform integration of DE , DEG, and DPD with same value of

weighting parameters (WE + WEG + WPD = 1) is shown in Figure 5.8. Considering in gray-

scale image, the common area of the three images represent in dark region.

An introductory example in Figure 5.9 demonstrates the advantages of the soft intersec-

tion for the binarized of conventional US, Elastography, and Power Doppler images in Figure

5.7 with the reference to the binary intersection. Clearly, the soft intersection in Figure 5.9
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Figure 5.8: Output of distance transform integration with the same weighting of DE , DEG, and

DPD.

(f) produces an appropriate gray level image which can subsequently be used to initialize the

active contour whereas the binary intersections in Figures 5.9 (d) and (e) are not suitable for

initialization.

5.4 Estimation of an initial contour setting in conventional

US

After distance transform integration, dF is changed to gray scale image for detecting the most

common past which is the dark region. The pipeline is started with small range of thresholding

values that produce a binary image. After that each boundaries in binarized image are traced.

Finally a boundary which is close to Power Doppler image is selected and then size of the

selected boundary is resized.

To find the boundaries of the common area representing in dark region in Figure.5.8, first

the thresholding method is used for generating binary image as shown in Figure 5.10 (a) with

the range of threshold values (T ). It is possible to find the suitable contour among the threshold

values in T because the three distance transform outputs are transformed to gray scale image.

After that, the boundaries of all dark regions in binary image could be traced shown in Fig-

ure 5.10 (b). The prospective boundary (Bo) could be extracted by considering; it should have

high gradient along (Bo); big common area of Bo and the Power Doppler region (BCD) shown

in Fig. 5.10 (c); close center of Bo and BCD; as well as, Bo is bigger than BCD. The successful

automatic thresholding is shown in Figure 5.10 (d), a representative boundary is Bo and its cen-

ter is co. The main technique to find the common area of each trial initial contour with Power

Doppler image is Partial Hausdorff distance and the overall method is described as,
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5.4.1 Hausdorff distance

Hausdorff distance [109] measures the extent to which each point of a set points lines near

some point of an image set and vice versa. Given two finite point set A = {a1, ..., an} and

B = {b1, ..., bn}, the Hausdorff distance is defined as,

H(A,B) = max(h(A,B), h(B,A)),

where

h(A,B) = max
a∈A

min
b∈B
||a− b||,

and ||.|| is some underlying norm on the points of A and B. Throughout this research, we use

the L2 or Euclidean norm.

5.4.2 Modified Hausdorff distance

The modified Hausdorff distance is the best among possible distance measured based on the

Hausdorff distance (MHD) [110]. It has high performance for object matching. The MHD is

defined as,

f(h(A,B), h(B,A)) = max(h(A,B), h(B,A)),

and the distance between two sets is assigned as,

h(A,B) =
1

Na

∑
a∈A

h(a,B).

5.4.3 Partial Hausdorff distance

In many problems, it is important to be able to identify instances of a model that are only partly

visible (either due to occlusion or to failure of the sensing device to detect the entire object).

Thus we wish to extend the definition of the Hausdorff distance to allow for the comparison of

portions of two shapes called partial Hausdorff distance (PHD) [111]. This will allow both for

scenes that contain multiple objects, and for objects that are partially hidden from view. For

simplicity, we first consider just the forward distance fB(t) = h(t(B), A). Recall that, in effect

each point of t(B) is ranked by the distance to the nearest point of A, and the largest ranked

point (the one farthest from any point of A) determines the distance.
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A natural definition of the ”partial distance” for K of the q points of B(1 ≤ K ≤ q) is thus

given by taking the K − th ranked point of t(B) (rather than the largest ranked one),

hK(t(B), A) =
th

K
b∈t(B)

min
a∈A
||a− b||.

Where Kth
x∈xf(x) denotes the K− th ranked value of f(x) over the set X . For example, the

n− th ranked value is the maximum, and the n/2− th ranked value is the median (if X has n

elements).

In order to compute the partial forward distance hK(t(B), A), we generally specify some

fraction 0 < f1 ≤ 1 of the points of B that are to be considered and set K = [f1q]. That is ,

wee seek the distance where some given fraction, f1, of the model points t(B) lie near image

points. This fraction is set based on how much occlusion of the model we wish to tolerate (what

fraction of the model can be missing from the image). Thus for example if K = [0.9q], then

hk(t(B), A) = σ when 90% of the points of t(B) lie within distance σ of some point of A.

5.4.4 Automatic initialization for ACM.

5.4.5 Automatic initialization and segmenation

Consider a the fusion image dF thresholded at some grey level T . Let us denote this binary

image by dF (T ), the corresponding edge map by EF (T ) and a set of all continuous contours

from EF (T ) by CF (T ). Our basic idea is that the best threshold is the one that minimizes the

”distance” between CF (T ) and the convex hull of the modified Doppler image.

The initial contour is generated as follows:

1. Input dF -image, D-image, a sequence of thresholds T.

2. Process the D-image Fig. 5.11 (b).

(a) Calculate the convex hull in D → BD,

(b) Calculate the centroid of BD → cbd.

(c) Calculate area of BD → abd.

3. For each T in T

4. Threshold the fusion image and obtain dF (T ).
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(a) Generate an edge map of dF (t)→ EF .

(b) Find the all continuous contours belonging to EF → CF (T )

(c) From CF (T ) find a contour Bo closest to the BD Fig. 5.11 (c) - (e).

(d) Evaluate the resulting contour using a decision tree.

(e) Record Bo

5. If no contour selected, break.

6. Select the largest Bo → Binit.

7. Resize Binit = γBinit (the contour is scaled by a factor γ with its centroid co being the

origin) Fig. 5.11 (f).

Bo is evaluated using a decision tree based on the following features:

1. The average gradient of the gray level along Bo relative to the max gradient : I(T ).

2. The common area between Bo and BD: ABo,BD
.

3. The distance between co and cbd :dco,cbd .

4. The Boolean variable L = BD ∈ Bo.

Classification And Regression Trees-CART

We train our decision tree (DT) by 30 additional US images using the Matlab function [112]

designed to implement a conventional CART DT [113–116]. The following are the input pa-

rameters of the algorithm:

tree = (X, Y, ′AlgorithForCategorical′, ′Pullleft′, ′splitcriterion′, ′gdi′)

The corresponding decision tree and the thresholds (verified experimentally) are shown in

Figure 5.12.

Note that in order to ensure that Binit is inside the tumor Bo is scaled by a factor γ. In

principle, γ can be taken sufficiently small so that the snake evolves from the centroid. Our

FM-balloon force will deliver the snake to the boundary even from a single point. However, in
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Table 5.1: The evaluation of the size of an initial contour varying from 30-80%

Percentage of Bo 30 40 50 60 80

An initial contour 100 100 95 80 67

is inside a mass (%)

order to improve the computation time, in practice, we considered γ = 0.4

An appropriate position to initiate contour should be inside a mass to avoid wrong extraction

of snake caused by undesired edges nearby it. An initial contour, initB is a boundary that

is resized from the representative contour (Bo) in Fig. 5.10 (d). The evaluation of assigning

suitable size is conducted on 90-dataset in Table 5.1 shows 40% of Bo is the most appropriate.

Fig. 5.13 shows example of a sequence of contours (Btc crated by each thresholding value in

blue dash line. The contour closest to the Doppler image (Bo) is depicted as a bold blue contour

while an initial contour for snake that is resized Bo is shown in a bold green contour (initB).

5.4.6 Balloon radial force

Recall that the traditional snake represented by Eq.(1) [84]. The proposed external forceEext(v(s))

is composed of,

Eext(v(s)) = E1
ext(v(s)) + E2

ext(x, y)).

where E1
ext(v(s)) is the traditional gradient based force whereas E2

ext(x, y)) is proportional to

the distance between (x, y) and Bo so that E2
ext(x, y)) = 0 if (x, y) ∈ Bo and E2

ext(x, y)) =

E2
max if (x, y) = c0, where E2

max is evaluated experimentally(see Figure 5.14).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.9: Soft and hard(binary)intersection(a) U , (b) E, (c) D, (d) hard intersection of U , E,

and D, (e) hard intersection of E, and D, and (f) soft intersection of U , E, and D.

50



(a) (b)

(c) (d)

Figure 5.10: a) ED. (b)Binarized image. (c)EF . (d) Bo
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: (a) D-image without the outliers (b) the convex hull BD (c) contours

CF1(T1), CF2(T1)-obtained for T = T1,CF1(T2) and CF1(T3) obtained for T = T2 and T = T3

(d) Bo1 ,Bo2 and Bo3 are the closest to BD (e) Bo,2 passes the decision tree (f) Binit = γBo,2
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Figure 5.12: Decision tree is created by the CART algorithm [113]

Figure 5.13: Example of contour selection in automatic initialization.
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Figure 5.14: External energy g(x, y), proposed external force is created from center of outer

boundary to outer boundary, E1
ext is shown in blue, and E2

ext is depicted in white.
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Chapter 6

Performance measures

In order to compare the fusion method (FM) with the conventional algorithms we introduce the

following performance measures.

6.1 Contour based accuracy measures

The Hausdorff distance given by

distH1(X, Y ) = max{max
a∈X

min
b∈Y
‖ a−b ‖,max

b∈Y
min
a∈X
‖ a−b ‖} (6.1)

where ‖ ‖ denotes the Euclidean distance, X the ground truth contour, and Y the snake contour.

The averaged Hausdorff distance is defined by

distH2(X, Y ) = max{

∑
a∈X

min
b∈Y
‖ a−b ‖

LX
,

∑
b∈Y

min
a∈X
‖ a−b ‖

LY
}, (6.2)

where LX , LY is the length of the true contour, and the resulting contour, respectively.

The relative Hausdorff distance is given by

distH3(X, Y ) =
distH1(X, Y )

LX
ξ, (6.3)

where ξ = 1000 is the normalizing coefficient. The distance evaluates the relative importance

of the difference between the two curves. For instance, if distH1(X, Y ) = 10, and LX = 100

pixels, the error is unacceptable, however, if for instance, LX = 10000, then distH3(X, Y ) is ap-

propriate. The importance of the Hausdorff distance in comparing planar curves is parametriza-

tion invariance. Although distH1 is not a distance in a rigorous mathematical sense (it does not
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satisfy the triangle inequality), [117] shows that it is the best for matching curved objects.

The contour-based true positive rate is:

TPc =
TPY
NY

, (6.4)

where TPY is the number of true positive pixels, andNY is the total number of pixels belonging

to the resulting active contour (in practice we consider LX = NX and LY = NY ).

6.2 Region based accuracy measures

The most used metric in validating medical segmentations [118] is the Dice coefficient given

by

DICE =
2TP

2TP + FP + FN
, (6.5)

where TP , FP , and FN are the region-based true positive, false positive, and false negative.

We also use the Jaccard index given by

JAC =
TP

TP + FP + FN
, (6.6)

and the sensitivity given by

SEN =
TP

TP + FN
. (6.7)

Finally, we employ a region based averaged Hausdorff distance, given by

distHR
(RX , RY ) = max{

∑
a∈RX

min
b∈RY

‖ a−b ‖

ARX

,

∑
b∈RY

min
a∈RX

‖ a−b ‖

ARY

}, (6.8)

where RX and RY are the regions corresponding to the contours X and Y , respectively. ARX

and ARY
are the areas of RX and RY , respectively.

6.3 Performance of the initialization procedure

The performance of the initialization is evaluated for the entire series of images by Ncorr, de-

fined as the percentage of images for which the internal and external seeds were correctly dif-

ferentiated, Scorr, the percentage of images for which the contour was correctly segmented (the
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final snake is considered correct if distH2(X, Y ) ≤ 3), and the computational time Tcomp.

As noted above, the segmentation accuracy depends not only on initialization, but on the seg-

mentation model as well. For instance, the level set method, clustering, watershed segmentation,

region growing, and edgeless active contours may benefit from the proposed FM. However, this

is out of the scope of this paper. At present, the model is focused on the parametric active

contours.
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Chapter 7

Results and Discussion

The algorithm has been tested on 90 US images of breast cancer from 90 different patients

obtained by a Philips iU22 ultrasound machine at the Thammasat University Hospital. The

resolution ranges from 200×200 to 300×400 pixels.The ground truth contours have been hand-

drawn by leading radiologists with the Department of Radiology of Thammasat University.

7.1 Evaluation and discussion

The proposed method (FM) has been tested against four state-of-the-art initialization models,

namely, center of divergence (CoD) [11], force field segmentation (FFS) [10], Poisson inverse

gradient (PIG) [12], and quasi automatic initialization (QAI) [13, 14], using the performance

measures in chapter 6. In order to prove the efficiency of the fusion radial force (FRF), we

compare with the Vector Field Convolution (VFC) snake [8] and the recent Adaptive Diffusion

Flow (ADF) [9] methods, which have been proven to be superior to GVF [5], Normal Gradi-

ent Vector Flow [94], Infinity Laplacian GVF [95], and Harmonic Gradient Vector Flow [96].

Figure 7.1 is an example, comparing the initialization and the resulting snake produced by the

FM/FRF with CoD/VFC, FFS/VFC,PIG/VFC, and QAI/VFC. Figures 7.1 (a) (b) show a US

image with a “false” tumor on the right side of the image and a shadow at the lower left corner,

characterized by grayscale comparable with a gray level of the true tumor. The resulting edge

map in Figure 7.1 (c) shows multiple irregular contours. Clearly, if a contracting snake is ini-

tialized at the boundary of the image, it will attach itself to a wrong object and produce a totally

inappropriate contour. Therefore, this US image requires a high quality initial snake, preferably
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expanding from the inside of the true contour. The CoD and FFS produce multiple seeds at the

CoDs (Figure 7.1 (e), (f)). However, due to noise, the corresponding multiple snakes are unable

to merge (Figure 7.1 (j), (k)). In turn, the PIG misses the true tumor and generates the initial

contour inside a false object (Figure 7.1 (g)). Therefore, the resulting snake is inappropriate

(Figure 7.1 (l)). Finally, QAI requires one user-defined point inside the actual object. Due

to this, QAI generates the initial contour around a correct location of the tumor. Since QAI is

based on a “skeleton” of the object, which connects the CoDs, the method wrongly includes a

CoD located outside the object Figure 7.1 (h). Consequently, the expanding snake grows out-

side the tumor and partially attaches to a false boundary (Figure 7.1 (m)). The FM initialization

method outperforms the above techniques because it has more information about the location

of the tumor. Although the low intensity mask in Figure 5.2 (b) can not localize the tumor, the

combination of the Doppler and elasticity images excludes the artifact (false tumor), unwanted

shadows and produces an appropriate initial contour Binit. Finally, the proposed DT verifies the

candidate contour using supplementary features.

Tables 1-3 in the forthcoming sections illustrate numerical tests of the proposed method vs. the

above mentioned techniques, using the initialization and accuracy measures (8)-(15) in Section

5. For every measure, we calculate the mean µ and the standard deviation σ. For all evaluation

measures related to FM σ/µ < 1, which indicates a low spread of the results.

Table 7.1 demonstrates the advantages of the proposed initialization method. The CoD and FFS

failed, whereas QAI and PIG yield a lower performance in both Ncorr and Scorr. All tested

methods have been implemented on the MathLab platform, using a CPU AMD PRO A8-8600B

R6, 1.6 GHz with 8GB RAM and 64-bit OS. The FM is the second best by speed, but sig-

nificantly better in all other categories, including correctly initialized and correctly segmented

images. Tables 7.2 and 7.3 show the performance of FM/FRF, CoD/VFC, FFS/VFC, PIG/VFC

and QAI/VFC. Clearly, the results produced by the reference methods are poor and are not even

close to the proposed algorithm. For instance, in terms of distH2 , the average accuracy of the

FM is 2.4 pixels, whereas CoD, FFS, PIG, and QAI produce 321.6, 486.57 (totally wrong!),

58.5, and 82.23, respectively.

7.1.1 Impact of the radial force

The next important question is the impact of the FRF. Figure 7.2 compares segmentation pro-

duced by the proposed FRF with that produced by VFC and ADF. Note the initial contour is
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(a) (b) (c)

(d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 7.1: (a) US image, (b) ground truth, (c) Uedge, (d) FM-initialization, (e) CoD initializa-

tion,(f) FFS-initialization, (g) PIG-initialization (h) QAI-initialization. Segmentation results:

(i) FM/FRF (j), CoD/VFC, (k) FFS/VFC,(l)-PIG/VFC, (m) QAI/VFC

Table 7.1: Efficiency of initialization. FM vs. reference methods

Model

Initialization measures

Comp.

time

Tcom, sec

Correctly

initialized

Ncorr,%

Correctly

segmented

Scorr,%µ σ σ/µ

FM 11.39 2.07 0.18 92.22 84.44

CoD 17.72 14.07 0.79 0.00 0.00

FFS 19.53 9.65 0.49 0.00 0.00

PIG 9.17 1.58 0.17 26.67 16.67

QAI 145.23 14.89 0.10 42.22 22.44

obtained by FM. Tables 7.4, 7.5, and 7.6 clearly demonstrate that the FM-based initialization

improves ADF and VFC. For instance, FM/VFC segments 56% of the images, whereas the

best initialization using QAI/VFC detects only about 22%. However, the performance is still
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Table 7.2: FM vs. reference methods. Contour based measures

Model

Contour based measures

H1 H2 H3 TPC

µ σ σ/µ µ σ σ/µ µ σ σ/µ µ σ σ/µ

FM 7.54 3.40 0.45 2.40 0.95 0.39 8.27 3.43 0.41 80.73 9.32 0.11

COD 176.31 27.98 0.16 321.60 121.00 0.38 299.16 108.72 0.36 9.30 6.30 0.68

FFS 171.80 31.51 0.18 294.17 182.47 0.62 239.57 81.24 0.34 6.69 4.70 0.70

PIG 77.48 39.01 0.50 58.50 39.52 0.67 127.76 89.84 0.70 16.58 12.54 0.76

QAI 71.40 31.18 0.44 82.23 132.10 1.61 142.99 187.69 1.31 25.66 34.56 1.35

Table 7.3: FM vs. reference methods. Region based measures

Model

Region based measures

Jaccard Dice SEN HR

µ σ σ/µ µ σ σ/µ µ σ σ/µ µ σ σ/µ

FM 0.89 0.07 0.78 0.90 0.08 0.88 89.99 4.20 0.05 0.24 0.14 0.58

COD 0.17 0.09 0.59 0.28 0.14 0.50 31.76 21.58 0.68 74.16 28.94 0.39

FFS 0.16 0.12 0.75 0.27 0.17 0.63 36.68 29.03 0.79 62.57 34.51 0.55

PIG 0.1 0.24 2.40 0.15 0.29 1.93 12.28 24.72 2.01 42.35 11.50 0.27

QAI 0.34 0.36 1.06 0.38 0.41 1.08 38.27 34.56 0.90 44.41 38.32 0.86

substantially lower than the 84% produced by FM/FRF. The accuracy of VFC has been also

improved ( see an impressive decrease of H2 from 39 pixels (PIG/VFC) to 9.58 (FM/VFC) in

Table 7.5). However, the proposed FM/FRF is still the winner with H2 = 2.4 and with the

smallest standard deviation of about 0.95. As a matter of fact, for the contour based measures,

FM has the smallest ratio σ/µ in all categories.

7.1.2 Relative impact of different modalities

An important question is whether the FM/FRF requires all three image modalities, and which

modality is the most important. Tables 7.7, 7.8, and 7.9 show the accuracy of the proposed

method applied to combinations (U ,E), (U ,D), etc. Clearly, combining the three types of im-

ages produces the best accuracy. Interestingly enough, (E,D) is the second best in the accuracy.

However, the segmentation procedure uses a mask produced by the US image. Since this com-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.2: Force field: (a)FRF, (b) VFC, (c) ADF; snake evolution: (d)FRF, (e) VFC, (f) ADF;

segmentation results: (g) FRF, (h) VFC, (i) ADF.

Table 7.4: Impact of the radial force

Model

Segmentation measures

Comp.

Time

Tcom, sec

Correctly

segmented

Scorr,%µ σ σ/µ

FM 0.09 0.03 0.33 84.44

VFC 0.08 0.03 0.37 56.62

ADF 0.11 0.08 0.73 43.30
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Table 7.5: Impact of the radial force. Contour based measures

Model

Contour based measures

H1 H2 H3 TPC

µ σ σ/µ µ σ σ/µ µ σ σ/µ µ σ σ/µ

FM 7.54 3.40 0.45 2.40 0.95 0.39 8.27 3.43 0.41 80.73 9.32 0.11

VFC 20.09 18.53 0.92 6.98 9.58 1.37 13.61 10.89 0.80 62.05 28.51 0.46

ADF 24.69 20.06 0.81 7.20 9.65 1.34 14.16 10.40 0.73 61.26 25.61 0.42

Table 7.6: Impact of the radial force. Region based measures

Model

Region based measures

Jaccard Dice SEN HR

µ σ σ/µ µ σ σ/µ µ σ σ/µ µ σ σ/µ

FM 0.89 0.07 0.78 0.90 0.08 0.88 89.99 4.20 0.05 0.24 0.14 0.58

VFC 55.87 28.92 0.52 66.02 29.17 0.44 65.71 23.71 0.36 4.80 4.97 1.03

ADF 53.54 22.75 0.42 66.82 22.51 0.34 62.92 20.09 0.32 5.04 4.46 0.88

bination implicitly uses the U -image, it is incorrect to say that the algorithm is based solely on

(E,D). This complies with recent clinical research [65], [66] which reports that the Doppler

image alone does not significantly contribute to categorization of solid masses.

Table 7.7: Efficiency of initialization for different combinations of the modalities

Model

Initialization measures

Comp.

Time

Tcom, sec

Correctly

initialized

Ncorr,%

Correctly

segmented

Scorr,%µ σ σ/µ

FM(U ,E,D) 11.39 2.07 0.18 92.00 84.44

FM(E,D) 11.29 1.78 0.16 80.00 73.33

FM(U ,E) 11.26 1.91 0.17 13.33 11.11

FM(U ,D) 11.30 1.79 0.16 53.33 48.88
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Table 7.8: Contour based accuracy for different combinations of the modalities

Model

Contour based measures

H1 H2 H3 TPC

µ σ σ/µ µ σ σ/µ µ σ σ/µ µ σ σ/µ

FM(U ,E,D) 7.54 3.40 0.45 2.40 0.95 0.39 8.27 3.43 0.41 80.73 9.32 0.11

FM(E,D) 12.72 9.49 0.75 3.78 3.27 0.86 13.89 12.74 0.92 77.62 22.01 0.28

FM(U ,E) 42.95 41.50 0.97 30.61 40.93 1.34 138.81 102.03 0.73 9.60 26.54 2.76

FM(U ,D) 17.89 10.00 0.56 5.58 3.69 0.66 19.99 14.78 0.74 56.56 31.65 0.56

Table 7.9: Region based accuracy for different combinations of the modalities

Model

Region based measures

Jaccard Dice SEN HR

µ σ σ/µ µ σ σ/µ µ σ σ/µ µ σ σ/µ

FM(U ,E,D) 0.89 0.07 0.78 0.90 0.08 0.88 89.99 4.20 0.05 0.24 0.14 0.58

FM(E,D) 0.81 0.08 0.10 0.88 0.08 0.09 89.60 4.20 0.05 4.01 7.70 1.92

FM(U ,E) 0.36 0.29 0.80 0.47 0.31 0.66 77.42 41.15 0.53 37.10 21.53 0.58

FM(U ,D) 0.60 0.21 0.35 0.73 0.21 0.29 84.21 14.79 0.17 7.40 7.67 1.04

7.1.3 Limitations of the method

The method requires a good quality Doppler image Draw. If Draw does not present a well-

defined cluster of Doppler spots, the procedure works in the U − E mode, which may reduce

the accuracy of segmentation (see Table 7.7). Besides, some low grade cancers may not appear

in the Doppler images. For instance, [119] reports that “four percent of the cancers had no

detectable”.
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Chapter 8

Conclusion and Futer Work

8.1 Conclusion

The initialization algorithms for the Ultrasound images often rely on gray levels and textures,

to place the seed points inside the tumor. Saliency and feature maps also have been proposed.

Besides these techniques, a special vector field to hybridize the GVF and the texture. A few

papers related to a specific medical image processing task use the typical position of a human

organ in the US images. However, these models are image dependent and may not work if strong

noise is present. Therefore, this paper proposes a new fast algorithm for automatic initialization,

which combines the conventional grayscale US image with the corresponding elasticity and

Doppler images. The technique makes it possible to locate the initial contour inside the tumor,

close enough to the true boundaries to ensure convergence of the active contour. The paper

also introduces a modification of the balloon type active contour, based on a combination of the

radial force derived from the fusion image and the GVF-type force.

We propose new automatic procedure for initialization of active contours applied to seg-

mentation of ultrasound images of breast cancer, outperforms preceding algorithms. The pro-

cedure includes FM initialization and a radial force based on the fusion of the conventional US,

Doppler, and elasticity images. In terms of accuracy, the FM is better than CoD, FFS, PIG,

and QAI. Although it requires training the decision tree, the training is also automatic and does

not involve any human intervention, except providing data. We conjecture that the proposed

algorithm is applicable to similar US images without any modifications.
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8.2 Future work

Although the proposed method works well in term of accuracy for initialization and segmen-

tation, the runtime compared to PIG is one of FM drawbacks. Therefore, we would like to

investigate more to reduce runtime of FM to be as small as possible. Moreover, the collec-

tion of a number of datasets including conventional US, Elastography, and Power Doppler is

very important for information analysis in order to gain more knowledge of the breast cancer

diagnosis leading to better modeling for improving accuracy of FM.
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Appendix A

Minor research: Inferior alveolar canal

segmentation in cone beam computed

tomography images using an adaptive

diffusion flow active contour model

The success of dental implant surgery is subject to accurate advanced planning. In order to prop-

erly plan for suitable implant placement, it is necessary for accurate segmentation of the inferior

alveolar canal. This paper presents a new approach of a semi-automatic method based on a new

and effective active contour model viz. an adaptive diffusion flow active contour model. Cone-

beam computed tomography (CBCT) images is used as a dataset to extract different views of

an inferior alveolar canal. The method has been tested in a ground truth set and evaluated

using three similar indicators (the Jaccard index, Dice’s coefficient, and Overlap coefficient),

achieving promising results in all of them (0.908±0.016, 0.947±0.008, and 0.954±0.008, re-

spectively). Moreover, the presented results show that our method obtains higher accuracy

values when compared with GVF snake. The method has proven to be significantly accurate

and is possibly integrable in current dental implant surgery planning systems.
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A.1 Introduction

A 3-dimensional (3D) dataset acquired from cone-beam computed tomography (CBCT) has

become one of the most important dental radiographies for diagnosis of dental and maxillofacial

applications [120]. For example, it is applied to dental implant planning: a surgical component

which provides an artificial root by means of interfacing with the bone of the jaw (mandible) to

support dental prosthesis.

In order to make accurate implant site assessment, the effective visualization system of

dental radiography is strongly demanded by dentists. Especially, it could help to reduce the risk

of injury to the inferior alveolar nerve (IAN), that affects a sensation system and may cause

infection as well as failure to osseointegrate [121]. Due to the position of the IAN traveling

within the inferior alveolar canal (IAC) in the mandible, the IAC is more detectable than the

IAN itself. Therefore, robust segmentation of the inferior alveolar canal (IAC) is one of the key

features to be improved in dental radiography applications.

The aim of this paper is to detect and reconstruct the main feature of IAC using a new

and effective active contour model viz. an adaptive diffusion flow active contour model (ADF

snake) applied to the CBCT dataset. This paper demonstrates how the algorithm can generate

an extremely suitable vector field for a deformable process of the active contour model, to get a

well segmented feature of the IAC on each slide of the dataset. Especially, when the IAC passes

across the spongious region. Besides segmentation, the ADF snake is applied as a tracking

method to get full structure of the IAC in the 3D dataset.

A.2 Related Work and Theoretical Background

Many dental applications have carried out the process of 3D reconstruction from a CT or CBCT

dataset by de-emphasizing IAC segmentation as in [122] and [123]; they detected IAC based

on panoramic CT images by reforming the stack of original CT images. The segmented results

and its visualization of the IAC using the panoramic method may not be very much satisfactory.

Another approach [124] presented an IAC based on a geodesic active contour model, the level

set method. The main disadvantages of the model is that it has to follow three conditions:

the tabular structure consists of only one connected component, not close to other component,

and no self-intersections the structure. Beside these conditions, the model may not perform
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well under the real situation based on the deformable function. A state of the art algorithm,

the GVF snake was also implemented in [125] for quantitative image reconstruction applied to

mandibular distraction. This paper mostly demonstrated the optimization of the key parameters

of the GVF snake as well. Beside the above cited methods, there are various other methods

implemented for IAC detection including [126], [127], and [128].

A.3 Theoretical Background

An active contour model [129] has been expansively implemented in image processing and

computer vision owing to its proficient performance. Also, there have been many studies that

try to overcome its disadvantages including the method applied in this study, a new and effective

ADF active contour model (ADF snake). This section aims at simplifying the explanation of an

ADF snake as explained below:

An Adaptive Diffusion Active Contour Model

An ADF snake is a new and effective external force [130] developed to solve problems in

previous snakes including low capture range, weak edge leaking, as well as deep and narrow

concavity regions. This framework is established as an equivalent framework between the GVF

snake diffusion process [131] and the image restoration process. The improved features can be

described as follows;

For simplicity of theoretical explanation, the GVF energy is rewritten as

E(u, v) =

∫∫
µ · Φ(|∇~v|)dxdy +

∫∫
|~v −∇f |2dxdy. (A-1)

1. Weak edge leaking: by considering the GVF snake, in the smoothness energy, the vec-

tor field is smoothed in the direction of gradient as same as in the edge direction which

is undesired. In order to preserve a weak edge, there should be no diffusion parallel to

the gradient. Hence, in ADF a hypersurface minimal function: Φ(∇V ) =
√

1 + |∇~v|2

is substituted in the smoothness energy term in the GVF snake. The function is prefer-

able to diffuse along the tangent direction of an edge so that the weak edge is preserved

efficiently. When consider ~v as a surface defined on image domain, the corresponding
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diffusion term in GVF is given by

E(u, v) =

∫∫ √
1 + |Gσ ⊗∇~v|2dxdy (A-2)

where Gσ is the Gaussian kernel of standard deviation σ which could smooth the vector

field, ∇~v presents the gradient of ~v, and ⊗ denotes the convolution operator.

2. Adaptive diffusion force filed: using harmonic maps: p(|∇f |) = 1+1/(1+|∇Gσ⊗f(x)|)

which ranges from 1 to 2. Consequently, the diffusion process of the force field can be

adjusted adaptively according to image characteristics so it can preserve weak edges and

smooth force filed. Thus, the harmonic hypersurface function is defined as

E(u, v) =

∫∫
1

p(|∇f |)
(
√

1 + |Gσ ⊗∇~v|2)p(|∇f |)dΩ. (A-3)

where Ω is a bounded open subset of <2, ∂Ω denotes its boundary and f presents an edge

map.

3. Converge to narrow and deep concavity: developed Infinity Laplacian function to encour-

age the diffusion along the normal direction in the image smoothing region so as to make

vectors downward into the boundary concavity instead of converging from two opposite

directions. The function is given by

E(p→∞)(u, v) =
1

p

∫
Ω

|∇~v|L∞(Ω)dΩ. (A-4)

Finally, a unified diffusion framework, called adaptive diffusion flow (ADF) is given by

Ep(u, v) = ∫∫
g · (−m ·ΘL∞(Ω) + (1−m) · 1

p(|∇f |)
· (
√

1 + Ω)p(|∇f |))dxdy

+

∫∫
h · (|~v −∇f |2)dxdy (A-5)

where Θ = |Gσ ⊗ ∇~v|2, g and h are weighting functions (same as GGVF [132]); g(∇f) =

e−(
|∇f |
K

) (K is the weighting parameter determining to some extent degree of tradeoff between

field smoothness and gradient conformity), h(|∇f |) = 1−g(|∇f |), andm is also the weighting

function which is given by
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m =

 [1− f 2/5K2]2 if f 2/5 ≤ K2

0 othervise.

here, K = 1.4826 · E(||∇f | − E(|∇f |)|) and E(·) presents the mean value.

A.4 Inferior Alveolar Canal Segmentation

Segmentation of an IAC is still challenging due to an imperfect of the dataset (CBCT) including

noise, low contrast, and broken boundaries. Especially, when considering all drawbacks of

previous methods and the effective performance of the ADF snake as mentioned earlier, the

ADF snake stands out to be one of the proficient methods for IAC segmentation.

A.4.1 Materials

The CBCT data were provided by the Dental cone-beam CT Scanner (DentiiScan) [133] and [134].

CBCT volumes are comprised of slices of size 400×400 pixels, with resolutions of ∆x = ∆y =

∆z = 0.4mm. The number of slices is 323 in each patient.

A.4.2 Image Enhancement

Based on the imperfect of the dataset, that are noisy, low in contrast, and with broken bound-

aries, image enhancement is needed before the segmentation process. The morphological op-

erations (top-hat and bottom-hat) were applied to the dataset for edge enhancement and noise

suppression as shown in Figure A.1. By leting f : E 7→ <2 be a grayscale image, and b(x) be a

grayscale structuring element, the enhanced image is

fenhance = f + (f − f ◦ b)− (f • b− f).

A.4.3 Segmentation and Tracking Process

The significant property of the ADF snake for IAC segmentation is that it can create a suitable

vector field for snake deformation based on the image characteristics; for example weak edge,

disconnected, and strong adjacent boundaries. The comparison of vector fields and segmented
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(a) (b)

Figure A.1: An example of IAC enhancement image. (a) Original image.; (b) Enhanced image.

boundaries between well-known algorithms, the GVF snake and the ADF snake are shown in

Figure ??. It can be noted the ADF snake performs very much better than the GVF snake. By

considering the force field, ADF force field’s direction is more parallel to the IAC boundaries

than the force field of GVF because the ADF force field is calculated in both normal and tangent

directions whereas the GVF force field is computed in only normal direction.

An ADF snake was used for an IAC segmentation, slice by slice, and then reconstruct it for

3D visualization. Besides segmentation, the active contour model has significant performance

for object tracking. Therefore, the ADF snake is applied as a tracking method by user inter-

vention in the first and last slices for contour initialization and at the end of tracking process

respectively. In between both slices, the ADF snake is applied to the current segmented results

to be an initial contour of the next slice. The procedure for the IAC segmentation and tracking

is described in the flowchart as shown in Figure A.3.

A.4.4 3D Reconstruction

The segmented CBCT results are visualized in 3D volume rendering by CBCT image viewer:

DentiView version 3.0 (NECTEC, Thailand) [135]. An example of 3D reconstruction of a

patient’s IACs in the right and left sides are shown in Figure A.5.
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(a) (b)

(c) (d)

Figure A.2: The comparison of IAC segmentation between the GVF snake and the ADF snake

focusing on weak edge leaking convergence. (a) GVF force field; (b) ADF force field; (c)

GVF snake segmentation result; (d) ADF snake segmentation result; Both models use the same

parameters for deformation, α = 0.1, β = 1, iteration = 60.
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Figure A.3: A flowchart for segmentation and tracking of the ADF snake to find IACs in a 3D

dataset.
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(a) (b) (c)

Figure A.4: An example IAC segmentation by ADF snake and its ground truth. (a) An original

IAC image; (b) The bright contour depicts a result of an IAC segmentation by ADF snake ; (c)

The apparent contour expresses a ground truth of an IAC.

A.4.5 Data Analysis

In order to evaluate the accuracy of the segmentation process, 6 CBCT data were considered.

The ground truth was manually segmented (randomly) in 6 hemimandibles which consisted of

240-303 cross-sections. An example of the segmented result and its ground truth are shown in

Figure A.4.

There are 3 different indicators of similarity used for comparing the cross-sections seg-

mented by the proposed method with the ground truth;

• Jaccard index (JI)

JI(Iseg, Igt) =
|Iseg ∩ Igt|
|Iseg ∪ Igt|

, where 0 ≤ JI ≤ 1

• Dice’s coefficient (DC)

DC(Iseg, Igt) =
2|Iseg ∩ Igt|
|Iseg|+ |Igt|

, where 0 ≤ DC ≤ 1

• Overlap coefficient (OC)

OC(Iseg, Igt) =
|Iseg ∩ Igt|

min(|Iseg|, |Igt|)
, where 0 ≤ OC ≤ 1
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(a) (b)

Figure A.5: 3D reconstruction of IAC from segmented cross-sections. (a) and (b) are the IACs

at the right and left sides of the patient.

Table A.1: Mean values for the analyzed indicators.

ADF snake JI DC OC

Mean(µ) 0.9087 0.9472 0.9542

S.D.(σ) 0.0162 0.0087 0.0086

GVF snake

Mean(µ) 0.7617 0.7998 0.8097

S.D.(σ) 0.0189 0.094 0.0094

A.5 Results and Discussion

The six datasets were measured with 3 similarity indicators as shown in Section A.4.5, and the

mean values as well as the standard deviation for all cases are shown in Table A.1.

According to the dataset, the segmentation process is performed in cross-sectional images

and the evaluation of the method has focused on studying the 2D segmentation in the cross-

sections. Therefore, the evaluation strategy is based on the comparison of processed images

with ground truth sets.

The results of the presented method in the described dataset have been promising in all the

considered similarity indicators. Considering the overlap indicators, the method has achieved

high values in the processed dataset, that is 0.908±0.016, 0.947±0.008, and 0.954±0.008 (in

terms of mean value and standard deviation) in the JI, DC, and OC indicators, respectively.

91



Moreover, the presented results show that our method obtains higher accuracy values when

compared with GVF snake.

A.6 Conclusions and Future Work

This paper has proposed a new segmentation approach for CBCT images: The ADF snake

for IAC segmentation and reconstruction. The algorithm has been exhaustively measured for

three indicators including the Jaccard index, the Dice’s coefficient,and the Overlap coefficient.

All results indicate achieving of accuracy and thus providing reliable information to computer-

aided programs in order to facilitate oral surgery. Future work will focus on full-automatic

segmentation with no interfere of end users. Further testing of other segmentation methods is

also needed in order to improve accuracy.
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