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Abstract

The growth of speech processing technology within the last few decades enables us to
communicate with each other even when we are too far apart by using speech. It is not only
human-to-human but also human-to-machine communication that become important and
play a vital role in our daily life. However, the speech communication is always damaged
by environmental noises. Moreover, multiple echoes (reverberation) within a confined
space cause severe reduction of speech intelligibility as well. These drawbacks exist since
the beginning of the speech communication. To date, researchers are attempting to solve
these problems because they still degrade the communication systems.

Since the availability of digital hardware, there has been much research in speech
processing technology especially speech analysis which is the backbone of several applica-
tions such as voice activity detection, speech enhancement, automatic speech recognition,
speaker recognition, and hearing aids. The performance of these applications degrades
drastically in real environments because the speech analysis method employed by these
applications is not robust against noises and reverberation. We aim to propose the robust
speech analysis method by using multivariate empirical mode decomposition (MEMD).
The motivation of using MEMD is that it can extract the oscillation components and
make the signal sparse by reducing the degree of mixing. This ability can reduce the
degree of mixing of noises in the noisy speech signals. Furthermore, MEMD can auto-
matically separate the signals which are resulted from the addition of sub-signals. For
example, automatic source-filter separation, automatic noise separation, and automatic
separation of cepstrum of room impulse response. Therefore, the MEMD-based speech
analysis method can ideally be able to fulfill the following requirements. (i) the source
and vocal tract information are obtained simultaneously. (ii) robust against noise. (iii)
robust against reverberation, and (iv) robust against both noise and reverberation.

This research aims to solve the problems of speech analysis in real environments by
proposing the robust MEMD-based speech analysis method. It exploits specific properties
of MEMD as follows: (1) it can analyze the non-stationary signal. Since speech signal is
the non-stationary signal, MEMD should be the appropriate approach for speech analysis.
(2) It is the nonparametric and data-driven approach. MEMD does not impose any as-
sumption regarding the input signal. (3) It can automatically separate mixtures of signals
or reduce the degree of mixing. (4) It can automatically align the common component
into the same index of sub signal namely intrinsic mode function (IMF). However, the
challenge of using MEMD is how to correctly categorize IMFs derived from MEMD into
groups of sources, vocal tract, noise, reverberation. Four main tasks would be focused on
to achieve the final goal of this research. That is MEMD-based speech analysis method
in (a) clean, (b) reverberant, (c) noisy, and (d) noisy reverberant environments. Then the
proposed speech analysis method will be applied to some practical applications to show
its effectiveness.

If estimates of speech features can be further improved by the proposed method in
real environments, it would directly have a great impact on the society of speech signal
processing. It would also contribute to the engineering and technology in the sense that
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the performance of several critical applications, for example, voice activity detection,
speech recognition, hearing aids, speech enhancement, and communication systems would
be enhanced. Furthermore, it would have the indirect contribution to human society when
the performance of such applications is improved. Throughout this dissertation, the reader
will see how our proposed speech analysis is carried out in clean, noisy, and reverberant
conditions. Some applications, based on the techniques used in our speech analysis, such
as voice activity detection, noise reduction, and speech dereverberation are demonstrated
as well. We proposed MEMD-based speech analysis for clean speech that is superior to
linear prediction and cepstrum based methods in F0 estimation. In noisy conditions, we
cooperated the MEMD-based noise reduction technique with the MEMD-based speech
analysis method so that the speech analysis could be robust. In reverberant conditions,
we could reduce the effects of reverberation by using MEMD so that the speech analysis
could be robust. The final goal of speech analysis in noisy reverberant conditions have
not yet completed and will be our future work.

Keywords: speech analysis, source-filter model, multivariate empirical mode decom-
position, noise reduction, dereverberation
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Chapter 1

Introduction

1.1 Overview and history of speech analysis

The nature of speech signal has been studied for more than thirty years. The speech
signals from our mouth are similar to the sounds resulting from exciting the resonance
cavities by the source signal from the vibrating reed. Changing the shape of the resonance
cavities causes different sounds which are similar to changing the shape of the vocal tract
in our throat. Based on this fact, in 1769 Kratzenstein invented the talking machine
that can produce the voiced sounds of five vowels in 1769. In 1930, Dudley found that
speech signal is the amplitude-modulated signal. That is the message which represents the
thoughts of the speaker to be conveyed to the listener is imprinted on the quasi-periodic
or noisy carrier signals. The message is the time-varying shape of the vocal tract, moving
frequencies ranging from 0 to 20 Hz, that modulate the carrier signals passing through it.

Based on this understanding, Dudley invented several devices using two important
principles: voder and vocoder. Voder is a flexible talking machine which is able to pro-
duce arbitrary sentences whereas vocoder is an attempt of compressing speech by keeping
only the time-varying modulated amplitude. Since the modulating frequencies of the vocal
tract are not over 20 Hz, he tried to send this message via a narrow bandwidth channel.
He also introduced the spectrograph which displays the time-frequency distribution of the
energy of speech signal. His research inspired many researchers around the would so that
a considerable amount of research regarding the various aspects and properties of speech
signals. Since the availability of the digital hardware, the research in speech signal pro-
cessing has much been developed, especially in speech coding for efficient communication,
speech recognition, speech synthesis, and hearing aids.

Another aspect of the speech signal is that it is the continuously-varying air pressure
propagating out from our mouth. It is induced into the continuously-varying electric
voltage by a microphone. In digital hardware, this voltage is converted or sampled into
a sequence of numbers, referred to as a discrete-time signal, by analog-to-digital (ADC)
converter so that the speech signal can be digitally transmitted and processed. Digital
speech signal processing can be defined as the manipulation of that sequence to obtain
some properties of the signal relating to the carrier and the modulating vocal tract or a
new signal with some desired properties. This process is normally known as the pair of
speech analysis/synthesis.

The speech analysis process usually bases on a speech production model to obtain
the desired properties of the speech signals. For example, consider a model of speech
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production when the air passes from the lung through the vocal or nasal tract and go out
from the lips. When air flows past the vocal cords, the vocal cords periodically vibrate
the rate of which gives the pitch or fundamental frequency, F0, of the voiced sounds. If
we could measure the air pressure after the vocal cords, the waveform of the air pressure
will be the periodic pulses which act as an excitation source to the cavity between the
vocal cords and the lips or the nose namely, the vocal or nasal tract.

The vocal or nasal tract behaves like a resonator modifying the spectrum of the pulses
train of the air pressure waveform. Based on this knowledge, the simple model namely
the source-filter model can be built. The general assumption used in speech signal analy-
sis/synthesis is that the vocal tract is the time-invariant system so that the output speech
signal is said to be to the convolution of the pulse-train source with the impulse response
of the vocal tract. Consequently, the variation of the excitation source and shape of the
vocal tract results in a typical speech utterance which composes of a sequence of vowels
and consonants the spectrum of which change with time.

After obtaining the desired properties of the speech signal, one can produce speech
signal by speech synthesis by using the same or modified properties. The model of speech
perception, on which we will not focus on this dissertation, of the receiver may be taken
into consideration for modification of the speech properties. The objectives of modification
may be (i) to enhance speech intelligibility such as speech enhancement and (ii) to hide
some information that can not be perceived by the listener such as speech watermarking.
Therefore, speech analysis and speech synthesis is a pair of speech processing techniques
that always come together as illustrated in Fig. 1.1.

Based on the speech production described above, the general speech analysis/synthesis
systems can be signed as shown in Fig. 1.1 where the analysis process takes apart the
speech waveform to extract the underlying parameters of the time-varying system of the
vocal tract. The analysis is performed with the temporal and spectral resolution that is
adequate to measurement such underlying parameters. In synthesis process, the waveform
is put back based on the estimated or modified parameters and models. An objective of
the block diagram in Fig. 1.1 is to design an identity system that the output equals
the input when no speech parameters modification is performed. This diagram is the
backbone for several applications that transform the speech waveform into some desirable
form.

1.2 Speech analysis technigues: state-of-the-art

Since the availability of digital hardware, there are several proposed speech analysis meth-
ods most of which are based on the source-filter model. Classically, there are two tech-
niques frequently employed in the speech analysis: cepstrum (CEP) and linear prediction
(LP) [1]. Since vocal tract is the time-invariant system, the coefficients of vocal tract
filter which is represented by an all-pole filter model are estimated by LP based on auto-
correlation or covariance techniques [2]. The estimate of the source signal (e.g. periodic
pulses) is obtained by inverse filtering the input speech signal. The inverse filter comes
from the reciprocal of the all-pole filter. One disadvantage is that the all-pole filter model
does not match some voiced sounds results from the speech model having zeros such as
voiced fricatives and nasals. The stochastic model based autoregressive moving average
model (ARMA) [3] handles this weak point of LP by estimating both zeros and poles with
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the assumption of highly accurate speech production model.
CEP is the homomorphic transformation that inverse Fourier transforms log mag-

nitude spectrum of the speech signal in frequency domain to cepstrum coefficients or
cepstrum in quefrency (time) domains. The spectrum of voiced speech signal consists of
the superposition of spectral fine structure and the spectral envelope correspondings to
the source waveform output from the larynx and the frequency response of vocal tract.
Specifically, the voiced sound results in periodic feature of harmonics. Therefore, the
cepstrum coefficients of the voiced sound are usually the peaks in the high quefrency
range. The frequency response of the vocal tract is the spectral envelope the cepstrum
coefficients of which lies in the lower range of the quefrency. The cepstrum coefficients
of the source can be separated from the cepstrum coefficients of the vocal tract, or vice
versa, by filtering in the quefrency domain or liftering [4].

To date, besides the methods mention above, there are several proposed speech analysis
methods, for example analysis-by-synthesis (AbS) [5], STRAIGHT [6] [7] [8], and empirical
mode decomposition (EMD) [9] – [23] based method. AbS is widely used in the source
analysis, speech recognition systems, and speech coding algorithm. The term analysis-
by-synthesis refers to an analysis process applied to the signals which are produced by
the signal generator. The signal generator begins the signal synthesis process with some
initialized properties. Thus, the heart of the AbS is the signal generator. The analysis and
synthesis processes are carried out until the error between the input and synthesized signal
reaches some smallest value, at which analyzer indicates the properties of the synthesized
signal. The input signal is required to be clean to obtain the accurate properties of the
input signal, which implies that AbS is not robust in real environments.
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The heart of STRAIGHT is the convolution of the hamonicity of speech spectrum by
the spectrum of the analysis window function. In other words, it uses the spectrum of a
particular window function to interpolate the harmonic features of the speech spectrum by
the summation of the main lobes of the window function [7] [8]. Therefore, the accurate
F0 estimation is required by STRAIGHT for the interpolation. Most of the EMD-based
methods have been proposed so far have been utilized for F0 in the time and frequency
domain [10] – [23]. Besides the source analysis, we have also proposed the multivariate
EMD for the vocal tract filter analysis [12] [13]. The main idea of EMD is that it can
extract the oscillating components which are the periodicity of the speech signal in the
time domain or the harmonicity of log spectrum of speech in the frequency domain by
iterative sifting. Another advantage of using EMD is that it makes the input sparse
by decomposing it into band-limited sub-signals namely intrinsic mode functions (IMFs)
some of which are the desired signal.

According to the literature, by using a speech analysis method, the information of
speech signal relating to the source waveform output from the larynx and the informa-
tion of vocal tract can be obtained. On the basis of the source-filter model, the source
waveform and the vocal-tract impulse response are usually separated so that the effects
from the other is minimized. Some parameters are required by the above speech analysis
methods such as the sampling rate dependent prediction order and the gender-dependent
cut-off quefrency which are required by the LP and CEP-based speech analysis methods.
STRAIGHT requires the accurate F0 estimation for the harmonic peaks interpolation.
Moreover, most of them are very weak against noises and reverberation in real environ-
ments. Some can be robust against noises to a certain extent but still underperform in
practical applications. EMD has some properties, described later, that seems to be able
to handle noises and reverberation. Therefore, we will use it to propose the robust speech
analysis method in real environments.

1.3 Motivation and research goal

The motivation for this research came from the persistent to overcome the limitations of
existing speech analysis methods when they are exploited in real environments. How to
obtain the accurate speech parameters in very noisy reverberant environments is always
in our mind. If these limitations can be overcome, it would have a great impact on the
research society of speech signal processing.

According to the ability of EMD that can extract the oscillation component and make
the signal sparse by reducing the degree of mixing, it is possible to propose a robust
speech analysis by using EMD. In the case of clean speech, EMD can adaptively separate
the source and filter and extract the periodicity or harmonicity. In noisy environments,
additive background noises can become sparse when noisy speech signals are decomposed
into IMFs, and some noise can be mostly separated from the target speech signals. In
reverberant environments, the room impulse response can be separated from the target
signal when the reverberant speech signals are converted into cepstrum. Therefore, the
robust speech analysis method in real environments can be archived by combining the
concepts described above.

The final goal of this research is to solve the problems of speech analysis in real
environments. Some subgoals are set in this dissertation to reach the final goal. That is
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1. Speech analysis of clean speech signal using multivariate empirical mode decompo-
sition

2. Robust speech analysis based on empirical mode decomposition in noisy environ-
ments

3. Robust speech analysis based on empirical mode decomposition reverberant envi-
ronments

4. And finally, robust speech analysis method based on empirical mode decomposition
in noisy reverberant environments

In the end, some applications will be demonstrated to show the effectiveness of the pro-
posed speech analysis method.

1.4 Thesis outline

There are seven chaters in this dissertation. The remainder are organized as follows.
Chapter 2 mentions about the necessary background knowledge such as the source-

filter model, classical speech analysis methods such as LP and CEP. Since the proposed
speech analysis method is based on EMD, EMD and its extensions including their advan-
tages and disadvantages are described in this chapter.

Chapter 3 explains the important concepts used in the proposed speech analysis
method based on multivariate empirical mode decomposition. We start with the simplest
one, clean speech analysis, in comparison with the LP and CEP-based methods. The re-
markable advantages are emphasized. Also, the general evaluation measures are described
for evaluating the proposed speech analysis.

Chapter 4 demonstrates the first extension of the proposed speech analysis method
in noisy conditions. There are two stages which are noise analysis/reduction and speech
analysis. The first stage emphasizes the advantage of EMD in noise reduction compared
with other methods. The second stage is the proposed method of Chapter 3.

Chapter 5 demonstrates the second extension of the proposed speech analysis method
in reverberant conditions. There are also two stages which are dereverberation and speech
analysis. The complex cepstrum cooperates with the EMD for dereverberation in the first
stage. The proposed speech analysis described in Chapter 3 is in the second stage.

Chapter 6 gives examples of applications of the proposed speech analysis method:
voice activity detection (VAD), denoising, and dereverberation. The VAD is achieved by
using speech analysis. This VAD is further applied to the second application, denoising,
the results of which are compared with the well-known method. The third application
is speech dereverberation which enhance reverberant speech signals by using complex
cepstrum. PESQ is used for evaluation of denoising and dereverberation.

Chapter 7 addresses the summary of this work and its contributions to this research
fields. Since there are still limitations, we will discuss about the future improvement.

1.5 Summary

The innovative and unique points of our speech analysis method can be sum up as follows:
(1) this research exploits the advantages of MEMD for speech analysis which can estimate
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both source and filter information, (2) it can adaptively separate the source and the vocal
tract filter, noise and speech, reverberation and speech. In short, we began this chapter
by providing answers to the questions: what is the problem to be solved? why we have to
solve? and is it challenging to solve?. After that, the motivation and goal of this research
were described. The structure of this dissertation was lastly outlined.
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Chapter 2

Background

2.1 Speech production: source-filter model

Basically, speech signals come from the air passes from the lung through the vocal or
nasal tract and go out from the lips. When air flows past the vocal cords, the vocal cords
periodically vibrate the rate of which gives the pitch or fundamental frequency, F0, of
the voiced sounds. The periodic pulses of air after the vibration behave like an excitation
source flowing into the cavity between the vocal cords and the lips or nose namely vocal or
nasal tract. The vocal or nasal tract behaves like a resonator that modifies the spectrum
of the periodic air flow. Based on this fundamental knowledge, a simple speech production
model namely the source-filter model has been constructed. The vocal tract is usually
assumed to be the time-invariant system so that the air pressure output from the lips
is the convolution of the periodic air pressure waveform after the vocal cords and the
impulse response of the vocal tract. In fact, the lips also modify the spectrum of sounds
after passing the vocal tract by changing the slope of the spectrum because the lips act as
high-pass filter [1]. The effects from the lips are less significant in this research and will
be omitted. Generally, a typical speech utterance composes with a sequence of vowels and
consonants whose spectral characteristics change with time corresponding to a changing
excitation source and vocal tract system. There are roughly two kinds of sources: impulse-
like train and noise-line signals as illustrated in Fig. 2.1. Based on the above concept, a
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Figure 2.1: Speech production model

speech signal is expressed as
s(t) = u(t) ∗ v(t), (2.1)
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where s(t), u(t), and v(t) are the speech signal, the source signal, and the impulse response
of the vocal tract filter, respectively. The Fourier transform of this equation is

S(ω) = U(ω)V (ω), (2.2)

where S(ω), U(ω), and V (ω) are Fourier transforms of s(t), u(t), and v(t), respectively.
A more detailed speech production mechanism is given in Fig. 2.2a, where there are

three groups of speech organs: the vocal tract, larynx, and lungs. The lungs feed the air
to the larynx which functions as the airflow modulator. The modulated airflow is either
a noisy source or a periodic which is the source fed into the vocal tract (nasal and oral
cavities). It modifies the modulated airflow by coloring the spectrum of the source. Note
that constrictions and boundaries made within the vocal tract can also be the sources
which result in the impulsive source besides the noisy and periodic ones. After the airflow
passes through the vocal tract, the varying air pressure at the lips is the propagating
sound perceived as speech by the listener.
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Figure 2.2: Speech production methanism and airflow in the glottis

Since the glottis is the cavity between vocal cords in the larynx, the airflow velocity
at the glottis is the glottal waveform similar to that illustrated in Fig. 2.2b. The shape of
the waveform varies with the speaker, the speaking style, and the specific speech sound.
Normally, the glottal or source waveform is called the glottal source. When the vocal
cords vibrate, the air flow is the pulse train having the fundamental or pitch period, T0,
the reciprocal of which is the fundamental frequency, F0, normally ranging from 60 Hz
to 400 Hz. Males typically have the F0 lower than females because of more massive and
longer vocal folds. The mathematical model of the glottal waveform is the convolution of
one cycle of the glottal waveform with a periodic impulse train. That is

u(t) = g(t) ∗ p(t), (2.3)
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where g(t) is one cycle of the glottal waveform and p(t) =
∑∞

k=−∞ δ(t−kP ) is an impulse
train spacing with the peroid P . Assume that u(t) is infinitely long, a segment of u(t) is
extracted by multiplying u(t) with a short analysis window w(n, τ) centered at time τ .
Thereforem the resulting segment is expressed as

u(n, τ) = w(t, τ)(g(t) ∗ p(t)). (2.4)

In frequency domain, it is expressed as

U(ω, τ) =
1

P
W (ω, τ) ◦ [

∞∑
k=−∞

(G(ω)δ(ω − ωk))],

=
1

P

∞∑
k=−∞

G(ωk)W (ω − ωk, τ) (2.5)

where U(ω, τ), W (ω, τ), and G(ω) are Fourier transform of u(t, τ), w(t, τ), and g(t),
respectively, ωk = 2πk

P
, and 2π

P
is the fundamental frequency as illustrated in Fig. 2.2c.

As described earlier, the function of the vocal tract is to modify the spectrum of the
glottal waveform which makes speech sounds perceptually different. Another function is
to generate other sources such as the impulsive one for sound production. The relation
between a glottal input waveform and the waveform output from the vocal tract is approx-
imated by a linear filter. The resonance frequencies of the vocal tract are called formants
which vary according to vocal tract configurations. For example, different vowels result
from different positions of the tongue, teeth, jaw, and lips. Approximately, formants are
the peaks of the frequency response or spectrum of the vocal tract. They are numbered
from the low to high formants according to their location such as F1 which denotes the
first formant, the second formant is denoted by F2 and so on. Male speakers tend to have
the frequencies of the formants lower than female speakers because the male speakers have
longer vocal tract length. Of cause that, female speakers have formant frequencies lower
than children. Based on the assumption that the vocal tract is time-invariant system and
the sound source is the glottis, the output speech waveform from the vocal tract is ap-
proximately expressed as the convolution of the sound source waveform and the impulse
response of the vocal tract. That is

s(t) = v(t) ∗ (g(t) ∗ p(t)). (2.6)

A window w(t, τ), is applied to s(t) so that

s(t, τ) = w(t, τ){v(t) ∗ (g(t) ∗ p(t))}. (2.7)

The Fourier transform of s(t) is

S(ω, τ) =
1

P
W (ω, τ) ◦ [

∞∑
k=−∞

(V (ω)G(ω)δ(ω − ωk))],

=
1

P

∞∑
k=−∞

V (ωk)G(ωk)W (ω − ωk, τ) (2.8)

Figure 2.3 illustrates the result of the spectral shaping of the main lobe of the window
function at the harmonics ω1, ω2, . . . , ωN by the spectral envelope |V (ω)G(ω)| which is
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the contribution from a glottal and vocal tract. The resonance or formants frequencies
denoted as F1, F2, . . . , FN , are the peaks of the spectral envelope. According to the above
speech production model, there are two classical techniques described in the next section
for analyzing speech signals for important parameters relating to the glottal source and
vocal tract.
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Figure 2.3: Spectral shaping

2.2 Classical techniques

2.2.1 Linear prediction

Linear prediction (LP) is widely used in speech applications such as speech compression
because the speech production process is suitable with LP. When the continuous-time
speech signal s(t) is sampled by ADC, the result is the discrete time speech signal, s[n],
which can be written as

s[k] =
P∑
p=1

aps[k − p] +Gu[k], (2.9)

where k is the time index, P represents the prediction order, ap, p = 1, . . . , L, are linear
prediction coefficients, G is the gain of the system, and u[k] is the excitation or glottal
source signal (sequence). The parameter ap is a filter coefficient of the vocal-tract on the
basis of an all-pole filter model. The vocal tract filter is assumed to be time-invariant
within a short duration (20 - 30 ms). Eq. 2.9 can be rewritten in frequency domain by
using the z-transform as

V (z) =
G

1−
∑P

p=1 apz
−p
,

=
G

A(z)
, (2.10)
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where V (z) is transfer function of the vocal tract and A(z) its inverse. After obtaining
the filter coefficients, the glottal source signal is estimated by using inverse filtering. The
details of how to calculate the coefficients of the filter is described as follows. Consider
a stationary random signal x[k]. It is assumed that the value of the sample x[k] can be
predicted by its past samples, i.e., x[k − 1], x[k − 2], etc. The prediction error is defined
as

e[k] = x[n]− x̂[k],

= x[k]−
P∑
p=1

apx[k − p],

= x[k]− aTx[k − 1], (2.11)

where the superscript “T” denotes transposition of the matrix, x̂[k] is the predicted
sample, aT = [a1 a2 · · · aP ]T is a vector of prediction coefficients, and x[k − 1] =
[x[k − 1] x[k − 2] · · · x[k − P ]]T is a vector containing the P most recent samples.
To obtain the accurate values of prediction coefficients, it is required to minimize the
prediction error by minimizing the mean-square error

J(aP ) = E{e2
P [k]}, (2.12)

where E· demotes expectation operator. Differentiate J(aP ) with respect to aP and
equating to 0Px1, i.e.,

RP aP = rP , (2.13)

where

RP = E{x[k − 1]xT [k − 1]},
= E{x[k]xT [k]},

=


r[0] r[1] · · · r[P − 1]
r[1] r[2] · · · r[P − 2]

...
...

. . .
...

r[P − 1] r[P − 2] · · · r[0]

 (2.14)

is the correlation matrix, and rP is the correlation vector. Assume that RP is nonsingular,
the optimal prediction coefficients can be calculated by

aP = R−1
P rP . (2.15)

Eq. (2.15) can be solved by Levinson-Durbin algorithm [1]. Figure 2.4 illustrates speech
analysis using LP where panel (a) is a voiced sound. The prediction coefficients, which
are coefficients of vocal tract filter, are calculated by using Matlab function “lpc(·)”. The
frequency response of the filter calculated from the coefficients by using Matlab function
“freqz()” is shown as the red line in the panel (b) whereas the blue line is the spectrum of
the voiced sound. The glottal source signal which is shown in panel (c) can be obtained by
using inverse filtering from the calculated correlation coefficients. Notice that the period
of the source signal are the same as that of the voiced sound.
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Figure 2.4: Demostration of speech analysis using LP

2.2.2 Cepstrum

Another technique is the CEP which transforms log magnitude spectrum of a speech
signal cepstrum by using the inverse discrete-time Fourier transform (IDFT). That is for
a discrete time speech signal s(t), its cepstrum is defined as

c(t̃) =
1

2π

∫ π

−π
log |S(ω)|ejωt̃dω (2.16)

where S(ω) is the discrete-time Fourier transform (DTFT) of s(t) which is defined as

S(ω) =

∫ ∞
n=−∞

s(t)e−jωtdt. (2.17)

Eq. 2.16 takes only the magnitude spectrum |S(ω)| so that c(t̃) is real like s(t). Consider
the same speech signal as shown in Fig. 2.4. According to Eq. (2.2), its cepstrum is

<{F−1[log |S(ω)|]} = <{F−1[log |U(ω)|] + F−1[log |V (ω)|], }
c(t̃) = csrc(t̃) + cflt(t̃), (2.18)

where F−1[·] is the IDTFT, < denotes the real part. Notice that cepstrum of speech
consists of cepstrum of the glottal source and vocal tract. Fig. 2.5 shows cepstrum of
the voiced sound of Fig. 2.4. csrc(t̃) can be noticed as the peaks in high quefrency range.
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These peak associated with F0 of the speech signal. On the other hand, cflt(t̃) is the peak
in low frequency range. These cepstra can be separated using a lifter as shown in the red
line in the top panel of Fig. 2.5. After applying the lifter, DTFT of the liftered cepstrum
results in spectral envelope, the red line in the bottom panel of Fig. 2.5 where the dashed
line is the spectral envelope obtained by using LP. Notice the similar peaks of two spectral
envelop.
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Figure 2.5: Demostration of speech analysis using CEP

Complex cepstrum

When both magnitude and phase are taken into consideration, the result will be complex
cepstrum of S(ω) that is

logS(ω) = log |S(ω)|+ j∠S(ω), (2.19)

Ĉ(t̃) =
1

2π

∫ π

−π
logS(ω)ejωt̃dω (2.20)

where ∠S(ω) is phase spectrum of S(ω). t̃ is the independent variable in quefrency
domain. The relationship between the cepstrum and complex cepstrum can be obtained
by

c(t̃) = Even{Ĉ(t̃)} =
Ĉ(t̃) + Ĉ(−t̃)

2
(2.21)
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In fact, complex cepstrum can be written in three forms besides Eq. (2.20). They will be
used for solving speech analysis in reverberant environments. Therefore, the background
knowledge about the complex cepstrum will be written in this subsection. From Eq.
(2.17), S(ω) can be written in polar form as

S(ω) = |S(ω)| expj∠S(ω),

= |U(ω)||V (ω)| expj{∠U(ω)+∠V (ω)}, (2.22)

where ∠U(ω) and ∠V (ω) are phase spectrum. The first form of complex cepstrum of
S(ω) is expressed by

Ĉ(t̃) = ĈA(t̃) + Ĉφ(t̃),

= F−1[log{|S(ω)| expj∠S(ω)}],
= F−1[log |S(ω)|] + F−1[j∠S(ω)], (2.23)

where F−1[·] denotes the IDTFT, ĈA(t̃) and Ĉφ(t̃) are the amplitude and phase cepstra. t̃
is an independent variable in quefrency domain having the unit of time. The second form
of complex cepstrum of S(ω) is written as

ĈS(t̃) = F−1[log V (ω)] + F−1[logU(ω)],

= ĈS,flt(t̃) + ĈS,src(t̃), (2.24)

where Ĉsrc(t̃) is the complex cepstrum of the glottal source and Ĉflt(t̃) is of the vocal
tract filter. The third form of complex cepstrum of S(ω) is represented by summation of
non-minimum and minimum phase components. That is

ĈS(t̃) = ĈS,min(t̃) + ĈS,all(t̃),

= ĈS,A,min(t̃) + ĈS,φ,min(t̃)

+ĈS,A,all(t̃) + ĈS,φ,all(t̃), (2.25)

where the subscripts “all” and “min” denote non-minimum phase and minimum compo-
nents. In fact, the clean speech spectra can also be represented as

S(ω) = Smin(ω)Sall(ω),

= |Smin(ω)| expjφmin |Sall(ω)| expjφall . (2.26)

Since |Sall(ω)| = 1. Thus, ĈS,φ,all(t̃) = 0. Therefore, there are remaining three compo-
nents of complex cepstrum. Speech dereverberation by using complex cepstrum analyisis,
described in Chapter 5, is also on the basis of this fact. In reverberant environments, a
reverberant speech signal, y(t), is defined as

y(t) = s(t) ∗ h(t), (2.27)

where h(t) is the room impulse response (RIR). The Fourier transform of y(t) is expressed
as

Y (ω) = S(ω)H(ω),

= U(ω)V (ω)H(ω), (2.28)
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where H(ω) is the Fourier transform of the RIR. The complex cepstrum of the reverberant
speech signal is

ĈY (t̃) = ĈS,src(t̃) + ĈS,flt(t̃) + ĈH(t̃), (2.29)

where ĈH(t̃) is the complex cepstrum of the RIR. As a result, ĈY (t̃) is separately repre-
sented as

ĈY (t̃) = ĈY,A,min(t̃) + ĈY,φ,min(t̃) + ĈY,φ,all(t̃),

= ĈS,src,A,min(t̃) + ĈS,src,φ,min(t̃)

+ĈS,src,φ,all(t̃) + ĈS,flt,A,min(t̃)

+ĈS,flt,φ,min(t̃) + ĈS,flt,φ,all(t̃),

+ĈH,A,min(t̃) + ĈH,φ,min(t̃)

+ĈH,φ,all(t̃). (2.30)

In the calculation, the minimum phase component is extracted from the amplitude cep-
strum. That is

ĈY,A,min(t̃) = CY (t̃) · L(t̃), (2.31)

ĈY,φ,min(t̃) = ĈY,A,min − CY (t̃), (2.32)

where L(t̃) is the appropriate lifter (Oppenheim and Schafer, 2009). Since |Yall(ω, τ)| = 1.
Thus ĈY,A,all(t̃) = 0. Therefore, ĈY,φ,all(t̃) can be extracted by subtracting the above

minimum phase cepstra from Eq. (2.30). On important notation is that ĈY,A,min(t̃)

is similar to ĈY,φ,min(t̃) within a certain range of quefrency. This notation is useful to

estimate both of them from ĈY (t̃)

2.3 Empirical mode decomposition and its extensions

To date, several powerful data analysis approaches are available such as Fourier spectral
analysis, wavelet analysis, and singular value decomposition (SVD) based analysis. These
still have limitations in several cases. Fourier spectral analysis as shown in previous
subsections has been dominated in time-frequency analysis of signals for a long time.
It has been a general method for globally examining the energy-frequency distributions
within a specified range of time such as spectrogram. However, there are some critical
limitations of the Fourier analysis which are (i) the system must be linear, and (ii) the
data must be strictly periodic or stationary. Its failures are usually caused by in sufficient
spanning, non-stationary, and non-linearity of the data.

Wavelet analysis is an alternative linear analysis for non-stationary data analysis.
Its limitations are caused by the selection of basic wavelet function. Once the basic
wavelet is selected, one will have to use it to analyze all the data which is its non-adaptive
nature. Singular value decomposition (SVD), also known as empirical orthogonal function
expansion or principal component analysis, is another well-known data analysis tool. SVD
provides only a distribution of the oscillating mode by using the variance defined by
eigenvalues. This distribution does not inform frequency content of the signal. Moreover,
it is difficult the define the physical meaning of a single component of the decomposition.

Recently, Huang et al [9] proposed a new data analysis method namely empirical mode
decomposition (EMD) which directly extracts the energy associated with various intrinsic
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time scales into intrinsic mode functions (IMFs). EMD does not assume that the process
must be linear or stationary. The IMFs are derived from the data that serves as the basis
expansion regardless the linearity of the data. In other words, EMD is data driven and
adaptive analysis approach. The full energy distribution on the time-frequency scale is
derived from the local energy and the instantaneous frequency (IF) through the Hilbert
transform, i.e. Hilbert spectrum.

2.3.1 Iterarive algorithm of EMD

EMD decomposes a signal x(t) into IMFs by using its extrema. Thus the signal must
have at least one maximum and one minimum. The time between these extrema is defined
as the characteristic time scale. The sifting process for extracting IMFs is described as
follows.

1. Locate all extrema of the input signal x(t).

2. Connect all maxima by using a cubic spline interpolation as the upper envelope and
do the same fo all minima to make the lower envelope.

3. The mean between the upper and lower envelopes is designated as m(t). Let the
IMF candidate be d(t) = x(t)−m(t).

4. If d(t) is IMF, it should be symmetric: the number of extrema differs from the
number of zero crossings at most by one and the mean defined by the difference
between its upper and lower envelope is zero. Otherwise, d(t) will be treated as
input data and fed into the sifting process (1)-(3) for more i rounds until the IMF
candidate d(t) fulfills the properties of IMF. Otherwise go to the next step.

5. The first IMF of x(t) is extracted by as q1(t) = x(t) − d(t). The residue which is
defined as r1(t) = x(t) − q1(t) will be treated as input data for extracting other
IMFs by feeding into the sifting process (1)-(4).

6. After K IMFs are extracted and the energy of rK(t) is very small or a monotonic
function, the sifting process stops.

After decomposing x(t) by the sifting process, x(t) can be reconstructed by summing all
IMFs and residue, i.e.,

x(t) =
K∑
k=1

qk(t) + rK(t), (2.33)

where K is the number of IMFs, qk(t) is the k-th IMF, and rK(t) is residue. The zero
mean of IMF is indicated by the small value of the standard deviation which is defined
by standard deviation of d(t) of previous round, di−1(t), and the current round, di(t), [9].
That is

SD =
T∑
t=1

|di−1(t)− di(t)|2

d2
i−1(t)

. (2.34)

A typical value for SD is between 0.2 and 0.3 calculated from the data having 1024
points. Another criterion stops the sifting process when di(t) has an insufficient number
of extrema [24] indicating the oscillatory component. The demonstration of the sifting
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process is shown in Fig. 2.6 where the original signal is shown in panel (a). Panel (b)
shows the upper and lower envelopes constructed from the extrema which can be observed
by eyes. The mean is the difference between the upper and lower envelopes. Panel (c)
shows the difference between the original signal in panel (a) and the mean in panel (b)
which, fortunately, is the first IMF. Panel (d) is r1(t) which will be further decomposed
the remaining IMFs.
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Figure 2.6: Demonstration of sifting process

To date, several extensions of EMD have been developed to eliminate its weak points
and to make suitable for several applications relating to data fusion from multiple sources.
Three major extensions are bivariate EMD [25], trivariate EMD [26], and multivariate
EMD (MEMD) [27]. Bivariate EMD (BEMD) originated from complex EMD (CEMD),
applying EMD to complex numbers, and rotation-invariant EMD (RI-EMD), more general
realization of the complex EMD that designates fast oscillating as fast rotating compo-
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nents and slow oscillating as slow rotating components. Trivariate EMD (TEMD) extends
the concept of extracting fast and slow rotating components by using Quaternion algebra
which is more appropriate for the rotation in 3D space. The most current extension is the
multivariate EMD (MEMD) which allows more fusion of the data from several sources
such as multiple sensors. The important property of these extensions of EMD is the
common mode alignment which is exploited frequently in our proposed speech analysis
method.

2.3.2 Bivariate EMD

The basic concept of EMD is “univariate signal is equal to fast oscillations added on
slower oscillations” whereas the basic idea of BEMD is “bivariate signal is equivalent to
fast rotations added on slower rotations.” The bivariate signal can be formed by using
two time series signals with the same length. Consider Fig. 2.7 where a bivariate signal
is in panel (a). The envelope of the bivariate signal is shown in panel (b). Its IMFs are
two component of oscillations as shown in panel (c) and (d).

Figure 2.7: Demonstration of bivariate EMD

Rather than decomposing each time series individually by using EMD, two time series
can be jointly decomposed by using BEMD. The example is given as follows. Consider
two time series y1 and y2 represented by the blue lines in Fig. 2.8. A direction vector is
defined by using the angle θ relative to the +x-axis. The projections of y1 and y2 based on
three values of θ are the blue lines in the bottom panels. The upper and lower envelopes
of y1 and y2 are calculated by using the time instances of extrema of projections in the
corresponding column. Note that when θ = 0, the projection is equal to y1 and equal to
y2 when θ = π/2. There are three mean time series, represented by the purple lines in
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Fig. 2.8, according to three values of θ. The average from these mean time series is used
to extract an IMF.
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Figure 2.8: Example extrema of bivariate signal at a given instant in time

A more general approach is described as follows. Assume that bivariate signal is in
the form of complex-valued signal. Let a set of directions be θk = 2kπ/N, 1 < k < N
where N is the number of directions on 2D space. An IMF is extracted by

1. Project the complexed-valued signal x(t) on direction θk:

2. pθk(t) = <{e−iθkx(t)} where < denotes the real part of the complexed-valued signal.

3. Extract the locations {tkj} of the extrema of pθk(t).

4. Interpolate the set {tkj}, x[{tkj}] to obtain the upper and lower envelope curves and
their mean mθk(t). Repeat step (1)-(4) again for all N directions.

5. The mean of all envelope curves is computed by: m(t) = 1
N

∑N
k=1 mθk(t). Note that

m(t) is also a complex time series.

6. The mean is subtracted from x(t) by: d(t) = x(t)−m(t).
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These steps are the same as steps (1)-(4) of univariate EMD described earlier. The
remaining process are the same for extracting IMFs. There are other similar algorithms
for extracting IMFs from a bivariate signal which can be found in [25]. Only, the simplest
one is described in here. The important concept of BEMD is the projection of the input
signal on an directional axis which will be frequency used in other two extensions of EMD.

2.3.3 Trivariate EMD

The important concept of BEMD is that it utilizes the projections of the bivariate signal
in multiple directions to find the local extrema. This concept can also be applied when
the dimension is more than two. Furthermore, rather than using normal 3D projection
in 3D space, the trivariate EMD employs a quaternion rotation for the projection in 3D
space as follows.

A

B

u

ϕ
rr’

Figure 2.9: Rotation of a vector r around a unit vector u or line segment AB by and angle
φ.

Let o = a+ b̄i+ cj̄ + dk̄ be a quaternion where a, b, c, and d are real numbers and ī,
j̄, and k̄ are the unit vectors along +x, +y, and +z-axis. The important notation is the
so-called unit quaternion which is written as

o = cosφ+ u sinφ (2.35)

= euφ, (2.36)

where u is a 3D unit vector. Eq. (2.36) is the generalization of Euler’s identity that
represents the rotation of a vector by an angle 2φ about a 3D unit vector u as shown in
Fig. 2.9. This figure demonstrates the rotation of a vector r by an angle φ about the line
segment AB. The direction of AB is specified by a 3D unit vector u, and the rotated
vector is represented by r′, that is

r′ = oro∗ = euφ/2r(euφ/2)∗, (2.37)
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where “*” denotes complex conjugate. In 3D space, the direction vectors is defined from
points on the surface of a unit sphere. Let x(t) be a trivariate signal, u be a 3D unit
direction vector, and uxy = 0+cos(θ)̄i+sin(θ)j̄+0k̄ be a 3D unit vector on the xy-plane,
where θ is the angle taken with respect to +x-axis. Rotating the trivariate signal about
the direction vectors uxy is equivalent to the projections of the trivariate signal in multiple
directions defined by φ and θ. That is

pθφ = euxyφx(t)(euxyφ)∗ · k̄ (2.38)

where “·” denotes the dot product. θ is the angle of u taken with respect to the z-axis.
The angles θ and φ can be selected to respectively have N and K values between 0 to π.
The algorithm for extracting IMFs from a trivariate signal x(t) is as follows.

1. Calculate pθnφk of x(t) where φk = kπ/K for k = 1, . . . , K and θn = nπ/N for
n = 1, . . . , N

2. Locate the time instants (tnk)i associated with the maxima of pθnφk , for all values of n
and k.

3. Interpolate [(tnk)i, x((tnk)i)] to obtain the envelope curves eθnφk(t) for all n and k.

4. Calculate the mean m(t) from all of the envelopes curves by

m(t) =
1

KN

K∑
k=1

N∑
n=1

eθnφk(t). (2.39)

5. Subtract the mean from x(t): d(t) = x(t)−m(t). If d(t) is the IMF, then apply the
above procedure to x(t)− d(t), otherwise apply to d(t).

2.3.4 Multivariate EMD

In the same fashion, MEMD projects the multivariate signal in multiple directions ob-
tained by sampling of the n-dimensional hypersphere to estimates the n-dimensional mean.
Rather than using uniform sampling, the low-discrepancy Hammersley sequences are pre-
ferred because of the unbalanced concentration of the sampling points near the north and
south poles generated from uniform sampling [27]. It is not difficult for the notation of
mathematics but it is more difficult to imagine the relation of the data and the direction
vectors when the number of dimensions is greater than 3. The algorithm of MEMD is
the same as that of TEMD except that the dimension is greater than 3. This means that
more data sources are allowed for data fusion. One important feature of MEMD is that it
can align the IMF which is the common component to all data sources in the same order
of IMF as in Fig. 2.10. Another improvement of MEMD comparing with EMD is that
the overlapping between spectral bandwidth of MEMD is less that of EMD as shown in
Fig. 2.11.

Last but not least, there is another important extension of EMD: ensemble EMD
(EEMD) which is noise-assisted EMD. Since EMD may suffer from two problems which
are (1) mode mixing where there are several oscillating components on an IMF, or different
IMFs have the same oscillating component, (2) the overlapping of the spectra of IMFs, and
(3) the number of IMFs and the alignment of the similar signal cannot be guaranteed.
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Figure 2.10: Illustration of common mode alignment [27]

Figure 2.11: EMD as filter banks [27]

EEMD algorithm by Wu and Huang [28] employs ensemble averaging of noisy signal
realizations. That is the same signal is added by several realizations of noises. EMD is
applied to every time a realization of noise is added. The average IMF is obtained by
averaging the IMFs of the same order. EEMD can improve the first two problems but
the last one still exist. MEMD can improve all of the problems as described above.

EMD and its extensions are frequently applied in non-linear and non-stationary signal
analysis such as wind signals and earth quake. Similar to spectrogram, Hilbert Huang
spectrum provides a energy distribution on time-frequency axis of non-linear and non-
stationary signal by using the Hilbert transform. There are several publications relating
to speech signal where EMD and its extensions were applied in both frequency and time
domain. In time domain, EMD was used for speech enhancement [29], speech analysis [30],
voice activity detection [31], pitch estimation [32] [33]. In frequency domain, EMD was
also used for speech enhancement [35], speech analysis [12] [13] [35], and pitch estimation
[12] [13] [34] [35]. In addition, we use EMD in quefrency domain for robust speech analysis
which will be described later.
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The main ability of EMD frequently used in speech applications is that it can reduce
degree of mixing of signals or automatic signal separation. For example, when noisy speech
signals are decomposed into IMFs, some IMFs are dominated by speech components. The
next task is to detect such IMFs and discard the remaining ones for noise reduction. The
periodicity of the voiced speech is one cue for detecting speech components. Another cue
is the power envelope of IMFs which can be used for noise reduction. This technique will
be described later. Likewise, periodic feature of harmonics of log magnitude spectrum of
speech signals can also be used for the detection of IMFs in frequency domain. Several
research focus only on IMFs for F0 but omit the remaining IMFs which contain information
of vocal tract filter. We use this cue for speech analysis in clean speech.

2.4 Summary

This chapter started with the basic principle of the source-filter model for speech pro-
duction. It presented the background of speech analysis by using two classical techniques
which are LP and CEP to get the glottal source and vocal tract informatin on the basis
of source-filter (speech production) model. The empirical mode decomposition and its
extensions are described. The EMD-based applications relating to speech signals such as
speech enhancement, speech analysis, voice activity detection, and pitch estimation were
briefly addressed. In addition, the important properties of MEMD, the current extension
of EMD, were pointed out since these properties will be frequently used later. The details
of how to apply MEMD for speech analysis is described in the next chapter.
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Chapter 3

MEMD-Based Speech Analysis
Method

In this section, the main concept of speech analysis by using MEMD will be described.
This core method will be utilized in speech analysis in noisy and reverberant conditions.
Consider a magnitude of log spectrum obtained from a short-time speech signal. Accord-
ing to Eq. (2.22) we can rewrite

log |S(ω)| = log |U(ω)|+ log |V (ω)|. (3.1)

According to Fig. 2.3, there are two components: fine structure and spectral envelope
which are associated with log |U(ω)| and log |V (ω)|, respectively. These two components
can be separated by using liftering as illustrated Section 2.2.2. Furthermore, inverse fil-
tering as described in Section 2.2.1 can also be used to separate the vocal tract filter and
glottal source waveform in the time domain. Nevertheless, LP refers to the sampling rate
for identifying the prediction order. Normally, the prediction order should be approxi-
mately equal to the sampling rate in kHz plus some value less than ten. The greater value
of prediction order will give redundant peaks on spectral envelope of Fig. 2.4 where the
prediction order is 22 with 16000 Hz of the sampling rate. The less number of prediction
order results in unclear formants. Moreover, liftering relates to the gender dependent cut-
off quefrency. These dependencies are avoided by using MEMD and its common mode
alignment property. Our proposed MEMD-based speech analysis method is described as
follows.

The block diagram of the MEMD-based speech analysis method for clean speech signals
is illustrated in Fig. 3.1 where the clean speech signal, s(t), is divided into frames which
are converted to log spectrum. MEMD decomposes the trivariate signal, which is formed
by using the magnitude of log spectra of three adjacent frames, into sets of IMFs. Each set
is classified into the groups of source and vocal tract. The F0 is estimated from the first
group whereas the frequency response of the vocal tract is obtained from the second group.
There are three techniques to classify IMFs: dominant IMF, autocorrelation function
(ACF), and common mode alignment, that are described in the following subsections.
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Figure 3.1: Block diagram of MEMD-based speech analysis
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3.1 Main concept

Our concept of speech analysis method by using MEMD is shown in Fig. 3.1. It takes
three adjacent, overlapping frames of speech signals into account based on the assumption
that F0 is the common information among them. Consequently, the periodic feature
of harmonics of their log magnitude spectra is the same. MEMD decomposes the log
magnitude spectra simultaneously by feeding the trivariate signal formed by using the
three log magnitude spectra. The results IMFs are shown in Fig. 3.2 where there are
three sets of IMFs corresponding to the three log magnitude spectra. Since the common
component of the three log magnitude spectra is the periodic feature of harmonics, MEMD
aligns this common component in the same order of IMF, q4(ω) of Fig. 3.2. According
to Eq. (3.2), the IMFs of each set can be classified into the groups of source and filter.
Detecting the common mode alignment can be utilized for classifying the IMFs. The
techniques for classifying the IMFs will be described later.

Before classifying the IMFs, we will address necessary conditions required by our
method. Since our method needs the common mode shared among input speech frames,
the frame length and frame overlap between input frames must be taken into account.
Generally, the frame length affects the periodic feature of harmonics. Insufficient time
span will result in the weak magnitude of the harmonics. The long frame length results in
the strong magnitude of the harmonics but the localization of the F0 in time is blurred.
Most of the speech analysis methods use intermediate frame length which is around 20
to 30 ms during which the speech signal is assumed to be quasi-stationary, i.e. the vocal
tract is the time-invariant system and the source is stationary [1].

In contrast, the short frame length, which is sufficiently cover the impulse response
of the vocal tract, is appropriate for the formant and spectral envelope estimation. Nev-
ertheless, as long as the vocal tract is time-invariant, the frame length can be long and
the simultaneous estimation of the vocal tract and glottal source is possible. Therefore,
the frame and frame overlap is our important key whereas LP and CEP-based methods
based only on the assumption of the stationarity of the speech signal. In addition, we
also have to consider the percentage of the frame overlap. We will give two examples: 0%
and 100%. When there is no overlap between the input frames of the speech signal, we
cannot guarantee the existence of the common mode and our method may fail to analysis
speech. In contrast, when the overlap is 100%, all frames are the same which is useless
to use the multivariate analysis. Therefore, the intermediate percentage of frame overlap
which allows the variation of the input speech signals and guarantees the existence of the
common mode should be appropriate.

Another one important consideration for using MEMD is the number of multivariate
input signals. Since, MEMD is a computation intensive data analysis method, the greater
the number of the input data results in very long computation time. Moreover, since the
speech is nonstationary and F0 varies in time, it is difficult to guarantee the common
mode to exist in all the input frames. Therefore, the minimum number of the input
frames and the concept of cubic spline interpolation are taken into accounts to minimize
the computation complexity resulting in the number of three of the input frames of speech
signals.
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3.2 Automatic source-filter separation

According to the block diagram in Fig. 3.1, MEMD decomposes the triavaiate signal,
composed with three magnitude of log spectra, into sets of IMFs. The magnitude of log
spectra are from si−1(t), si(t), and si+1(t) which are three overlapping frames. According
to Eq. (3.1) can be rewritten as

log |S(ω)| =
M∑
k=1

qk(ω)︸ ︷︷ ︸
src

+
K∑

k=M+1

qk(ω)︸ ︷︷ ︸
flt

, (3.2)

where qk(ω) is the k -th IMF, the variable dividing a set of IMFs into the groups of vocal
tract and glottal source is M . The residue is also treated an IMF, qK(ω). There are three
techniques for determining the value of M : autocorrelation function (ACF), common
mode alignment, and dominant IMFs.

Firstly, the ACF is frequently utilized to emphasize the periodicity of a signal in F0

estimation [36]. The ACF of a signal that contains periodic component will exhibit the
periodic peaks the distance between two adjacent peaks is the fundamental period of the
periodic component. Likewise, ACF of log magnitude spectrum has peaks associated the
periodic feature of harmonics or F0. Since the MEMD extract the oscillatory component
of harmonics in an IMF, the ACF of this IMF will strongly exhibit the harmonicity.
Normally, the first peak of the ACF is usually in the first sample which is meaningless
but the second peak does have the meaning of harmonics.In fact, our method decomposes
the log magnitude spectrum by using MEMD. The output IMFs are therefore the sub-
spectrum some of which contain the periodic feature of harmonics. The ACF of IMF is
expressed as

Rk[ωj] =
1

N

N−1∑
ωi=0

qk[ωi]qk[ωi + ωj], (3.3)

where ωj is the frequency lag, ωi is frequency index, N corresponds to frequency range. If
we define Fpk as the frequency of the 2nd peak of Rk. The IMFs of the source will have
the Fpk between 60 – 400 Hz, the normal range of F0 of human voices. Otherwise, the
IMF belongs to the group of the filter. This concept is illustrated in Fig. 3.2 where the
top row contains log magnitude spectra of voiced sounds. The 2nd to 10th rows are IMFs
and their ACF which are the blue and red lines respectively. The IMFs q1(ω) to q4(ω)
has Fp1 to Fp4 within the normal range. Therefore, the value of M is roughly equal to 4.
The summation of these IMFs is the red line in the bottom row compared with the log
magnitude spectra.

Secondly, the dominant IMF is defined as an IMF that exhibits the dominant charac-
teristics. Since the source information is the periodic feature of harmonics, we expect that
this periodicity will strongly exhibit its characteristics in an IMF. One characteristic is
the ACF of IMF that will minimally change when there is interfering signal as illustrated
in Fig. 3.2 where the dominant IMF is q4(ω) whose ACF has Fp4 = 234.38 Hz. The ACF
of the summation from q1(ω) to q4(ω) still Fpsum = 234.38 Hz which is equal to Fp4 of
the dominant IMF.
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Figure 3.2: Log magnitude spectrum and their IMFs. The autocorrelation of IMFs are
the red lines. Summation of the IMFs order from 1 to 4 shows the periodic feature of
harmonicx of the souce as illustrated in the last row.

3.3 Common mode alignment

The common mode alignment is another approach for calculating the value of M of Eq.
(3.2) for the IMF classification. Based on the assumption that is the common mode
among the frames of input speech signal. That is the periodicity of harmonics of the
log magnitude spectrum. The oscillatory mode corresponding to this periodic feature
is extracted into an IMF which can be detected by using the correlation coefficient as
illustrated in Fig. 3.3. There are three lines coming from three pairs of the column of
IMFs. The horizontal axis is the order of IMF. Since, the main oscillatory of the periodic
feature is extracted to the IMF order 4, q4(ω), in Fig. 3.2, the correlation coefficient
exhibits the peak at this order. By utilizing the above three techniques, we can determine

28



the value of M that divides the IMFs into groups of source and filter. In the next section,
we will describe how to estimate the information of the source and filter from these groups.

3.4 Source and filter information estimation

Figure 3.6 illustrates the summations of both groups of IMFs after the source filter sepa-
ration. The top panels are log magnitude spectra. The middle panels are the summation
of the first group of IMFs. The bottom panels are the summation of the second group in-
cluding the freuency responses estimated by using the LP and CEP-based methods. Note
that all spectral envelops are normalized. We can estimate the speech features from both
summations. That is F0 can be estimated by using the peaks of ACF which is illustrated
in Fig. 3.4 for a synthesize voiced sound and Fig. 3.5 for the spoken voiced sounds. The
blue, red, and orange lines in Fig. 3.4(b) are F0 estimated by using the LP-based, CEP-
based, and the proposed methods. The true value of F0 of is 100 Hz. The green lines are
tolerable error margin. The similar result is shown in Fig. 3.5(b) in case of spoken voiced
sound but the true value of F0 is obtained by using reliable method namely TEMPO [37].
In Fig. 3.5(c), the estimated F0 by using our method is the orange line compared with
the true value.
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6Figure 3.3: Correlation coefficient between IMFs. The three lines are from three different
pairs (columns) of IMFs.

On the other hand, the formants and spectral envelope are estimated from the second
group of summation. Peak picking technique combined with bandwidth consideration is
mainly used for the formant estimation. Furthermore, we use the average result from
several frames of voiced sounds when the estimated F0 is stable which is indicated by the
low value of standard deviation of estimated F0. We also use the summation of the second
group for the spectral envelope estimation but normalize it before the comparison with
the other spectral envelopes obtained by using the LP and CEP-based methods.

3.5 Remarkable advantages

In sum, our speech analysis method has two benefits. Firstly, our method automatically
separates the source and filter by detecting the alignment of the source common mode
using the correlation coefficients. Secondly, the periodic feature of harmonics is extracted
or purified into the IMF which is dominant in oscillating energy so that the estimated F0
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Figure 3.4: F0 estimation of synthesized voices
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by using our method is superior to the LP and CEP-based methods. This statement will
be confirmed later by the evaluation results.
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Figure 3.6: Source-filter sepration. The top panels show log |S(ω)| from three frames.
The middle panels show log |U(ω)|, and the bottom panels show log |V (ω)| compared
with spectral envelopes obtained by LP and cepstrum are plotted bottom panels.

3.6 Evaluations

We assume that speech analysis method should be able to estimate three important fea-
tures of speech parameters: F0, formant frequencies, and spectral envelope. Firstly, the
correct rate is generally used for evaluation of F0 estimation. It is defined as

CR =
NF0,Est

(Err)

NF0,Ref

× 100, (3.4)

where F0,Est is the estimated F0, F0,Ref is the ground-truth or true value of F0 obtained
from the relyable F0 estimation method. The number of estimations that satisfy |F0,Ref −
F0,Est|/F0,Ref ≤ Err(%) is denoted as NF0,Est

whereas the total number of estimations is
NF0,Ref

. The acceptable error margin is Err (±5% of the ground-truth).
Secondly, there are three ways of formant estimation: the comparison between the

true values and the estimated ones [38], the standard deviation and average of the esti-
mated formants [39] [40], and the pattern of the first few estimated formants, [F1, F2] or
[F1, F2, F3]. Until now, there is no evaluation method for formant estimation method as
well defined as the correct rate because the formants frequencies greatly vary even though
the speakers speak the same vowel. Therefore, the evaluation depends on the subjective
judgment of the readers based on the small difference between the true values and the
estimated formant frequencies, or the small value of SD. The pattern of first three formant
frequencies is also important to discriminate the different patterns from different vowels.
Thus, we include both the pattern of formants and the numbers in the evaluation results.

Lastly, the evaluation of the shap of the frequency response of vocal tract or spectral
envelope utilizes the direct comparison among the estimated spectral envelopes by using
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the proposed, CEP-based, and LP-based methods because of the unavailable ground truth
spectral envelope. LP-based and CEP-based methods yield spectral envelopes based on
the predefined prediction order and cut-off quefrency, respectively. We use correlation
coefficient, Euclidean distance, log spectral distance, and Itakura-Saito spectral distances
for the evaluation. The indicator of the trend of spectral envelope we used is the correla-
tion coefficient. The first two spectral distance measurements are the direct comparison.
The Itakura-Saito spectral distance is the measurement that takes the perceptual sim-
ilarity of human speech into account. This result will be the reference for the spectral
envelope comparison when we extend our speech analysis method to noisy reverberant
environments.

Based on the testing data, there are two evaluations associated with the synthesized
and spoken voiced sounds. The first evauations of F0 and formant estimations use true
values of F0 and formant frequncies. The purpose of these evaluations is to ensure the
correctness and reliability of our speech analysis method. Then the effectiveness and
performance of our method is shown in the second evaluation based on the spoken voiced
sounds.

3.7 Stimuli

There were two groups of testing data: synthesized and spoken voiced sounds. The syn-
thesized voice sounds were generated based on two values of F0 which are 0.1 and 0.2 kHz
simulating the F0 of male and female. There were five models of vowels: /E/, /U/, /A/,
/O/, and /I/. Their first three formant frequencies were [0.7, 1.22, 2.6], [0.31, 2.02, 2.96],
[0.32, 0.9, 2.2], [.48, 1.72, 2.52], and [.45, .9, 2.3] kHz [41]. The F0 of the synthesized voiced
sounds were fixed but the amplitude decrease over time to imitate the fading amplitude
of spoken voiced sounds as illustrated in Fig. 3.4(a). The other group of testing data
is the spoken voiced sounds of vowels /EY/, /UW/, /AA/, /OW/, and /IY/ of a word
that contins a consonant and a vowel. These testing data were two groups of males and
females of TIMIT database [42]. Each group has voices from different 40 persons.

The evaluations based on these groups of testing data were the comparison among
three methods: LP-based, CEP-based, and our proposed methods. The prediction order
of LP-based method was 22. The cut-off quefrency of the CEP-based method corresponds
to 0.4 kHz of the maximum F0 of the general human voices. The speech analysis used
Hanning window the duration of which is 30 ms. The frame overlap was 50%. The sounds
from TIMIT databases have the sampling rate 16 kHz. We padded zeros to the input
frames to 1024 samples. Lastly, we focused on the frequency range less 0 to 2 kHz for the
calculation of ACF of IMF in Eq. (3.3).

3.7.1 Evaluation from Synthesized and Spoken Voiced Sounds

The evaluation of F0 estimation was carried out from both synthesized voiced sounds of
five vowels. The true value of F0 of the synthesized voiced sounds were used as F0,Ref in Eq.
(3.4). The evaluation of formant estimation used the plot of formants and the difference
between the true values and the estimates. Lastly, the correlation coefficient and spectral
distance measurement were used for the evaluation of the shape of the spectral envelope.

Similarly, the evaluations of estimated F0, formant, and spectral envelope were the
same as in the case of synthesized voiced sounds but with some differences as follows. The
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F0,Ref in Eq. (3.4) was obtained by using the reliable method, TEMPO [37]. Actually,
there is another reliable one which is YIN [43]. Their performance was reported by Alain
[44]. TEMPO was used throughout this dissertation. Since the true values of formants of
spoken voiced sounds are not available, we used the comparison of the performance with
those of the synthesized voiced sounds for the judgment.

3.8 Results

The demonstration of F0 estimation from the synthesized voiced sounds is illustrated
in Fig. 3.4 where the panel (a) is the synthesized voiced sound and panel (b) is the
estimated F0 by using the LP-based, CEP-based, and the proposed methods with 100 Hz
as the correct value. In the panel (b), the blue, red, and orange, are the estimated F0 by
using the LP-based, CEP-based, proposed methods whereas the green lines are the error
margin. Their correct rate is 93.57, 89.58, and 100%, respectively. Notice that there is a
small variation of the estimated F0 when the amplitude of the voiced sound is small near
the end. The demonstration of F0 estimation from the spoken voiced sounds is shown in
Fig. 3.5 where the speech signal in panel (a), the blue, red, and orange lines in panel (b)
are the estimated F0 by using LP-based, CEP-based, and the proposed methods. The
blue, orange, and green lines in panel (c) are the estimated F0 from TEMPO, the proposed
method, and acceptable error. The evaluation of f0 estimation of the synthesized voiced
sounds by using the average CR is shown in Table 3.1 where the highest value of CR is
from our method. Similarly, The evaluation of f0 estimation of the spoken voiced sounds
is shown in Table 3.3. Although, the result by using the proposed method is not the best,
it noticeably better than those by using the LP-based method.

Table 3.1: The correct rate (CR) of F0 estimates of the synthesized voiced sounds where
the unit of the true (True) and estimated (Est.) values are kHz.

CR of estimated F0

LP CEP Proposed
True Est. CR Est. CR Est. CR

/A/
.1 .099 94.07 .983 92.87 .982 98.54
.2 .200 97.27 .198 98.47 .198 98.58

/I/
.1 .098 80.07 .983 91.86 .985 98.08
.2 .200 97.67 .198 98.87 .196 99.47

/U/
.1 .100 74.48 .987 95.67 .982 98.44
.2 .202 93.27 .196 98.47 .196 96.32

/E/
.1 .101 96.07 .983 95.27 .982 99.45
.2 .202 98.87 .196 98.87 .196 96.56

/O/
.1 .102 92.47 .986 88.47 .982 99.33
.2 .202 98.87 .196 98.87 .196 99.74

Average .201, .100 91.31 .198, .984 96.75 .196, .983 97.75

In Table 3.2, we summarize the evaluation of formant estimation from synthesized
voiced sounds where AvgDiff is the average of the difference. Even though AvgDiff is
minimum, the pattern of the true and estimated formants by using all methods are the
same as illustrated in Fig. 3.7(a) where the solid-red, dashed, and dash-dot lines are
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the formant estimates by using the proposed, CEP-based, and LP-based methods, re-
spectively. The solid black lines are the true values. In addition, each vowel can be
differentiated by using this plot. Similarly, the evaluation result from spoken voices is
shown in Table 3.3. The pattern of estimated formant is shown in Fig. 3.7(b) with the
same pattern as 3.7(a). These formants were estimated when the stand deviation (SD) of
estimated F0 is small. The example SD is shown in Table 3.3.

The comparative evaluation of the shape of the vocal tract frequency response or
spectral envelope from both the synthesized and spoken voiced sounds are shown in Table
3.4, where the proposed, CEP-based, and LP-based methods are abbreviated as P, C,
and L, respectively. The pair C,P has the highest correlation coefficients which indicate
the highest similarity, hence the minimum spectral distance of this pair. However, the
spectral distance of all pairs are very small which indicates the high similarity of the
spectral envelop. This also confirms that the proposed method can provide the correct
spectral envelope.
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Table 3.2: The evaluation of formant estimates: synthesized voiced sounds.
Estimated Formant

F1 F2 F3

F0 True LP CEP Proposed True LP CEP Proposed True LP CEP Proposed

/A/
100

700
718 734 718

1220
1218 1203 1218

2600
2578 2562 2593

200 703 734 734 1218 1187 1171 2578 2578 2578

/I/
100

310
312 296 328

2020
2031 2015 2015

2960
2859 2859 2906

200 343 312 343 2031 2000 2031 2828 2718 2906

/U/
100

320
328 312 359

900
906 843 890

2200
2125 2171 2187

200 359 328 359 859 781 796 2187 2250 2171

/E/
100

480
500 453 500

1720
1734 1734 1718

2520
2484 2500 2500

200 453 343 468 1750 1781 1812 2515 2546 2437

/O/
100

450
453 421 484

900
906 890 906

2300
2296 2281 2296

200 421 359 406 828 734 812 2250 2265 2234
AvgDiff 18.2 38.4 29.1 19.5 50.2 36.9 46 58.2 35.2

Table 3.3: The results of formant and F0 estimations of real voices. The standard deviation (SD) of the estimated F0 when CR=100%
and formant was estimated is also shown.

Vowel
Evaluation of F0 Estimation Evaluation of Formant Estimation (kHz)

SDCR F1 F2 F3

LP CEP Proposed LP CEP Proposed LP CEP Proposed LP CEP Proposed
/AA/ 87.51 95.45 97.67 .669 .688 .671 1.309 1.293 1.295 1.898 1.923 1.924 1.88
/IY/ 79.99 96.92 97.94 .391 .339 .372 2.287 2.309 2.313 2.961 2.941 2.949 2.14
/UW/ 82.74 96.97 97.04 400 .351 .369 1.223 1.268 1.210 2.606 2.592 2.585 2.02
/EY/ 75.72 93.22 95.60 .435 .395 .418 2.121 2.129 2.143 2.705 2.702 2.671 1.16
/OW/ 84.72 97.06 96.35 .491 .427 .458 1.202 1.178 1.172 2.589 2.568 2.581 1.47
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Table 3.4: Result of spectral envelope evaluation by using average and correlation coefficient (CorCoef), Euclidean (EU), Itakura-Saito
(IS), log spectral (LS) distances. The P, L, and C are the proposed, CEP-based, and LP-based methods, respectively.

Vowel
CorCoef IS LS EU

C,P L,P L,C C,P L,P L,C C,P L,P L,C C,P L,P L,C
/A/ 0.98 0.94 0.92 60e-7 32e-6 65e-6 53e-7 33e-6 72e-5 42e-7 45e-6 22e-6
/I/ 0.97 0.92 0.95 56e-7 71e-6 52e-6 56e-7 82e-6 18e-6 73e-7 36e-6 32e-6
/U/ 0.98 0.95 0.92 72e-7 45e-6 66e-6 65e-7 66e-6 32e-6 54e-7 26e-6 25e-6
/E/ 0.98 0.92 0.93 48e-7 51e-6 41e-6 45e-7 72e-6 38e-6 47e-7 13e-6 46e-6
/O/ 0.97 0.93 0.91 65e-7 45e-6 78e-6 57e-7 36e-6 46e-6 64e-7 23e-6 52e-6

/AA/ 0.98 0.92 0.93 55e-7 72e-6 70e-6 28e-7 47e-6 39e-6 72e-7 32e-6 33e-6
/IY/ 0.98 0.93 0.93 74e-7 67e-6 64e-6 32e-7 43e-6 36e-6 53e-7 48e-6 39e-6

/UW/ 0.98 0.93 0.93 74e-7 51e-6 51e-6 47e-7 56e-6 56e-6 85e-7 53e-6 12e-6
/EY/ 0.98 0.92 0.92 74e-7 56e-6 55e-6 76e-7 67e-6 46e-6 32e-7 48e-6 15e-6
/OW/ 0.98 0.91 0.91 12e-7 71e-6 67e-6 57e-7 76e-6 32e-6 68e-7 12e-6 34e-6
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Figure 3.7: The results of formant estimations of (a) synthesized and (b) spoken voices

3.9 Discussion

In accordance with the results, we have demonstrated that our speech analysis method
separate the source and filter automatically which is different from the CEP and LP
that use the cut-off quefrency and prediction order, respectively. The indicator for the
correct separation is the high correct rate, the corresponding formant patterns, and the
high value of similarity of the spectral envelope. The values of correlation coefficients
were high and the values of spectral distance were low. These indicate the high value of
similarity of the vocal tract frequency response estimated by using all methods. Based
on the synthesized voiced sounds, the results show that our method is reliable for speech
analysis. Therefore the results of speech analysis based on the natural spoken voiced
sounds in TIMIT database, which do not have the correct values of F0 and formants, are
also reliable. Although we mainly focus on the formant frequencies which are the peaks
of the spectrum, the dips are also important and specific in some vowels. For example,
between the 1st and 2nd formant frequencies, the dips of vowel /EY/ and /IY/ are wide.
Similarly, the dips of vowels /UW/ and /OW/ are wide between the 2nd and the 3rd
formants.

Since MEMD is good in extracting the periodic feature of harmonics as illustrated in
Fig. 3.2, it results in the high value of correct rate. We have an assumption that the
input frames have a common component which is the same periodicity or harmonicity of
F0. At a specific order of IMF, the common components of all log magnitude spectra will
be have high correlation coefficients at the equal order of IMF, as described before. This
is the core idea for the IMF classification into vocal-tract and glottal source groups. To
ensure the existence of the common component, the input frames of speech signal should
have overlap. We have not yet specified the percentage of the overlap explicitly. However,
the simple consideration is that when the overlap is 100%, it will result in the high value
of correlation coefficient (close to 1.0) for every order of IMF order. This is useless for
identifying the IMF of common mode. Alternatively, we cannot guarantee the common
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mode in the case of non-overlap. Therefore, it is a good choice to have some overlap
between adjacent frames.

Although this chapter showed only speech analysis of vowels, it is possible to apply our
method to other voiced sounds such as the nasals /M/ and /N/ in words “Most” and “No”,
respectively. We have an assumption that MEMD can also align the common mode of
noise and reverberation components when we used MEMD for the speech analysis in noisy
and reverberant environments. That is the stationary noise appear to be the common
mode in multiple frames of the speech signal. Likewise, reverberant speech signals may
have the common room impulse response when they are converted to log magnitude
spectra. Therefore, it is possible to employ MEMD for extracting these common modes
but the challenging issues are how to identify them and how to make the speech analysis
robust in noisy and reverberant environments.

3.10 Summary

In this chapter, we employed the source-filter model of speech production to propose
the speech analysis method by using multivariate EMD. Our method decomposed the
multivariate signal constructed from log magnitude spectra into sets of IMFs. Each set
of IMFs was classified associated with the vocal tract and the glottal source. F0 was
estimated from the group of source and formant and spectral envelope were estimated
from the second group. The proposed method gave high accuracy in F0 estimation close
to 99%. It also gave the correct values of formants. Furthermore, the obtained spectral
envelope was similar to those obtained by other methods. Therefore, our speech analysis
method can be an alternative speech analysis method as well as the LP and CEP.
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Chapter 4

Extension of MEMD-Based Speech
Analysis Method Against Noise

Speech analysis has long been regarded as the important area that enables the machine to
understand the linguistic and paralinguistic contents such as what is being spoken (words
or sentences) and speaker information (identity, emotions, health condition, attitude,
personality, age, and gender). Due to a variety of speech data collecting devices such as
smartphones or tablets, a huge amount of speech data is available with the lower cost than
before. Sufficient labeled speech data helps the deep-learning based systems overcome the
limitations of the non-learning based systems. However, the speech data are from various
environments. Therefore, the robust speech analysis is important for labeling the speech
data. Nowadays, existing speech analysis methods are not robust in noisy conditions
because they assume that a speech signal is noiseless, which is not a suitable assumption
for all of the speech data collected from mobile devices. Thus, the research in this field
is still in need. In Chapter 3, the multivariate empirical mode decomposition (MEMD)-
based speech analysis was firstly proposed for automatic separation of fine structure and
spectral envelope by using the particular properties of MEMD. The decomposition of the
fine structure of log magnitude spectrum can improve the performance of F0 estimation a
little bit when we compared with cepstrum (CEP) and linear prediction (LP) based speech
analysis methods. In this chapter, the MEMD-based speech analysis will be applied in
noisy conditions to solve the problem of robustness of speech analysis.

In fact, there are two possible solutions for analyzing noisy speech data which are using
speech enhancement and making the speech analysis robust. The first approach is indirect
because we need to enhance the speech before the analysis. The performance depends
mainly on the speech enhancement method used, for example, spectral subtraction (SS)
[45], Weiner filter (WN) [46] [47], minimum mean square error (MMSE) [48], improved
minima controlled recursive averaging (IMCRA) [49], and empirical mode decomposition
(EMD) [27]. The second approach is direct, but it is quite difficult and challenging in this
research field.

We started solving the problem with the speech analysis of noisy speech by first es-
tablishing a clean speech analysis method using multivariate EMD (MEMD) [12] [13].
This MEMD-based method was robust in fundamental frequency (F0) estimation but not
in formant and spectral envelope estimation in noisy environments. Then, a two-stage
MEMD-based speech analysis method was proposed to make it robust in noisy condi-
tions [35]. However, the noise reduction stage still has limitations in removing several
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kinds of noises. In this paper, we improve our speech analysis method, which can handle
several kinds of noises, by using the specific properties of MEMD. The novel point of our
method is described as follows.

EMD decomposes a noisy speech signal into IMFs. We assume that speech dominates
in some IMFs and noises dominate in the others. There are five approaches to IMF
classification: mandatorily remove the first few IMFs, which are believed to be those of
noises [50], fixed or adaptive thresholding [51], use of the modulation spectrum (MS) [31]
[52], use of the variance of IMF [53] [54], and use of the correlation coefficient [13] [55]. The
first approach is not always valid because speech signals are dynamic and can dominate
in those first few IMFs. The second approach requires predetermined knowledge on the
distribution of noise and can be invalid when noises are unknown. The third approach
requires an appropriate range of Q-values and slopes of MS to classify the IMFs of noise
and speech. The fourth and fifth rely on the characteristics of an input signal, which should
be appropriate for an adaptive and data-driven tool like EMD. However, the variance is
not enough for IMF classification because the variance of the desired signal is sometimes
comparable to that of noises, which causes IMF classification to fail. The correlation
coefficient is another parameter, but it is effective only when noises are band-limited like
periodic humming or car noises. When noises are uncorrelated, the correlation coefficient
fails to detect them.

Therefore, we propose a novel method for classifying IMFs by using the power envelope
of IMFs in order to reduce stationary uncorrelated noises on the basis of the fact that
the power envelope of the IMFs of noises is the same for every frame of a speech signal.
Comparison of the power envelopes of IMFs should be helpful in IMF classification. The
novelties of this research are as follows. First, the proposed method can automatically
decompose stationary noise into IMFs. Noise components are identified by measuring the
similarity between the power envelopes of IMFs. Second, this paper is an extension of the
research in [35] in the sense that several kinds of noise are tackled by using the proposed
method. In addition, more testing data are taken into consideration in order to confirm
its effectiveness and performance.

The remainder of this chapter is organized as follows. In Section 4.1, we describe the
proposed robust speech analysis method, and in Section 4.2, we describe the procedures
used to evaluate the proposed method. Sections 4.3, 4.4, and 4.5 are the results, discussion,
and conclusion, respectively.

4.1 Proposed Robust Speech Analysis Method

This section will briefly describe the MEMD-based speech analysis method of Chapter 3
again to emphasize how it can be a robust speech analysis method. After that, we will
describe how to reduce noise by using MEMD to improve the performance.

4.1.1 MEMD-based Speech Analysis in Clean Environment

The MEMD-based speech analysis method analyzes a speech signal by decomposing the
log magnitude spectra of three adjacent, overlapping frames simultaneously into sets of
IMFs by using MEMD, as shown in Fig. 4.1. Each set of IMFs is classified into two groups
associated with a sound source and vocal tract filter. Figure 4.1 shows the decomposition
of trivariate MEMD, where the log magnitude spectra are in the first row. Their IMFs are
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Figure 4.1: Log magnitude spectra [log |S(ω)|], their IMFs [ck(ω)], and autocorrelation of
IMFs (red lines).

shown as the blue lines in the corresponding columns. Because the important information
of the excitation signal is the periodic feature of harmonics, this dominant periodic feature
is decomposed in the fourth order of IMF, c4(ω). The autocorrelation of the IMFs as shown
by the red lines can emphasize this periodicity.

In fact, the order of an IMF for this dominant harmonic varies depending on the
multivariate input due to the data-driven nature of MEMD. Automatic detection can be
achieved by using the correlation coefficients of IMFs of the same order. We assume that
the log magnitude spectra have the same harmonicity as a common mode among them
so that MEMD aligns this common mode with the same IMF order where the correlation
coefficients of IMFs exhibit a peak [13]. Consequently, detecting the peak of a correlation
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coefficient can be used for source-filter separation as demonstrated in Figs. 4.2(a) – 4.2(c).
The benefit of extracting the periodic feature of harmonics is that it is helpful in

F0 estimation with such dominant oscillating IMF as shown in Figs. 4.2(d) – 4.2(f).
In fact, there are few methods that use the periodic feature of harmonics [56] [57] [58]
[59]. The first three papers separate the dominant harmonics in the quefrency domain
by using liftering which requires the predefined cut-off quefrency. The third and the
forth papers emphasize the periodic feature of harmonics with the weight functions. Our
method separates dominant harmonics into IMFs and detects them automatically. It is
also possible to employ weight functions to emphasize the periodic feature, such as the
autocorrelation function. One important assumption required for our method is that the
common mode among three log magnitude spectra exists so that we can use this mode
for IMF classification. To fulfill this requirement, the input frames of speech signals are
made to overlap. We suggest that the percentage of overlap should be around 50% so
that the input frames are different but have a common mode [13].
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Figure 4.2: Source-filter separation and estimated F0. (a) Log magnitude spectrum, (b)
fine structure, (c) spectral envelope, (d) clean speech signal, (e) noisy speech signal, and
(f) estimated F0.

Last but not least, the reduction of the degree of mixing by using MEMD is also useful
in the formant estimation as shown in Fig. 4.3. When the value of M of Eq. (3.2) is
known, a spectral envelope is obtained as shown in Fig. 4.3(a). Some of the peaks of
the envelope are formants, and some are undesired peaks. If we increase the value of M ,
the number of peaks can be reduced, as shown in Figs. 4.3(b) and 4.3(c). Candidate
formants are estimated from the peaks having the large bandwidth located under 5500
Hz, the normal F4 formant frequency of humans. In addition, we also use dips with a large
bandwidth for formant estimation. In Fig. 4.3(b), there are four formant candidates. In
Fig. 4.3(c) there are three formant candidates, some of which are similar to those in Fig.
4.3(b). By using several frames of speech signals, closely located peaks can be clearly
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classified, as shown in Figs. 4.3(e) and 4.3(f). The estimated formants are the average of
the closely located peaks.
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Figure 4.3: Spectral envelopes and their peaks

We tested the MEMD-based speech analysis method under noisy conditions [35]. Our
method could be robust in F0 estimation compared with the LP and CEP-based methods.
However, the spectral envelope and formant estimation were not robust. Therefore, we
proposed the two-stage speech analysis for noisy conditions, where the first stage exploits
the common mode alignment property of MEMD for noise decomposition in the frequency
domain. The second stage is the MEMD-based speech analysis method.

The limitation of this analysis was that it was only robust to white noise but not to
others such as pink noise. As we know, the power spectral density (PSD) of pink noise
is inversely proportional to the frequency, unlike the PSD of white noise, which is flat in
the frequency domain. The flat shape of the PSD of white noise is the slowest oscillating
component that is decomposed into the last IMF by using MEMD. However, the PSD
of pink noise gradually changes in a high frequency range and quickly changes in a low-
frequency range. Consequently, the components of the PSD of pink noise spread into all
of the IMFs, i.e., the quickly changing components are in the low IMF orders, whereas
the slowly changing ones are in the high IMF orders. On the basis of this limitation,
we decided to propose the noise reduction stage in the time domain with MEMD. The
modified speech analysis method is shown in Fig. 4.4, where there are conceptually two
stages of noise reduction and speech analysis. We still exploit the common mode alignment
property of MEMD for the decomposition of noise on the basis of the assumption that
noise is stationary and the speech signal is not stationary in a long-time analysis frame.

4.1.2 Noise analysis and reduction

There are two steps to noise reduction. The first step reduces noise outside the fre-
quency range of speech signals by using MEMD. Then, F0 is estimated using the MEMD-
based speech analysis. The standard deviation of estimated F0 is used to establish
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Figure 4.4: Block diagram of the speech analysis framework in noisy conditions

voiced/unvoiced classification or voice activity detection (VAD). The second step uses
this VAD for SS to reduce the remaining noise in the frequency range of the speech
signals.

Consider the observed noisy speech signal, y(t), which can be represented as the sum
of a clean speech signal s(t) and the background noise w(t), i.e., y(t) = s(t) + w(t).
When y(t) is decomposed into IMFs by using MEMD, we assume that the effects of noise
dominate in some IMFs and the speech signals dominate in the other IMFs. Thus, y(t)
can be redefined as

y(t) =
A∑
k=1

ck(t)︸ ︷︷ ︸
noise

+
B∑

k=A+1

ck(t)︸ ︷︷ ︸
speech

+
K∑

k=B+1

ck(t)︸ ︷︷ ︸
noise

, (4.1)

where A and B are the orders of IMF that separate IMFs into groups of noise and speech.
Due to the overlap between the frequency bands of IMFs, it is hard to separate the noises
and speech completely when the frequency components of noises are distributed into the
whole frequency range like white and pink noise. However, MEMD can reduce the degree
of mixing by decomposition. The remaining task is to find IMFs that the speech signals
or noise dominate. On the basis of the assumption that noise is stationary but the speech
signal is not stationary in a long-time analysis frame, 0.5 to 1 s, the power envelope of
noise should fluctuate slowly, and the power envelope of speech should fluctuate faster.
Therefore, the comparing power envelopes should be helpful in detecting the IMFs of
noise.

If we divide y(t) into frames y1(t), y2(t), and y3(t), we can form the multivariate signal
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Figure 4.5: Input signals (first row), IMFs of input signals (ck), and power envelopes of
IMFs (red).

by using them, y(t) = [y1(t), y2(t), y3(t)]. MEMD takes y(t) as an input and decomposes
y1(t), y2(t), and y3(t) simultaneously into IMFs, as shown in Fig. 4.5, where the first
row contains y1(t), y2(t), and y3(t). The IMFs of each frame are denoted as ck(t) in the
associated column. Let the power envelope of an IMF is defined as

pk(t) =
√

LPF[|ck(t) + jHilbert(ck(t))|2] (4.2)

where pk(t) is the power envelope of ck(t), LPF[·] is a low pass filtering, and Hilbert[·] is
the Hilbert transform. Since noise is stationary, it is common to y1(t), y2(t), and y3(t).
MEMD aligns common noise in the same order of IMFs which can be identified by using
the similarity of the power envelopes. Noise IMFs should have power envelopes that are
high in similarity, but those of the speech signals should be low in similarity.

The power envelopes of IMFs are shown by the red lines in Fig. 4.5. The normalized
Euclidean distance between the power envelopes when the orders of IMF are the same is
shown in Fig. 4.6(a) by the blue line, where the Euclidean distance is averaged from three
pairs of columns and the horizontal axis is the order of IMFs. A low value of Euclidean
distance indicates the orders of IMFs for which noise dominates, whereas those with a
high value of Euclidean distance indicate the IMFs of speech signals. Therefore, we can
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discard IMFs having a low Euclidean distance to reduce noise, as shown by the red line
in Fig. 4.6(a). The clean, noisy, and enhanced speech signals are shown in Figs. 4.6(b) –
4.6(d).

After noise reduction by using MEMD, the F0 is estimated. VAD is constructed by
using the standard deviation of the estimated F0, as shown in Fig. 4.7, where the noisy
speech signal in Fig. 4.7(a) is interfered with pink noise. The estimated F0 is shown in
Fig. 4.7(b). The standard deviation (STD) of the estimated F0 is shown in Fig. 4.7(c).
The STD of F0 was calculated by using 20 values equivalent to 20 frames when the frame
shift was 1 ms. The resulting VAD is shown as the blue line in Fig. 4.7(d) and is based on
the threshold value of 10 Hz of the STD in Fig. 4.7(c). Ten Hz is the allowable variation
of F0 during voiced sections. Since this approach may fail to detect unvoiced sections as
shown with the beginning of the speech signal in Fig. 4.7(d). We alleviate this error by
widening the detected voiced sections as follows. First, the detected narrow-width voiced
sections, which should not be voiced sections, were eliminated, as shown in Fig. 4.7(e),
on the basis of shortest vowel sound of human speech. Second, the detected wide-width
voiced sections were extended to a certain range, as shown in Fig. 4.7(f). On the basis of
this VAD, the remaining noise was reduced by using SS. The improved spectral envelope
is shown in Fig. 4.8.
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Figure 4.6: Euclidean distance, signals, and estimated F0: (d) – (e) estimated F0 of (a)
is the blue line and those red lines are of (b) and (c). (f) blue, red, and orange lines
associate with three pairs of column of IMFs in Fig. 4.5.
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Figure 4.7: VAD using estimated F0

4.2 Evaluations

There were mainly two evaluations for the sound source (F0) and vocal tract (formants
and spectral envelope). The F0 evaluation was done before and after noise reduction,
unlike state-of-the-art methods such as YIN [43] and SWIPE [60]. We also compared
the results after the noise reduction by using our approach compared with the IMCRA.
The ground truth of F0 estimation was the estimated F0 obtained from the clean speech
signals by using TEMPO [37]. The evaluation approach was the correct rate defined in
Chapter 3 with a tolerable error margin ±10% of the ground truth.

The formant and spectral envelope estimations were evaluated by comparing them
with those obtained from the clean speech signals. The evaluation involved comparing
the CEP-based, LP-based, and our methods. The ground truth of the formant estimation
was the estimated formants obtained from the clean speech signals by using the reliable
clean speech analysis software [61]. Likewise, the ground truth of the spectral envelope
estimation was that obtained from the clean speech signals by using the MEMD-based
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Figure 4.8: Spectral envelopes

speech analysis method. Correlation coefficients and spectral distance measurements such
as Euclidean, log-spectral, and Itakura-Saito distances, were used as the evaluation ap-
proaches.

The testing data were natural spoken speech signals chosen from 30 males and 30
females from TIMIT database [42]. Conditions for selecting five vowels are the same as
the previous chapter. Noisy speech signals were generated by adding noise (white, pink,
and babble) with SNRs ranging from 10 to −5 dB. For noise analysis and reduction using
the proposed method, the noisy speech signals were divided minimally into three frames,
the frame length of which depended on the length of the signal. Since the evaluations were
compared with those of the CEP and LP-based speech analysis methods. The settings
parameters of CEP, LP, and MEMD-based methods are the same as Chapter 3.

4.3 Results

We summarize the results of F0 estimation in Fig. 4.9 as compared with the YIN, SWIPE,
LP-based, and CEP-based methods. “MEMD” is the F0 estimated by using the MEMD-
based method before noise reduction. “IMCRA” is the F0 estimated by using the MEMD-
based method after noise reduction with IMCRA. “Proposed” is the F0 estimated by using
the MEMD-based method after noise reduction with MEMD. Note that “MEMD” was as
good as “IMCRA” when the noises were white and pink but “IMCRA” was not robust
when the noise was babble, whereas “Proposed” improved the F0 estimation a little bit.

The evaluation of for formant estimation is shown in Figs. 4.10 – 4.14, where the
ground truths are the black circles. The estimated formants obtained by using the CEP
and LP-based methods are the black squares and the green stars, respectively. The
estimated formants obtained by using the MEMD-based speech analysis method before
noise reduction are the red diamonds, and those obtained after noise reduction by using
IMCRA are the blue triangles. Finally, the proposed method is shown by the red crosses.
Note that the formant estimations after noise reduction were better than the CEP and LP
methods. In addition, the proposed method was better than IMCRA in some situations,
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but the important point is that both of them provided the correct pattern of formants in
contrast with the CEP and LP methods. Last but not least, the evaluation of the spectral
envelops from all kinds of noises is shown in Fig. 4.15.

In Figs. 4.10 – 4.14, the ground truth is plotted in black circles. The estimated
formants by using the LP-based method are plotted in blue squares. Those of the CEP-
based method are plotted in red triangles. The estimated formants by using the proposed
frame work are plotted in black crosses. In sum, the pattern of formant locations from
all methods corresponds to the pattern of estimated formants in the previous chapter
when SNRs are 10 and 5 dB. However, the pattern of formant locations is destroyed
when SNRs are 0 and -5 dB especially when noise is babble. Notice that the proposed
framework can estimate the formants closest to the ground-truth which imply that it is
superior to the LP- and CEP based methods. Finally, the log spectral distance (LSD)
between frequency response estimated by using our framework is the most similar to that
of clean speech signals as in indicated by minimum values. In case of babble noise, the
LSD of the proposed method can be the best only when SNRs are 10 and 5 dB.
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Figure 4.9: Results of F0 estimation: MEMD denotes the MEMD-based speech analysis. IMCRA is the estimated F0 after noise
reduction by using IMCRA [49].
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Figure 4.10: Formant estimation of vowel /AH/: the ground-truth are circles. Before
noise reduction are the red diamonds (noisy), green stars (CEP), and black squares (LP).
After noise reduction are IMCRA blue triangles (IMCRA), and the red crosses (proposed).
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Figure 4.11: Formant estimation of vowel /IY/: the ground-truth are circles. Before noise
reduction are the red diamonds (noisy), green stars (CEP), and black squares (LP). After
noise reduction are IMCRA blue triangles (IMCRA), and the red crosses (proposed).

4.4 Discussion

The significant findings of this paper are as follows. First, the F0 estimation with our
MEMD-based speech analysis was robust because MEMD can extract the dominant har-
monics from the log magnitude spectrum. That is based on the fact that MEMD does
not only separate the source and filter but also extracts the periodic feature of harmonics
from a log magnitude spectrum into IMFs. Using these IMFs for the F0 estimation could
reduce variation caused by interfering noises.

Second, the MEMD-based noise reduction was able to remove noise components out-
side the frequency range of speech signals which improved the F0 estimation as shown
in Fig. 4.9. In contrast, the noise reduction with IMCRA did not much improve the
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Figure 4.12: Formant estimation of vowel /UW/: the ground-truth are circles. Before
noise reduction are the red diamonds (noisy), green stars (CEP), and black squares (LP).
After noise reduction are IMCRA blue triangles (IMCRA), and the red crosses (proposed).
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Figure 4.13: Formant estimation of vowel /EY/: the ground-truth are circles. Before noise
reduction are the red diamonds (noisy), green stars (CEP), and black squares (LP). After
noise reduction are IMCRA blue triangles (IMCRA), and the red crosses (proposed).

estimation. Worse, it deteriorated the estimation when the noise was babble. Although
the babble noise has a frequency range similar to the desired speech signals, we guess
that it has some frequency components outside the frequency range of the desired speech
signals. Consequently, F0 estimation was improved a little bit after noise reduction with
MEMD.

Third, the standard deviation of the estimated F0 could be used as a VAD for reducing
remaining noise. Therefore, the proposed method was robust in noisy conditions. This
implies that it can be used as a robust VAD using the estimated F0 for other applications
relating to speech signal processing.

We can see how MEMD could be used as a signal analysis technique that is data-driven
and adaptive. Our method can analyze the important information of a sound source and
vocal tract from speech signals more accurately than CEP and LP-based methods in noisy
conditions. It can also reduce noise on the basis of the accurately estimated F0. This
implies that our method can be applied to speech enhancement. However, the important
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Figure 4.14: Formant estimation of vowel /OW/: the ground-truth are circles. Before
noise reduction are the red diamonds (noisy), green stars (CEP), and black squares (LP).
After noise reduction are IMCRA blue triangles (IMCRA), and the red crosses (proposed).
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Figure 4.15: Evaluation of spectral envelope from all kind of noises

drawback of using MEMD is its intensive computation. In other words, we take advantage
of adaptive data analysis, but this leads to a long computation time. This drawback still
impedes us from applying MEMD to practical applications. In the future, computation
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reduction is our aim for this robust speech analysis.

4.5 Summary

In this chapter, we demonstrated a robust speech analysis framework on the basis on
source-filter model by using MEMD under noisy conditions. Our method decomposes
stationary noise into IMFs, which were detected by using their power envelopes. The
F0 was estimated and the VAD was constructed from this F0. The remaining noise was
removed by using this VAD and spectral subtraction. After that, the formant and spectral
envelope were estimated. The evaluation results showed that proposed method was robust
in F0, formants, and spectral envelop estimations compared with other methods. The
accuracy of F0 estimation was close to 80% when the SNR was −5 dB and the noise was
white. The minimum value of spectral distance and better estimated formants emphasized
that our framework was robust under noisy conditions.

54



Chapter 5

Extension of MEMD-Based Speech
Analysis Method Against
Reverberation

Multiple reflections within an enclosed space from the surrounding walls and the objects
cause serious problems in speech signal processing. The observed signal from a microphone
located inside the room is resulted from the summation of many attenuated and delayed
copies of the direct path speech signal as illustrated in Fig. 5.1 where the direct path
speech signals propagate directly from the talker to the microphone without reflections.
This phenomenon is called reverberation which degrades the speech intelligibility in terms
of modulation spectrum and coloring the spectrum of the speech signal. It directly affects
applications such as sound source localization and speech recognition. Reverberation is
far more complexed than the echoes which come from few reflections. The attenuated and
delayed versions of the direct path are from the energy absorption of the reflecting wall
and objects and the propagating path is longer than the direct path. The listener sitting
at the microphone will perceive the sound that comes from several sources locating at
different positions and directions and will feel that the speaker is far away from the actual
position. Moreover, the problems become worst when the distance between the speaker
and the microphone increases.

The observed speech signals encountering reverberation is defined as y(t) = s(t) ∗h(t)
where s(t) is the direct path, clean speech signal and h(t) is an acoustic room impulse
response (RIR) of the enclosed space which depends on the locations of talker and listener.
RIR is usually characterized by the reverberation time, T60. It is defined as the time taken
by the reverberant energy to reduce by 60 dB. We can imagine that the geometry of the
room and the energy absorption of the surfaces of the reflecting walls or objects affect
T60. Figure 5.2 shows an example of RIR where there are two components: the early
reflections and the late reverberations. The early reflections frequently occur within the
first 50–100 ms whereas the late reverberations exist after that. The effects of early
reflections are that it causes the spectral coloration. In fact, it is difficult for human
hearing to differentiate the closely spaced reflections because of the masking properties of
human’s ears. In addition, it was shown that the early reflections have the positive effects
on the speech intelligibility similar to the effects of megaphone that focus the energy in
the desired direction by using the reflections within the cylinder but the spectrum of the
speech is colored. In contrast, the late reflections are the closely spaced reflections which
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Figure 5.1: Reflections of speech signal in an enclosed space
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Figure 5.2: A room impulse response

tend to be randomly distributed. It is the main cause that reduces speech intelligibility.
Thus most of the research in speech signal processing is trying to handle the effects of
late reverberations.

To date, there are many publications relating to speech dereverberation for example
Homomorphic or CEP-based methods [62] [63] [64] [65], microphone array [66], inverse
filtering or channel equalization [64] [65], multi-step linear prediction [67], spectral sub-
traction (SS) [68], and modulation transfer function (MTF) [69]. However, reverberation
is yet to be completely solved because the performance of reverberant speech enhancement
algorithms does not reach the desired level in practical applications. Multichannel or mi-
crophone arrays require noncommon existence zeros among the RIR of each microphone
so that inverse filtering can be realized by using finite-impulse response (FIR) filters. Even
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though microphone arrays seem to be the best solution because of its ability of spatiality
filtering that matches the nature of reverberation, it is not the cost-effective approach.
Single channel dereverberation is, therefore, an alternative approach that is suitable for
low-cost implementation but solving reverberation becomes more difficult and challenge.

SS assumes that speech and reverberation are uncorrelated, but in fact speech is
correlated with the reverberation. It predicts the spectrum of reverberation by using
previous frames of the observed reverberant speech signal and then subtract from the
current frame. Not all situations can be solved by using SS because of the fixed weight
function for reverberation prediction. Channel equalization and inverse filtering require
the accurate estimation of RIR which is still very difficult in real situations. If the RIR
is a minimum-phase filter, it is possible to completely reconstruct the original speech
signal. However, most of RIRs are the non-minimum phase. Some approaches choose
to equalize reverberant speech partially [64] [65]. MTF concept estimates RIR by using
stochastic model proposed by Houtgast and Steneken [70]. It can restore the power
envelope of the clean speech signal, hence reducing reverberation but the MTF concept
cannot restore the carrier of the speech signal. Multi-step LP estimates the RIR by using
linear prediction in the first step, but the remaining reverberation can still be perceived
because of incomplete estimation of RIR. Alternatively, the echo removal by using the
CEP sounds mathematically possible, but reverberation is far more complexed than few
echoes. Nevertheless, the interesting research of estimation of RIR by using CEP is shown
in [62] where the cepstrum of RIR is estimated from average cepstrum of reverberant
speech signals.

Besides SS, it is complicated to handle reverberation based on short-time log magni-
tude spectrum. Therefore, our MEMD-based speech analysis method described in Chap-
ter 3 is predicted to be not robust against reverberation, at least in formant estimation.
Therefore, we adopt the similar framework by introducing the two-stage robust speech
analysis in reverberant environments, where the first stage is for speech dereverbera-
tion. The dereverberation is done by estimating the cepstrum of RIR and remove it from
cepstrum of reverberant speech signals. The dereverberated speech signals are then an-
alyzed using the MEMD-based speech analysis method. The dereverberation stage was
inspired by two approaches [62] [71]. In [71], the concept of modulation transfer func-
tion (MTF) [70] and complex cepstrum analysis (CCA) were combined to propose the
robust F0 estimation method in reverberant environments. This method began with T60

estimation from the target reverberant speech signal. The stochastic-idealized RIR was
estimated on the basis of the MTF concept and used to enhance the reverberant speech
signals. This process of enhancement was performed by using the long-time analysis
window.

On the other hand, the cepstrum of RIR could also be estimated from the ensemble
average cepstrum of reverberant speech signals [62]. The inverse filter was then estimated
from the estimated RIR cepstrum. The effects of reverberation were then alleviated by
using inverse filtering. The problem of this research is that it is difficult to get the
RIR cepstrum from the average cepstrum of reverberant speech signals directly without
processing because the ensemble average cepstrum of reverberant speech signals has two
components that belong to the clean speech signals and RIR. In this chapter, we will
show how to estimate the complex cepstrum of RIR from the ensemble average complex
cepstrum of reverberant speech signals by using MEMD and use it for speech analysis.
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5.1 Proposed Robust Speech Analysis Method

This section will briefly describe the MEMD-based speech analysis method of Chapter 3
to emphasize how it can be a robust speech analysis method in reverberant environments.
After that, we will describe how to reduce reverberation by using MEMD to improve the
performance.

5.1.1 MEMD-based Speech Analysis in Clean Environment

The MEMD-based speech analysis can be realized by using complex cepstrum. We will
describe how it can be robust in F0 estimation, but not robust informant and spectral
envelope estimations so that the speech dereverberation is inevitable.

Souce information (F0) estimation

According to Eqs. (2.24) and (2.25), the amplitude cepstrum, ĈS,A(t̃), is generally used

by the traditional methods so that ĈS,src(t̃) and ĈS,flt(t̃) are separately used for estimat-

ing F0, formant, and spectral envelope from ĈS,A(t̃). Figure 5.3 illustrates the concept

underlining the source-filter model in quefrency domain. ĈS,A,flt(t̃) represents the domi-
nant spectrum envelope of S(ω) (lower Fourier component in quefrency domain) so that
they are compactly located in a low quefrency range. In contrast, ĈS,A,src(t̃) represents
the dominant fine structure of S(ω) so that they are located in a high quefrency range.
Therefore, the task of estimating F0 with this concept is to find the dominant period-
icity of harmonic from ĈS,A,src(t̃) after (1) eliminating ĈS,A,flt(t̃) from ĈS,A,flt(t̃) by using
lifter [56] [57] or (2) decomposing log |S(ω)| by using MEMD as described in Chapter 3.

Cepstrum component of source

Cepstrum component of filter

liftering

quefrency

ܿ̂୅,ୱ୰ୡሾ݊ሿ

ܿ̂஺ሾ݊ሿ

ܿ̂୅,ୱ୰ୡሾ݊ሿ

ܿ̂୅,୤୪୲ሾ݊ሿ

Figure 5.3: Source and filter in quefrency domain

Since reverberation can be regarded as additive noise as shown in Fig. 5.4. Assume
that a RIR is defined as h(t) = δ(t) + αδ(t − τ), so that a reverberant speech signal
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is y(t) = s(t) ∗ h(t) = s(t) + αs(t − τ), where s(t) is a clean speech signal. Note that
the second term is the scaled and time-shifted version of s(t). On the basis of short-
time speech analysis, consider a frame of reverberant speech signal at t1. This frame is
resulted from a noise-liked frame of αs(t − τ) and a voiced frame of s(t). The speech
analysis can be robust like the previous section in F0 estimation if we assume that the
noise-liked frame αs(t − τ) is uncorrelated with the voiced frame s(t), but formant and
spectral envelope estimations are still influenced by αs(t−τ). On the other hand, consider
a frame of reverberant speech signal at t2, where a voiced frame of αs(t − τ) interferes
the targe frame s(t) that we want to estimate information. The voiced frame αs(t − τ)
is highly correlated with the target frame s(t), so that it can degrade the performance
of speech analysis. In addition, formant and spectral envelope estimation by using the
MEMD-based speech analysis cannot reduced the effects of reverberation. Therefore,
speech dereverberation is indispensible.

Time (s)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

s(t)+, s(t-=) = s(t) $ h(t); h(t)= /(t)+, /(t-=)

s(t)
, s(t-=)

t
1

t
2

Figure 5.4: Reverberation as additive noise

Filter information estimation

The formant estimation of reverberant speech signals is quite difficult because there are
undesired peaks introduced by interfering with previous phonemes: inter-phoneme and
intra-phoneme. The intra-phoneme is predicted to emphasize the target formants but
the inter-phonemes tend to blur the desired formants depending on the preceding speech
phonemes and the tail of RIR. Consequently, the interfering from inter-phoneme becomes

59



severe. Consider the second frame of Fig. 5.4 again in case of inter-phoneme interference.
The target frame of s(t) is where we want to get the formant and spectral envelope,
but it is interfered by a voiced frame of αs(t − τ). The peaks of formants of αs(t − τ)
are absolutely present in this frame that is not desired. This emphasizes that speech
dereverberation is required.

Figure 5.5 shows an example of formant estimation from (a) clean, (b) reverberant,
and (c) enhanced speech signals obtained by using peak picking algorithm. Formants of
the clean speech signal have mainly three noticeable lines. Formants of reverberant speech
signal also have three lines, but there is only one line in a low frequency range and one
extra line at a high frequency range. The dereverberation can restore the disappeared line
at a low frequency range similar to those of clean speech signal. It is difficult to say how
much the obtained formants are accurate compared with those of clean speech. What
we can do is to compare the pattern of estimated formants with those of clean speech
signals that we have done in previous chapters. For the spectral envelope evaluation, we
still use the spectral distance measurements and correlation coefficients. Other objective
and subjective evaluations such as PESQ and listening test will be reported in the next
chapter.
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Figure 5.5: Estimated formants from clean, reverberant, and enhanced speech signals

5.1.2 Speech dereverberation

According to Eq. (2.30), complex cepstrum of reverberant speech has three components.
That is

ĈY (t̃) = ĈY,A,min(t̃) + ĈY,φ,min(t̃) + ĈY,φ,all(t̃),

= ĈS,A,min(t̃) + ĈH,A,min(t̃)

+ĈS,φ,min(t̃) + ĈH,φ,min(t̃)

+ĈS,φ,all(t̃) + ĈH,φ,all(t̃). (5.1)

This equation states that the complex cepstrum of reverberant speech signal results from
the complex cepstrum of clean speech signal added by the complex cepstrum of RIR.
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Figure 5.6: Ensemble average complex cepstrum

We assume that the minimum-phase and all-pass phase are independent so that we can
independently process them. On the basis of the concept proposed by Bee [62], the
ensemble average complex cepstrum of reverberant speech signals is shown in Fig. 5.6
where the minimum-phase amplitude, all-pass phase, and minimum-phase phase are in
the first, second, and third columns, respectively. The first, second, and third rows are
associated with clean speech signals, RIR, and reverberant speech signals. Note that the
minimum-phase amplitude is similar to the minimum-phase phase within a certain range
of quefrency. The important difference is that the minimum-phase amplitude is an even
function but the minimum-phase phase is an odd function.

The important observations from this figure are as follows. Firstly, the ensemble aver-
age minimum-phase amplitude from clean speech signals is slowly oscillating components
whereas the ensemble average minimum-phase amplitude of RIR is quickly oscillating com-
ponents, especially in a high quefrency range. As a result, the average minimum-phase
amplitude of reverberant speech signal has the quickly oscillating components riding on
the slowly oscillating ones. This observation is the same as the minimum-phase phase.
Secondly, the red line in the first row of all-pass phase corresponds to the difference be-
tween the ensemble average of all-pass phase cepstra of reverberant speech and that of
RIR. This line shows that the ensemble average all-pass phase cepstrum of clean speech
is “approximately” equal to the difference of those all-pass phase cepstra.
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Minimum-phase cepstrum

We have an idea that the minimum-phase cepstrum of RIR can be estimated by sep-
arating the ensemble average of minimum-phase cepstrum into the quickly oscillating
components and the slowly oscillating ones. Such separation is demonstrated in Fig. 5.7
by using EMD. In Fig. 5.7(a), the ensemble average minimum-phase amplitude cepstrum

of clean speech signals, E{ĈS,A,min(ˆ̃t)}, is shown as the blue line, where E{·} is expec-

tation operator. The minimum-phase amplitude cepstrum of the RIR, ĈH,A,min(t̃), is in
Fig. 5.7(b) and the ensemble average minimum-phase amplitude cepstrum of reverber-
ant speech signals, E{ĈY,A,min(t̃)}, is in Fig. 5.7(c). Notice that when the quefrency is

greater than 2 ms E{ĈS,A,min(t̃)} is small and slowly fluctuates whereas E{ĈH,A,min(t̃)} is
high and quickly fluctuate. Therefore, the ensemble average minimum-phase amplitude
cepstrum of reverberant speech has two components which are the slowly fluctuation of
E{ĈS,A,min(t̃)} and quickly fluctuation of ĈH,A,min(t̃). According to Eq. (5.1), we assume
that

E{ĈY,A,min(t̃)} = E{ĈS,A,min(t̃)}+ ĈH,A,min(t̃). (5.2)

Figure 5.7(f) is E{ĈY,A,min(t̃)} when quefrency is greater than 2 ms. It is decomposed
into IMFs in Fig. 5.7(g) by using EMD. The IMFs is divided into two groups. That is

E{ĈY,A,min(t̃)} =
M−1∑
k=1

qk(t̃)︸ ︷︷ ︸
RIR

+
K∑

k=M

qk(t̃)︸ ︷︷ ︸
Speech

, (5.3)

where M is the variable dividing the IMFs into two groups. When M = 5, the summation
of the second group is the slow variation as illustrated by the red lines in Figs 5.7(a)
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and 5.7(c). The summation of the first group is shown in Fig. 5.7(e) compared with
ĈH,A,min(t̃) in Fig. 5.7(d). Figure 5.7(e) indicates that we can estimate ĈH,A,min(t̃) in
a high quefrency range from the ensemble average minimum-phase amplitude cepstrum
of reverberant speech signals by using EMD. The estimated ĈH,A,min(t̃) is then used to

compute the minimum-phase phase cepstrum of RIR, ĈH,φ,min(t̃). These estimates are
then used for speech dereverberation if all of the reverberant speech signals are resulted
from the same RIR.

Since EMD is the data-driven decomposition technique, the value of M in Eq. (5.3)
varies depends on the input. The automatic detection of the value of M can be achieved
by using MEMD as follows. Assume that the reverberant speech signals come from the
same RIR. In other words, the system is time-invariant that means the reflections and the
location of microphone or speaker inside the room do not change. The ensemble average
minimum-phase amplitude cepstrum from several groups of reverberant speech signals
should have the same minimum-phase amplitude cepstrum of RIR. We checked this idea
by calculating the ensemble average minimum-phase amplitude cepstra from 8 groups of
reverberant speech signals. Each group contains 30 different utterances from different
persons. The multivariate signal formed by using these ensemble average minimum-phase
amplitude cepstra is decomposed into 8 sets of IMFs as illustrated in Fig. 5.8 where
each column corresponds to each ensemble average minimum-phase amplitude cepstrum.
Notice the similarity between IMFs of the same order (row) of IMF.
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Figure 5.8: IMFs of average minimum-phase amplitude cepstra
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Since we assume that the characteristics of minimum-phase amplitude cepstrum of
RIR is the quickly oscillating components that that are common to all ensemble aver-
age minimum-phase amplitude cepstra. Therefore, the difference between IMFs of the
same row (IMF order) should be low in the first few orders of IMF. Let the similarity
measurement between IMFs at the IMF order k is defined as

D(k) =
N∑
i=1

N∑
j=1

t̃=b∑
t̃=a

|q′ik(t̃)− q′jk(t̃)| (5.4)

where N is the number of ensemble average minimum-phase amplitude cepstra, a and
b define a quefrency range, q′ik(t̃) is the normalized IMF of the column i order k. The
normalized similarity measurement is shown in Fig. 5.9 where the horizontal axis is the
order of IMF. The values of a and b were the range that the ensemble average minimum-
phase amplitude cepstrum of clean speech has noticeable variation among several ensemble
average amplitude cepstra. The value of a and b were 0 to 6.25 ms, in this case.
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Figure 5.9: Similarity measurement between IMFs at the IMF order

Figure 5.9 shows the high difference at the IMF order 5. This peak of difference
signifies that the IMFs of this order are dominated by the minimum-phase amplitude
cepstrum of clean speech because we assume that the minimum-phase amplitude cepstra
of clean speech are difference but the minimum-phase amplitude cepstra of RIR are the
same. As a result, we can determine the value of M corresponding to the location of
the first peak in Fig. 5.9. Figure 5.10(a) shows the estimated minimum-phase amplitude
cepstrum of RIR from the first summation of Eq. (5.3), whereas the second summation
is shown by the red line in Fig. 5.10(b) compared with the ensemble average minimum-
phase amplitude cepstrum of clean speech that is represented by the blue line. Since we
assume that the ensemble average minimum-phase amplitude cepstrum of clean speech
should be around zero in a high quefrency range. Therefore, the fluctuation of the red
line in Fig. 5.10(b) should belong to RIR. On the basis of this fact, the second estimation
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of minimum-phase amplitude cepstrum of RIR is shown in Fig. 5.10(c) compared with
the true minimum-phase amplitude cepstrum of RIR in Fig. 5.10(d). After obtaining the
estimated minimum-phase amplitude cepstrum of RIR, we can get the minimum-phase
phase cepstrum of RIR based of the fact that the phase is an odd function and it is similar
to the amplitude when n = 2 to NFFT/2 where n is the discrete quefrency index and
NFFT is the number of points taken by Fourier transform (NFFT should be greater
than the length of reverberant speech signal).

Finally, the example of an enhanced speech signal by using the estimated minimum-
phase cepstrum is illustrated in Fig. 5.11 where the reverberation is noticeably reduced.
The spectrogram of the dereverberated speech signal is shown in Fig. 5.12(c) by using our
algorithm of minimum-phase enhancement. Note that reverberation, around the time 0.2
seconds, is noticeably reduced in a high frequency range. However, there is still remaining
reverberation in a low frequency range. We predict that they are from the all-pass phase
cepstrum of RIR.

All-pass phase cepstrum

In the same fashion, we also investigated the ensemble average of all-pass phase cepstrum.
We observed that the ensemble average all-pass phase of clean speech is mostly modified in
a low quefreucy range. The all-pass phase cepstra are almost the same in a high quefrency
range. On ths basis of this obserbation, we tried to modify the all-pass phase cepstrum
to improve the F0 estimation without investigating the phisical meaning of the all-pass
phase cepstrum [19]. Therefore, we will investigate the phisical meaning of all-pass phase
cepstrum in this section.

Figures 5.12(d) – 5.12(f) show the investigation of all-pass phase cepstrum modifica-
tion. Assume that we know the true value of all-pass phase cepstrum of the RIR. Figure
5.12(d) shows the result of modifying first two values of all-pass phase cepstrum coeffi-
cients (the first value is always zero), whereas Fig. 5.12(e) shows the result when the
first 99 values were modified. Note that modification of the cepstrum values in a low
quefrency range results in the time shift of the speech signal, but it does not remove the
remaining reverberation after the minimum-phase enhancement. In contrast, modifying
the cepstrum coefficients in a high quefrency range trends to reduce the remaining rever-
beration within a low frequency range after the minimum phase enhancement as shown
in Fig. 5.12(f). This means that if we want to reduce the remaining reverberation, we
must focus on all-pass phase cepstrum in a high quefrency range.

Therefore, we investigated the ensemble of all-pass phase (EAPP) cepstrum as shown
in Fig. 5.13, where the EAPPs in a high quefrency range are in the left column and their
energy distributions, based on a window size 1000 samples of cepstrum coefficients without
overlap, are in the right column. Note that the energy distribution of the clean speech
EAPP is quite uniform, where the RIR EAPP exhibits lines of constant frequencies. On
the basis of these observations, the dereverberation by using the uniform distribution of
the clean speech APP in Fig. 5.13, frequencies lines of RIR APP, and the time alignment
of the spectrogram in Fig. 5.12(f) can be achieved. However, only the results of speech
analysis based on the minimum-phase enhancement will be reported in this chapter. The
results of all-pass phase enhancement will be reported in the future work.

Our speech analysis framework has two stages which are speech dereverberation and
speech analysis. The block diagram of the main concept is shown in Fig. 5.14 where
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Figure 5.10: Estimated minimum-phase amplitude cepstrum of RIR, where MPC denotes
minimum-phase cepstrum. Panel (a) is the first estimate of MPC of RIR. Panel (b) is the
estimate of MPC of clean speech. Panel (d) is the second estimate of RIR MPC by using
the estimate of MPC of clean speech in a high quefrency range. Panel (e) is the true RIR
MPC.

speech dereverberation enhance the minimum-phase cepstrum. The amplitude cepstrum,
ĈH,A(t̃) of RIR is estimated from the reverberant speech signals. The minimum-phase

cepstrum ĈH,min(t̃) is used to enhance the complex cepstrum of a reverberant speech
signals. The dereverberated speech signal is reconstructed from the modified complex
cepstrum. The speech analysis is carried out by using the MEMD-based speech analysis
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Figure 5.11: Demonstration of the dereverberated speech signal based on minimum-phase
cepstrum enhancement.

after that.

5.2 Evaluations

The objective of the experiment is to determine how much the F0, formants, and spectral
envelope estimations can be improved by enhancing the ĈH,min(t̃). In F0 estimation,
the comparative experiment was done by comparing with well-known techniques such as
YIN [43], and SWIPE [60]. In formant estimation, we compared with LP and CEP-based
method. There were ten values of TR: 0.36, 0.38, 0.62, 0.71, 0.80, 0.85, 1.04, 1.09, 1.54,
and 2.38 seconds. Reverberant speech signals were generated from the RIRs of SMILE
database [72] according to the above TR. There were two groups of reverberant speech
signals: one group for ĈH,min(t̃) estimation and the other for the evaluation.

The clean speech signals were from 100 males and 100 females of TIMIT database [42].
Complex cepstrum analysis was based on the fixed value of NFFT corresponding to the
longest length of the reverberant speech signal. The evaluation of estimated F0 was by
using correct rate. The evaluation of estimated formants was by using pattern of locations
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Figure 5.12: Spectrogram of the dereverberated speech signals, where MP and APP mean
minimum-phase and all-pass phase enhancement.

of first three formants: F1, F2, and F3. The ground-truth were formants obtained from
the clean speech signals by using Praat. Finally, the evaluation of spectral envelope was
by using spectral distances and correlation coefficient.

5.3 Results

The results of F0 estimation compared with other methods are shown in Fig. 5.15, where
‘MEMD’ is the F0 by using the MEMD-based speech analysis method without minimum-
phase enhancement and ‘ARIR’ is the F0 estimation by using artificial RIR [71]. The
results of formant estimation are shown in Figs. 5.16 – Fig. 5.20. The black circles repre-
sent formants of the clean speech signals. The red triangles are obtained from reverberant
speech signals by using the CEP-based method. The blue squares are obtained from rever-
berant speech signals by using the LP-based method. The black crosses are the estimated
formants by using the proposed framework. All methods can provide the similar patterns
of formants compared with those of clean speech signals but the proposed framework gave
less varied estimated formants than the LP and CEP-based methods. In other words, the
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Figure 5.13: Energy distribution of all-pass phase cepstrum

proposed framework is more reliable than the LP and CEP-based methods. The results
of spectral envelope evaluations are shown in Table 5.1, where ‘Rvb’ and ‘Enh’ denote
reverberant and enhanced speech compared with the clean speech. Note that all of the
spectral distances were reduced and the correlation coefficients were increased.

5.4 Discussion

According to the results, we can summarize that ĈHr,A(t̃) or ĈHr,min(t̃), in a high que-
frency range could be estimated from the average cepstrum of reverberant speech signals
without knowing the reverberation time. This implies that the estimation of RIR is not
required and the proposed framework can accurately estimate F0. Furthermore, using
ĈHr,min(t̃) is better than other methods in F0 estimation as shown in Fig. 5.15 which

indicates that the proposed framework can effectively estimate ĈHr,min(t̃) in a high que-
frency range. However, the estimated F0 still decreases as TR increases because of the
remaining ĈHr,A,min(t̃) in a low quefrency range and ĈHr,φ,all(t̃). The pattern of estimated
formants using the proposed framework is more stable than the LP and CEP-methods
because of the dereverberation process. In addition, the spectral distances were reduced
because the reverberation was reduced and speech was less distorted. We will show the
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Average amplitude cepstrum

Reverberant speech signalsTarget reverberant 
speech signal, y(t)

Minimum-phase 
cepstrum enhancement

Reconstruct and analysis

 F0, formants, and 
spectral envelope of y(t)

Figure 5.14: Block diagram of speech analysis in reverberant environments

Table 5.1: Spectral envelope measurements, where Rvb and Enh denote reverberant and
enhanced speech.

Euclidean Itakura-Saito Log Correlation
TR Rvb Enh Rvb Enh Rvb Enh Rvb Enh
0.36 101.630 80.133 0.050 0.038 11.832 0.335 0.937 0.953
0.38 131.839 122.661 0.066 0.060 4.135 2.321 0.935 0.944
0.62 115.465 64.124 0.056 0.030 9.578 0.467 0.929 0.964
0.71 166.358 142.522 0.084 0.070 2.364 0.152 0.899 0.917
0.80 198.602 169.604 0.101 0.086 4.116 0.955 0.872 0.895
0.85 200.264 176.034 0.102 0.089 3.536 1.034 0.880 0.897
1.04 162.214 136.935 0.080 0.067 9.331 5.100 0.904 0.922
1.09 232.152 200.114 0.119 0.101 10.911 6.408 0.851 0.878
1.54 105.558 56.175 0.051 0.028 11.314 0.279 0.941 0.975
2.38 242.749 219.569 0.129 0.116 12.704 2.678 0.855 0.868

quality of the dereverberated speech signals in the next chapter.
Due to the requirement of ensemble average cepstrum, the first part of the proposed

framework needs several reverberant speech signals. The limitation of this part is that
the system should be time-invariant and the estimation is inaccurate at the beginning.
In addition, the proposed method can estimate ĈH,A(t̃) in a high quefrency range only.
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Figure 5.15: Correct rate of F0 estimation base on error margin = 10%
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Figure 5.16: Estimated formants of /AH/ from clean (black circles), CEP-Based method
(red triangles), LP-based method (blue squares), and the proposed framework (black
crosses).

If ĈH,A(t̃) in a low quefrency range can be estimated, the F0 estimation may be further
improved. In the future, the all-pass phase enhancement is our aim.
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Figure 5.17: Estimated formants of /IY/ from clean (black circles), CEP-Based method
(red triangles), LP-based method (blue squares), and the proposed framework (black
crosses).
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Figure 5.18: Estimated formants of /UW/ from clean (black circles), CEP-Based method
(red triangles), LP-based method (blue squares), and the proposed framework (black
crosses).

5.5 Summary

In this chapter, we proposed a speech analysis framework by using complex cepstrum
analysis and multivariate empirical mode decomposition. Our framework had two parts.
In the first part, the minimum-phase amplitude cepstrum of RIR, ĈH,A(t̃), in a high que-
frency range was estimated from the ensemble average amplitude cepstrum of reverberant
speech signals, E{ĈY,A(t̃)}. Then ĈH,A(t̃) was removed from ĈY,A(t̃). The speech analysis
was done from the reconstructed, enhanced speech signals. The second part was MEMD-
based speech analysis described in Chapter 3. The results show that the improved F0

estimation, formant estimation, and spectral envelope were obtained.
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Figure 5.19: Estimated formants of /EY/ from clean (black circles), CEP-Based method
(red triangles), LP-based method (blue squares), and the proposed framework (black
crosses).
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Figure 5.20: Estimated formants of /OW/ from clean (black circles), CEP-Based method
(red triangles), LP-based method (blue squares), and the proposed framework (black
crosses).
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Chapter 6

Applications of MEMD-Based
Speech Analysis

6.1 Robust Voice Activity Detection

Voice activity detection (VAD) is essential for speech enhancement. It is the discrimina-
tion of speech and non-speech sections that is used to update noise parameters in speech
enhancement algorithms such as minimum mean-square error (MMSE) [48], log spec-
tral amplitude estimator (LSA) [73], Wiener filter (WN) [46], and spectral subtraction
(SS) [45]. There are several existing VAD methods which are robust but only to a certain
extent of signal-to-noise ratio (SNR). When environments are very noisy and reverberant,
the performance of those proposed VAD drops drastically. To date, several VAD methods
have been proposed. They are divided into two groups. The first group exploits speech
features such as energy thresholds and pitch [74], zero crossing rate [75], fundamental
frequency and cepstral feature [76], and modulation spectrum [31]. The second group
is model based methods, for example, Gaussian mixture model [77], deep or recurrent
neuron network, [78] [79]. Most of the model based methods rely on features of speech
which are used to train the models. Therefore, robust speech analysis is the fundamental
of them. In other words, if we can obtain accurate speech features, robust VAD can be
achieved.

Figure 6.1 illustrates two speech features which are F0 and spectral envelope contour
when SNRs are 20 (left column) and 5 (right column) dB. Notice that in the second row
the estimated F0 within speech sections has less variation than that within non-speech
sections when SNR is 5 dB. The spectral envelope contours in the third row show that
spectral envelope is less varied within the non-speech section. Another feature for VAD
used by Cohen [49] is the probability of speech presence/absence which is illustrated in the
last row. This probability drastically reduces when SNR decreases. We will demonstrate
robust VAD by using a speech feature F0 obtained from robust speech analysis.

6.1.1 Proposed F0-based VAD

Based on the fact that estimated F0 slowly varies within speech sections. Therefore, the
short-time standard deviation (STSTD) of estimated F0 is focused on. Figure 6.2a shows
a noisy speech signal. The estimated F0 is shown in Fig. 6.2b in blue line using our
MEMD-based speech analysis. The STSTD of estimated F0 is shown in Fig. 6.2c in blue
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Figure 6.1: Demonstration of robust feature for VAD where the proability of speech
present is shown in the last row.

line where the length of analysis window is 30 ms. Assume that we allow variation of
estimated F0 within 20 Hz within speech sections. Thus a threshold line is defined in
Fig. 6.2c as the red line. The average F0 is calculated from that estimated F0 s under
the threshold line and displayed in the red line of Fig. 6.2b. If the acceptable variation
of F0 is defined as the upper and lower dashed lines as shown in Fig. 6.2b, the speech
sections are defined by the estimated F0 within the dashed lines and non-speech sections
are defined by the estimated F0 outside the dashed lines. The resulted VAD is illustrated
in the red line of Fig. 6.2a. By using a simple smoothing algorithm, the final VAD is
shown in the orange line of this figure.

To evaluate the proposed idea, we used VAD obtained from clean speech signals by
using Otsu thresholding algorithm [80] as the ground truth. The noisy speech signals
were generated from the same set of clean speech signals based on four values of SNRs:
10, 5, 0, and −5 dB by using pink noise. After that VAD by using the proposed VAD
were carried out and compared with the ground truth. Also, the performance of the
proposed VAD is compared with that of G729, a standard approach of VAD [81]. There
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Figure 6.2: Demonstration of VAD using estimated F0

are two values indicating the performance of VAD: false rejection rate (FRR) and false
acceptance rate (FAR). The evaluation results are shown in Fig. 6.3 where “proposed1” is
the proposed VAD without noise reduction and “proposed2” is that with noise reduction
using MEMD. Notice that FRR increases when SNR decreases because of noises. Thus
the noise reduction using MEMD as described in Chapter 4 was applied. The evaluation
was done again, and the results are shown in yellows bars where FRR can be improved
noticeably.

Discussion

FAR means errors of identifying non-speech sections as speech sections and FRR means
errors of identifying speech sections as non-speech sections. The FAR of all methods in
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Figure 6.3: Results of VAD

Fig. 6.3 is not much different, but the FRR is significantly changed when SNR increases.
Within speech sections, the FAR is caused by interfering noises thus reducing noise can
improve the FAR as illustrated in Fig. 6.3. The robust speech analysis makes VAD robust
as shown in the results. As we know that increasing analysis window length can improve
F0 estimation, we predict that the FRR of the proposed VAD can be further improved by
using this idea. Also, using the filter information such as formants and spectral envelope
contour can further improve the VAD.

The trade-off of increasing analysis window length can reduce FAR because stable
estimated F0 can be detected before the actual starting point or after the actual endpoint
of speech signals. Nonetheless, this trade-off causes the non-serious problem in speech en-
hancement when only noise parameters are updated and noise is slowly varying compared
with speech signals. That is noise parameters will be updated only when non-speech
sections are identified. In contrast, high FRR can cause serious problems when speech
sections are used to updated noise parameters. Therefore, reducing FRR is the priority
of VAD.

6.2 Denoising and Dereverberation

6.2.1 Denoising

In this subsection, the study of noise reduction is illustrated. As described earlier, several
speech enhancement algorithms such as SS, MMSE, and WN needs robust VAD to capture
noise parameters. If the VAD fails, the result is unpredictable. Thus the robust VAD
described in the previous section will be used for noise reduction here when SS and MMSE
are employed. The result will be compared with IMCRA method [49] which use the
probability of speech presence/absence instead of conventional VAD. The block diagram
of noise reduction and evaluation is shown in Fig. 6.5 where the input noisy speech signal
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y(t) is pre-enhanced by using MEMD. In this stage, noise frequency components outside
the frequency range of speech signal are reduced, as described in Chapter 4. After that
F0 is estimated from the noise-reduced signal ′y(t). This estimated F0 is then used for
constructing robust VAD. There are four paths of speech enhancement. First, y(t) is
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Figure 6.4: Results noise reduction

enhanced by using IMCRA without VAD. Second, y(t) is enhanced by using MMSE with
VAD. Third, y(t) is enhanced by using SS with VAD. Fourth, ′y(t) is further enhanced
by using SS with VAD. The enhanced signals are denoted as yIMCRA(t), yMMSE(t), ySS(t),
and yProposed(t). We used PESQ as an evaluation method which stands for perceptual
evaluation of speech quality. It is the test methodology for objective assessment of the
speech quality and standardized as ITU-T Recommendation P.862 (02/01). The PESQ
compares two signals which are the clean and the noisy or enhanced versions. The value
of PESQ ranges from -0.5 to 4.5 associated with the mean opinion scores (MOS) that
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cover a scale from 1 (bad) to 5 (excellent). Therefore, the greater the PESQ value, the
better the quality of enhanced speech. The testing data were 30 clean speech signals
added by pink noise with SNR is equal to 30 dB. The result is summarized in Table 6.1

Speech Analysis:
F0 Estimation F0-Based VAD

SSMMSEIMCRA

ሻݐሺݕ ൌ ሻݐሺݏ ൅ ሻݐሺݓ

ሻݐሺݕ́

ሻݐො୍୑ୈ୅ሺݕ ሻݐො୑୑ୗ୉ሺݕሻݐොୗୗሺݕ

SS

MEMD-Based 
Noise Reduction

ሻݐො୔୰୭୮୭ୱୣୢሺݕ

Figure 6.5: Block diagram of the proposed denoise and evaluation framework

where MMSE gives highest PESQ value. The proposed method gives PESQ less than
that of SS which indicates that pre-enhancement using MEMD does not have the positive
result on PESQ but only on an estimated F0 as illustrated in Chapter 4. Consequently,
the PESQ resulted from MMSE is as good as that of IMCRA. We predict that PESQ can
be further increased if the accuracy of proposed F0-based VAD is improved.

Table 6.1: PESQ evaluation of noisy and enhanced speech signals

SNR Noisy
Enhanced

SS MMSE OMLSA Proposed
10 2.26 2.80 2.93 2.93 2.46
5 1.84 2.50 2.59 2.55 2.50
0 1.45 2.02 2.16 2.14 2.02

-5 1.12 1.52 1.66 1.64 1.36

6.2.2 Dereverberation

In Chapter 5, a speech analysis framework in reverberant environments was demonstrated.
Our framework had a preprocessing stage for speech dereverberation. In this section, we
will use it in this section for speech dereverberation and use other evaluation methods such
as PESQ, ABC-MRT [82], and listening test, different from the evaluation methods in
Chapter 5 that do not clearly reflect speech quality and intelligibility. Remember that our
speech dereverberation enhances minimum-phase cepstrum, but all-pass phase cepstrum
remains the same. Therefore, the listener can still perceive remaining reverberation. As
we know that humans can perceive information from reverberant speech signals until a
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certain extent of reverberation time, especially when the listener is native. However, even
the native listener cannot understand the reverberant speech when reverberation time is
long. Therefore, we focus on long reverberation time in the listening test, ranging from
0.85 to 2.38 s, so that it is difficult for the native listener to perceive the information.

There are two groups of clean speech data: one for the estimation of minimum-phase
cepstrum of RIR [42] and the other one for evaluation [83]. In minimum-phase cepstrum
estimation, reverberant speech signals were generated by convolution the clean speech
signals with RIRs. The testing data were also convolved with the RIRs. The minimum-
phase cepstrum of the reverberant speech signals in the second group was enhanced by
using the estimated minimum-phase cepstrum of RIR from the first group. There were
ten persons (native Thai) who were not the expert, participated in the listening test.
They were asked to listen to the reverberant and associated enhanced speech signals and
answer four questions as follows.

1. Can you catch all words from the speech reverberant speech signal? (Yes / No)

2. Can you catch more word(s) from the dereverberated speech signal? (More / Same
/ Less)

3. How do you feel about the distance of the speaker before and after dereverberation?
(Farther / Same / Closer)

4. How do you feel about the echoes or reverberation after the enhancement? (Increase
/ Same / Decrease)

The first two questions reflect the speech intelligibility before and after dereverberation.
One effect of reverberation is that the listener will perceive is that the speaker is far away
compared with the clean speech signal. Therefore, if we can successfully dereverberate,
the listener will perceive that the speaker becomes closer compared with the reverberant
speech signal. The last question is the direct question of the perceived reverberation.
There were 17 pairs of reverberant and enhanced speech signals for one RIR with sampling
rate 16 kHz. There were five RIRs having reverberation time 0.85, 1.04, 1.09, 1.54, and
2.38 seconds [72].

The objective evaluations based on PESQ and ACB-MRT are shown in Figs. 6.6 and
6.7 where speech dereverberation can increase the speech quality and intelligibility. The
results of listening test compose with speech intelligibility, felling of speaker distance, and
perceived reverberation as shown in Fig. 6.8. The vertical axis is the percentage of no.
of pairs of speech signals. For example, if the listener answer “Yes” to the question one
for 10 pairs of reverberant and enhanced speech signals. The percentage is (10/17)*100
%. In panel (a), no native listener can completely catch all words from all reverberant
speech signals. After dereverberation, the listeners tend to catch more words. Some of
them can catch less words which may be caused by speech distortion or annoying artifacts
after reconstruction. These results can be interpreted into two meanings. First, words
in a long utterance can be predicted by a native listener on the basis of the context of
speaking. Capture more words from enhanced speech signals might not mean that the
listener can hear the disappearing words in the reverberant speech. But it might mean
that the listener can hear the utterances clearer. To capture such disappearing words, we
might focus on the duration of target words without hearing the preceding or following
words to eliminate the effect of the speaking context such as in MRT test [82]. Second,
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Figure 6.7: Objective speech intelligibility evaluation by using ABC-MRT16 [82]

listeners can catch that the disappearing words in reverberant speech signals became
appeared in the enhanced speech signals.
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In panel (b), most of the listeners could perceive that the speaker becomes closer which
implies that we could successfully reduce reverberation. However, in panel (c), the felling
of the listeners indicates that more reverberation was perceived after the enhancement
when reverberation time were 0.85, 1.04, and 1.09 seconds that are opposed to the result
in panel (b). We guess that our reconstruction process introduced unwanted artifacts,
perceived similar to feedback between a microphone and loud speaker, that the listener
understood they were reverberation.
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Figure 6.8: Results of listening test
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6.3 Summary

In sum, we demonstrated applications of knowledge that we gained from the study of
MEMD-based speech analysis method, for robust VAD, noise reduction, and dereverber-
ation. Robust VAD was made from estimated F0 so that it was more accurate than the
standard VAD G729 especially the higher values of FRR. This robust VAD was then ap-
plied in denoising so that MMSE-based noise reduction is as good as the OMLSA-based
one which uses the probability of speech present as VAD. We also demonstrated the ap-
plication of speech dereverberation by using complex cepstrum analysis. The proposed
framework for complex cepstrum components estimation was able to enhance reverberant
speech signals. The increment of PESQ after denoise or dereverberation indicated that
our techniques can enhance the speech signals. In addition, the results from ABC-MRT
and listening tests showed that we could successfully enhance reverberant speech signals.
However, we still have the problems from artifacts after dereverberation that annoy the
listener, and the all-pass cepstrum of RIR still remains. These problems will be our future
work.
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Chapter 7

Conclusion

In this chapter, we summarize this research and emphasizes its contributions to the re-
search field of speech signal processing as well as to other research fields. Since the final
goal of our speech analysis method has yet to be achieved, we discuss the remaining tasks
in the last section.

7.1 Summary

In this research, we utilized MEMD to analyze speech signals and proposed a robust
speech analysis method. The followings are the findings according to our study that were
frequently used.

1. MEMD automatically separates mixtures of a signal into groups of IMFs. The sum-
mation of each groupe exhibits characteristics according to the dominant mixtures.

2. MEMD aligns the mixtures having similar oscillation frequencies at the same order
of IMFs. The similar oscillations have a high value of correlation coefficient or low
value of difference.

3. MEMD was employed to extract the periodic feature of harmonics riding on the
spectral envelope of log magnitude spectrum. This periodic feature of harmonics
was detected by using correlation coefficient and was used for accurate F0 estimation.

4. MEMD automatically separates additive noise from speech signals into IMFs. IMFs
of noise was detected by using similarity of power envelope of IMFs on the basis of
the assumption that noise was stationary, but the speech signal was non-stationary.

5. MEMD automatically separates cepstrum of RIR from cepstrum of speech signals
into IMFs. The amplitude cepstrum of RIR is dominant in a high quefrency range
and quickly oscillates, whereas the amplitude cepstrum of clean speech is low and
slowly oscillates. The amplitude cepstrum of RIR was detected by using the differ-
ence between IMFs.

These basic abilities of MEMD were exploited to proposed three frameworks: speech
analysis based on the source-filter model by using MEMD, robust speech analysis method
based on the source-filter model by using MEMD in noisy environments, and robust speech
analysis based on the source-filter model using MEMD in reverberant environments. In
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comparison with the LP and CEP-based speech analysis methods, MEMD-based speech
analysis automatically separate source and filter by using power envelope of log magnitude
spectrum, whereas the LP-based method uses appropriate prediction order relating to the
sampling frequency, and the CEP-based method uses proper cut-off quefrency that relates
to gender. Also, MEMD-based speech analysis can estimate F0 more accurate than the
LP and CEP-based methods.

In noisy conditions, MEMD can separate white noise into IMFs both in time and
frequency domain. But some noises cannot be completely separated in the frequency
domain so the task was focused in the time domain. Since MEMD does not require
any assumption on the signals, IMFs of noise are detected by using the relation of their
power envelope in the time domain. This technique of using power envelope is different
from other research which applies EMD to speech signals. The noise reduced signal gave
more accurate of estimated F0 that was further used for VAD for final speech enhancement
process. The results showed that the proposed framework gave more accurate F0 compared
with with state-of-the-art methods such as YIN and SWIPE and formant estimation.

In reverberant conditions, complex cepstrum analysis (CCA) was used to analyze re-
verberant speech signals. Complex cepstrum of reverberant speech signal was decomposed
into minimum-phase cepstrum that was further decomposed into two groups of IMFs. The
first group corresponds to the minimum-phase cepstrum of RIR and the second group cor-
responds to the minimum-phase cepstrum of speech. Summation of the first group was
used to estimate the minimum-phase cepstrum of RIR and enhanced the minimum-phase
cepstrum of a reverberant speech signal. The results showed that our method was robust
in speech analysis in reverberant conditions.

Finally, three applications were demonstrated: robust VAD, denoise, and dereverber-
ation. The robust VAD in noisy conditions was shown by using the stability of estimated
F0 based on the intuition that during voiced sounds estimated F0 is less varied than non-
voiced sounds. The proposed method gave less error compared with the standard one,
G729. This results of VAD were further used with SS and MMSE for denoising. The
results showed that the PESQ of enhanced speech was as good as that of OMLSA which
uses the probability of speech present as VAD. There are chances that this denoising can
be greatly improved since VAD used only estimated F0. If information of vocal-tract such
as formants and spectral envelope are combined with estimated F0, the performance of
VAD and noise reduction can be further improved. In speech dereverberation, the increase
of PESQ values after dereverberation indicated that the proposed speech dereverberation
algorithm could enhance reverberant speech signals. This result was confirmed by the
increase of speech intelligibility in the listening test.

In summary, the unique and novel points of this research are as follows.

1. The proposed MEMD-based speech analysis can automatically separate source and
filter which does not need a parameter for separation like LP and CEP-based meth-
ods. Common mode alignment property was exploited to detect the periodic feature
of harmonics belonged to the source after the automatic separation. The results
show that estimated F0 is more accurate than using LP and CEP-based methods.

2. The proposed MEMD-based speech analysis can automatically separate noises and
speech signals. It does not require any assumption on the signals. The noise com-
ponents are detected by using their power envelopes of IMFs and the common mode
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alignment property of MEMD. The accurate estimated F0 was used for robust VAD
and efficient noise reduction.

3. The proposed MEMD-based speech analysis can automatically separate minimum-
phase cepstrum of clean speech and that of RIR. The minimum-phase cepstrum of
RIR can be detected by using the similarity between IMF.

7.2 Contributions

The main contribution of this research is in speech signal society because we solved several
limitations of existing speech analysis methods and illustrated some important knowledge
of using MEMD. The first contribution is the MEMD-based speech analysis method which
was an alternative approach that is better than the LP and CEP-based methods. The
important knowledge from this research is that the F0 estimation was accurate when
the main oscillating component of harmonics was extracted that eliminating undesired
interfering components.

The second contribution is the MEMD-based noise reduction that could automatically
decompose noise out from a speech signals. The technique of using power envelope of
IMF was an alternative way for selection of noise IMFs. Also, it was shown that pre-
enhancement using MEMD could improve F0 estimation that was further used for robust
VAD. As a result, the final enhancement process can improve the accuracy of speech
analysis even when the SNR was very low compared with other methods.

The third contribution is that MEMD was used to for speech dereverberation. That
is the minimum-phase amplitude cepstrum of RIR in a high quefrency range was de-
composed by using MEMD into IMFs. Removing these IMFs could reduce the effects
of reverberation. As a result, the proposed method could overcome the limitations of
existing speech analysis methods. The estimated F0 was improved, and the reverberant
speech was reduced. The proposed concept has the good premise for the research in the
future.

Furthermore, this research could contribute to human society when the above knowl-
edge is exploited in hearing aids because in real environments noise reduction and speech
dereverberation are required. Speech recognition which is becoming more important in
daily life also needs the preprocessing stage for denoise and dereverberation.

7.3 Future Work

Although current MEMD-based speech analysis method is robust to a certain extent in
noisy or reverberant environments, there are some limitations which need to be coping
with as follows.

1. In speech denoising, only F0 was used for robust VAD. It is still possible to use the
information of vocal-tract such as formants and spectral envelope to make it more
robust VAD. As a result, the performance of speech enhancement would be further
improved.

2. In speech dereverberation, only minimum-phase cepstrum in a high quefrency range
is estimated. It is possible to enhance the all-pass phase cepstrum of reverberant

87



speech signals as described in Chapter 5. It would be greatly increased the accuracy
of speech analysis, if both minimum-phase and all-pass phase cepstrum could be
accurately estimated.

3. There are several applications that we have not yet applied our knowledge to to
such as automatic speech recognition and VAD in reverberant environments.

4. Although there are several advantages of using MEMD for robust speech analysis,
the difficulty from using MEMD is that it is computation intensive which impedes
us from applying the proposed speech analysis in real time. Computation reduction
is also one of our future work.
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