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Abstract

This thesis addresses the problem of trajectory planning over discrete domains
for monitoring an environmental phenomenon that is varying spatially. The most
relevant application corresponds to environmental monitoring using an autonomous
mobile robot for air, water or land pollution monitoring. Since the dynamics of the
phenomenon are not known a priori, the planning algorithm needs to satisfy two
objectives simultaneously: 1) Learn and predict spatial patterns and, 2) adhere to
resource constraints while gathering observations. Subsequently, the thesis brings the
following contributions:

Firstly, it formulates a resource constrained information-theoretic path planning
scheme called Resource Constrained Decentralized Active Sensing (RC-DAS) that can
effectively trade-off model performance to resource utilization. Since, these objectives
are inherently conflicting, optimizing over both these objectives is rather challenging.
However, weighted combination of these objectives into a single objective function is
proposed such that the total path length is bounded by the maximum operational
range. This path planner is then coupled with a distributed Gaussian Process (DGP)
framework to allow the robots to simultaneously infer and predict the dynamics of
the environment of interest.

Secondly, optimal weight selection method is proposed wherein the weights of the
RC-DAS cost function are dynamically updated as a function of residual resources.
This extended scheme is referred to as RC-DAS † which additionally ensures that
the robots return to base station at the end of their respective mission times. This
prevents the robots from getting stranded amidst the field and is a first step towards
making the architecture fail-proof.

Thirdly, an operational range estimation framework is proposed to interpret the
bounds on maximum path length attainable by the robots. This should be used as
the limiting condition for terminating the exploration to ensure a safe path to the
base station. This framework is then generalized to encompass various classes of
robots and is made robust to operate with high accuracy even when subject to natural
environmental disturbances like strong wind gusts or uneven terrains.

Fourthly, the RC-DAS framework is scaled to multiple robots operating in a fully
decentralized fashion in communication devoid environments. Owing to such a setting,
multiple inferred models of the environment can be obtained. However, neither all
models can be fully trusted nor forthrightly rejected. To solve this dilemma and to
obtain one globally consistent model, a pointwise fusion of distributed GP models is
introduced and referred to as FuDGE.

Keywords: Active Sensing, Decentralized Multi-robot Teams, Resource Constraints,
Map Fusion, Range Estimation.
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Chapter 1

Introduction

“ Everything is related to everything else, but near things are more
related than distant things. ”

Waldo Tobler, 1st Law of Geography, 1970

Environmental issues like water quality monitoring [1–4], ambient air quality
monitoring [5–7], climate change [8–10] and renewable resource depletion [11] are
increasingly becoming important to the research community. This owes to the fact
that drastic changes in the environment as they are witnessed today, e.g., the Tsunami
that was triggered by an earthquake in the Indian Ocean in 2004 that devastated
230, 000 human lives and anything else that stood in its wake or the melting of glaciers
owing to global warming, are all intimately correlated with the actions of the human
kind over long periods of time. Since the past cannot be changed and the future is yet
to come, the best bet is to handle the existing environmental issues and efficiently
decipher the underlying dynamics to ensure sustainability in the future. To assist
with this mission, both robotics and artificial intelligence would go a long way. Recent
decade has seen significant developments in deployment of robots for environmental
monitoring [12–16]. In light of the recent developments, this work aims to present
novel path planning approaches for decentralized multi-robot teams endowing them
with the capabilities to decipher the most significant areas of the environment that
needs to be monitored while simultaneously learning a model of complex variations of
environment being monitored.

1.1 Motivation

As Waldo Tobler said, it is a known fact that correlation ∝ proximity but the
underlying dynamics of the environmental phenomenon are highly complex. So much
so that they cannot be represented by ordinary [17] or even stochastic [18] differential
equations for non-linear systems. An alternative solution would then be to use machine
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learning techniques which require gathering of the training data. Traditionally, this
was done using static sensors but when the domain has a large spatial expanse and
the resolution desired is high, this translates into positioning a very large array of
sensors across the domain of interest [19]. Besides, the position of the sensors must
also be pre-determined. To remedy these drawbacks, the optimal solution would
be to deploy autonomous robot or a team thereof, each equipped with apt sensors
along with on-board computational resources to simultaneously develop a model of
the environment. The advantages of doing so are:

• Robots can utilize befitting path planners endowing them to choose the locations
to sample the information from.

• A few robots can cover more locations from which the information needs to
sampled in lesser time as compared to an array of static sensors.

• When considering temporal evolution of the environment phenomenon, the
position of the array of sensors needs to be manually adjusted through time
while the robots can adjust on-the-fly.

• Sometimes the environment being monitored can be dirty, dangerous or dull
(DDD) [20] thereby, making human intervention infeasible but robots can sustain
without any hassle.

• Increased dependence on robots reduces the chances of human error owing to
stress during the mission.

Every coin has a flip-side and this setting too has disadvantages. Some of them are:

• Although recent developments have expanded the hardware capabilities of the
robot significantly but the machine learning approaches utilized are data-hungry.
This means that the model requires hoards of data to be acquired but the
resources (e.g., battery capacity, flight time, payload capability etc.,) all limit
the duration of the mission. In other words, the robot resources are always at
conflict with the model requirements.

• The robot needs to be self-sustaining i.e., it should be able to actively select the
locations which must be sampled whilst iteratively updating the model being
inferred. This incurs computational costs and all the of computational hardware
also draws power from the same source that allows the robot to navigate; thereby,
affecting the maximum attainable range.

• Deploying robots in real world requires accurate localization and obstacle
avoidance for both dynamic and static obstacles.

• Real-time performance guarantees need to be provided for navigation within
and monitoring of the environmental phenomenon of interest.
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• Having a multi-robot team in a large sensing area also calls for selecting the
nature of communication architecture i.e., disconnected, where no robot talks
to its peers or base station, partially-connected where the robot talks only
to its nearest neighbor(s) and connected wherein an all-to-all communication
overhead is incurred. In cases where communication is deemed necessary, either
for partially-connected or connected architecture, further lacunae caused due to
data losses, latency, signal interference etc., need to be addressed. The choice of
these communication mechanisms are largely dependent on the nature of the
environment in which the robot team is being deployed and the preferences set
by the supervisor.

• In a multi-robot team, besides communication protocols, data being acquired
needs to be processed for which either a fully-decentralized approach can be taken
wherein each robot processes the data locally acquired, or, partially-decentralized
approach where data from several peers are assimilated before processing on a
local base node, or, centralized approach wherein all the data from all the robots
is streamed wirelessly to a central base node.

All-in-all, the long-term perspective is to be able to deploy a fully decentralized
and disconnected team of robots in a very large scale unknown environment which
are capable of developing accurate models of the target phenomenon. These models
can later be utilized by humans for ensuring sustainability and making the living
environment amicable to live-stock. Having said this, it must be pointed out that
this goal is rather far fetched and as a stepping stone towards this aim, this work
presents a novel path planning approach suitable to some real-world scenarios like
those shown in Fig. 1.1. In all the scenarios like algal bloom monitoring, oil spill
analysis, forest-fire containment, or nuclear radiation fallout analysis, the common
aspect that binds them together is that the area to be monitored is large, unknown
and mostly dangerous for humans to intervene, while the robot being used to aid
the process has limited resources. Additionally, in a decentralized setting, multiple
robots generate multiple models but the supervisor cannot perform a many-to-one
correlation analysis to deduce the overall dynamics. To solve this issue, the author
also proposes a novel map fusion approach where a point-wise weighted fusion of maps
is performed to eventually deduce overall density map.

1.2 Related Works

Researchers in different domains have made several attempts at solving some subsets of
the problem that the author is interested in solving. Be it the domain of combinatorics,
robotics, or information theory, several related works exist that can be considered
as starting point to address the problem at hand. They are briefly categorized
below as path planning related or resource optimization related works and finally
their limitations are highlighted thereby emphasizing the novel contributions and
significance of this work for research community.
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Figure 1.1: Environmental Monitoring Scenarios. The top row shows algal bloom [21] on the
left which can be monitored using surface vehicles as shown on the right [22]. The second
row shows the oil spill off the coast of Gulf of Mexico [23] which can be monitored using
underwater gliders [24] and the third row shows forest fires [25] which can be monitored using
multi-rotor UAVs [26]. The bottom row shows the fukushima daichii nuclear disaster [27]
and one of the robots that were used to assess the damage [28].
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1.2.1 Path Planning for Reward Maximization

This section aims at addressing some categories of path planning literature where
the objective is to plan tours across spatially dispersed nodes such that the reward
accrued is maximal. For some, the objective is to visit all nodes whilst for others the
objective is to maximize reward under path length constraints.

1.2.1.1 Orienteering Problem (OP)

Orienteering Problem or OP is a well researched problem that has been around for over
a decade. Originating in 1996 from the works of [29], it refers to the research problem
where given a collection of spatially distributed nodes, a subset of the nodes must
be selected and a shortest path must be calculated to visit the selected nodes while
maximizing the accruable reward [30]. Whilst the main objective is node selection
coupled with reward maximization, the optimization routine is further constrained
by “budget” e.g., time limitations etc. This renders an exhaustive visit to all nodes
infeasible. Furthermore, works like that of [31] solve the Correlated Orienteering
Problem in which the rewards are spatially correlated across nodes as shown in
Fig. 1.2 while others like [32] solve the spatiotemporal correlated orienteering problem
or alternatively known as the Vehicle Routing Problem [33] where the rewards are
varying with time across the spatial domain as shown in Fig. 1.3. The OP has been
extended to a Team Orienteering Problem or TOP wherein the problem is extended
to multiple agents. Works like [34], use the ant-colony based optimization approaches
to solve this by constraining the path length of each agent and maximizing the reward
accrued.

Figure 1.2: Correlated Orienteering [31] Figure 1.3: Spatiotemp. Orienteering [32]

1.2.1.2 Knapsack Problem

Knapsack problem [35] or the Rucksack problem refers to the problem of maximizing
the reward given a collection of items each associated with their respective weights.
E.g., while preparing the backpack for a hiking trip, only the absolutely necessary items
must be packed. The heavier the rucksack, the harder it will be to climb. Each item
packed in the rucksack represents a tuple < weight, reward > where the objective is
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to maximize the reward while maintaining the net weight below the load-bearing limit
of the rucksack. This problem again is analogous to the OP, albeit, being indirectly
related to path planning i.e., the resources that a hiker packs with him/her gets
depleted as the time progress and efficient utilization of resources ensures a convenient
hike. Additional applications of the knapsack problem include a file storage system
with limited storage space at the server or a store robbery with a limited payload
that can be carried by the thief as shown in Fig. 1.4 and Fig. 1.5 respectively. In the
file storage case, the objective is to store majority of the important files locally at
the server to reduce latency while for that of the robbery example, the object is to
maximize the monetary reward that can be accrued by selling off stolen merchandize.
A natural generalization to multiple knapsack problem was discussed in the works
of [36].

Figure 1.4: File storage system Figure 1.5: Shop robbery

1.2.1.3 Traveling Salesman Problem (TSP)

The Travelling Salesman Problem or TSP as it is more commonly known was initially
designed to solve the problems for salesman who had to visit door-to-door to advertise
and sell their products. Given, a set of cities (nodes) and the pairwise distances
between them, the problem here is to find the shortest possible path visiting each city
exactly once and terminating at the start location. The readers are hereby cautioned
that this problem is slightly different from the Hamiltonian path planning problem [37]
wherein the problem is to find if there exists a path to visit all nodes exactly once,
whereas, in TSP, it is known that several Hamiltonian tours already exist. The
objective, alternatively stated, is to find the minimum weighted Hamiltonian tour.
People have gone ahead and used TSP for several interesting problems like Pokémon
Go [38] as shown in Fig. 1.6 and planning roadtrips across USA whilst visiting tourist
sites of interest [39] as shown in Fig. 1.7. Just like the previous categories, multiple
TSP problem have already been exhaustively researched in works like [40–42] where
researchers have also addressed the increased computational complexity and proprosed
polynomial time approximations.
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Figure 1.6: Pokémon Go TSP [38] Figure 1.7: USA road trip TSP [39]

1.2.1.4 Intelligent Environment Monitoring (IEM)

When it comes to OP, while the spatial correlations and temporal variations across
the nodes have been addressed but the overall spatially varying density across all the
nodes cannot be modeled. Additionally, TSP tries to plan a tour across all available
nodes but the limited resources available with the robot makes this approach infeasible.
When it comes to planning informative trajectories while selecting the locations (nodes)
to observe, some prior has been done by researchers in [43–46] wherein the objective
is to reduce the uncertainty in the model being used to emulate the phenomenon of
interest whilst relying on submodular functions1. As opposed to these, works like [47]
rely on non-submodular functions and focus the robot exploration only in the areas
exhibiting extreme values. In [48], the authors select the subset of nodes to be observed
and then use multiple TSP approach to obtain the most informative paths for multiple
UAVs operating in presence of wind disturbances. Additionally, each robot is expected
to return back to its own start location so this work is an instance of Multiple Depot
Multiple TSP (MDMTSP) problem and can be considered as a cross between TSP
and IEM aspects.

1.2.1.5 Synopsis about Path Planning approaches

All the aforementioned works are closely related to the problem discussed in the
scope of this work in the sense that node selection with reward maximization under
budget constraints will be one of the key areas that this work contributes to. Not only
this, but this work additionally tries to generate accurate models of the underlying
dynamics of the target phenomenon as the observations are being accrued. Only the
models discussed in the Section 1.2.1.4 could simultaneously achieve the two tasks.
However, the objective of this work is to contribute to the cost functions allowing for
overall reduction in uncertainty over the entire domain as opposed to just the area
exhibiting extrema, thereby making this contribution novel and important.

1Submodular functions are non decreasing functions that follow the property of diminishing
returns. This means that the enhancement over the function gradually decays as more data is
acquired.
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1.2.2 Data Compression and Resource Optimization

When it comes to robot resource constraints, not only are there power source constraints
which limit the mission time / path length etc., but also includes the memory capacity
available. Currently, the robots have limited memory and processing capacity which
entails that only a handful of data can be stored on-board thus, it is essential to look
into some forms of data compression techniques. Such works are extensively found in
Signal processing and Information theory literature and are summarized under.

1.2.2.1 The CEO Problem

Since the author is interested in carrying out decentralized robot team exploration,
a very closely related work from the Information Theory domain that pertains to
decentralized sensing architecture is discussed here. The problem being described is
called the Centralized Estimation Officer (CEO) problem [49] wherein the CEO or
sometimes also referred to as the Fusion Center (FC) is interested in estimating the
state of a system which cannot be observed directly by the CEO. For this, several
decentralized agents are deployed in a disconnected fashion (agents are not allowed to
communicate with each other) who gather the necessary information and pass on their
respective decisions to the CEO who then needs to assimilate all acquired decision
into one global decision. This architecture is applicable to both detection problem
wherein the presence or absence of a signal is being addressed or to an estimation
problem as being discussed here. The overall architecture for a multi-robot setup is
shown in Fig. 1.8 wherein each robot acquires subset of information from the target
phenomenon and their is a possibility of correlations between multiple robots owing to
the disconnected nature of the team. The agents do not communicate with each other
and simply compress and send off the data to the FC. The data is not transmitted
in its raw form (compression is involved prior to send off) and the transmission is
held off until the agent has finished its exploration/ mission where the termination is
determined by a user-defined condition like low battery. The signals/measurements
that will be discussed in the scope of this work can be effectively modeled using
multivariate Gaussian distributions, it is rather sensible to mention here that the
generalized variant of the CEO problem i.e., Gaussion-CEO problem [50] address this
aspect.

The channel for communication which is used by the agents to transmit their
respective decisions to the CEO has a limited bandwidth owing to which the data must
undergo some form of compression to meet the bandwidth requirements. In doing
so, distortion is introduced and the received data when decoded, does not exactly
match the transmitted data. The objective then is to minimize this distortion given
the rate limitations of the channel. In literature, this is called the rate-distortion
paradox and there are theoretical bounds like the Berger-Tung bounds that explain
the theoretical limits of the achievable distortion at the given rate. The generalized
conjecture however, is known to be inapplicable for more than two agents [51].
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Figure 1.8: The CEO Problem. Several decentralized agents gather correlated observations
from the phenomenon of interest and compress and pass along the “encoded” information to
the centralized node hereby referred to as the CEO or Fusion Center (FC). The task of the
CEO is then to “decode” the compressed information to reconstruct the original sequence of
observations whilst minimizing the reconstruction error.

1.2.2.2 Compressed Sensing

Another optimization technique very commonly found in the Signal Processing
literature is the Compressed Sensing [52] or invariably also known as the Compressive
Sensing approach. In a nutshell, this refers to the problem of obtaining super-resolved
signals using limited number of sensors in a non-adaptive fashion i.e., signals are not
converted into meaningful abstractions rather are directly acquired and numerically
optimized to be transmitted. The motivation behind the numerical optimization lies
in the redundant information that is picked up while acquiring signals. All such
information can be filtered out and the input signal can instead be represented by a
K− sparse representation which refers to a low dimensional variant of the signal such
that only K entries are non-zero. This is illustrated in Fig. 1.9. An extension to the
distributed setting where multiple sources each gather individual noise corrupted
signals is called Distributed Compressed Sensing (DCS) and further details are
available in [53].

The important fact to note in this setup, both, for single and distributed sensing
nodes, is that, the problem considers an under-determined linear system

1.2.2.3 Synopsis of Data Compression Techniques

On the very first glance it might appear that the CEO problem or the Compressed
sensing problem directly address the core research problem of this work i.e., resource
constraint information acquisition by a decentralized and disconnected team which is
then processed to make meaningful models which better explain the phenomenon of
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Figure 1.9: Compressed Sensing. With the apt choice of basis functions φ (alternatively
known as the sensing matrix [54]), a M × 1 measurement vector y can be represented using
a K-sparse x i.e., a sparse representation of the signal with only K non-zero entries where
K is comparatively small. Since most real-life systems are noisy, a noise corrupted variant
of the architecture is addressed by considering the noise vector e. The objective then is to
reconstruct the original y with minimal reconstruction error and maximal compression.
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interest. However, the author would like to caution the readers that these techniques
address the non-adaptive sensing variant whereby the information acquired is passively
compressed and sent across to the CEO or receipiant of interest via a communication
channel. As opposed to this, the problem that the authors addresses lies in the domain
of adaptive sampling with intermediate information processing that entails that the
information acquired is not directly transmitted to the CEO in its raw form. Thus,
the existing work do not directly solve the problem at hand and the author attempts
to address such limitations of existing works.

1.3 Problem Description

This thesis serves to solve the following research problem:

Given limited resources, where should the robot (or a team thereof)
sense the environmental phenomenon, in order to ensure good model quality
and a safe return path to base station ?

The overall problem can be broken down into several sub-problems:

Problem (a) Where should the robot sense when operating on limited resources?

Problem (b) How many robots are required?

Problem (c) How to select the initial configuration (start locations) of the team?

Problem (d) What communication protocol should be used?

Problem (e) Will there be conflicting models? If so, how to resolve them?

Problem (f) How to ensure that the robots return to base and do not get stranded
amidst the field?

Problem (g) Does the homing constraint compromise the model quality?

Problem (h) When should the mission be terminated?

The author proposes the following solutions to the sub-problems (also shown in
Fig. 1.10) discussed above:

Solution to Problem (a) Given the limited amount of resources (battery, payload,
flight time, traversal time etc.,) the robot cannot perform blanket coverage of
the vast sensing area that needs to be mapped and monitored. Instead, some
of the most crucial locations must be chosen that are critical to be observed
to allow the model to be generated accurately. For a detailed explanation and
author’s contribution towards this aspect, the readers are referred to Chapter 4.
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Figure 1.10: A jigsaw of all sub-problems. All sub-problems explicitly addressed in this work
are marked with !!! while those unmarked were solved using heuristic approaches.

Solution to Problem (b) Since the area of interest is large, it is usually the case that
one robot is not sufficient. Now, as far as the number of additional robots
are concerned, this largely depends on the supervisor and the project budget.
Usually, a pre-determined size of robot team is given the task of exploration on
a single battery discharge cycle and the agents are not added or removed from
the team on the fly.

Solution to Problem (c) The area being monitored is largely unknown. The only
known information about the area is the spatial expanse of the sensing domain.
Thus, choosing the initial configuration again is a challenge in itself. It could
either be solved based on some prior experience of the supervisor or the best bet
is to use random initial configuration and to show the robustness of the model
to such selections. For this work, radomized intial configurations were used and
average performance over several trials was reported.

Solution to Problem (d) As was discussed earlier, when utilizing a team of mobile
robots, there are several possibilities of establishing communication links between
peers and peer-to-base. However, communication channels are faulty and are
beset with packet loss, signal interference, attenuation, latency and a lot more
related problems. Either an asynchronous sporadic communication protocol can
be used where the robots are known to drop data packets and communicate
sporadically with peers and base or an even more flexible solution of fully
decentralized team can be adopted. While the communication channels can help
to coordinate the team and may even further enhance the overall performance
of the team, it is beneficial to develop models for harsh environments wherein
communication is infeasible and to evaluate the worst-case performance.

Solution to Problem (e) Using a fully decentralized team i.e., every robot is a master
of its own will, has a slight drawback. Every robot will be observing parts of the
domain which it seems essential for enhancing its own model. Based on what
the robot has seen, its understanding about the rest of the unseen parts of the
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environment would slightly differ and in fact may conflict with that of its peers.
This can be resolved by carefully evaluating the confidence that a robot has on
the map that it generated and fusing it with that of its peers by weighting their
respective maps using their confidence values. Further details are explained in
Chapter 6.

Solution to Problem (f) In one word, this problem can be called as “homing” i.e.,
to ensure that the robot always reserves sufficient resources to return back
to the base station 2. Most of the cases where the robots are deployed, the
data is gathered and stored on the robot itself owing to limited or faulty
communication channels. Thus, loosing a robot amidst its mission owing to
complete immobilization due to resource exhaustion is also a form of resource
wastage. Additionally, loosing an agent also means loosing all the information
that it gathered. To avoid this, homing should be considered as an additional
constraint on top of the path planner being used to observe the environment. A
detailed explanation of the procedure can be found in Chapter 4.

Solution to Problem (g) Owing to the additional homing constraints, it is but natural
that the robot will not have the freedom to always observe the most informative
locations. This ever lasting conflicting between where to sense? and can the
robot return to base from there? slightly compromises the model performance
and it must be empirically validated that this impact is not extreme. This aspect
was analyzed in Chapter 4.

Solution to Problem (h) The robot should always maintain an estimate of how far it
can reach given the available resources. When the resources are critically low or
when their is a possibility for “homing” to fail, it is advisable that the mission
be terminated immediately. To this end, the author makes contributions via
Chapter 4 and Chapter 5.

1.3.1 Postulates

The problem to be tackled is vast (involving 8 sub-problems as previously discussed)
and covers multiple domains of robotics and machine learning. It is beset with a lot
of hardware and software limitations and utilizes a lot of man hours to be realized
completely. Under the constraints faced by the author, this works proposes the
aforementioned solutions in the light of following postulates:

• The environment in which the robots are being deployed is considered free
of obstacles. This is usually the case, for instance, when deploying UAVs for
monitoring pollution levels or AUVs for monitoring algal blooms etc., which
relate closely to the data set that will be used for empirical validations.

2could either be the robot’s start location or any other pre-determined location which is known a
priori to the robot.
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• Robot localization is assumed to be perfect. Since the environment models, i.e.,
Gaussian Process (GP), that will be used to model the environment largely rely
on data association i.e., tagging a measurements with its corresponding location
which in Geostatistics is also known as geo tagging. Any uncertainty in data
association directly affects the model performance. There are already solutions
in the literature which solve the issue of uncertainty in localization but this will
be addressed in the next phase of development.

• Robots are assumed to operate in communication devoid (disconnected)
environments. The reason for such a drastic setting was that for applications
like underwater surveillance, the AUVs need to resurface every time they intend
to transmit data to the base. Resurfacing and diving back to the depth of
interest, along with transmission via satellite based communication protocols
are not resource friendly. As for the other settings like aerial or ground
surveillance to monitor radiation leaks or pollution levels, if the robots are not
required to be within communication range of each other (or the base station)
they can spread out and cover large ground.

• Rogue agents are not considered in this work. During exploration, owing to
sensor or actuation failures, some agents may be tagged as rogue agents. But
deducing which agent has gone rogue and when, is a rather challenging task in
itself and digresses from the focus of this work.

• Robots are assumed to have sufficient computational power so much so that,
inference and predictions can be calculated in real-time or as per the requirements
of the application.

• Each robot is a self-sustaining GP expert capable of selecting the locations that
are deemed necessary to be observed and simultaneously updating the model.
Multi-robot teams thus require multiple GPs. A discrete domain setting is
considered.

• The nature of the environment being sensed and the spatial expanse of the
sensing area are made known to the team as common knowledge before the
mission unfolds.

• The time it takes for the each member of the team to complete its mission is
comparatively smaller than the time it takes for the dynamics of the environment
to evolve. Thus, only spatial domain modeling will be considered in the scope of
this work.

• Size of the team remains constant throughout the mission. It is assumed that
robots do not fail amidst the mission and no agents are added or removed from
the team on the fly. Such hardware failure also falls under the category of rogue
agents and can be handled by dynamically swapping the rogue agents with new
ones or re-distribution of the task over the remainder of the team but this is
beyond the current scope.
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• As far as the starting configuration of the team is concerned, it is arbitrarily
chosen by the supervisor. As for the base-station location, it can either be
chosen as the start-location of the robot itself or any other location as per
the supervisors whims. The base station location is also known as common
knowledge to the entire team and for this work was chosen as a location different
from the start- location of all agents. The reason for such a setting was that in
real experiments, for instance, in case of nuclear fallout monitoring, the robots
start very close to the contaminated area but the base-station and is set up at a
safe distance to avoid the supervisors from picking up contamination.

• A point-sensing approach is considered which refers to the fact that the
measurements are available at the robot location only.

• When planning trajectories via way-points, the pose of the robot is not restricted.
It is believed that the robot follows the orientations which consume minimal
energy and are within the non-holonomic constraints of the robot. As such, only
the goal position needs to be attained and it is believed that the robot can reach
this position deterministically.

1.3.2 Methodology

In Section 1.3, the author discussed several problems and proposed solutions to cater
to them. In this section, within the boundaries of the postulates highlighted, the
author now presents the overall system architecture as is illustrated in Fig. 1.11: In
this figure, the target phenomenon (green block) is being modeled by a team of M
robots each represented by a light blue block. There is no restriction on the nature
of the robot or the team, i.e., fully heterogeneous teams are also applicable. The
intrinsic components of a robot are explained in detail below:

• Map Phase: This phase encompasses all robots individually generating the
model of underlying dynamics. For this, the following blocks play a key role:

– Pre-processing: In this step, recursive Bayesian denoising filters like Kalman
filters [55] or digital signal processing techniques [56] are utilized to process
the measurements before they are used for modeling. For the scope of this
work, this problem was addressed by modeling observation noise alongside
the environment dynamics.

– Localization: Not only for the robot navigation but also for the models that
will be deployed to infer the environment dynamics, it is essential that the
robot can accurately decipher its own location. For this, signal strength
based localization techniques like [57] can be utilized and were assumed to
be solved. The required precision in localization is a function of the domain
under consideration and was assumed to be satisfactory for the purpose of
this work.
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Figure 1.11: Block Diagram. This diagram shows the overview of the overall architecture
which the author proposes to solve the environment monitoring problem. The architecture is
split into Map phase and Reduce phase, The former involves multiple robots generating
the models of the environment utilizing the harmony between several hardware and software
components while the latter encompasses the fusion of all models into a globally consistent
model. The novel contributions made by the author are represented by !!!.
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– Environment Model: Uses the location information fed by the localization
module along with pre-processed sensor information to develop posterior
probabilistic distributions of the environment dynamics using
Non-parametric Bayesian methods called Gaussian Process (GP).

– Decision Model: Assists the environment model by allowing the robot to
effectively chose the best of sampling locations (also known as active sensing)
from the entire domain wherein exhaustive coverage is rendered infeasible.
Additionally, homing constraints i.e., requirements for the robots to return
to base station at the end of their respective missions, are imposed.

– Hardware Components: All the aforementioned components form the
software meta-layer which commands the robot actuators to take actions
and gather information. For this, primary sensors i.e., the sensors required
to gather environment specific information and auxiliary sensors i.e.,
additional sensors like lidar, sonar, camera etc., for obstacle avoidance and
safe navigation are utilized.

• Reduce Phase: In this phase, all robots feed their inferred models to a base
station with sufficient computational power to fuse all models into one globally
consistent model. This phase is done in one-pass, only after all robots have
completed their missions and returned to base. This phase relies on just one
component:

– Fusion: This block represents the base station which fuses all the
information from all models into one globally consistent model. This is
well suited for humans and further details can be found in Chapter 6.

1.4 Contributions

Through this work, the author makes the following contributions:

1. Formulation of the resource constrained information maximization.
To account for the robot resources while maximizing the information acquired,
this work proposed a novel bi-objective function which is a weighted combination
of entropy (information acquired) and resources used. In order to adapt this to
the intelligent environment monitoring setting like those discussed in the scope
of this work, the author proposed a novel approach which utilizes the available
resources to deduce the weight of objective functions. The objective functions
in consideration here are: 1.) performance of environment model (GP) and 2.)
thrifty utilization of resources without compromising on model performance.
Since there are only two objectives being considered for this work, this can be
considered as a bi-objective optimization problem wherein the model performance
and resource utilization are combined into a single objective function using these
weights, which is then optimized to choose the optimal next-best-location. Here,
the next-best-location refers to the critical or “informative” locations which a
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robot can visit/observe given the resource constraints. Since a robot cannot
perform blanket coverage of the entire domain, optimization over the said cost
function allows to choose the most crucial subset of locations that can and
should be observed.

2. Homing guarantees while choosing the next-best-location. The author
further enhances the bi-objective optimization framework as a constrained bi-
objective optimization approach where the “homing” requirements are posed as
additional constraints atop the cost function being optimized. In doing so, we
now ensure that the robot can choose to terminate its mission autonomously
when the residual resources are critically low and choose to return to base.
This not only avoids loosing the robots amidst the mission but also maximizes
the number of observations gathered from the environment. Since the model
being used is highly data driven, the higher is the variance and amount of data
gathered, the better is the model performance.

3. Estimating operational range to bound the maximum path length.
When the robot ventures out in the field, it sets out with a fully charged
battery and it must keep track of the residual battery in order to avoid complete
immobilization amidst the field. For this, the robot must bound its total path
length by the maximum operational range it can achieve on a single discharge
cycle. However, as the mission progresses and based on the maneuvers that the
robot had to perform, this estimate needs to be updated in real time. For this,
a range estimation framework is proposed which is then generalized to estimate
the range for various classes of robots in offline and/or online fashions.

4. Efficient model fusion for fully decentralized robot team. Most of the
time the environment being monitored is so vast that a single robot proves
insufficient. To overcome this, multiple robots can be deployed but having a
fully centralized framework incurs large communication overhead and constraints
the robots to be within communication range of each other. To overcome this,
the author uses a communication devoid setup which is well suited to rather
harsh conditions. In doing so, each robot generates its own individual model
and selects the next-best-location which it deems best fit for itself, irrespective
of the others in the team. Finally, at the end of missions of all robots, the single
globally consistent model must be deduced for which a weighted fusion of all
individual models is discussed. In this technique, the prediction performance
of each model is carefully weighted so as to ensure that no model is completely
ignored (loss of information) or no model is blindly trusted (faulty information).

5. Theoretical evaluation of resource constrained optimization using
real-world datasets. The algorithms proposed in this thesis for performing
bi-objective optimization with homing guarantees and model fusion have been
theoretically evaluated on real-world environment monitoring datasets using
simulated robots. The robots were considered as point masses and their motion
was considered as deterministic.
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6. Practical evaluation of operational range estimation in real world
environments for real robots. The algorithms proposed for operational
range estimation have been exhaustively verified on real robot platforms viz.,
UGV and Multi-rotor UAV in real outdoor conditions.

1.5 Outline

This work can be split into 5 parts and the details of each parts and enclosed
components are split into:

• Part-I: Foundation

– Chapter 1: Introduction presents the motivation for this work, problem
definition and proposed solutions.

– Chapter 2: Preliminaries is meant to serve as a primer for the readers
to familiarize them with the basic tools required to ease the understanding
of this work.

• Part-II: Map Phase

– Chapter 3 : Modeling the Spatial Variations of the Environment
using Stationary Homoscedastic GPs details the choice of kernels used
to infer the underlying dynamics of large-scale environmental phenomenon
by considering only the spatial domain variations.

– Chapter 4: Resource Constrained Path Planning with Homing
Guarantee presents information acquisition functions that allow the
robots to gather the highest quality observations which are within
operational limits. Here, the resource-constrained variant of the
information maximization problem is addressed with conflicting objectives
(model quality v/s resource utilization) and optimal weights are deduced
to fuse them into one global cost function to be optimized. The output of
this acquisition function is the next-best-location which is beneficial for the
robot to observe.

– Chapter 5: Operational Range Estimation solves a critical problem
of placing the upper bound over the path length that can be traversed by
the robot while gathering observations to enhance its model. Both offline
and online variants are presented to either use prior information in case
of the former or to use real-time performance data in case of the latter.
This serves as the true representation of the budget under which the robot
would operate in a real scenario.

• Part-III: Reduce Phase
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– Chapter 6: Fusion of Distributed Gaussian Process Experts
(FuDGE) discusses a novel technique to fuse multiple locally generated
models into one globally consistent model by taking into account the
confidence of each model in making predictions. This is a point-wise fusion
approach and is done as one-pass by the base stations at the end of
missions of all robots.

• Part-IV: Spatiotemporal Modeling

– Chapter 7 : Towards a Spatiotemporal Environment Monitoring
for Continuous Domains details the properties and choice of kernels used
to infer the underlying dynamics of large-scale environmental phenomenon
by considering both the spatial and temporal domain variations.

• Part V: Epilogue

– Chapter 8: Conclusion and Future Works summarizes the
contributions of this works and discusses the possible extensions that can
be implemented to further enhance the framework and push it closer to
being deployed on robots operating in real-world scenarios.

The interplay of each part and enclosed chapters is visually explained by Fig. 1.12.
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Ch. 1
(Introduction)

Ch. 2
(Preliminaries)

Ch. 3
(Spatial GP)

Ch. 4
(Active Sensing)

Ch. 5
(Range Est.)

Ch. 6
(Fusion)

Ch. 7
(Spatiotemporal GP)

Ch. 8
(Conclusion)

Ch. 9
(Appendix)

Foundation Map Phase

Reduce Phase

Paradigm Shift Epilogue Addendum

Figure 1.12: Chapter dependencies. This diagram shows the synergy between chapters of
this work. This can be considered as a road-map and is useful to understand the outline of
this work. All parts of the thesis are highlighted with corresponding blocks and all chapter
connections are shown with →. The double sided ⇐⇒ represents the intrinsic connection
between the components of the Map Phase. The dashed arrow ⇐⇒ represents weak
dependance between Chapter 4 and Chapter 5 since the works are yet to be integrated.
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Chapter 2

Preliminaries

“ Give me 6 hours to chop down a tree and I will spend the first 4
sharpening the axe. ”

Abraham Lincoln, 1960

This chapter serves to accustom the readers with the basic tools necessary to ease
the understanding of this thesis. Herein, the first part explains the choice of machine
learning tools employed, second part details the path planning approaches deployed
to gather training samples followed by the evaluation criteria used.

2.1 Density Estimation using Gaussian Process

(GP)

This section features the probabilistic models that can be used to model highly non-
linear environmental dynamics. Multivariate Gaussian distributions are useful for
modeling finite collections of real-valued variables. However, to make them well suited
to real world scenarios, they need to be generalized to an infinite-sized collection of
real valued variables which is referred to as Gaussian Process (GP) [1]. This is
further assisted by Example 2.1.1.

Example 2.1.1 (From Gaussian distribution to Gaussian Process (GP)). Let there
be N = 100 discrete locations which report measurements of interest e.g., temperature,
pressure, humidity, pollution, precipitation, etc. Then, in order to be able to predict the
measurement at any one (or subset) of these locations given the observed measurements
from all other locations, a joint posterior distribution over all 100 locations must be
obtained. This involves modeling n = 100 random variables in a 100 D input space.
However, depending upon the spatial resolution of the target phenomenon, n → ∞
very fast. Thus, a generalization of Gaussian distribution which can account for such
large number of random variables in a very high dimensional space is called the GP.
Any set ns ⊂ n would still result in a joint distribution which is Gaussian in nature.
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2.1.1 Description

In what follows, the author describes the GP model formally, followed by introducing
the jargon used in the literature to describe the nature of the GP model. The author
also enlists some of the well-known kernels which are required to define the GP models
and details the inference and estimation procedures. Potential applications of GPs are
discussed along with the strengths and weaknesses of this model. Additionally, the
author justifies why the GP models were chosen despite their weakness and formally
defines the scope of GP models as far as this work is concerned.

2.1.1.1 Formal Definition

In particular, the GPs can be thought of as distributions not just over random vectors
but in fact distributions over random functions. It must however be pointed out
here that from Example 2.1.1 the readers may perceive that GPs always deal with
infinite dimensional spaces. But, it is not necessarily required to deal with the infinite-
dimensional entity as it is. The reason being that for the marginal of a Gaussian, only
the covariance of the block of the matrix involving the unmarginalized dimensions
matters. Thus, for any finite collection of data points, it still forms a multivariate
Gaussian and the inference in the GP will give the same answer even if infinitely many
other points were ignored, as it will if all of them were to be accounted for.

Just like a multivariate Gaussian distribution, GPs are fully defined in terms of
their mean function and covariance function denoted by µ(·), K(·, ·) respectively. If a
latent function f is known to vary as a realization of a GP i.e., f ∼ GP (µ(·), K(·, ·))
then, µ(·) = E[f(·)] and K(·, ·) = E[(f(·)− E[f(·)])2]. An an example to assist with
handling these notation, the readers are referred to Example 2.1.2.

Example 2.1.2 (Handling GP notations). Consider a d−dimensional sensing
domain D ⊂ Rd represented as a network of spatially correlated nodes or
pre-determined locations. Then, for any pair {x, x′} ∈ D, their respective means are
given by µ(x), µ(x′) while their covariance σxx′ given by K(x, x′).

There are a variety of kernels that could be used for GP models and the kernels
can be broadly classified based on their nature and purpose served. Such details are
explained hereafter.

2.1.1.2 The Kernel Jargon

Various classes of kernel functions are known in the literature and are usually addressed
with specific terms (jargon). For the ease of the readers, they are categorized and
detailed below along with an intuitive notion of the purpose served by the kernel itself.

• Kernels: Kernels are a flexible way to represent the data so that it can be
used to compare the samples in a complex space. A kernel is basically a non-
linear non-parametric transformation function that maps the data to a higher
dimensional space enabling linearity and easier comparisons of complex features.
By doing this mapping, kernels enable the machine learning approaches to utilize
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a linear model in the new input space to quantify similarity between a pair of
objects x and x′. This is equivalent to regression by utilizing infinitely many
Gaussian shaped basis functions placed everywhere and not just over the training
points.

• Stationary v/s Non-Stationary Kernels: A translation invariant kernel is
called stationary. This means that:

K(x, x′) = K(x+ ∆, x′ + ∆) (2.1)

From Eq. (2.1), it can be intuitively inferred that a stationary kernel is a kernel
that is purely a function of x− x′ and not the actual value of x, thereby making
it translation invariant. Furthermore, if the kernel depends only on the ||x−x′||,
i.e., it is rotation invariant, then the kernel is said to be an isotropic stationary
kernel and conversely, if the separation in features is a function of direction then
such a kernel is termed as anisotropic stationary kernel [2].

Often times in the real world, it is noted that the correlations do not vary
uniformly throughout the entire domain. thus, generic kernels that can explain
the underlying dynamics as a function of the input itself are required. This
means that:

K(x, x′) =

∫
Rd

Kx(·)Kx′(·)d(·) (2.2)

The kernels of the form given by Eq. (2.2) are referred to as non-stationary
kernels since the correlation varies with the input.

• Separable v/s Non-Separable Kernels: Usually when dealing with inputs
represented by the spatiotemporal tuple as [s ∈ R2, t ∈ R] a natural way to
build kernels dealing with spatial and temporal domains is to multiply a spatial
kernel with a temporal kernel as:

K((s, s′), (t, t′)) = Ks(s, s
′) ·Kt(t, t

′) (2.3)

However, if a kernel is not reducible into spatial and temporal domains as
explained in Eq. (2.3), then works like [3] can be utilized to create non-separable
non-stationary space-time kernels that even allow for distinct variations in
either domain. To test for separability, Hilbert-Schmidt Independence Criterion
(HSIC) [4] can be used.

• Homoscedastic v/s Heteroscedastic Kernels: Usually the observations
being gathered for training are noisy owing to sensor modalities. To account for
such factors, a noise term is additionally added to the covariance function. For
any two inputs x, x′, this can be done as:

Kε(x, x
′) = K(x, x′) + δσ2

n (2.4)

In Eq. (2.4), the symbol δ refers to the dirac-delta function which is used to
check if x = x′ and σn represents the distribution of the noise. Hence, the nature
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of noise is a function of the data being observed. If σn ∼ N (0, ε), then, a uniform
noise is assumed for the entire domain and this is termed as Homoscedasticity.
On the other hand, if σn ∼ N (0, ε(x)), then, input-dependent noise model is
obtained and is termed as Heteroscedasticity.

• Hyper-parameters:

Also known as the free parameters, these hyper-parameters control the behavior
of the GP. Intuitively, the characteristic length scales represent the distance one
must move in input space before the function value can change significantly.
Thus, short length-scales mean the error bars (i.e., predictive variance) can grow
rapidly away from the data points whilst large length-scales imply irrelevant
features (function value would be constant function of that feature input). When
dealing with multi-dimensional input spaces, it is possible that the variation is
not similar for each dimension and hence the method of Automatic Relevance
Determination (ARD) can be deployed which has been so named since the
model determines the “relevance” of length scales per dimension. Besides the
characteristic length scales, for convenience, two additional parameters are
also accounted for in the same category viz., signal variance which defines the
amplitude of variance in the signal being monitored and similarly noise variance.
Together, the entire set of signal variance, characteristic length scales and noise
variance are referred to as hyper-parameters for the scope of this work.

2.1.1.3 Variety of Kernels

The extensive literature on machine learning and kernel methods discusses several
available covariance functions (kernels), some of which are summarized in Table 2.1
where d =∆ (x− x′)TL−1(x− x′) and x̃ =∆ [1,x].

Table 2.1: Some of the well established kernel functions

Name Description K(x,x′) Hyper-parameters

Constant σ2
o θ =∆ {σo}

Linear σ2
sig(σ

2
o + xTLx′) θ =∆ {σ2

sig, σo, L}
Gaussian Noise σ2

sigδx,x′ θ =∆ {σ2
sig}

Exponential σ2
sig exp

(
−
√

d
)

θ =∆ {σsig, L}
γ−Exponential σ2

sig exp
(
− dγ/2

)
θ =∆ {σsig, L, γ}

Squared Exponential (RBF) with ARD σ2
sig exp

(
− 1

2
(d)
)

θ =∆ {σsig, L}
Squared Exponential (RBF) without ARD σ2

sig exp
(
− 1

2l2
(x− x′)T (x− x′)

)
θ =∆ {σsig, l}

Matern 1
2

σ2
sig exp

(
− d

)
θ =∆ {σsig, L}

Matern 3
2

σ2
sig(1 +

√
3d) exp(−

√
3d) θ =∆ {σsig, L}

Matern 5
2

σ2
sig(1 +

√
5d + 5d

3
) exp(−

√
5d) θ =∆ {σsig, L}

Rational Quadratic σ2
sig

(
1 + d

2α

)−α
θ =∆ {σsig, L, α}

Polynomial σ2
sig(σ

2
o + xTLx′)p θ =∆ {σsig, σo, L, p}

Periodic Kernel σ2
sig exp

(
2 sin2(πT

√
d)

ρ2

)
θ =∆ {σsig, L, T, ρ}

Neural Network 2
π

sin−1
( 2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

)
θ =∆ {Σ}
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2.1.1.4 Model Selection (Inference)

The problem of deducing the structure of GP model that best explains the data is
referred to as model selection i.e., selection of apt mean and covariance functions.
Without loss of generality, the prior mean is often chosen to be zero [1] while the
hyper-parameters need to be tuned to fit the data. For this, Maximum Likelihood
Estimation (MLE) [5] is employed. This method requires the marginal log likelihood
function to be defined as shown in Eq. (2.5).

L(f(x),x,θ) = −1

2
f(x)TK−1f(x)− 1

2
log |K| − #(K)

2
log |2π| (2.5)

In Eq. (2.5), f(x) represents the noise-free observations acquired from the nodes in
set X. Then, the optimal set of hyper-parameters θopt is given by:

θopt ← arg max
θ

L(f(x),x,θ) (2.6)

In order to deduce the optimal hyper-parameters θopt, one of the following three ways
can be adopted:

• Creating a grid of all possible values and then using cross-validation to select
the optimal combination.

– Pros:
Exhaustively considers all possible combinations of parameters.

– Cons:
The grid resolution must be set manually which not only impacts the
quality of soution but also affects the number of evaluations needed before
an optimal solution can be found. Thus, making this approach rather
slow. Additionally, the complexity incresases with the number of hyper-
parameters being catered to.

• Fully Bayesian approach can be utilized whereby prior distribution on hyper-
parameters are placed and posterior is optimized using Markov Chain Monte
Carlo (MCMC).

– Pros:
The initial guess of the hyper-parameters can bias the inference. Thus,
placing a distribution like exponential or normal over the parameters can
help infer the optimal combination by marginalizing them while generating
the posterior.

– Cons:
This adds to additional steps during inference can be challenging as the
choice of prior can affect the quality of parameters. Additionally, the
inference slows down owing to extra computational steps thus incurred.
Sampling methods like MCMC need to be resorted to yet the practicality
of such methods for real-time performance is questionable.
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• A simple gradient descent methods for maximizing the log-likelihood can be
utilized, the details of which, can be found in Lemma 9.3 in Appendix 9.1.

– Pros:
Simple yet elegant method to find the optimal combination of hyper-
parameters which remedies the computational bottle-necks of the former
methods.

– Cons:
The objective function being optimized is non-convex and hence, the
optimizer can get stuck in a local optima. This can be resolved to some
extent by performing multiple restarts.

The grid based and Bayesian optimization based methods are rather slow and pose
practical challenges for real-life applications. This is alleviated using the maximum
likelihood approach which is the preferred method of choice for this work.

2.1.1.5 Prediction (Estimation)

Given the observations acquired thus far, GPs can be queried to estimate the
measurements that are likely to occur at locations of interest. Let x be the set of
observed locations with corresponding measurements y and let x∗ be the set of
unobserved locations which are being queried. For this, the predicted observations for
the set x∗ are referred to as y∗. Then, assuming a zero mean GP, the predictive
distribution is given by:

µ̂∗ =∆ K∗(K + σ2I)−1y ,

Σ̂∗ =∆ K∗∗ −K∗(K + σ2I)−1KT
∗ .

(2.7)

In Eq. (2.7), the author uses the following shorthand: K∗∗ = K(x∗,x∗), K∗ =
K(x,x∗) and K = K(x,x). From Eq. (2.7), it is evident that the predictive mean
follows the observations while the predictive variance is shrunk by the information
acquired from additional observations. Also, σ represents the noise in observations
acquired.

In context of predictions, the author would like to define three keywords here:

• Interpolation: refers to making predictions over a previously unobserved location
or a set thereof, for the current time-step.

• Extrapolation: refers to making predictions over future time-step(s) for a
previously observed location or a set thereof.

• Forecasting: refers to making predictions for previously unobserved locations for
a future time-step.
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2.1.2 Potential Applications

GPs are highly modular non-parametric Bayesian methods and their flexibility in the
choice of kernels allows their application to both classification and regressions
applications alike. Some potential applications from each of these aspects are
summarized below.

2.1.2.1 GPs applied to Classifications Tasks

• Usually when a patient is newly admitted to a hospital, the staff record several
vital statistics like age, blood pressure, height, weight, previous medical ailments,
current medications (if any), allergies to medications (if any), nature of ailment
etc. Based on these parameters, a decision needs to be made if a patient is to
be admitted to the general ward (GW) or the intensive care unit (ICU). Thus,
there are two class labels viz., GW, ICU and based on a dozen or so variables
(vital stats) an accurate decision needs to be made. The problem could be
further assessed as scheduling problem such that given the crtical nature of the
patients, the patients are assigned to a queue and scheduled to attended in their
respective wards.

• When applying for credit cards or bank loans, the concerned agencies receive
several applications containing information about the applicants age, marital
status, annual income, previous deficits, type of card/loan etc. Based on these
parameters, a decision needs to be made if the applicant can be selected or
rejected. Some applicants however, do not fit into either of these class labels
and fall into a gray zone which must be manually handled by the supervisor or
can be accounted for by adjusting the classification threshold of the classifier.

• Several applicants join the motor driver school to learn how to drive 2/4 wheeled
vehicles either in low weight (motorbikes), moderate weight (cars) or heavy
weight (trucks/buses) category. While evaluating the applicants, not only the
theoretical test and road tests are important where the applicant is graded based
on his/her knowledge of road signs and attentiveness while driving but also a
stern background check is essential. The applicant should be in the appropriate
driving age limits, physically fit with optimal eye-sight and should not have any
prior offenses on record. After accounting for all such parameters, a decision
can be made to allow or revoke the application.

• During an auction, several bidders place a bid for the items on display but
depending on the age, background, financial status etc., of the attendees a
suitable starting bid needs to be selected.

• When a large industrial plant is setup, before a decision is made to buy a certain
patch of land, several aspects need to be accounted for. E.g., proximity to the
regions that will be used to acquire the raw materials, proximity to the buyers
so that transport cost can be minimized, size of the work force, chances of
attracting the said size of work force etc. Should all these parameters evaluate
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to the most feasible combination, only then can a decision be made if the land
under consideration should be purchased or not.

• Space exploration missions are carried out using either using mobile robots or
CCD cameras which send noisy images of sub-optimal (owing to bandwidth
limitations) resolution to the base station. Scientists then need to label all the
objects in the scene as stars, galaxy, craters etc. with a very high certainty.

• Handwritten digit recognition has been extensively studied and has intrigued
researchers for quite some time. Classifying the acquired digit as one of {0− 9}
can also be assisted by supervised learning using GPs.

• Occupancy Grid Maps (OGMs) have also been developed by utilizing GPs to
observe the collection of laser beams that bounce of the environment in order to
detect if a location is free or occupied.

2.1.2.2 GPs applied to Regression Tasks

• Inverse Kinematics of robot arm to deduce the joint angles which must be set to
reach a required end-effector position.

• Soil Mapping, erosion mapping, surface water monitoring like environmental
applications where based on the training samples gathered by a robot or static
sensors, a model is generated using GPs to interpolate and generate predictions
over other unforeseen regions.

• In financial mathematics, GPs can be used to predict stock market and urban
housing prices based on the trends depicted in the past.

• Just like localization w.r.t the geometric configuration of the environment,
localization can also be performed with respect to the measurement domain.
This is alternatively known as signal strength based localization where the robot
needs to infer its location based on currently acquired noisy observations.

The application of interest as far as this work is concerned, is regression and in
particular Environment Monitoring which some people also refer to as Intelligent
Environment Monitoring [6] since robots are required to intelligently select and observe
parts of a large-scale phenomenon.

2.1.2.3 Pseudo-Code for GP Regression

This section presents the pseduo code for performing the GP regression as shown in
Algorithm 1: The algorithm includes calculating the log marginal likelihood which was
detailed in Section 2.1.1.4. All matrix inversion operations are assisted by Cholesky
Decomposition [7] for stability and faster execution reasons.
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Algorithm 1 GPR (x,y, K(·, ·),θinit,x∗)
1: Input:

• x : Training Inputs (nodes/locations)

• y : Targets (measurements/observations)

• K(·, ·) : Covariance Kernel function (e.g., rbf, matern1
2

etc.)

• θinit : Initial guess about hyper-parameters

• x∗ : Testing Inputs for interpolation

2: Output:

• µ̂∗ : Posterior Mean

• Σ̂∗ : Posterior Covariance

• −L : Negative Log Marginal Likelihood

3: [σs, ls, σn]← θinit
4: K = K(x,x) . Compute necessary Covariances
5: K∗ = K(x∗,x)
6: K∗∗ = K(x∗,x∗)
7: Kε = K + σn × I . Noisy Observations
8: L = Cholesky(Kε) . Cholesky decomposition for Matrix Inversion
9: α = LT\(L\y) . Solve matrix equation

10: L = 0.5 ∗ (yT ∗ α−#(K) log(2π))− sum(Diag(log(L))) . LML
11: v = L\K∗
12: µ̂∗ = K∗ ∗ α . Posterior Mean
13: Σ̂∗ = K∗∗ − vTv . Posterior Covariance
14: return µ̂∗, Σ̂∗,−L

2.1.2.4 1-D Interpolation Example

Consider a homoscedatic stationary setting where the domain is 1-D i.e., x ∈ R1. Let
the noise-free observations be defined by y = x sin(x) where the underlying latent
sinusoidal function needs to be inferred. Using a simple 1-D RBF kernel with initial
hyper-parameters as σs = 1, l = 0.01, the zero mean prior GP can be generated as
shown in Fig. 2.21. From this figure, it is apparent that the term non-parametric does
not mean that there are no parameters for the model, but it simply means that there
are no assumptions about the underlying latent function (sinusoidal in this case). The
GP samples from a function space, all possible functions that can best explain the
data. Additionally, the impact of length scales is shown via Fig. 2.3 and Fig. 2.4
wherein smaller length scales lead to larger fluctuations and vice versa.

As and when the observations become available, the posterior can be updated.
In this case, a batch of 5 observations were made available and the posterior hence
generated by plausible functions from the function space is given by Fig. 2.5. In order

1drawn using [8].
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to find the best-fit function, MLE must be calculated using Eq. (2.5). Then, the
optimal hyper-parameters can be obtained which are used to generate the posterior.
A noise free case is shown in Fig. 2.6. However, in reality, the observations are noisy
i.e., y = x sin(x) + ε which is modeled in Fig. 2.7. In either case, to ensure that the
MLE solution is not a local optima, several restarts were performed and the solution
with highest maximum likelihood was finally selected and reported here.
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Figure 2.1: 1D Simulated data generated using the user defined sinusoidal function such that
y = x sinx.

2.1.2.5 Why use GPs ?

Below, the advantages of GPs are highlighted. Owing to these, they have come across
as really powerful tools for modeling highly non-linear environmental dynamics.

• Analytic inference. GPs are supervised learning models but the human
supervision can be said to be limited to choosing the apt kernel functions. Based
on the observations acquired, optimal parameters can be inferred using maximum
likelihood estimation from Eq. (2.5).

• Expressiveness. A wide variety of variations in the environment of interest can
be expressed using appropriate choice of covariance functions. Can even be used
to articulate correlations between multiple output variables using multi-output
GPs [9]. This is useful in case when the target measurements e.g., algal bloom
are also affected by multiple additional natural conditions like wave patterns,
humidity, light intensity etc.
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Figure 2.2: 1D Priors. Drawing 3 samples from the prior distribution using a stationary
RBF kernel with zero mean and σs = 1, l = 0.01.
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Figure 2.3: 1D Priors with smaller length scales. Drawing 3 samples from the prior
distribution using a stationary RBF kernel with σs = 1, l = 0.001.
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Figure 2.4: 1D Priors with larger length scales. Drawing 3 samples from the prior distribution
using a stationary RBF kernel with σs = 1, l = 0.08.
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Figure 2.5: 1D Posterior Function (Interpolation). Interpolation after 5 observations are
made available.

39



Chapter 2. Preliminaries 2.1. Density Estimation using Gaussian Process (GP)

Figure 2.6: 1D Noise Free Interpolation with MLE.
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Figure 2.7: 1D Noisy Interpolation with MLE.
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• Closed-form predictions. Given a set of observations, GPs can be queried to
deduce measurements/ function values at unobserved locations. Equivalently,
this is the same as generating posterior predictive distributions which have closed
form solutions.

• Quantifiable predictive uncertainty. Supervised learning frameworks may
need additional models to quantify predictive uncertainty like [10] but the
predictive uncertainty for GPs is easily quantifiable using the posterior covariance
(entropy).

2.1.2.6 Limitations of GPs

GPs are beset with several limitations. Some of them are summarized below.

• Slow Inference. Optimizing the hyper-parameters and predicting the function
values at locations of interest incurs O(N)3 time and O(N)2 memory, for N
being the size of the dataset being modeled. This restricts the exact inference
only to the order of 103 datapoints. Any larger datasets must be addressed using
approximate inference methods.

• Apt Kernel Choice. Although GPs are non-parametric in nature but the
covariance function need to be chosen in accord with the dynamics of the field
being modeled since the kernel essentially represents the input space. Optimizing
the marginal log likelihood from Eq. (2.5) can provide with optimal parameter
setting but the supervisor needs to set the parametric form of the kernel.

• No consideration for robot resources. GPs were designed as machine
learning models that can reach high computational speeds using GPU
optimization but when deploying real robots either the robots are forced to
serve as mobile sensor nodes relaying the data to a powerful base node or
approximate methods need to be used to optimize the GPs to work with limited
hardware capabilities.

• Designed for batch processing. GPs were inherently designed for batch-
processing and big-data applications. Optimizing the parameters using a stream
of sequential data is a rather young research domain.

Having discussed both the pros and cons of using the GPs and several potential
applications where they can be seamlessly integrated, one daunting questions still
remains: What is it that makes them the model of choice? The answer to this question
is rather concise and that is, the fact that these models have a flexible covariance
kernel that can be used to explain the correlations in most of the potential applications
discussed above along with the ability to quantity the predictive capabilities makes
them the model of choice. Other machine learning methods like Neural Networks,
Gaussian Mixture Models etc., could have been used but then additional models would
be required to quantify the performance. Thus, for all intents and purposes, this works
will utilize GPs as the model that can effectively explain the underlying dynamics of
the phenomenon of interest viz., for Intelligent Environment Monitoring.
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2.2 Information-Theoretic Path Planning

This sections introduces information-theoretic path planning approaches which are
best suited for gathering optimal training samples to train the GPs. Information-
theoretic path planning or simply Informative path planning corresponds to the task
of autonomous decision making for acquiring useful data for modeling the target
phenomenon being observed. There are several ways in which “information” can be
defined. They are enlisted below:

• Entropy [11]:
This metric models the uncertainty in the random variable. Let y ∈ D with a
probability mass function p(y) be the continuous random variable of interest.
Then, the entropy is defined as:

H(y) = −
∫
D

p(y) log p(y)dy (2.8)

For continuous random variables, this metric is more commonly known as
Differential entropy or continuous entropy as the entropy itself can also be
defined for discrete cases which were not considered herewith.

• Mutual Information (MI) [11]:
This metric encodes the reduction in uncertainty about the random variable
y ∈ D given some observations were acquired. In other words, this represents a
measure of average information acquired by the observations with respect to the
random variable of interest. Mathematically,

MI(y) = H(y)−H(y|y′) (2.9)

where y′ represents the observations.

• Rény Information or α divergence [12]:
It is used to measure the distance or difference between two probability mass
functions (pmf) viz., posterior and prior over the parameters of the model which
define the dynamics of the phenomenon of interest. If p represents the posterior
over the parameter y ∈ D which is updated as and when new observations are
available while q represents the prior over y, then,

Dα(p||q) =
1

α− 1
log

∫
D

pα(y)q1−α(y)dy (2.10)

• Kullback-Leibler (KL) divergence [12]:
As the value of α→ 1, Rény Information → Kullback-Leibler (KL) divergence.
Thus,

DKL(p||q) =

∫
D

p(y) log
p(y)

q(y)
dy (2.11)
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• Cauchy-Schwarz (CS) divergence [12]:
This metric is useful when the distributions of p(y) and q(y) for y ∈ D cannot
be defined in parametric forms. Mathematically, this means:

DCS(p||q) = log

∫
D
p2(y)dy

∫
D
q2(y)dy

[
∫
D
p(y)q(y)dy]2

(2.12)

• Fisher Information [13]:
For a continuous random variable θ, the Fisher Information Matrix (FIM),
FIM(y), explains the amount of information contained in the set of observations
given by y. In order to ensure that the observations are highly informative,
the FIM should be maximized in the norm sense [14]. Let the observation be
given ζ and p(y) represent the functional form of the random variable, then the
FIM(y) is given by:

FIM(y) =

∫
y∈D

(d log p(y|ζ)

dζ

)2

p(y|ζ)dy (2.13)

where, the term
d log p(y|ζ)

dζ
represents the sensitivity of functional form of the

random variable being modeled [15].

In environment monitoring applications, since probabilistic models are employed,
information refers to reduction in uncertainty to better predict the phenomenon. Thus,
the goal position of the robot is not pre-meditated, rather, is sequentially chosen based
on the locations that lead to maximal information gain. Of all the possible ways of
defining the “information”, this now reduces to entropy based methods. The existing
cost functions for Informative path planning usually focus on two aspects viz., :

• Density estimation: Objective functions are designed to reduce the overall
uncertainty of the model trying to make a globally confident density estimator.
This has previously been used in the works like [16–18]. There are two very
closely related approaches to density estimation path planning:

– Entropy Maximization Criterion:
These functions usually consider information in terms of entropy which is
a logarithmic function of variance. Let σ(x) represent the variance at a
location x. Then entropy of the location is given by H(x) =∆ 0.5 log σ(x).
Entropy is a measure of uncertainty or a lack of information about location
x. Thus, these path planners choose the next-best-location in the areas of
highest uncertainty using the following criteria:

x̂ =∆ arg max
x>

{H(x >)} (2.14)

where x > represents all possible candidates that are being evaluated.
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∗ Pros:
Information is acquired to be able to understand the dynamics of the
entire domain.

∗ Cons:
Gaining expertise over the entire phenomenon is rather difficult. The
dynamics of the environment get more complicated as the expanse
of the sensing area increases and makes it harder to perform equally
well in all parts of the field. Moreover, entropy maximization criterion
implies that the observations be gathered from far away locations
(near the boundary of the sensing area) which leads to wastage of
information [11].

– Mutual Information Criterion:
While using the conditional entropy based formulation as explained in
Eq. (2.14), is useful to observe the locations which are most informative
with respect to the entire domain, an improved designed criterion as argued
by authors in [11] is the Mutual Information. The objective here is to
find the subset of nodes from the domain which significantly reduce the
uncertainty over the rest of the unobserved portion of the field. Formally,
if x > representes the candidate locations that can be observed and O
represents the observations already acquired, then, the mutual information
based informative path planning objective function is given by:

x̂ =∆ arg max
x>

{H(x >)−H(x > |O)} (2.15)

From Eq. (2.15), it is apparent that the set x̂ maximally reduces the entropy
over the space D\x̂ where D represents the domain of the phenomenon.

∗ Pros:
Candidate locations to be observed are selected based on prediction
quality over the unobserved subset of the sensing area thereby
preventing observations from being acquired along boundaries all the
time.

∗ Cons:
Only reduces the uncertainty over the unobserved subset of the field
as opposed to the former criterion which reduces uncertainty over the
entire field.

• Hotspot estimation: Objective functions are biased only towards hotspots i.e.,
areas exhibiting extreme values. These functions consider information i.e.,
σ(x >) in unison with the predicted measurements (µ(x >)) at the location of
interest. Thus, these path planners choose the next-best-location in the areas of
peaked measurements using:

x̂ =∆ arg max
x>

{µ(x >) + κσ(x >)} (2.16)
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where, the parameter κ controls the amount of exploration. This cost function
was previously discussed in [6].

– Pros:
The aim is to be an expert of modeling the hotspot. Being an expert over
a small subset of the domain is easier than performing equally well over
the entire domain.

– Cons:
Given that the environment is largely unknown, it cannot be known as to
how many hotspots exist. Additionally, just by modeling the hotspot, the
dynamics of the entire phenomenon cannot be modeled unless the hotspot
dissemination model is given which explain how the correlation varies as
the distance from hotspot increases.

The former is useful in scenarios where predictive errors could lead to monetary
losses as is the case in stock market forecasting or even pose a risk to human lives
like in civil engineering, architectural designing projects etc. while, the latter is
useful in scenarios like oils spills, nuclear radiation etc. whereby the hotspot must be
accurately identified and contained. In this work, density estimation based informative
path-planning will be addressed in light of resource-constraints such that limitations
of placing sensors at boundary locations can be remedied.

2.3 Assessment Criteria

In order to empirically evaluate the model performance, the estimated values can be
compared with respect to the ground truth values using any of the following indicators.
Each performance metric is evaluated over all the M samples that were used to
generate the model.

• RMSE: This performance indicator is used to evaluate the performance of the
generated model by giving uniform significance to each and every test point.
Then the RMSE is given by:

RMSE =

√
ΣM
i=1 (µ(xi)− µgt(xi))

2

M
(2.17)

• WRMSE: A further enhancement to RMSE is now defined as Weighted RMSE
[6] where instead of uniformly evaluating the performance over the entire field,
now we perform a weighted evaluation. The weight essentially determines the
performance of the estimator in areas of keen interest i.e., either evaluated over
the areas that exhibit extreme values or those that showcase extreme variance.
Then the WRMSE is given by:

WRMSE =

√
ΣM
i=1

[
(µ(xi)− µgt(xi))

2 ×Wi

]
M

(2.18)
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where,

Wi =

{
µgt(xi)−min(µgt(xi))

max(µgt(xi))−min(µgt(xi))
, if evaluating over extreme values

σgt(xi)−min(σgt(xi))

max(σgt(xi))−min(σgt(xi))
, otherwise

(2.19)

• Cramér-Rao Lower Bound (CRLB) [19]: Given the Fisher Information
Matrix (FIM) [20] generated based on observations up until the current iteration
and the current estimate of hyper-parameters, the CRLB states that:

E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ FIM−1 (2.20)

Eq. (2.20) states that the minimal error in estimation of the hyper-parameters
of the covariance matrix is bounded by the inverse of the FIM where, the FIM
is given by:

[FIM(y,x)]ij =
1

2
tr

(
K−1 ∂K

∂K(xi)
K−1 ∂K

∂K(xj)

)
(2.21)

Given that the underlying (true) latent function that explain the environmental
dynamics cannot be known, the hyper-parameters obtained upon convergence of
the inference methods are always estiamted values of the true hyper-parameters
of the generating function. The only way to evaluate the quality of these
hyper-parameters is to theoretically evaluate the quality i.e., variance of each of
the hyper-parameters. For this, the A-optimality criterion of optimization of
FIM can be utilized over the currently available best estimate θ̂ as explained
in [19]. Minimizing the CRLB in turn leads to minimization of uncertainty in
estimation of true hyper-parameters and hence represents the theoretical bound
of confidence that the model can achieve given the current estimates.

2.4 Hardware Description

Part of this work has been evaluated on real robot hardware. For this, a commercially
available light weight UAV Parrot ARDrone 2.0 shown in Fig. 2.8, and a custom UGV
with a DIY chassis and custom electronics were utilized. For the UGV, a preliminary
variant V1.0 (Fig. 2.9) was designed which was used for indoor trials followed by its
successor V2.0 (Fig. 2.12) which was used for outdoor field trials.

2.4.1 ArDrone 2.0

The ArDrone 2.0 (shown in Fig. 2.8) is a light-weight quadrotor platform designed by
Parrot R© and is well suited for both indoor and outdoor missions. It comes equipped
with a 720p 30fps HD camera, 4 brushless motors operating at 14.5W, 28500rpm, 3
axis gyroscope with 2000◦/sec precision, 3 axis accelerometer with ±50mg precision,
3 axis magnetometer with 6◦ precision, along with additional hardware for on-board
processing and in-flight stabilization. Besides these, for outdoor experiments, an
external GPS flight recorder with an accuracy of ±2m was also utilized.
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Figure 2.8: ArDrone 2.0 with GPS flight recorder [21] used for outdoor experiments.

2.4.2 Rusti V1.0

This test platform is a lightweight Omnirover 2.0 kit which was named Rustic-Wanderer
or Rusti V1.0, equipped with 4 omni-directional wheels as shown in Fig. 2.9. In the
original kit, the robot itself was powered by a 4×AA battery pack with alkaline
batteries and controlled by Arduino/Genuino ATMega328p MCU. However, to be
able to store lengthy data logs and repeat the experiments with varying duty cycles,
the default MCU was replaced by an Arduino Mega2560 board (shown in Fig. 2.10)
and power source was replaced by a rechargable 7V/2200mAH LiPo battery instead.

The same power source supplied power to the MCU and the 6V BO motors. The
maximum attainable velocity of the robot is ≈ 1 m/s. Constant transmission power
and idling power for the XBee (short range wireless communication module) were
assumed. Based on the data sheet2, it was concluded that the idling power for the
XBee communication module (Fig. 2.11) is 0.165W while the transmission power
increases the consumption by a meager 0.001W .

Figure 2.9: Rusti V1.0 with omnidirectional wheels used for indoor experiments.

2Available at: https://tinyurl.com/zgcv3ol
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Figure 2.10: Arduino Mega2560 micro-controller unit (MCU) and ultrasonic range sensor
used with Rusti V1.0.

Figure 2.11: XBee ZB ZigBee Mesh Module 2.4GHz 2mW with Wire Antenna for short-range
wireless communication [22].

2.4.3 Rusti V2.0

As an enhnacement over its successor, Rusti V2.0 (showcased in Fig. 2.12) has a
stronger alloy frame and powerful 12V DC geared motors with high torque. Instead of
Arduino Mega2560, the Raspberry Pi 3 kit was utilized for on-board data logging which
was also fed control commands from the human operator using wired Double Pole
Double Throw (DPDT) switches. Circuit diagram is shown in Fig. 9.1, Appendix. 9.3.1.
Since, the Raspberry Pi outputs 3.3V while the motor driver requires 5V as logic 1 to
enable the motors, a level shifter was designed, the details of which can be found in
Fig. 9.2, Appendix. 9.3.1. Since the robot was tested in uneven outdoor terrains, an
external wearable sensor from Empatica [23] was fixed firmly on the robot and the
internal 3 axis accelerometer was harnessed to record elevation changes online. The
default operational frequency of 32 Hz was used and the sensor is shown in Fig. 2.13.

Figure 2.12: Rusti V2.0 with all-terrain wheels and external 3-axis accelerometer sensor for
outdoor field experiments carried out on asphalt, grass and tiles.
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Figure 2.13: External 3-axis accelerometer sensor called Empatica E4 [23] used with Rusti
2.0 to record terrain elevation changes during outdoor field trials.

2.5 Summary

This chapter serves as a primer to lay out the foundation for developing the planning
algorithms for this thesis. GP regression is a complex regression technique based
on Bayesian inference, which is used to model an unknown function using noisy
observations. By learning the model hyper-parameters, a GP provides an accurate
probabilistic representation of any function along with uncertainty estimates. GPs
along with density estimation based path planning approaches will be used hereon
to model real world environment monitoring phenomenon. For a more hands-on
experience with 1D GPs the readers are referred to [25] or [26].
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Part II

Map Phase: Environment
Modeling
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Chapter 3

Modeling the Spatial Variations of
the Environment using Stationary
Homoscedastic GPs

“ Mystery however is a very necessary ingredient in our lives. Mystery
creates wonders and wonder is the basis of man’s desire to understand.
Who knows what mysteries will be solved in our lifetime, and what
new riddles will become the challenge of the new generations? ”

Neil Armstrong, 1969

Humans are innately curious and the mysteries of nature intrigues them. The
underlying dynamics are highly non-linear making them difficult to model and even
more so to quantify the model quality. In Chapter 2, the author briefly discussed a
non-parametric Bayesian method called Gaussian Process (GP) [1]. In this chapter,
the author further expatiates by discussing the GPs applied specifically to model the
natural environmental phenomenon like precipitation, surface run-off, surface water
quality, pollution levels etc. GPs are fully characterized by their mean and covariance
functions and the choice of these functions critically affects the model quality. For the
scope of this work, a zero mean GP with stationary homoscedastic (input independent
noise) kernel was used, the details of which follow.

3.1 Mean Function

For convenience, without any loss of generality, most researchers set the prior mean
function to be zero [1]. This assumption is not restrictive as the posterior mean takes
the conjugate form of the likelihood. However, if the prior mean function is known
to be non-zero, change of variables proves helpful such that, if, f ∼ GP (µ, K) then,
f ′ =∆ f − µ is the new zero mean GP with f ′ ∼ GP (0, K). Hence, instead of doing
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Chapter 3. Spatial Homoscedastic GPs 3.2. Covariance Function

inference for f , the same can be done for f ′ and once the posterior mean is obtained,
it can simply be added back the prior mean (µ) to obtain the posterior for f .

3.2 Covariance Function

In order to model the spatially correlated domain D ∈ Rd , this work resorts to
stationary homoscedastic kernel viz., radial basis function (rbf) or more commonly
known as the squared exponential kernel [1]. This kernel is isotropic and takes the
form:

K(x,x′) = σ2
sig exp

(
− 1

2
(x− x′)TL−1(x− x′)

)
(3.1)

where x,x′ ∈ D, L = diag(l21, . . . , l
2
d) and the li are characteristic length scales, which

determine the relevance of the corresponding input dimension for modeling the spatial
phenomenon. σ2

sig corresponds to the amplitude of the signal to be modeled.
Usually, in real environments, the observations are noisy owing to hardware

limitations thus, the noisy variant of the kernel shown in Eq. (3.1)1 is now obtained
by:

Kε(x,x
′) = σ2

sig exp
(
− 1

2
(x− x′)TL−1(x− x′)

)
+ σ2

nI (3.2)

where σ2
n describes the magnitude of the noise. For the scope of this work, the

author considers input-independent uniform noise level in the environment such that
σn ∼ N (0, ε). The hyper-parameters are θ =∆ {σ2

sig, σ
2
n, l1, l2, . . . , ld}.

3.2.1 Optimal Hyper-parameters

The hyper-parameters are trained using the standard procedure of evidence (type-II
marginal likelihood) maximization [2]. Evidence maximization avoids over fitting by
automatically trading off data fit and model complexity. The detailed derivations
are in Lemma 9.3 of Appendix 9.1. Let O ⊂ D define the set of observed nodes
associated with y as the observed measurements. The log marginal likelihood deduced
by marginalizing out the hyper-parameters is given by:

L(y, O,θ) = −1

2
yTK−1

ε y − 1

2
log |Kε| −

#(Kε)

2
log |2π| (3.3)

where Kε = Kε(O,O).
Then, the optimal hyper-parameters which maximize the log likelihood are then

given by:

1The readers are hereby cautioned that there is a slight abuse of notation here. x− x′ does not
represent subtraction between vectors. Rather it denotes pair-wise distance operation resulting in a
matrix where the i, j element represents the distance between [xi,x

′
j ].
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θ̂opt ← arg max
θ

L(y, O,θ) (3.4)

In Eq. (3.4), the optimal hyper-parameters are represented by θ̂opt since at any given
time only the estimation of the parameters is known instead of the true value. The
objective function shown in Eq. (3.3) is non-convex which means that the optimizer
can get stranded in a local maximum. An illustration of such a situation is shown in
Fig. 3.1 wherein a sample log-marginal likelihood landscape is shown. As annotated
in the figure, there are potentially two local maxima: the first one is obtained for a
combination of small noise and shorter length scale while the second is obtained for a
combination of high noise and longer length scales. The former combination explains
the data purely based on noise-free model while the latter tends to model the data
variations purely by noise. A shorter length scale would lead to good model fit but
the kernel would be diagonal making very complex models since the 1

2
log |Kε| term

would be large while the larger length scales lead to better model fit but the entries
of the kernel would be very close to 1 leading to a very small 1

2
log |Kε| and a very

simple model. The log-marginal likelihood would be higher for the former case but
depending on the initial configuration of hyper-parameters (for e.g., shown by + and
+ in Fig. 3.1), the optimizer may converge to either optima. Thus, multiple restarts
are preferred such that the optimizer finds all potential saddle points and converges
to the optimal that maximizes the log marginal likelihood. This additionally opens
up a new challenge:

It can not be known a priori, as to how many local optima are to be expected.
In light of this, how many random restarts are enough?

This is an interesting yet complex problem since each local minima is a particular
interpretation of the data and was not addressed in the scope of this work. However,
some prior work can be found from [7].

3.3 Posterior (predictive) distribution for

Interpolation

Let U ⊂ D define the set of (interpolated) unobserved nodes such that U = Oc with
associated observations denoted by y∗. Thus, the posterior distribution over elements
in U is given by N (µU |O,θ,ΣUU |O,θ) where:

µU |O,θ =∆ K∗K
−1
ε (y − µO) , (3.5)

ΣUU |O,θ =∆ K∗∗ −K∗K−1
ε KT

∗ . (3.6)

In Eq. (3.5) and Eq. (3.6), the following short hands were used: K∗ = K(U,O), K∗∗ =
K(U,U) and Kε = Kε(O,O). The posterior mean from Eq. (3.5) is used to predict
the measurements at unobserved nodes x∗ ∈ U while the posterior covariance from
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Figure 3.1: An illustration of Log-marginal likelihood landscape taken from [3]. Sample start
locations for gradient descent (during multiple restarts) are shown by + and +.

Eq. (3.6) is used to infer the uncertainty of the inferred model. The uncertainty
(entropy) of the GP model can be defined in one of two ways:

Hy∗|y,θ =∆ tr[ΣUU |O,θ] (3.7)

or,

Hy∗|y,θ =∆ |U |
2

ln(2πe) + 1
2

ln(|ΣUU |O,θ|) (3.8)

The former (Eq. (3.7)) assumes conditional independence between measurements
in U while this is accounted for aptly by the latter (Eq. (3.8)). Eq. (3.8) avoids model
overfitting by evading overestimation of model uncertainty [4].

3.4 Extending to Multiple GPs for Distributed

Computations and Interpolation

Owing to its cubic complexity in the size of data for inverting the matrix and quadratic
time complexity in Eq. (3.5)-Eq. (3.10), GP regression is restricted to dataset sizes of
the order of 103 samples. To overcome this, several researchers have proposed selecting
a subset of the data and performing inference only over the chosen subset like [4, 5].
Even though the computational cost is reduced owing to operations on a small subset
of data, but the amount of variance over these points cannot be utilized to infer the
variance over the entire dataset. Similar approaches are utilized in dimensionality
reduction using sparse GP regression which utilize the “inducing points” to represent
the entire dataset [6]. Here again the computational cost will be less than that of
handling the entire dataset but tuning and apt selection of inducing points in real-time
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is a challenge in itself. In light of these claims, this work proposes to use a fully
decentralized ensemble of multiple GPs each making locally stationary models based
on the training samples gathered.

Consider m ∈ [1, 2, . . . ,M ] GPs each with their respective set of observed nodes
Om ⊂ D, interpolated unobserved nodes Um ⊂ D along with their realizations yk
and y∗k respectively. Then, each GP generates the following posterior for interpolated
locations:

[µU |O,θ]m =∆ [K∗]m[Kε
−1]m([y]m − [µO]m) , (3.9)

[ΣUU |O,θ]m =∆ [K∗∗]m − [K∗]m[K−1
ε ]m[KT

∗ ]m . (3.10)

Deploying multiple GPs has the benefit of distributing the computational load.
The reason being that now each GP expert only handles Om observations to generate
self-reliant posterior prediction over interpolated nodes. This is beneficial since the
#(Om)� #(D) which translates to O(Om)3 computational complexity and O(Om)2

memory footprint. This makes the architecture amicable for robots operating with
limited hardware capabilities. The only downside is the additional cost of fusion:
Owing to a fully decentralized GP ensemble, multiple GP models will be obtained. In
order to understand the overall dynamics of the environment, these models must be
fused into a globally consistent model which would lead to additional computations
which are borne by the base station. Additionally, the number of GP experts required
to model the target phenomenon depends on human supervisor who usually sets the
size of the robot team based on the project budget. Moreso, each robot acts as a
self-sustaining GP expert and the initial arrangement of the team is assumed to be
optimal.

3.5 Summary

This chapter presented the GPs customized to the scope of this work. The choice of
kernel function used and the inference approach were explicitly discussed. Also, the
posterior predictive form and model uncertainty were deduced for the spatial domain
which come in handy for the rest of the work. Model uncertainty will be used for
information acquisition and posterior distribution will be iteratively updated as more
data is gathered. An extension to multi-GP setting was also presented.
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Chapter 4

Resource Constrained Path
Planning with Homing Guarantee

“ The conservation of natural resources is the fundamental problem.
Unless we solve that problem it will avail us little to solve all others. ”

Theodore Roosevelt, 1907

Chapter 3 introduced the model that explains the complex dynamics of the
environmental phenomenon. This chapter serves to assist the previously mentioned
model by endowing the robot(s) with the capability to autonomously plan paths
through waypoints (informative locations) while paying heed to the resource constraints.
As was exclaimed by President Theodore Roosevelt, ignoring the conservation of
resources belittles the significance of solutions proposed for all other problem. Thus,
here the author addresses the problem of resource constrained informative path
planning (alternatively, resource constrained active sensing) by proposing a novel
information acquisition function that can elegantly trade-off the quality of information
gathered to the residual resources without significantly compromising on either.

Over the past decade, a lot of researchers have started to investigate the application
of autonomous mobile robots to assist in large-scale enviroment monitoring [1–4]. The
task at hand is challenging owing to complex dynamics, data-yearning models and
resource constrained robots which often tend to conflict each other. Thus, the proposed
algorithm aims to find the paths over space at a specific time1 to be followed by a
fully decentralized team of robots in order to best infer the spatially varying dynamics
of the environment phenomenon. The target phenomenon to be observed is made
available as the common knowledge to the entire team. Each robot behaves like a
self-sustaining GP expert and must make decisions (independent of the peers) to select
the most informative observations that can best enhance its model.

1Candidates are only evaluated using locations for the current time-step (interpolation).
Continuous time path planning over both spatial and temporal domains have been investigated in [5]
and can be used for forecasting.
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Chapter 4. Path Planning 4.1. Planning over Waypoints

4.1 Planning over Waypoints

Waypoint (c.f. Definition 4.1) based path planning for environmental monitoring
applications works under the assumption that the time required for a robot to finish
its mission is comparatively smaller than the time required by the field dynamics to
evolve. The reason why such an assumption is critical is that, if the field dynamics
were to update faster than the robot motion, then the robot would rather chose to
stay in its current location as it would present novel information across time. In
light of this assumption, for any particular time-slice ti, the spatiotemporal waypoint
selection for a single robot case could be represented like Fig. 4.1. In this setting, the
set of locations chosen to be observed for one time-slice become independent of those
chosen for any other. Similarly, interpolated observations at one time-slice are also
independent of those for any other.

Definition 4.1 (Waypoint). An intermediate goal position that must be reached in
order to gather observation for updating the GP model. Observations can only be
gathered from way points and the current robot positions. Of all the potential candidates
that may be chosen as the waypoint, only those that return the maximal reward are
selected where reward is evaluated in terms of amount of information accrued.

As previously discussed in Chapter 2, informative path planning can be broadly
categorized into either Density based or Hotspot based approaches. For the scope of
this work, the author focuses only on density based information acquisition functions
which are detailed below. For this, the following notational convention will be used:
red x∗ represents the locations in the set U ⊂ D which represent the set of unobserved
locations over which predictions need to be made; blue x represents the list of visited
locations in O ⊂ D; green x > represents the candidate locations which can be
observed next while x̂ represents the optimal next-best-location. Similarly, red y∗, blue
y and green y > represent the realized measurements respectively.

4.1.1 Entropy Maximization (full-DAS)

This acquisition function drives the robot to follow the gradient of information to sample
observations from areas with high uncertainty or least knowledge. Mathematically,
this is defined by harnessing the entropy of GP as:

x̂F = arg max
x>

{
Hy>|y,θ

}
(4.1)

From hereon, Eq. (4.1) will be referred to as full-DAS wherein DAS stands for
Decentralized Active Sensing. This objective function is designed for a team of
disconnected and decentralized multi-robot team which can be used to obtain the
purely explorative behavior. However, one major drawback of such an objective
function is that the robot tends to visit far off locations thereby incurring prohibitively
high travel costs [6].
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Figure 4.1: Planning over waypoints. llustrating waypoint selection and interpolation
mechanism and generalizing over multiple time-steps. The objective of this waypoint path
planning is to do interpolation i.e., making accurate predictions at locations marked with
red x∗. All the visited locations are shown with blue x and the next-best-location i.e. green
x > is iteratively chosen. Interpolation across one time-slice ti is independent of that across
tj ; i 6= j.
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4.1.2 Nearest Neighbor (NN)

A näıve solution to remedy the extreme travel costs incurred by full-DAS could be to
strictly focus on thrifty utilization of resources. In other words, this means to visit the
nearest neighbors which leads to minimal travel costs but from Tobler’s first law [7]
it is evident that this leads to acquisition of highly correlated observations. Simply
put, high correlation translates to redundant or un-informative observations thereby
incurring high resource wastage and poor model quality.

x̂N = arg min
x>

{ln‖x− x >‖} (4.2)

4.1.3 Resource Utilization Efficacy Amelioration while
maximizing Information gain

In order to avoid incuring extreme travel cost and also refrain from gathering highly
correlated observations, this work proposes a novel acquisition function. The new
acquisition function trades-off the quality of observations (high entropy) to resource
optimization (low travel cost) using a bi-objective optimization framework. In [8]
the author proposed a novel bi-objective optimization framework which is referred
to as Resource Constrained Decentralized Active Sensing (RC-DAS). This approach
can effectively trade-off model quality to travel distance without compromising the
model performance significantly and bounds the travel costs. Essentially this problem
is difficult to solve owing to the conflicting nature of the objectives: GP models are
highly data-driven models i.e., the larger the amount of training samples, the better
is the predictive performance. But in order to acquire large amounts of “informative”
training samples, the robot would incur excessive travel costs. Thus, the challenge is to
optimize over both the objectives simultaneously without significantly compromising
on either. This can be done elegantly using the proposed objective function:

x̂R = arg max
x>

{
αHy>|y,θ−(1− α) ln‖x− x >‖

}
(4.3)

In Eq. (4.3), the model performance (Hy>|y,θ) and travel cost (ln‖x− x >‖) are
amalgamated into one bi-objective optimization routine using the weight α. The
weight α handles the exploration-exploitation trade-off. The approach is scalable to a
multi-robot setting as is summarized in Alg. 2.
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Algorithm 2 RC-DAS (D,B)

1: Input:

• {x}Mm=1 ← x
[1]
m

• {y}Mm=1 ← NULL

• {O}Mm=1 ← NULL

2: Output:Next-best-location x̂R
3: for agent m = 1, . . . ,M do
4: while B >0 do
5:

6: /***sense***/
7:

8: y ← Sense(xm) . obtain measurement
9: ym ← [ym, ; y] . store observation

10: Om ← [Om;xm] . store location
11:

12: /***plan***/
13:

14: θ̂opt ← MLE(ym, Om) . obtain hyper-parameters
15: . deduce most uncertain locations
16: x >m ← CalcUncertainNeighbors(D, xm)
17: . Compute predicted measurements
18: µ >m,Σ >m ← CompPosterior(zm, Om,x >m, θ̂opt)
19: . RC-DAS Objective Function
20:

Obj =∆
(
αHy>|y,θ−(1− α) ln(DHav(x− x >)

)
21: . optimal Next Best Location
22: x̂R ← arg maxx> (Obj)
23:

24: /***act***/
25:

26: . pass target location to robot controller
27: xm ←MoveToNextBestLoc(x̂R)
28: B ← B − (S + T ) . update remaining budget
29: end while
30: end for

In Alg. 2, when the robot is at a certain location xm and obtains a sensor
measurement y, the observation (line 9) and input location (line 10) are stored for
inference (line 14). Then, the most uncertain neighbors surrounding the current robot
location are evaluated, which are within accessible limits of the robot (line 16).
Following suit, the posterior prediction over these locations as shown in line 18 is
deduced. To evaluate the most informative next-best-location, the proposed cost
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function from Eq. (4.3) is evaluated to optimize the travel distance and
simultaneously reduce the prediction uncertainty (line 20). Upon jointly maximizing
over this cost function, the feasible next-best-location as shown in line 22 can be
obtained which is then set as the current goal position to be attained by our mobile
robot. In line 28, the remaining budget B is updated by subtracting the Sensing cost
(S) and Travel cost (T ) incurred as a result of motion to the new location x̂R. For the
purpose of evaluations, the Sensing cost (S) and Travel cost (T ) have been defined by
the author in Definitions 4.2 and 4.3 respectively.

Definition 4.2 (Sensing cost). The cost incurred by the robot to gather a measurement.
This involves the cost of operating the sensor, processing the measurements, heat-losses
from sensors (if any), etc. This cost is usually static and in this work, will be defined
as:

CS(x) = arg min
∀x′

||x− x′|| (4.4)

The intuition behind such a choice of sensing cost was that irrespective of how good
the sensor models and energy dissipation models are, the robot will always consume
energy (E); E ≥ arg min∀x′ ||x− x′||+ δ where the term δ accounts for all the other
aforementioned ancillary losses incurred while operating the sensor.

Definition 4.3 (Travel cost). The cost incurred by the robot to move from its
current location to the next-best-location for gathering the measurement. This cost
encompasses the motor losses, aerial drag losses, losses owing to unforeseen
environmental conditions, battery energy consumed to move from one waypoint to
another, mechanical losses, etc. This cost is highly dynamic and accurately modeling
it is challenging. For the scope of this work, the following definition of travel cost
would suffice:

CT (x, x′) =∆ ||x− x′|| (4.5)

4.1.4 Comparative Analysis of Information Acquisition
Functions

The weight factor α used in RC-DAS can be adapted to change its behavior. When
α → 0, the path planner behaves like nearest neighbor and when α → 1 the same
behaves like full-DAS. A comparative analysis of all 3 acquisition functions is visually
aided by Fig. 4.2. Besides, the computational complexity of full-DAS/RC-DAS/NN
are all given by O(MN) for a team of M robots evaluated over N nodes spread across
the domain D.

full-DAS is highly explorative in nature owing to which it gathers a handful of
highly “informative” training samples whilst nearest neighbor is highly exploitative
forcing the robot to gather highly correlated (un-informative) observations. RC-DAS
is elegantly positioned between the former 2 path planning approaches delicately
handling the quantity and quality of observations being accrued. As was discussed
earlier, GPs are highly data-driven models. So, neither scanty amounts of high
quality observations nor excessive amounts of redundant information would be of any
significance.
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4.2 Homing

Despite considering the resource constraints in RC-DAS acquisition function, there
remains one severe lacuna yet i.e., the robot tends to use its resources conservatively
but this does not guarantee that the robot would return to the base station (home)
at the end of its mission. This is referred to as “homing” and if not taken care-off
could simply lead to the robot getting immobilized amidst the mission. To this end, a
dynamic weight selection mechanism is proposed which not only updates the weights
of the objective functions of RC-DAS objective function as the resources are being
used but also explicitly takes the homing issue into consideration.

Definition 4.4 (Homing). The ability of a robot to successfully execute a trajectory
such that it is always guaranteed to return to the base station (hardware failures not
accounted for) is referred to as homing. Homing is essential for 2 reasons:

• Reduce Phase: For the next phase of the architecture (details in Chapter 6)
wherein all models generated by various robots are to be fused into one globally
consistent model.

• Averting Immobilization: If a robot is immobilized amidst the field owing
to complete expenditure of the allocated resources, then, additional robots may
need to be deployed to retrieve the stranded agent. Retrieval of the standed agent
is important to obtain the model generated by the agent but doing so with the
help of additional agents will increase the overall project cost and delay further
deployments.

4.2.1 Dynamically Choosing Weights for Optimization

Thus far, static weights were chosen for RC-DAS acquisition function but an apt
choice drastically modifies the behavior of the robot. This can be attributed to the
fact that selection of the weights biases the robot to either pay heed to model quality
or resource utilization or both. Thus, in what follows, an optimal weight (α) selection
mechanism is devised such that the weights are dynamically updated as a function of
residual budget. This is done as follows:

α[t] ← B
[t]
res

B
. (4.6)

where,
B[t]
res =∆ B[t−1]

res − (C
[t]
S (x >) + C

[t]
T (x, x >)) (4.7)

In Eq. (4.6), the current weighting factor (α[t]) is determined based on the current

residual budget (B
[t]
res) as defined in Eq. (4.7). In Eq. (4.7), the current residual budget

(B
[t]
res) is defined as the difference between the previously available budget B

[t−1]
res and

the cost that was incurred in moving and gathering measurement in the previous time
step (t− 1) such that 0 < B

[t]
res ≤ B. The current location of the robot is given by x

and the next location being evaluated is given by x >. At t = 0, B
[0]
res =∆ B such that
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α[0] ← 1. When plugging in apt weights (α) from Eq. (4.6) into Eq. (4.3), not only
can the next-best-location be found, but also, explorative and exploitative nature of
the objective function are also adjusted in accord with the residual resources.

4.2.2 Additional Homing constraints

By adapting the weights of the components as the resources are being depleted, the
robot can effectively use the available resources to observe maximal part of the field
however, this still suffers from one major loop-hole: the robot cannot return to base
since it does not account for homing while planning paths. To remedy this, homing
is posed as additional constraints while planning the trajectory and this revised cost
function will now be addressed as RC-DAS† [9]. It looks like follows:

x̂R = arg max
x>

{
αHy>|y,θ−(1− α) ln‖x− x >‖

}
,

s.t. arg min
x>

{CT (x, Home), CT (x >,Home)}
(4.8)

In Eq. (4.8), the additional constraint checks if the robot has enough resources to
execute the trajectory to reach the chosen candidate and still return to base otherwise,
the exploration is immediately terminated and the robot returns to base right away.

4.3 Experiments

The aforementioned information acquisition functions were empirically evaluated on
a significantly large scale spatiotemporal environment monitoring dataset which is
publicly available.

4.3.1 Dataset

The US Ozone Dataset was used. This dataset includes ozone concentrations (in
parts per billion) collected by US Environmental Protection Agency [8]. In this dataset,
the measurements were recorded for several years at 592 static monitoring stations
across USA but only one of the years were chosen for evaluation of interpolation
performance. For each station, the annual average ozone concentration was assigned as
the sample measurement for that station. A high speed robot was simulated wherein
the speeds and mechanical capabilities of the robots were assumed befitting to the
requirements of covering extensive distances within small time spans (of the order of
seconds).

4.3.2 Analysis without Homing Guarantees

The first set of experiments focuses on analysing the acquisition functions viz., RC-DAS
pegged against full-DAS without any homing guarantees. For this, a pre-determined

2after removing missing entires.
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value of α = 0.7 was chosen for RC-DAS. This meant that irrespective of the residual
budget, 70% importance was given to the model quality while only 30% importance to
resource utilization. In order to evaluate the path length incurred and model quality
attained for this parameter setting, the following experiment setup was designed: 4
robot decentralized team was considered to explore and generate models of US Ozone
Dataset. To avoid solving the collision avoidance issue, the robots were restrained
within arbitrarily demarcated zones and were allowed to explore using full-DAS, NN
and RC-DAS active sensing schemes as shown in Fig. 4.3. As is visually apparent, NN
trajectory is the longest with small-step increments while full-DAS trajectories are
short with long-step increments driving the robots significantly far away. The average
model accuracy and path lengths incurred by the team are summarized in Table 4.1.

Table 4.1: Analysing performance without homing.

Item full-DAS RC-DAS NN
Average RMSE 23.671± 3.526 19.3259± 1.820 21.128± 7.034

Average Path Length (Kms) 9.5± 3.879 16.5± 4.319 17.1± 4.346

From Table. 4.1, it was concluded that the average path costs incurred by full-DAS
is the least while that of NN is the maximal which is in accord with Fig. 4.2. Owing
to scanty amounts of highly informative samples, the full-DAS model cannot attain
optimal performance and neither can NN owing to hoards of correlated observations.
Thus, RC-DAS is elegantly placed in the middle with optimal model quality and
bounded path length.

It is important to reiterate here that, these results were obtained for a fixed α = 0.7
but in reality, a robot will not be able to substain this highly explorative nature as
the resources are being depleted. Thus, in the following, the impact of homing and
dynamic weight updates will be evaluated. Also, since NN avails no benefits in terms
of model quality, only full-DAS and RC-DAS † were evaluated.

4.3.3 Analysis with Homing Guarantees

For this set of experiments, RC-DAS † was compared to full-DAS whereby the former
inherently ensures homing while the latter was artificially enforced to do so. The
analysis is split into two segments: First, the analysis of trajectories is carried out
followed by analysis of model quality hence generated.

4.3.3.1 Path Cost analysis with Homing Enforced

Firstly, the length of walk i.e., number of locations observed by a single robot starting
from multiple start locations is analyzed. The results are shown in Fig. 4.4, wherein,
each trend represent a random starting location such that each of the available 59
locations were chosen as start location at least once.

From Fig. 4.4, it can be deduced that RC-DAS † is highly conservative in utilizing
the available resources and hence can allow the robots to observe more locations. The
length of walk of RC-DAS † is significantly larger than full-DAS. Besides, this also
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Figure 4.2: Comparing acquisition functions. Comparing the information acquisition function
on a spectrum of highly informative to highly resource constrained options.

Figure 4.3: Trajectory without homing. Illustrating trajectories of 4 robots utilizing full-DAS,
NN and RC-DAS active sensing schemes. To avoid collisions, the robots were restrained
within pre-allocated sensing zones as is demarcated with dashed lines.
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Figure 4.4: Budget decay. Analyzing how the budget is consumed (decayed) while gathering
observations using the full-DAS and RC-DAS† active sensing schemes. Tests are performed
for artificially enforced homing constraints using full-DAS. Each trend represents budget
decay for the respective scheme for a chosen starting point.

proves the invariance of the RC-DAS † to the chioce of start location. This is important
because the information available, guides the robot along the steepest gradient and if
the robot is adversely affected by the choice of the start location, then convergence
cannot be guaranteed.

4.3.3.2 Model Quality Analysis with Homing Enforced

In what follows, the model quality was analyzed when using full-DAS and RC-DAS †

to ensure that imposing homing guarantees does not compromise the model quality
significantly. Before doing so, a few evaluation criteria are defined in Definitions 4.5
and 4.6.

Definition 4.5 (Model Performance). The model performance when using a chosen
active sensing scheme is defined as the Root Mean Squared Error (RMSE) over the
predicted measurements for ∀u ∈ U for a robot. Lower the RMSE, the better is the
model performance and hence more accurate is the map.

Definition 4.6 (Precision (P)). If a total of N experiments are performed during
which Nf represents the number of times full-DAS generated a more accurate map
than RC-DAS and NR represents vice versa, then precision (P ) for full-DAS is given
by:

PF =∆
Nf

N
, (4.9)
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and the precision (P ) for RC-DAS† is given by:

PR =∆
NR

N
. (4.10)

Thus, P represents the chances of generating a better model3 of the environment
given the choice of active sensing scheme. The model accuracy can be evaluated by
comparing the predicted measurements with respect to the ground truth values and
evaluating the RMSE to associate a scalar value as a uniform performance measure
for the model being considered.

In this set of experiments, the precision of RC-DAS † was compared against full-
DAS. All possible start locations were considered and the average performance is
reported in Table 4.2. Since RC-DAS † always considers homing, two subsets of
experiments needed to be performed: Firstly, considering full-DAS in its current
form i.e. without homing and Secondly, by manually enforcing homing on full-DAS.

Table 4.2: Impact of Homing on the Precision of full-DAS vs RC-DAS†.

PF PR
Full-DAS w/o Homing 63.33% 36.67%
Full-DAS with Homing 45% 55%

From Table 4.2, it is evident that full-DAS has a higher precision when homing is
not performed but owing to homing constraints the proposed RC-DAS † has superior
performance. Alternatively, this also states that when homing is a necessary
requirement, then the RC-DAS † is more robust to the choice of start location
assigned to the robot. Since, the start locations directly affect the trajectory and the
terminal quality of the prediction model, robustness to the choice of start location is
of utmost importance.

4.4 Summary

A novel class of acquisition function belonging to the density based acquisition family
was discussed that allows the robot to acquire information from the most uncertain
areas whilst placing strict bounds on the net path length, guaranteeing homing and
not compromising on the model performance significantly. The acquisition function is
meant for and scales with the size of the team of mobile robots that may be operating
in communication devoid environments in a fully decentralized fashion. The results
show a significant reduction in net path costs whilst attaining similar or even better
precision as shown by state-of-the-art acquisition function viz., full-DAS. Besides
this, robustness to start location was also empirically validated which is of utmost
importance when robot set to venture out in unknown environments. Since, the
information acquisition functions in consideration follow the gradient of information,

3c.f. Definition 4.5.
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if the robot starts from the least informative locations (which cannot be known a
priori), it may drastically affect the model quality but RC-DAS † can efficiently handle
such scenarios.

71



Chapter 4. Path Planning 4.4. Bibliography

Bibliography

[1] M. Dunbabin and L. Marques, “Robots for environmental monitoring: Significant
advancements and applications,” IEEE Robotics & Automation Magazine, vol. 19,
no. 1, pp. 24–39, 2012.

[2] T. Wilson and S. B. Williams, “Active sample selection in scalar fields exhibiting
non-stationary noise with parametric heteroscedastic gaussian process regression,”
in Robotics and Automation (ICRA), 2017 IEEE International Conference on,
pp. 6455–6462, IEEE, 2017.

[3] A. Singh, F. Ramos, H. D. Whyte, and W. J. Kaiser, “Modeling and decision
making in spatio-temporal processes for environmental surveillance,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on, pp. 5490–5497,
IEEE, 2010.

[4] J. Chen, K. H. Low, Y. Yao, and P. Jaillet, “Gaussian process decentralized data
fusion and active sensing for spatiotemporal traffic modeling and prediction in
mobility-on-demand systems,” IEEE Transactions on Automation Science and
Engineering, vol. 12, no. 3, pp. 901–921, 2015.

[5] R. Marchant and F. Ramos, “Bayesian optimisation for informative continuous
path planning,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pp. 6136–6143, IEEE, 2014.

[6] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in
gaussian processes: Theory, efficient algorithms and empirical studies,” Journal
of Machine Learning Research, vol. 9, no. Feb, pp. 235–284, 2008.

[7] N. Waters, “Tobler’s First Law of Geography,” The International Encyclopedia
of Geography, 2017.
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Chapter 5

Operational Range Estimation

“ Do not save what is left after spending, but spend what is left after
saving. ”

Warren Buffet, On Saving

Erstwhile, the proposed algorithms for path planning were claimed to be bounded
by the “budget”, but it is very important to decipher what it means by this keyword
and how the robot’s actions lead to dissipation of the budget. Thus, this chapter
discusses how to evaluate the maximum attainable range i.e., operational range for a
robot given some prior information about the mission characteristics and the robot
itself (including the nature of the power source used to propel the robot). This is
what is referred to as “budget” for this work. Accurate estimation of operational
range plays a significant role in allowing the robot to plan close loop trajectories and
prevent complete immobilization amidst the field.

5.1 Importance of Operational Range Estimation

Mobile robots are increasingly being deployed to assist in situations where human
intervention is deemed risky or tedious. E.g., actively pursuing evaders, patrolling
sensitive areas like cross-country borders or high rise buildings (Fig, 5.1), exploring
outer space or assisting in search-and-resuce (Fig, 5.2). In such time critical scenarios,
the robots cannot abandon their posts for recharging while carrying out their respective
missions.

Most robots have a rough estimation of their battery life based on the operation
time [1–5]. Nonetheless, regardless of how the mission is carried out, robots must be
retrieved when the operational time is close to the estimated maximum value, or the
estimated remaining battery time is close to zero. However, this general approach
neglects two facts: 1.) Missions are highly dynamic which in turn incur variable power
consumption, thereby making the nominal estimated battery life time too broad, and
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UGV patrolling vantage points to be used by friendly snipers.

UGV assisting in patrolling cross-country borders.

Figure 5.1: Simplified operational range estimation. On the left, a multi-level parking lot is
shown which serves as a vantage point for armed forces to provide over-watch when a high
valued individual visits a public spot. These spots once cleared for use by friendly armed
personnel cannot be left unmanned. On the right, a border patrol scenario is shown where
the robot must know its operational range in order to plan the patrolling missions between
watch-towers.

Figure 5.2: Real-world operational range estimation. On the left, a planetory rover exploring
the surface of Mars is shown. On the right, a ground robot assisting in search-and-rescue
after an avalanche is illustrated. In either case, the robot cannot abandon its post or its
mission while it is actively surveilling. Thus, recharging is infeasible and the terrain is highly
uneven and unpredictable.
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especially too conservative. 2.) In outdoor/ indoor/ space exploration missions, other
than the mission time, researchers are more concerned about the proportion of the
unknown area that the robot covers. Not much research has been done to look into
how the energy stored in the battery is distributed amongst different components and
how this would affect the maximum traversal range.

Most of the aforementioned works consider the mission profile to be known a priori
and then try to estimate/ optimize the energy requirements based on locomotion
models only. As opposed to this, it is more rational to consider the energy itself to
be fixed and then modulate the mission profile accordingly. The reason for such an
unconventional “inverse” setting is that given the battery characteristics, the amount
of energy stored within and the rate of discharge are known a priori and serve as the
limiting factor for the mission, when the robots sets out to explore the environment.
Thus, the inverse problem should be tackled where the energy constraint is known
and the path length must be optimized within these constraints. The benefits of the
knowledge about the maximal operational range based on a reasonable energy model
can be harnessed for both tele-operated robots and fully autonomous robots. This
means that either the operators can know the optimal time to retrieve the robots for
a tele-operated robot or in case of an autonomous robot, the robot itself can gauge
the best time to return to base. Using too much of the provided battery energy could
lead to complete failure of the robots amidst the mission and using too less of the
resources could significantly reduce the environmental perception.

In this chapter, two important keywords are introduced: framework and model.
Since these cannot be used interchangeably, the author clearly defines them in
Definitions 5.1 and 5.2 below.

Definition 5.1 (Framework). The pandora’s box which takes in the description of
the robot and the power source being used in order to deduce the maximum attainable
operational range. Only provides a theoretical upper bound on the maximum range and
does not include a path planner to assist with homing.

Definition 5.2 (Model). Intrinsic component of framework that serves a specific
purpose. In order to deduce the operational range of a robot, several models need to be
utilized so that the necessary results can be coupled to deduce the maximum attainable
range. The inclusion of all necessary modules gives rise to a framework.

5.2 Rationale behind the Maverick Approach

The existing models for endurance [6] or mission energy estimation [7] are made specific
to the robot under consideration. Furthermore, the author believes that there exists
almost no framework to estimate the operational range of robots functioning on a single
discharge cycle let alone be comprehensive enough to estimate the operational range
for any category of robot. This is the philosophy behind the proposed operational
range estimation architecture which not only considers the locomotion model along
with the ancillary functions which tend to draw power from the same source, but, can
also accommodate any robot while retaining the same composition.
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In order for the robot to know its maximal operational range, it is very important
that an energy dissipation model is developed which elucidates how the energy from
the power source is distributed across the system along with the uncalled for losses
owing to heat dissipation, friction etc. This chapter, takes into account multiple such
energy consumption sources and analyzes how the energy stored in the battery is
consumed during one single discharge cycle. The research problem addressed here is:

Given a robot equipped with a battery, what is the maximum attainable
range on a single discharge cycle to avoid complete immobilization?

The task at hand is challenging owing to the fact that different robots have distinct
motion models and usually operate in diverse environmental conditions which cannot
be anticipated in advance. Moreover, making a generic framework that can help
estimate operational range for a multitude of robots is useful but non-trivial.

5.3 Work Flow

Range Estimation Framework

Section 5.4
(Simplified)

Section 5.5
(Generic)

Section 5.4.1
(Simple Energy Dist.)

Section 5.4.2
(Simple Range Est.)

Section 5.5.3
(Generic Energy Dist.)

Section 5.5.4
(Generic Range Est.)

Section 5.5.4.1
(Offline Model)

Section 5.5.4.2
(Online Model)

Section 5.5.4.1.1
(Case 1: UGV)

Section 5.5.4.1.2
(Case 2: UAV)

Section 5.5.4.2.1
(Case 1: UGV)

Section 5.5.4.2.2
(Case 2: UAV)

Figure 5.3: Work flow for operational range estimation.

For the ease of the readers, this section is meant to provide a roadmap to the
sections as they follow hereon. The organization of the rest of this chapter is shown
in Fig. 5.3 and is detailed as follows: The overall range estimation framework is
categorized into 2 types:

• Simplified Framework meant for simple environmental conditions focusing only
on UGVs is first presented in Section 5.4. Within this section, a simplified energy
distribution model with corresponding losses is accounted for in Section 5.4.1
along with the corresponding range estimation model presented in Section 5.4.2.

• Generalized Framework which is extension of the previous framework meant
to account for various classes of robots. This is discussed in Section 5.5. As
before, the enhanced energy distribution model is presented in Section 5.5.3
followed by the enhanced range estimation model in Section 5.5.4. In order to
estimate the range using the generic framework, an Offline variant is presented in
Section 5.5.4.1 followed by its Online counterpart as discussed in Section 5.5.4.2.
For each of these models, two case studies are presented using UGVs and UAVs
in Sections 5.5.4.1.1, 5.5.4.1.2, 5.5.4.2.1, 5.5.4.2.2 respectively.
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5.4 Simplified Range Estimation Framework for

UGV

This section presents a simplified framework focusing only on UGVs operating on
smooth terrains and smoothly varying elevations like those shown in Fig. 5.1 [8]. A
framework is said to be comprised of two components viz., 1.) Energy distribution
model which explains how the energy is consumed across the system and 2.) Range
estimation model which transforms the useful energy into attainable distance.

5.4.1 Energy Distribution Model

Consider a rudimentary robot equipped with only a power source and motors for
propelling the robot. In such a setting, the energy from the battery is directly used
for maneuvering as shown in Fig. 5.4. However, almost never does a robot have such
limited payload. A robot that is being used for exploration of unknown environment
be it search-and-rescue or patrolling, always has sensors, microcontrollers and other
essential payload deemed necessary for the respective mission. In such a setting, energy
from the battery is distributed amongst the maneuvering and ancillary branches and
also sustains losses as shown in Fig. 5.5.

Figure 5.4: Ideal battery dissemination model. All energy stored in battery is used for
maneuvering without any losses.

There are 4 kinds of losses associated with the entire robotic system which, in
turn, affect the maximum attainable range of a mobile robot. They are:

• Battery charge storage loss (η1): refers to the battery self-discharge
characteristics. Even without any load attached, the battery tends to suffer
self-discharge thereby reducing the net amount of energy available for a mission.

• Drive motor losses (η2): owing to internal friction along with actuation losses.

• Mechanical losses (η3): refers to power train losses like friction in transmission,
damping from lubricants etc.
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Figure 5.5: Realistic lossy battery dissemination model. Energy from battery is distributed
amongst the maneuvering and ancillary branches. The sustained losses are marked herewith.

• Ancillary losses (η4): accounts for heat losses incurred by sensors, motor
drivers, micro-controllers etc.

So, the overall system efficiency can be summarized as Ω
∆
= Π4

i=1¬ηi and the procedure
for calibration to obtain these losses is explained next.

5.4.1.1 System Identification

The procedure of calibrating the system to deduce the 4 kinds of losses mentioned
above is referred to as System Identification. For this, a minimal load test was designed
in which the only load drawing power from the source were the motors. During this
test, the motors were allowed to run until the battery was completely drained and the
following 3 quantities need to be calculated in order to identify system losses:

• Internal Friction Power (PIF ): is the power required to overcome the internal
friction offered by the motors during the minimal load test which lasted for Ttest.
All the energy supplied from the battery to the motors (Emotor) is transformed
into mechanical energy (Emech) to turn the motors and motor losses lost as heat
(I2
motorRmotorTtest) to the environment. Thus, the following relationship holds

from the law of conservation of energy:

Ẽmotor︸ ︷︷ ︸
Net Energy for motors

= Emech︸ ︷︷ ︸
Mechanical Energy

+ I2
motorRmotorTtest︸ ︷︷ ︸

Heat Loss during test

,

⇒ PIF = I2
motorRmotor ,

=
Ẽ − Emech

Ttest
.

(5.1)

• Field Trial Power (PFT ): is the power consumed during the field trials which
lasted for TM . Besides the power required to overcome the internal friction of the
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motors, additional power will now be consumed to overcome terrain resistance.
Thus, the overall energy from source is now related to internal friction and
terrain interactions as:

Ẽmotor︸ ︷︷ ︸
Net Energy for motors

= Emech︸ ︷︷ ︸
Mechanical Energy

+ PIFTM︸ ︷︷ ︸
Heat Loss during test

+ Eterr︸︷︷︸
Terrain Interaction

,

⇒ PFT =
PIFTM + Eterr

TM

(5.2)

• Net Component Power (PCP ): is the net energy consumed by all components
on board including motors, sensors, controllers etc., for a mission duration of
TM . This is given by:

PCP =∆
Ẽmotor
TM︸ ︷︷ ︸

Motor Power

+ PIF︸︷︷︸
Motor Loss per unit TM

+Σ∀sensor( Psensor︸ ︷︷ ︸
Sensor Power

+ I2
sensorRsensor︸ ︷︷ ︸

Sensor loss per unit TM

)

(5.3)

Now, the system losses can be calculated for the mission time TM as:

• η1 =∆ 100× Ẽnet−PCPTM
Ẽnet

where Ẽnet =∆ Ẽmotor + Σ∀sensorẼsensor.

• η2 =∆ 100× Ẽmotor−PIFTM
Ẽmotor

= 100× Ẽmech

Ẽmotor
.

• η3 =∆ 100× PFT−PIF

PFT
.

• η4 =∆ 100× Σ∀sensor(Ẽsensor−I2sensorRsensorTM )

Σ∀sensor(Ẽsensor)
.

Here, the zeroth order polynomial have been used i.e., the first order approximation
of the efficiency/losses of the system to estimate its lower bound. However, if a more
complex model (higher order polynomial) were to be used that perhaps can also
account for mechanical degradation, changes in current demands owing to variable
motor loads, elevation changes and operational velocity modulations etc., better
estimates can be obtained. An even higher complexity model could also track the
changes in these parameters in real-time which can be used to account for system
efficiencies in an online fashion and maintain tighter bounds. Having said this, the
challenge still remains to identify such models and quantify their parameters. For the
scope of this work, only the first order approximations were retained.

5.4.2 Simplified Operational Range Estimation

Having modeled the energy distributed across the entire system using Fig, 5.5, the
maneuvering energy can now be transformed into operational range. For this, the
free-body diagram of a robot on an elevated plain is drawn in Fig. 5.6 wherein all
the forces in the state of equilibrium are shown along with the friction offered by
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Figure 5.6: Free Body Diagram. Illustrating all forces that impede the motion of a robot.
The cuboid shown represents the robot with all forces acting around its center of mass.
WR(= mRg) represents the weight of the robot. The weight components were decomposed
into the parallel component WR‖(= mRgsinγ) acting along the terrain and the perpendicular
component WR⊥(= mRgcosγ) acting against the Normal(N) which represents the normal
force. Friction represents the surface friction offered by the ground and Fair represents the
aerodynamic drag force.

the terrain itself which varies based on the surface type and wheel built. Also, the
impact of aerodynamic drag force1 was accounted for. From this figure, the following
equilibrium conditions were deduced:

N = mR g cos γ .

Traction = Friction+ Fair +WR‖ ,

⇒ Traction = Crr N + cv2 +mR g sin γ .

(5.4)

Thus, in a realistic setup, the energy needed for displacing the robot by an amount
d on an elevated terrain can be given by:

ME = Traction× d ,
= (Crr N + cv2 +mR g sin γ)d ,

= (Crr mR g cos γ + cv2 +mR g sin γ)d .

(5.5)

In Eq. (5.5), an elevation angle γ ∈ [0, γmax] was considered, such that increasing
the velocity also increases the ME needed to attain the distance d. However, so far
system efficiency parameters are yet to be examined. In Fig. 5.5, 2 main consumers
of the battery energy were presented: Firstly, the Maneuvering module which
accounts for traversal, steering etc. and secondly, the Ancillary Functions module
which accounts for sensing, on-board computations, communication to peers (or

1Although, this factor has been considered to make the model realistic but in case of mobile
robots, since the operational speed is of the order of few m/s, this factor can be neglected.
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base station) etc. Both these consumers draw power from the same source which is
transformed into useful energy along with unwarranted losses. From the works of [9],
the power consumption model for sensors was obtained and extended to also account
for energy consumed during computations and communications as:

Panc = {s0 + s1fs}︸ ︷︷ ︸
Psensing

+PC (5.6)

The advantage of using this power model for the ancillary branch is that, it can
elegantly take care of situations when the sensor is idling or when it is actively
gathering measurements. In Eq. (5.6), the terms in {·} refer to the power consumed
for gathering measurements whereby fs refers to the sampling frequency (Hz) which
is contingent on the sensor type. E.g., in case of laser range finder, sonars, ultrasonic
sensors it could refer to the number of rays emitted per second whilst in case of a
camera it could refer to the fps rate. Also, computation cost will only be incurred when
sensor measurements are gathered. The term PC accounts for two factors: 1.) the
power utilized by micro-controllers to command the wheels and sensors, 2.) the power
used by the on-board computation module. Since the micro-controller tasks are usually
fixed, the author assumes a static power consumption which is stable [9] but the power
consumption for computational requirements may vary based on the different tasks
like SLAM, localization, Occupancy Grid Mapping etc. Thus, the PC jointly accounts
for the power consumed for computations and short-range wireless communications.
However, if more complex models for architectural power consumption were deemed
necessary, then, the readers are referred to other works like [10].

Motivated by the exponential battery discharge model from [11], this work also
uses an exponential decay function to represent this trend using positive coefficients
k1, k2 as:

Ẽ
∆
= EO exp−(k1ζ+k2t) (5.7)

In Eq. (5.7), as opposed to prior works, the author also considers the impact of
several charge-discharge cycles (ζ) along with the age of the battery (t).

In order to estimate maximum achievable range, first, the total energy model in
a real world setting is established as the sum of the Ancillary Energy (AE) and the
Traversal Energy (TE)2

2Net Maneuvering Energy (ME) available i.e.,
ME

UGV ΩMan
, where UGV ΩMan is the efficiency of

Maneuvering branch.
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Ẽ = AE + TE ,

= Ancillary Power × TM +
ME

UGV ΩMan

,

= Panc ×
d

vD
+

(Crr mR g cos γ + cv2 +mR g sin γ)d
UGV ΩMan

,

= d×
{
Panc
vD

+
(Crr mR g cos γ + cv2 +mR g sin γ)

UGV ΩMan

}
,

⇒ d =
Ẽ{

Panc
vD

+
(Crr mR g cos γ + cv2 +mR g sin γ)

UGV ΩMan

} .

(5.8)

Now, in order to evaluate the theoretical maximum attainable range, the optimal
operational velocity (vopt) and reduced battery capacity need to be considered. Thus,
the theoretical maxima is given by:

dmax =
Ẽ

Panc
voptD

+
(Crr mR g cos γ + cv2 +mR g sin γ)

UGV ΩMan


(5.9)

In Eqs. (5.8) and (5.9), an additional symbol D was utilized which stands for the
duty cycle. Albeit the author assumes the constant operational velocity for carrying
out the mission, the robot may sometimes get overwhelming/too sparse amounts of
data (e.g., Fig. 5.7a) or may lose connection with the base station (e.g., Fig. 5.7b) for
which it must stop and manage the situation. To allow the robot to do so, the term
D is very important which represents the proportion of the net mission time which
the robot spent for actually moving and covering ground. The term D additionally
accounts for the fact that the ancillary power is consumed incessantly throughout the
mission and as the robot stops more often i.e., D ↓, the ancillary power (AE) ↑. Also,
the theoretical upper bound on operational range i.e. dmax is calculated by using the
optimal velocity vopt. The choice of vopt is rather challenging since this is determined
by the safe operational velocity given the distribution of obstacles in the environment
and environment conditions (nature of terrain, average elevation etc.). Thus, for the
scope of this work, only the safe operational velocity is taken as the vopt and this is
determined by the human operator.

In Eq. (5.8), the ancillary power (Panc) is computed with respect to the mission
time which is calculated as the ratio of distance to the average speed (i.e., velocity
normalized by duty cycle, D; TM = d

vD
) while the maneuvering energy is computed

with respect to the travel distance, d. Mechanical efficiency (Γ) is the ratio of the
energy that is actually used to accomplish mechanical work to propel the robot forward
to the total energy that actually goes into the maneuvering branch. It takes into

82



Chapter 5. Operational Range Estimation 5.5. Generic (Unified) framework

(a) Feature extraction for ORB-SLAM [12] (b) Faulty communication channels

Figure 5.7: Need for introducing duty cycle (D). In Fig. 5.7a visual SLAM scenario is shown
wherein sometimes not enough features may be available for the robot to localize itself based
on the frames captured by the camera(s) and at some other occasions, overwhelming amounts
of features may be extracted like in cases of extremely cluttered environments. In Fig. 5.7b,
a common communication channel fault is shown whereby the robots may occasionally face
technical difficulties while parsing messages to and from the base station. In either scenario,
the robot needs to wait to recover and can only proceed when the problem has been resolved.

account the aforementioned losses η2 and η3: Γ = (1 − η2) ∗ (1 − η3). η1 accounts
for the energy loss before the battery output, which is embedded in Eq. (5.7). η4

is the percentage of the battery output energy that goes into the ancillary branch:
AE = η4Ê. Despite the definition in Eq. (5.8), the overall system efficiency can be
summarized as Ω =∆ Π4

i=1¬ηi where ¬ represents the complement operator which is
used to obtain the efficiencies from losses.

5.5 Generic Range Estimation Framework for

Diverse Classes of Robots

The prior work [8] is now extended to not only account for environmental factors like
variable and uneven terrains, strong wind gusts etc., like those faced in real exploration
missions shown in Fig. 5.2, but also to broaden the outreach of the operational range
estimation framework to account for different classes of robots like UGVs and UAVs
as shown in Fig. 5.8. Furthermore, offline and online variants for range estimation
and an enhanced ancillary power model are presented and the empirical performance
is discussed henceforth.

5.5.1 First Things First

Before presenting the unified framework [13], it is essential to clarify the difference
between the terms “framework” and “model”. This is aided by Fig. 5.8 wherein
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Figure 5.8: Framework v/s Model. Framework refers to the entire architecture in unison
which can be considered as a black box for operational range estimation. The nature of
the robot and its power source are fed as inputs and the operational range is generated
as output. Model refers to intrinsic components viz., the energy distribution model for
inferring the distribution of energy in the system and range estimation model which convert
the useful energy into operational range. On a high level, the black-box can account for
various robot types while the differences occur only at the lower levels for adjusting to the
distinct locomotion models. Hence, the notion of unification is justified.
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“framework” refers to the entire architecture which is applicable to all classes on
robots on a high level and “model” refers to inherent modules that model the energy
distribution of the system and propose a methodology to transform this into operational
range. The only adjustment which must be made as a function of the robot type
occurs at the lower level modules of offline/online estimators which take into account
the variety of locomotion models. Thus, the notion of unification comes into play.

5.5.2 Enhancements over the Simplified Framework

In this section, the novel additions to the operational range estimation framework are
discussed. So far, standalone researches have looked into development on analytical
models for mission energy and time consumption of specific robotic platforms. Their
main focus was to estimate either the endurance or the energy requirements for robots
given a preset mission. Some models were made offline whilst others were generated
online based on real-time operation data. However, the major limitation of these
models was that none of them could estimate the maximal operational range of the
robot given some a priori known information about the execution of the mission.
Furthermore, premeditated trajectories were considered which are not feasible for
real-world applications and robot-specific models were developed.

Thus, the aim now is to develop one global framework such that given the battery
capacity of a robot which may or may not be further aided by some a priori known
characteristics of the mission, the maximum operational range for any type of mobile
robot can be estimated. Not only this, but a variety of unforeseen environmental
factors like sudden changes in terrain elevation or wind gusts etc., along with the
flexibility to stop and process the data are now catered to. These factors inherently
affect the maximum attainable range and avoiding any premeditated trajectories
makes the framework better suited to pragmatic applications. Additionally, the
ancillary power consumption model from Eq. (5.6) is now further revised to account
for variable data traffic using wireless communication. For converting the rest of
the useful maneuvering energy into operational range, 2 variants of range estimation
model are also proposed and validated.

5.5.3 Energy Distribution Model for Diverse Robots

The upgraded energy distribution model of the unified framework is shown in Fig. 5.9:
Irrespective of the nature of the robot, the energy available from the battery is always
utilized by 2 kinds of processes viz., maneuvering and ancillary functions. The
proportion of the energy used for the former is referred to as traversal energy (TE)
while that of the latter is referred to as ancillary energy (AE). In an ideal situation,
the net energy from the battery (E), the traversal energy (TE) and the ancillary
energy (AE) are related as:

E = AE + TE (5.10)

Based on the system losses as previously discussed in Section 5.4.1, the overall

system efficiency of any robot (r) can be summarized as rΩ
∆
= Π4

i=1¬ηi. The
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Figure 5.9: Energy distribution model for unification framework. Any type of robot, whether
a micro UGV, quadrotor UAV, or AUV, uses portable battery packs which are utilized for
essentially two functions: Firstly, maneuvering like propulsion, hovering, navigation etc.
and secondly, ancillary functions like wireless communication, sensing, on-board processing
etc.

maneuvering efficiency is given by rΩMan
∆
= Π3

i=2¬ηi and the ancillary efficiency is

given by rΩanc
∆
= ¬η4.

As for the traversal energy, any robot (r), carrying out a mission (m) in an
environment of choice experiences 4 kinds of forces:

1. Constant resistive force F (r,m) as a function of robot (r) and the mission (m):
e.g., the force acting on a robot when it is traversing in a straight line under the
influence of a constant magnetic field.

2. Environment dependent force F (x, r,m) which is dependent on the current
position x: e.g., changing gravitational potential along with changing frictional
force because of change in coefficient of friction.

3. Time dependent resistive force F (t, r,m) which is a function of current time t:
e.g., unforeseeable disturbances (strong wind gusts etc.).

4. Instantaneous operational velocity dependent resistive force F (v, r,m) which
varies with instantaneous velocity v: e.g., aerodynamics and gyro effect.

Thus, the net traversal energy (TE) is given in terms of mechanical energy (ME)
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from longitudinal dynamics model and the net mechanical efficiency (rΩMan) as:

TE =
ME
rΩMan

,

=
Path

∫
Fnetdx

rΩMan

,

=
Path

∫
{F (r,m) + F (x, r,m) + F (t, r,m) + F (v, r,m)}dx

rΩMan

(5.11)

Then, the instantaneous time (t) can be expressed as a function of position (x),
velocity (v), mission (m) and duty cycle (D) as:

t = g(x, v,D,m) (5.12)

During the mission (m), the robot traverses at an instantaneous velocity (v) and a
fixed duty cycle (D). Thus,

TE =
Path

∫
{F (r,m) + F (x, r,m) + F (g(x, v,D,m), r,m) + F (v, r,m)}dx

rΩMan

,

=
{F (r,m) + F (v, r,m)}d

rΩMan

+
dPath

∫
{F (x, r,m) + F (x, v,D, r,m)}dx

d rΩMan

(5.13)

Moreover, the ancillary energy (AE) is given by:

AE =
Pancd

vavgD
(5.14)

where,

Panc = {s0 + s1fs}︸ ︷︷ ︸
Psensing

+ {Pcomputation + Pcommunication}︸ ︷︷ ︸
PC

= {s0 + s1fs}+ {Pcomputation + k × data size× fcomm}
= {s0 + s1fs}+ {Pcomputation + k × data rate}

(5.15)

As an enhancement to the ancillary power consumption model over Eq. (5.6), here, the
communication power (Pcommunication) is related with both the size of the data and the
frequency (fcomm) at which the communication takes place. These two terms could be
unified into data rate, i.e., the amount of data sent in unit time. The communication
power is then proportional to the data rate with a constant coefficient k (c.f. [14])
while the computation power (Pcomputation) is a function of the task allocated to the
robot quantifying which is beyond the scope of this work. As for the power consumed
by sensors given by Psensing, it can be modeled as a function of the sampling frequency
fs. The scalars s0, s1 refer to the static power consumption and operational power
consumption coefficient respectively.

So, the operational range for any robot can be generalized to:
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d =
Ẽ

{F (r,m) + F (v, r,m)}
rΩMan

+
Path

∫
{F (x, r,m) + F (

x

vD
, r,m)}dx

d rΩMan

+
Panc
vavgD

(5.16)

Here, rΩMan is the net maneuvering efficiency of the robot, i.e., the percentage
of energy used to do actual mechanical work from the maneuvering branch. From
Eq. (5.16), it is evident that in order to estimate the operational range, the term

Path

∫
{F (x, r,m) + F (

x

vD
, r,m)}dx

d rΩMan

needs to be approximated and the operational

range estimate would be as good as the approximation of this term.

5.5.4 Range estimation models for diverse robots

In order to approximate Eq. (5.16), 2 different approaches viz., 1.) Offline estimation
which is a one-shot prediction model wherein range estimate is conjectured at the
beginning of the mission itself and predictions are not corrected based on the new
data acquired during mission, and 2.) Online estimation whereby the estimation is
recursively updated using all available operational data. In the conventional setting,
offline estimates are generated once all the data is made available, while the online
estimates are limited to the data currently available. As opposed to this setting, the
offline model being referred to here relies on defining the required parameter values a
priori and retaining the estimates. The online model on the other hand recursively
updates the estimates as more data is made available. Furthermore, for each approach,
as case studies, particular models for UGVs and multi-rotor UAVs are discussed.

5.5.4.1 Approach 1: Offline operational range estimation for diverse
mobile robot platforms

Assuming some a priori known mission characteristics like driving profile, terrain
attributes and system efficiency, firstly an Offline model is explained to estimate the
operational range for diverse robots.

5.5.4.1.1 Case 1 : UGV operating in uneven terrain
In Section 5.4.2, the operational environment was assumed to be a smooth terrain

with a constant elevation. However, in reality, this assumption is often rendered
invalid as can be seen from Fig. 5.2. To suit such settings, the framework was further
updated to envelope uneven terrains with variable elevation making it better suited
to real world scenarios.

Any natural terrain can be modeled using three features: 1.) flats: smooth surfaces
with negligible gradient, 2.) slopes: smooth surfaces with appreciable gradient and
3.) rubble: uneven rough surfaces with no particular gradient characteristics. The
operational terrain may have an average slope (γ) with respect to which the operational
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range d should be calculated. In Fig. 5.10, the dashed line represents the actual terrain
which must be traversed where QP represents the actual d. QR is the horizontal
reference with respect to which the instantaneous road elevation is calculated.

𝜃 𝛾

d

v

h

Q R

P

Figure 5.10: Schematic of actual terrain profile without rubble. v represents the instantaneous
velocity, γ is the average terrain elevation and θ represents average road gradient with respect
to γ. h represents the elevation gain and d represents the operational range.

1. Considering flat terrains exclusively, the only resistive force acting on the robot
is the (rolling) friction between the wheels and the ground. This is defined as:

FFlats = Normal Force× C(x)rr (5.17)

where, C(x)rr refers to the coefficient of rolling resistance.

2. Accounting for slopes, the net force acting will be friction along with the weight
component along the motion of the robot. These forces are a function of the
robot location x and the terrain elevation at x given by θ(x).

Fslopes = Fflats +mRg sin(γ + θ(x)) ,

= C(x)rrmRg cos(γ + θ(x)) +mRg sin(γ + θ(x))
(5.18)

3. Finally, considering rubble, in our force model, excess forces (Frubble) acting
due to presence of rubble need to be accounted for. Let k(x)terr be the terrain
coefficient which depends on size, shape, density and resistance offered by the
rubble. Then, the net forces (Fnet) acting on the robot can be given by:

Fnet = Fslopes + Frubble (5.19)

Considering the limiting case, the following relationship holds:

Fnet = Fslopes + Frubble ,

∆
= k(x)terr(Fslopes)

(5.20)
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Thus, the net maneuvering force (UGV F (x)Man) for any UGV on an uneven natural
terrain is given by:

UGV F (x)Man = k(x)terrmRg[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))] (5.21)

In order to estimate achievable range d, first, the total energy model is defined in
a real world setting as a sum of Ancillary Energy (AE) and Traversal Energy (TE):

Ẽ = AE + TE ,

= {Ancillary Power × time}+

∫
Path

UGV F (x)Mandx
UGV ΩMan

,

= Panc ×
d

vavg cos(θavg)D

+

∫
Path

k(x)terrmRg[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx
UGV ΩMan

,

= Panc ×
d

vavg cos(θavg)D

+

{
mRg

UGV ΩMan

×
∫
Path

k(x)terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx× d
d

}
,

= d×
{

Panc
vavg cos(θavg)D

+
mRg

UGV ΩMan

×
∫
Path

k(x)terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

d

}
,

⇒ d =
Ẽ{

Panc
vavg cos(θavg)D

+
mRg

UGV ΩMan

×
∫
Path

k(x)terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

d

}
(5.22)

The maximum attainable distance dmax is a function of the optimal velocity vopt.
Cruising at speeds higher/lower than vopt would results in operational ranges lesser
than dmax. So, Eq. (5.22) can now be written as:

dmax =
Ẽ

Panc
vopt cos(θavg)D

+

{
mRg

UGV ΩMan

×
∫
Path

k(x)terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

dmax

} .
(5.23)

In Eq. (5.23), the factor
{

mRg
UGV ΩMan

×
∫
Path

k(x)terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

dmax

}
denotes the average resistive force which acts on the robot on the path QP as shown
in Fig. 5.10. Thus, replacing this factor by the expected average resistive force, the
maximum traversal range (dmax) can be inferred and the estimation accuracy will be
as good as the perfection in the estimation of the expected average resistive force. As
the mechanical efficacy of the actuators (¬η2) varies with operational speed, vopt is the
velocity at which the net losses of ancillary and maneuvering branches are minimal.
Also, as vopt is a rather complex function of robot/actuators, exact trajectory traversed
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or path taken and the mission characteristics, no further comments or profiling of vopt
is possible in the scope of current work. Thus, the target velocity set by the operator
was considered as the vopt.

In realistic scenarios, the offline model needs the values of k(x)terr, C(x)rr to be
defined for each x to find average expected resistive force. Or equivalently, the integral
over the path can be eliminated by replacing it with average expected resistive force
which can be done by replacing k(x)terr, C(x)rr, θ(x) by their averages k̄terr, C̄rr, θ̄,
respectively. These values for the offline model can be estimated using any of the
following methods: 1.) Using the data and experience acquired over the previous
missions; 2.) carrying out a trial mission and then using the acquired information
as prior knowledge for the actual mission; 3.) using the expertise of the operators
(system/environment experts) to provide realistic/good estimates. For this work, the
approach 2.) mentioned above was considered.

5.5.4.1.2 Case 2 : Multi-rotor UAV operating in presence of external
disturbances
Albeit the energy distribution for a UAV is quite similar to that of a UGV as

mentioned previously in Section 5.5.3, but there are slight variations. The difference
with respect to the latter being that, during the mission, a UGV may have phases of
negligible maneuvering energy requirements whilst a UAV continuously needs to
hover and maintain flight stability. As opposed to [15], the author not only considers
the hovering and aerodynamic drag losses but also accounts for flight adjustments
required due to unpredictable environmental factors (like strong wind gusts etc.).

Analogous to the UGVs, the energy for hovering, drag losses and flight adjustments
in UAVs are comparable to energy requirements of motion over flats, slopes and rubble
respectively. This is owing to the fact that, in case of hovering, the UAV experiences
a constant environment dependent force required to stay aloft. Similarly, to maintain
motion for a UGV, it must constantly overcome the resistive frictional forces. Identical
analogues can also be drawn for the remaining cases.

1. For hovering, the energy consumption model is motivated by the works of [16].
For a UAV with NR propellers each of radius rp with a figure of merit Γ and
rotor thrust Thover, the Phover can be defined as:

Phover =
(Thover)

3
2

Γrp
√

2NRρπ
,

=
(mRg)

3
2

Γrp
√

2NRρπ

(5.24)

2. Also accounting for flight adjustments 3, the instantaneous power (P (t)fa) is
given by:

P (t)fa =
[T (t)fa]

3
2

Γrp
√

2NRρπ
(5.25)

3The term flight adjustments takes into account all adjustments the UAV needs to make in order
to maintain its course in presence of external disturbance or otherwise.
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where the instantaneous thrust with flight adjustments (T (t)fa) is defined as:

T (t)fa
∆
= Thover + T (t)adjust ,

T (t)adjust = f(t)Tcontroller
(5.26)

In Eq. (5.26), Tfa(t) refers to the net thrust required for hovering with
adjustments. This is defined in terms of hovering thrust (Thover) and
adjustment thrust (Tadjust(t)). The term Tcontroller refers to the thrust required
to follow the acceleration profile generated by the chosen flight controller (e.g.,
PID controller or Neural Networks etc.) and f(t) is a time dependent constant
of proportionality. In order to expand the outreach of the model and remove
the dependence on any particular flight controller, Tadjust was modeled as a time
dependent function of Thover as:

T (t)adjust =∆ k(t)envThover . (5.27)

Thus,

T (t)fa = Thover + k(t)envThover ,

= mRg + k(t)envmRg .
(5.28)

P (t)fa =
[mRg + k(t)envmRg]

3
2

Γrp
√

2NRρπ
(5.29)

Thus, the average power for flight adjustments over the entire time of flight
(TOF ) is given by:

Pfa =∆
∫
TOF

[{mRg + k(t)envmRg}dt]
3
2

TOF Γrp
√

2NRρπ
(5.30)

3. Finally, drag losses acting on rotor blades need to be incorporated. The drag
force on NR propellers is estimated from fluid mechanics as:

FD =
NRρCDAv

2

2
,

=
NRρCDA(rpω)2

2
.

(5.31)

The drag torque (τD) is given by:

τD =

∫ rp

0

FDdr ,

=
NRρCDAr

3
pω

2

6

(5.32)
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Since the power required to overcome the drag losses is given by τDω and the
drag thrust T (t)fa(= NRkrω

2) for propeller constant kr, the instantaneous power
for drag losses (PD(t)) is computed as:

PD(t) =
ρCDAr

3
p[T (t)fa]

3
2

6kr
√
NR

(5.33)

Substituting Eq. 5.28 into Eq. 5.33 to get the average power for drag losses as:

PD =
ρCDAr

3
p[
∫
TOF
{mRg + k(t)envmRg}dt]

3
2

6kr
√
NR TOF

(5.34)

The net energy required for navigation of a UAV is now given based on Eq. (5.10)
as:

Ẽ = AE + TE ,

= Ancillary Power × TOF +
[PD + Pfa]TOF

UAV ΩMan

,

= Panc × TOF +

[
ρCDAr

3
p[
∫
TOF
{mRg + k(t)envmRg}dt]

3
2

6kr TOF
√
NR

+

∫
TOF

[{mRg + k(t)envmRg}dt]
3
2

TOF Γrp
√

2NRρπ
]

UAV ΩMan

,

= Panc × TOF +


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF

}
TOF

(5.35)

⇒ TOF =
Ẽ

Panc +


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF

} (5.36)

Replacing TOF =
d

v
in Eq. (5.36), the revised equation becomes:

d

v
=

Ẽ

Panc +


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF

} ,

⇒ d =
Ẽ

Panc
vD

+


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩManv


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF

}
(5.37)
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The theoretical maximal operational is only attainable when the UAV operates at
vopt such that minimal losses are accrued. Thus,

dmax =
Ẽ

Panc
voptD

+


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩManvopt


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF

} ,

∵ D=100% for UAV ,

dmax =
Ẽ

Panc
vopt

+


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩMan


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF vopt

} ,
(5.38)

In Eq. (5.38), the factor,


[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan


{∫

TOF
[{mRg + k(t)envmRg}dt]

3
2

TOF vopt

}
,

represents the average resistive force experienced by the UAV over the entire
time of flight. This is akin to Eq. (5.23) which serves to satiate the requirement for
developing a Unified framework. Apt replacement of this parameter by using the
expected average resistive force can help to estimate the maximum operational range
for the UAV. The error in estimation of this factor directly translates to the error in
expected operational range.

5.5.4.2 Approach 2: Online operational range estimation for diverse
mobile robot platforms

In Section 5.5.4.1, the author presented an offline range estimation model whereby,
based on a priori known mission characteristics, the maximum attainable range for
mobile robots was estimated. However, in reality, it might be rather challenging to
strictly follow the mission characteristics or to even obtain a priori mission information.
Furthermore, the approximation of factors in Eqs. (5.23) and (5.38) are largely
dependent on the expertise of the human operator supervising the mission. In order
to adapt to unforeseen and unavoidable variations in the mission profile, the author
now proposes an online variant of the operational range estimation framework. In this
method, based on all available real-time data (historic and current), the operational
range is recursively updated. As the mission progresses and more data is acquired
about the mission characteristics, the range estimation model updates the estimate of
the maximum operational range in real-time. This is crucial for real-world missions as
it allows for flexibility in missions themselves and can be coupled with energy efficiency
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path planners [17] to dynamic adapt to situations as they present themselves. Similar
to Section 5.5.4.1, UGV and multi-rotor case studies are re-introduced in an online
data acquisition setting.

5.5.4.2.1 Case 1: UGV operating in uneven terrain
In Eq. (5.23), the terms k(x)terr and θ(x) can either be set by a human operator

(offline model) or can be deduced from prior missions carried out in that terrain.
However, the former introduces human error and the latter is usually not available.
Thus, as an alternative, k(x)terr, θ(x) can instead be replaced by their respective
estimates, k̂(x)terr, θ̂(x). Additionally, the offline model used instantaneous rolling
resistance Crr(x) while here it is being approximated by a constant Crr. So, the
estimated maximum range for the remaining mission is now given by:

d̂
[t:end]
Max =∆

Ẽrem

Panc
voptD

+
k̂(x)terr[Crr cos θ̂(x) + sin θ̂(x)]mRg

UGV ΩMan

, (5.39)

where

Ẽrem = Ẽ[0:end] − Ẽ[0:t] (5.40)

Here, Ẽrem is the useful energy remaining in the battery and Ẽ[0:end] is the usable
energy present in the battery at the start of the mission,i.e, at t = 0. Similarly, Ẽ[0:t]

is the energy spent from t = 0 to time instance t. Now, the total estimated maximum
operational range over the entire mission is given by:

d̂[0:end]
max = d[0:t] + d̂[t:end]

max (5.41)

In Eq. (5.41), to estimate the net operational range for the entire mission (d̂
[0:end
max ]),

the distance that has already been covered (d[0:t]) is utilized to estimate the maximum

distance that may be covered (d̂
[t:end]
max ) based on available residual energy. The value

of k̂(x)Terr that is required for estimating d̂
[t:end]
max can be estimated using Eq. (5.39).

During the mission, after every time-step (t), the robot will have the knowledge of
the distance that it has covered in that time-step, energy it has spent to cover that
distance and terrain elevation θ for that time step. Substituting the value of d[t−1:t] for
dmax and E[t−1:t] for Ẽrem in Eq. (5.39), the value of k(x)

[t]
terr for the given time-step t

can be calculated. Now, these set of values of k(x)
[t]
terr can be used to estimate k̂(x)terr

which in turn can be used to make predictions about the distance the robot can
still cover using the remaining energy. Since the estimate for the remaining distance
depends upon the value on the estimation of k̂(x)terr and θ̂(x), which needs to be
recursively updated as new data is being collected, we utilize a recursive average filter.
For ease of notation, let X̂[t] = [k̂(x)

[t]
Terr, θ̂(x)[t]] and Z[t−1] = [k(x)

[t−1]
terr , θ(x)[t−1]] which

represents the set of actual (noisy) measurements up till the last time step (t− 1).
Then, given a noisy set of measurements, Z[0:t−1], and no additional information

about the impact of environmental factors on the system dynamics, a reasonable
estimate for the system state at the current time-step, t can be obtained as:
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X̂[t] = P [t−1]

t−1∑
i=0

Z[i] (5.42)

where P [t−1] =
1

t− 1
represents the responsiveness of the filter, i.e., the filter

is very responsive (making a lot of corrections) in the beginning since limited data
is available. As time passes and more data becomes available, the filter becomes
more certain about its estimates, and thus, reduces the relative importance of the
measurements. However, being a fixed response model (true values of kterr and θterr
are fixed) with response rate decreasing with time, it cannot always adapt to sudden
changes in the values of k(x)terr and θ(x)terr as 1

t−1
can be very small. These sudden

changes can occur when there is a change in terrain type or weather conditions but
their impact will diminish with the passage of time. Manipulating Eq. (5.42) to obtain
the recursive update rule as follows:

X̂[t] = P [t−1]

t−1∑
i=0

Z[i]

= P [t−1]

t−2∑
i=0

Z[i] + P [t−1]Z[t−1]

=
t− 2

t− 1
× 1

t− 2

t−2∑
i=0

Z[i]

︸ ︷︷ ︸
X̂[t−1]

+P [t−1]Z[t−1]

= X̂[t−1] + P [t−1]
(
Z[t−1] − X̂[t−1]

)

(5.43)

Eq. (5.43) represents the recursive state update rule wherein the term

P [t−1]
(
Z[t−1] − X̂[t−1]

)
represents the measurement innovation i.e., the new

information acquired via the new observation. Similarly, the recursive update rule for
the filter response can also be derived as:

P [t] = P [t−1] − P [t−1](P [t−1] + 1)−1P [t−1] (5.44)

From Eqs. (5.43)-(5.44), it is clear that the filter is a modified moving average
filter [18] with increasing window size, that accommodates all the data available. The
predictions begin at t = 2, and X̂[1] = Z[1]. Here, we can see that X[t] is a function
of Z[0:t−1] which is a series of points indexed in time order i.e., a time-series. So we
can use common time-series forecasting method to estimate the value of X[t] such as
various variants of Autoregressive moving average (ARMA) model [19]. In our case,
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we have used a modified moving average model (ARMA(0,0,1)), that computes the
average of all the data points available to estimate the value of X[t].

5.5.4.2.2 Case 2: Multi-rotor UAV operating in presence of external
disturbances
Similar to the case of UGVs, the term k(t)env in Eq. (5.38) is now replaced by its

estimated value k̂(t)env based on autoregressive model presented in Eq. (5.43). Thus,
the estimated maximum range for UAV for the remainder of the mission is now given
by:

d̂[t:]
max =∆

Ẽrem

Panc
vopt

+



[
UAV ΩManρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩManvopt

 [mRg + k̂(t)envmRg]
3
2

(5.45)

Now, the maximum operational range estimation can be done similar to Eq. (5.41)
and Eq. (5.43). However, in case of UAV, let X̂ [t] = k̂(t)env and Z [t−1] = k(t− 1)env
define the estimated and observed values of the environmental variable which are
required for operational range estimation.

5.6 Experiments

In Sections 5.5.4.1 and 5.5.4.2, the author presented offline and online range estimation
models for the unified framework. A precursor to the offline range estimation model
was also discussed in Section 5.4.2. All 3 range estimation models were empirically
evaluated in the following settings:

• Simplified Range Estimation Model: was tested in indoor setting which
usually present smooth surfaces θ ≈ 0 with constant average gradient of slope
γ ≈ constant. The test-bed used for indoor experiments was Rusti V1.0 as
shown in Fig. 5.11.

• Unified Framework: was designed to account for outdoor environment
conditions along with unforeseen and unavoidable variations to missions that
may have to be tackled in real missions. Thus, this framework was tested in
natural outdoor settings. The test-bed for outdoor experiments were Rusti V2.0
shown in Fig. 5.12 and ArDrone 2.0 shown in Fig. 5.13.

– Offline Range Estimation Model: The parameters in Eqs. (5.23) and (5.23)
were set based on few prior experiments that had to be carried out
independent of the actual field trials.

97



Chapter 5. Operational Range Estimation 5.6. Experiments

– Online Range Estimation Model: The parameters in Eqs. (5.23) and (5.23)
were updated in real-time using the autoregressive moving average filter.

In what follows, firstly, the indoor experiments are presented for the simplified
model followed by outdoor experiments for the unified framework.

Figure 5.11: Rusti V1.0 with omnidirection wheels, ultrasonic sensor and short range wireless
communication module (XBee) for indoor navigation.

Figure 5.12: Rusti V2.0 with all-terrain wheels and external 3-axis accelerometer sensor for
outdoor field experiments carried out on asphalt, grass and tiles.

5.6.1 System Identification

Before presenting the empirical analysis for indoor and outdoor field trials, a summary
of system identification parameters is given in the table below:

Table 5.1: System Efficiency Calibration for Rusti V1.0, Rusti V2.0 and ArDrone 2.0

Robot ¬η1 ¬η2 ¬η3 ¬η4 Ω = Π4
i=1ηi

Rusti V1.0 99.5% 94.2% 9.2% 99.9% 8.615%
Rusti V2.0 99.5% ∗∗ ∗∗ 99.9% ∗∗

ArDrone V2.0 99.5% 27% 99.9% 26.84%

In Table 5.1, the items marked with ∗∗ were not directly observable/measurable.
Such terms were instead accounted for by clustering of variables in the equations and
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Figure 5.13: ArDrone 2.0 with GPS used for outdoor experiments in parking lot and public
park.

considering multiple terms in unison.Additionally, for the drone, average propulsion
efficency was jointly obtained from a closely related work [6]. Further details can be
found in [13].

5.6.2 Indoor experiments

The indoor experiments were performed using Rusti V1.0 equipped with HC − SR04
Ultrasonic ranging module. Box shaped trajectories were executed for planar surfaces
and oscillating trajectories were executed for inclined surfaces as illustrated via
Fig. 5.14. In order to validate the ancillary power consumption model given by Panc
in Eq. (5.6), the ultrasonic sensor was operated at various operational frequencies and
the power consumed was plotted as shown in Fig. 5.15. The model for ancillary power
consumption was verified empirically. The power consumption model obtained is:

Psensing = 5.7318e−5 fs + 0.0293 (5.46)

From Eq. (5.46), it becomes clear that the power consumed by the sensor array in idling
state is 0.0293W . The worst case power consumption at a sampling rate of 100Hz was
found to be 0.0348W . The power consumption of the micro-controller unit (MCU)
which controls the ultrasonic ranging sensor and the wireless communication (XBee)
was found to be quite stable at 0.3928W with XBee consuming 0.166W irrespective
of the size of data being transmitted. Thus, the overall ancillary power consumption
model now becomes:

Panc = {5.7318e−5 fs + 0.0293}︸ ︷︷ ︸
PSensing

+ {0.166︸ ︷︷ ︸
PXBee

+ 0.3928︸ ︷︷ ︸
PMCU

}

︸ ︷︷ ︸
PC

(5.47)

In Fig. 5.16, the energy utilized as the robot covers more ground is showcased.
Localization was disregarded for these experiments so that the computational energy
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Figure 5.14: Indoor trajectories. Box type trajectory on planar grounds and oscillating
trajectory on inclined plane. PSi represents pit stops where the robot was made to stop for
pre-determined time period. This was done to emulate scenarios where a robot may need to
stop and process data during a real mission.
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Figure 5.15: Energy consumed by sonar. Illustrating modulating in ancillary power consumed
by HC − SR04 Ultrasonic ranging module when operating at various frequencies fs.
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could be quantified. Quantifying the energy consumed by the robot for performing
SLAM, Localization, etc., is beyond the scope of this work as they require low level
cache management for the on-board processors and also depend on the nature of the
source code used. Besides, no matter how accurately these factors can be accounted for,
the energy that goes into these components does not contribute to the maneuvering
energy and hence, the author chose to ignore them. An interesting fact to note in
this figure is that, owing to lack of localization, the robot drifted from its assigned
path especially at high duty cycles which was even more pronounced on the inclined
plane. If the robot were to precisely follow the box trajectories and the oscillating
trajectories, then the trends would have been quite linear. Nonetheless, this was not
the objective of the experiments. The trajectories were pre-coded since the robot was
not meant to be fully autonomous but in real world scenarios a robot usually does not
follow repetitive trajectories. Also, the distance covered is maximum when the duty
cycle is 100% whilst it decreases as the robot spends more time stopping for gathering
and processing information. This is in accord with the definition of the duty cycle.

Fig. 5.17 shows the estimation error for the simplified range estimation model
for both planar and incline environments. In this figure, negative values indicate
underestimation i.e., achieved range was larger than the estimated values whilst the
positive error represent vice versa. The accuracy of this model was evaluated to be
66% ∼ 91%. However, as the duty cycle is reduced further, the model sometimes has
trouble to precisely estimate the power consumption for ancillary functions which
leads to erroneous estimates for the achievable range. The reason for this could be
attributed to the fact that at lower duty cycles, the robot transmits larger amounts of
data thus, the ancillary power must also account for the data transmission rate which
is beyond the scope of current model but was accounted for in the unified framework.
Additionally, on-board vibrations introduce noise in sensor data being acquired which
also affects the model performance. Thus, the performance was logged for very noisy
data.

The component wise power consumption was also evaluated for which a detailed
breakdown is shown in Table 5.2. The maneuvering power was estimated for fixed
average speed of ≈ 1m/s and the sensing power was estimated for sampling rates
ranging from 0Hz ∼ 100Hz. For the case of 0Hz, we implemented a low power sleep
model for our sensor to significantly reduce the power consumption. This could come
in very handy later on, when designing a controller/ real time scheduler, that can
divert the power from ancillary branch to maneuvering branch to further enhance the
achievable range by cutting down unnecessary power consumption.

The minimum and maximum percentage of a component’s power to the total system
power are shown in Table 5.2. To find the minimum, the component is assumed to be
running at its minimum power whilst the rest of the system consumes the maximum
power and vice versa for the maximum [20]. From this table, it can be show that
when on-board computation is not required, 90% of the total power is consumed
by the motors for maneuvering. However, when adding an embedded computer to
the ancillary branch (which consumes 8W∼15W power [20]), this composition will
go down significantly (30.5%∼36.5%). This composition will be further affected by
varying velocities for traversal and type of sensors. Thus, accurately estimating the
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Figure 5.16: Energy utilization for flat plane and incline slope experiments.
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Figure 5.17: Operational range estimation for flat plane and incline slope experiments.
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range is all the more critical in such cases.

Table 5.2: Power Consumption Breakdown

Component Power (W) Composition(%)
Maneuvering 4.8158W ∼ 6.8456W 89.13% ∼ 92.02%

Sensing (Ultrasonic Senor) 0.0293W ∼ 0.0348W 0.46% ∼ 0.54%
Wireless Communication 0.165W ∼ 0.166W 2.23% ∼ 3.05%

Micro-controller unit (MCU) 0.3928W 5.29% ∼ 7.26%

5.6.3 Outdoor experiments

In this section, the author explains the outdoor experimental conditions in which the
unified framework from Section 5.5.4 was evaluated. For the UGV, 36 experiments
were carried out on various terrains comprising of either grass, tiles, or asphalt with
varying elevations and wheel rpm of 80 and 1404. The reason for considering these
terrain types individually was the lack of capable hardware to determine change in
terrain types on-the-fly and accordingly adjust the coefficient of rolling friction for
making online prediction. This could be achieved if a camera and ladar were to be
used to subtract the background information and match the features of the foreground
with pre-selected images of the terrains that can be seen in real field trials. Such ideas
have been explored in works like [21] that use ladar and camera to complement each
other to detect obstacles and classify the terrain. However, this procedure fails in lack
of proper lighting conditions and additionally, estimating the rolling friction coefficient
was beyond the scope of this work.

For system efficiency calibrations, 6 minimal load tests at 100 and 200 rpm were
performed. The average rolling coefficients for terrain resistance offered by grass, tiles,
and asphalt were set as 0.099, 0.066, and 0.062, respectively and the prior information
of γ to be used in the offline estimation was set based on Table 1 of [7]. In order to

deduce the average values of the parameters, we used k
[0:t]

terr ← Ẽ[0:t]−AE[0:t]

Fslopes
. Similarly,

the equations for γ[0:t], θ
[0:t]

can be deduced.
As for the UAV, 30 field trials were executed which were split into two different

sets, viz., hovering and motion. For hovering, only the altitude of the UAV was varied
and the human operator occasionally had to send control commands to maintain
the position of the drone within a set perimeter. As opposed to this, in motion
case, the human operator constantly fed linear motion commands to the drone whilst
occasionally commanding the drone to hover (in cases when wind gusts lead to
dangerously high velocity gains). This not only helped ensure the safety of the drone

4Given the wheel radius of 65mm, these translate to v = 0.544, 0.952 m/s respectively. The
velocities were pre-set at the beginning of the field trial and were not monitored during the field trial.
For the offline and online models, the heading velocity remained constant and for turning, while one
side of motors were slowed by δ, the other side was sped up by the same factor. This ensured that
the average velocity of the center of mass of the robot remained constant.
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and its operator but also helped emulate the real life scenarios in which the drone
may loose connection to the base station (Fig. 5.7b) or corruption of mission critical
information (Fig. 5.7a). The control commands were sent at operator-defined data
transmission rate such that the Pcommunication in Eq. (5.15) remained constant. 10
experiments for hovering at different altitudes varying between [1, 10] meters were
carried out. Furthermore, 20 tests at 5 different operational velocities5 for motion to
account for a mix of wind gusts, altitude adjustments, variable mission speeds, and
trajectories were also considered. Experiments were performed at intervals of 2 hrs so
as to account for changing environmental factors like wind and weather conditions.

In case of UAV, the wind compensation angle of the UAV was constantly monitored
to evaluate the adjustments in the thrust that the robot needs to make to maintain
flight stability. Through simple geometry, this was then used to calculated real-time
values of k(t)env as explained in Fig. 5.18. From this figure, it can be seen that the net
stabilization required on the part of the rotorcraft will be CB = OB(1−cos(θ)). When
the rotorcraft was maintaining a constant altitude, the value of OB = mRg. So here
CB represents k(t)envmRg as explained in Eq. (5.27). Therefore, k(t)env = 1− cos(θ).

Θ

O
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B

x y

x’

y’

C

xy

x’y’

CB

OB

OA

Θ

Initial orientation

Adjusted orientation

Net Adjustments

Rotor thrust (T)

Adjusted thrust

Wind compensation angle

Figure 5.18: Geometric analysis of wind compensation angle to deduce the value of parameter
k(t)env. Suppose the UAV is stable, then the orientation is represented by xy and OB
represents the thrust (T ) exerted by the UAV for maintaining flight. Now, assume that
because of sudden wind action, the rotorcraft is displaced by an angle θ (which can also
be interpreted as wind compensation angle) and the new orientation is x′y′. So, OA will
represent the same thrust under the sudden influence of the wind at an angle θ to the previous
direction. Thus, the net altitude destabilization effect of the wind is given by BC.

For Eq. (5.23) and Eq. (5.38), as was discussed earlier on, to make predictions of
dmax, the average resistive forces need to be approximated, which in turn are factors
of k(x)terr and k(t)env. So, to estimate these parmeters in real-time, the ARMA filter
is fed with real-time mission data.

5The translation velocities were chosen from [0.1, 0.2, 0.4, 0.6, 0.8] m/s which are subject to brief
change upon change in heading direction. E.g., consider operational velocity of 0.1 m/s along +X
direction. Upon request to change direction to −X, the velocity during this brief transition period
will vary from 0.1 m/s in +X to 0 m/s in +X followed by 0.1 m/s in −X direction. This velocity
profile cannot be feasibly estimated for offline model, so we directly used the operational velocity
(0.1 m/s for this e.g.), while for the online model, velocity was continuously observed, so the average
velocity till current time step was used.

104



Chapter 5. Operational Range Estimation 5.6. Experiments

5.6.4 Batteries used for field experiments

Since the ArDrone comes factory fitted with a mini-tamiya connector, the stock
battery i.e., 11.1V@1500mAh high density LiPo battery was used for it. However,
having custom built the Rusti V2.0, the following 2 LiPo batteries were considered for
field trials:

• 11.1V@2200mAh

• 11.1V@1500mAh (also used for ArDrone)

Subsequent sections discuss the results obtained for the UGV followed by UAV
during the outdoor field trials.

5.6.5 Case 1 : UGV

In Figs. 5.19 - 5.21, both the offline and online models are pegged against the true
achieved range during real field trials on grass, asphalt, and tiles, respectively. For
offline estimation,based on Eq. (5.23), it was previously explained that for estimating
the operational range, the model needs prior information about θ, γ, and kterr. Also,
the mechanical efficiency6 is unascertained. The value for γ was obtained based on
Table 1 of [7], and that of θavg was empirically set to 5◦. Estimating the values of kterr
and RustiΩMan = Π3

i=2¬ηi are rather challenging and require some prior field experience.
Owing to lack of any such experience, the author rather chose to modify Eq. (5.23)
such that the maneuvering efficiency term i.e., RustiΩMan is now considered within the
integral and the new term kterr

RustiΩMan
was treated a single, terrain dependent variable.

The average value of this terrain dependent factor was then determined through a series
of field trials as kterr

RustiΩMan
= [3.09, 2.81, 2.69] for grass, asphalt, and tiles, respectively.

For online estimation, the belief of the model over the net operational range achievable
is updated in real-time based on cumulative performance characteristics. Effectively,
on an average, the net true distance covered by the robot at 0.544m/s and 0.952m/s
are almost the same on all types of terrain. This can be attributed to the fact that
because of the use of high torque DC motors in Rusti V2.0, the net ancillary energy
requirements are negligible compared to maneuvering energy (which is independent
of operational speed). From Eq. (5.23) we see that this in fact will be the case if
Panc � Pman. Also, the true distance covered using the 2200mAh battery is greater
than that covered using the 1500mAh battery but they are not in proportion of the
battery capacities i.e., the ratio of battery capacities is 22

15
= 1.47 but the ratio of

achieved true range is 6.67
5.17

= 1.29. This difference can be attributed to the fact that
the mass of the robot is slightly higher when using the 2200mAh battery which dilutes
the effect of extra charge capacity. However, these proportions will be drastically
affected so much so that the maneuvering energy consumption could account for less
than 50% of the net energy supplied by the battery [20]. Having said this, it must
also be pointed out here that this proportion depends on the mission profile and the

6RustiΩMan is a factor of only motors and will account for both frictional losses as well as heat
losses in motor
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load borne by the sensor array being using. These are beyond the scope of this work
as the robot with minimal sensor array was used for analysis of operational range.
Nonetheless, if the proportions were to change as was mentioned earlier, then the need
for high accuracy in operational range estimation becomes ever more pronounced.

Then in Fig. 5.22 a bar plot is shown to evaluate the average accuracy of both
the proposed offline and online models along with their respective variances. As was
expected, the offline model tends to over-shoot or under-shoot the true operational
range incurring extreme errors with high variance whilst the online models tends
to attain the true operational data with a very high accuracy and low variance. It
must be pointed out here that while traversing on grass using the following settings:
1500mAh@0.952m/s, both the models show comparable average performance while
for 2200mAh@0.952m/s the offline model performs slightly better. Despite this,
the variance of the offline model remains higher which can also be confirmed from
Fig. 5.19. Overall, the online model shows ≈ 60% enhanced accuracy as compared to
its adversary for operational range estimation of Rusti V2.0.

5.6.6 Case 2 : UAV

Fig. 5.23 demonstrates the real world performance of the offline and online estimator
models for the case of a UAV.

For offline estimation, prior information regarding the operational environment of
the robot is required to make meaningful predictions of its operational range. Since
there is no prior research explaining how the values of the parameter k(t)env vary,
an additional set of 5 experiments (each in varying conditions) were performed and
their data was averaged for estimating the value of the parameter k(t)env which was
found to be ≈ 0.01. Using this prior information, the maximum operational range
was obtained using the offline model for the 20 experiments presented here. As the
mean estimation error for the offline model is about 30 meters in each experiments,
with even lower errors at slower speeds, the value of k(t)env = 0.01 is claimed to be
optimal.

For online estimation, the estimate of the net operational range is updated using
the auto regressive average of the data acquired in real time. Thus, no prior mission
information was deemed necessary to deduce the value of the parameters k(t)env and v.
Instead, they are deduced based on real-time mission information. Upon take-off, the
drone is initially quite unstable owing to significantly high rotor rpm required for lift-off
which then settles to a stable rpm for hovering. During this time, not only the in-house
electronics of the drone are unreliable, but also the GPS sensors used needs time to
sync with satellite information. This initial instability in the ArDrone and the sensor’s
data, just after take-off, is what the author calls as the burn-in phase. The data of
the burn in phase is discarded and the online estimation frameworks is activated only
upon ArDrone’s stabilization. For the purpose of continuous representation in graphs,
the data was interpolated during this phase resulting in the initial straight line trends
observed during the burn-in phase of the plots. Also, as is evident from the plots, the
online estimator converges to the true distance as the mission progresses. As more
and more mission data becomes available, the estimation performance of the online
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Figure 5.19: Rusti’s operational range estimation for grass. Rows 1−2 represent experiments
performed using 11.1V@1500mAh battery @80rpm followed by @140rpm. Rows 3 − 4
represents the similar pattern for 11.1V@2200mAh battery respectively.
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Figure 5.20: Rusti’s operational range estimation for asphalt. Rows 1 − 2 represent
experiments performed using 11.1V@1500mAh battery @80rpm followed by @140rpm. Rows
3− 4 represents the similar pattern for 11.1V@2200mAh battery respectively.
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Figure 5.21: Rusti’s operational range estimation for tiles. Rows 1− 2 represent experiments
performed using 11.1V@1500mAh battery @80rpm followed by @140rpm. Rows 3 − 4
represents the similar pattern for 11.1V@2200mAh battery respectively.
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Figure 5.22: Range estimation error for Rusti while traversing on grass, asphalt and tiles
respectively. Here b1, b2 refer to the 1500mAh and 2200mAh batteries and v1, v2 refers to
0.544,0.952 m/sec velocities respectively.
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Figure 5.23: ArDrone’s Operational Range Estimation. First row represents experiments
carried for v = 0.1, followed by v = 0.2, 0.4, 0.6 and 0.8 m/s respectively. Columns represents
multiple experiments at corresponding v. N.B.: Results are only comparable across
columns owing to different scales of plots across rows.
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model becomes significantly better than its offline counterpart.
It must also be pointed out here that the variations in the online estimator are

quite profound during the early stages of the mission which can be attributed to the
fact that the estimator is trying to update its belief with sparse and limited amount of
data, but it quickly stabilizes as the amount of data grows. Also, it might seem that
increasing the operational velocity (v) always leads to an increase in the operational
range (d). However, when the ArDrone attains an operational velocity vopt which is
high enough, so much so, that the aerodynamic drag forces acting on the body of the
drone is higher than that on the propeller, the theoretical maximum operational range
(dmax) will be attained and any further increase in the velocity will result in decrease
in the operational range. Besides, such high velocities (vopt) are not attainable by
current multi-rotor UAVs.

The author would also like to highlight that the variance in the input data (wind
compensation angle) being very low, results in low variance in k(t)env. This low
variance in k(t)env, coupled with its low absolute value (1% on average) results in very
low variance in predicted distance, often less than a meter. So, for the sake of clear
understanding of the readers and legible visual representation of the field trials, the
variance in predicted distance was omitted.

Additionally, Fig. 5.24 showcases how the energy stored in the battery is consumed
as the mission progresses. An interesting fact to note here is that the trends for
both the hovering case and motion case are quite similar. The reason for this can be
attributed to the fact that the value of k(t)env which represents the average excess
percentage of thrust that needs to be exerted to maintain stability and velocity, owing
to changing environmental conditions, remains below 2%7. So, the major component
of maneuvering energy is utilized to maintain flight instead of stabilizing the rotorcraft
and maintaining its velocity.

Finally, Fig. 5.25 shows bar plots for the operational range estimation performance
for both the discussed online and offline models. For this,the average estimation error
of both frameworks for each operational velocity is shown. It can be clearly seen from
the graph that the online model is ≈ 58% more efficient than its counterpart. Also,
to clarify the high offline estimation error at v = 0.1 m/s, the author would like to
point out that even for small amounts of hovering time, the percentage difference in
the average velocity and operational velocity is considerably higher than in cases of
higher velocities which translates to higher percentage error in prediction using the
offline model.

5.7 Summary

This chapter addresses one very critical aspect of autonomous navigation ignoring
which, could lead to mission failures and render the robots strangulated amidst the
field. The problem being addressed can be summed up under the keyword “operational
range estimation” for which the author discussed 2 framework in the chapter:

7Analyzed from the data obtained from motion experiments at varying velocities as shown in
Fig. 5.23.
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Figure 5.24: Battery Decay for UAV while hovering and motion.
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Figure 5.25: Range estimation error. Plot showing error in operational range calculated
using the offline and online models along with corresponding standard deviation.
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• Simplified Framework: This framework was designed explicitly for ground
robots operating in smooth terrains with fixed gradient which is usually the case
for indoor environments. This framework comprises of two components viz.,

– Simplified Energy Distribution Model: explains how the energy is distributed
througout the robot and all its components. The maneuvering energy model
accounts for planar and elevated terrains while the ancillary energy model
includes energy consumed by sensors along with the unwarranted losses.
This model can be used to deduce the net energy available for traversal.

– Simplified (Offline) Range Estimation Model: transforms the net traversal
energy into operational range and also proposes a theoretical upper bound
for it.

• Generic (Unified) Framework: This framework was presented as a further
enhancement over the simplified variant and encompasses variety of robots
operating in myriad environmental conditions (harsh and otherwise). This
framework generalizes the models of the simplified models as follows:

– Generic Energy Distribution Model: extends the previous variant of
maneuvering energy model to various classes of robots. Additionally, the
ancillary energy model now accounts for data transmission rate for short
range wireless communications.

– Generic Range Estimation Model: as opposed to previous offline model for
smooth terrains, this model now has an offline variant capable of handling
uneven terrains and unforeseen environmental disturbances. Not only this,
an online model is also proposed to account for sudden changes in the
mission profile as they present themselves. Both the extensions were studied
in-depth for UGVs and UAVs.

The strengths of the Generic (Unified) Framework are highlighted below:

• The unified framework is equally applicable to both commercial and custom-
built robots alike, provided, additional sensors can be incorporated to log the
appropriate data.

• The concept of duty cycle proposed herewith, brings this model really close to
real-world scenarios making the framework applicable without hassles.

• Having obtained average accuracy of almost 93.87% with the online variant and
82.97% with the offline variant, it is safe to conclude that framework is by far
the state-of-the-art operational range estimation framework for all robots that
may be considered for field trials.

All that remains now, is to couple this framework with energy efficient path planners
and then the robots can be guaranteed to return to base station by the end of their
mission (not accounting for impromptu hardware failures).
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Chapter 6

Fusion of Distributed Gaussian
Process Experts (FuDGE)

“ Information never hurts, but whom do we trust ? ”
Kshitij Tiwari, 2017

In Chapter 4, the fully decentralized active sensing framework called RC-DAS
was discussed, which is suitable to disconnected multi-robots teams. In doing so,
multiple models of the environment were obtained which may have slightly conflicting
estimates about the internal dynamics of the environment. This is due to the fact
that every robot could only observe part of the field which may not provide enough
training samples to generalize the dynamics over those regions that are far away. In
order to resolve such conflicting local models, the author now discusses a novel fusion
technique to fuse all local models into one globally consistent model which can now
be inferred as the representation of the overall dynamics of the environment. The
objective now is:

Given multiple models of environmental dynamics, which model should
be trusted?

6.1 Various Notions of Fusion

The problem stated above is referring to a many-to-one mapping dilemma wherein
each robot tries to generate a model which it thinks is accurate but having obtained
M models from M robots, should one or all of them be selected? If one had to be
chosen, then the information acquired by the others would go in vain, but if all were
retained, then the underlying environmental dynamics cannot be represented until one
global model is contructed. To solve this problem, a pointwise fusion of distributed
GP experts or FuDGE [1] is discussed in this chapter.
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Figure 6.1: Sensing Scenario. Illustration of the sensing scenario in which the team of mobile
robots operates under resource constraints. The aim is to gather optimal observations to make
a prediction for the environment defined by posterior mean µ∗m and posterior covariance
Σ∗m. Estimate 1 − Estimate 4 represent the 4 individualistic prediction maps made by
the 4 robots based on their training samples. x>m represents the next-best-location chosen
by the RC-DAS active sensing for the mth expert. Fused Map is the globally consistent
fused prediction map generated by using the proposed fusion framework. The objective is
to make the Fused Map as similar to the Ground Truth as possible. These maps have been
interpolated for ease of visualization. In reality, we just have a discrete collection of predicted
measurements at pre-determined locations. Figure based on [1].
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Similar works in the domain of applied machine learning use the term “fusion” to
combine multiple sets of heterogeneous sensor data using GPs as discussed in [2–5]. In
the context of multiple sensors mounted on robots, the state estimation can be done
effectively by “fusion” of noisy information provided by various sensors using Kalman
filters [6–8]. Alternatively, the term “fusion” in the machine learning literature is used
to define an ensemble of probabilistically fused prediction estimators [9–14], which
is the notion that this work will be adopting. This work can be positioned at the
junction of machine learning and robotics literature and the author intends to use the
term “fusion” to refer to a probabilistic amalgamation of various individually trained
unbiased estimators wherein each robot itself behaves as such.

6.2 Existing Fusion Approaches

Existing model fusion techniques from the literature can be broadly classified into
two main categories. First category is models can be called the Product of Expert
(PoE) models like the Bayesian Committee Machine (BCM) [15] and generalized
Product of Experts (gPoE) [11]. In the BCM framework, multiple independent GP
experts are trained on subsets of the whole training dataset, and their confidence
is evaluated based on the reduction in uncertainty over the test points. Although
this approach is promising in terms of distributing the computational load of a single
GP over multiple GP experts, it is not feasible for a real robot implementation. The
reason for this shortcoming is that, this approach works only under the assumption
that all GP experts are “jointly trained” such that they “share the same set of hyper-
parameters” [9]. Doing so, from a machine learning perspective i.e., implementing on
a work station with sufficient computation power is feasible and can be realized e.g., by
deploying multiple threads, each training a local GP model over the subset of training
data in a synchronized fashion and sharing the same set of hyper-parameters. The
global model can be hierarchically combined or the same can be done in one pass. On
the other hand, for a real robot team this would require precise time synchronization
between all memebers and an all-to-all synchronized communication (as was used
in the recent work [16]) in order to ensure joint training over subsets of dataset.
This problem can be easily tackled using the generalized Product of Experts (gPoE)
models from [11], wherein the fusion is carried out over independent GP experts while
their contributions are determined, e.g., by their respective differential entropy scores
c.f. Definition 6.1. Both of the above models are log opinion pool models but BCM
model ensures consistency in the sense that predictions are guaranteed to fall back
to the prior when the testing data points fall significantly far away from the training
data.

Second category can be called as the Mixture of Expert (MoE) models [12–14]
wherein each GP expert specializes in different partitions of the state space and
the mixture ensemble automatically allocates the expert its corresponding specialist
zone. This model is a linear opinion pool of experts where the weights are given by
input-dependent gating functions. In order to design apt gating functions, some hints
can be taken from the neural network literature [17–19], which introduced a point-wise
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locally weighted fusion (LWF) technique to evaluate the performance of a predictor
over a neighborhood around the probe-point. However, these approaches require a
sufficiently dense training dataset with access to ground truth. Hence, they cannot
be applied directly in a real robotic setup wherein the robot never knows the ground
truth. Even after visiting an observing a certain location, the robot only acquires a
noisy variant of the ground truth.

Beyond the above mentioned solutions, there are other solutions in the literature
that deal with multi-agent decentralized exploration like [20] wherein a Dirichlet
Process Mixture of GP experts is used to model a decentralized ensemble of GP
experts. In this approach, the requirement of a control parameter α that manages the
addition of a new cluster, enforces the need of supervision (by base node or human
opertors) that can control and instruct a new member to be added to the team when
a new cluster is created.

Aside from the above two category of model fusion, there are other stand alone
researches which do not fall under any category. For instance, an alternative solution
was proposed for multiple GP experts for decentralized data fusion by the authors
in [10]. This work does not belong to any of the two categories summarized above,
and, in this work, the robots share the measurements gathered with their nearest
neighbors using consensus filtering.

6.3 Limitations of Existing Works

Robots may need to operate in harsh environments where peer-to-peer and peer-to-
base communication channels are unrealiable or sometimes even costly in terms of
transmission costs (power consumption, latency etc.). In such scenarios, sharing the
information with the peers is infeasible. Besides, if the sensing area to be monitored is
significantly large, then there is a high likelihood that the peers may never meet each
other and in such settings the solutions proposed by [10] would not suffice. Similarly,
when a multi-robot team is tasked with observing a target phenomenon of interest,
members are usually not swapped or added / removed dynamically while the team is
actively exploring. This renders the works of [20] ineffective. As opposed to these, the
author suggests an iterative weighted fusion technique suitable for GPs that allows
us to evaluate the proximity of a probe (test) point to the training samples of GP
experts while evaluating the confidence of each expert.

Definition 6.1 (Differential Entropy Score). Let σ2
∗∗(x) represent the prior variance

and σ2
∗(x) represent the posterior variance over a certain location of interest x. The

the differential entropy score is given by the difference in the differential entropies :

Score = 0.5× (log σ2
∗∗(x)− log σ2

∗(x)) (6.1)
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6.4 Predictive Model Fusion for Distributed GP

Experts (FuDGE)

At the end of exploration (mission time) of all members of the mobile robot team, M
diverse GP experts are acquired, which were each trained on their respective subsets of
training data and have generated a predictive map over the entire target phenomenon.
To fuse the predictions from multiple models into one globally consistent model, first,
a consistency check is performed, which involves finding the probe (test) locations
that are shared by all the GP experts.

For this, let Uglobal =∆ {U1∩U2∩ . . .∩UM} represent the super set of all unobserved
nodes that were never visited by any robot. Similarly, let Oglobal =∆ {O1∪O2∪. . .∪OM}
define the super set of all observed nodes that were visited by all robots.

6.4.1 Fusion Strategy

Let a probe point be represented by Q ∈ Uglobal and defined as a point of interest for
which the predictions from multiple GP experts must be fused. The fusion algorithm
is defined next.

6.4.1.1 Pointwise Mixture of Experts using GMM

In what follows, first, a premise of the fusion algorithm is outlined followed by the
detailed description of the fusion algorithm itself.

Premise: GPs are kernel based methods as was explained in Chapter 3, the author
utilizes isotropic squared exponential kernels as shown in Eq. (3.1). By definition,
the correlation between locations decays exponentially as the spatial separation
increases. Thus, the predictions are made with highest confidence nearby the observed
locations and the confidence drops gradually as the distance increases [21]. This is
also supported by Tobler’s first law of geography which states that: “Everything is
related to everything else, but near things are more related than distant things” [22].

Model Description: Having laid down the premise of the model, the author
believes that the reader(s) have a good intuition about the nature of correlations
(given by Eq. (3.1)) in environment monitoring phenomenon. Thus, now is the right
time to introduce the model fusion technique hereby referred to as FuDGE. For this,
first, independently1 trained GP experts are obtained by utilizing the distributed
GP framework from [23] and running the RC-DAS information acquisition function.
Then, during the test phase, the expert predictions need to be combined based on
the proximity of a test (probe) point to the experts’ training samples. Thus, on the
lower level independent prediction models are deduced and on the higher level a fused
globally consistent model is obtained making this a 2−layer model.

The length scales inferred by the GP experts represent the standard deviation in
the spatial variation of measurements along the ith input dimension σi. A probe point

1not the same as conditional independence. Just refers to individual models maintained by each
expert
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Q lying too far2 away from the training points of the mth expert will not be predicted
confidently by the mth GP. This is attributed to the fact that a stationary squared
exponential covariance kernel from Eq. (3.1) was used to model the environment.
Using this covariance structure, it was inferred that correlation in measurements at
two locations x and x∗ will decay as the spatial separation between them increases
as was also explained previously in the premise of the model. Thus, a multivariate
Gaussian distribution can be placed over the Om ∼ N (Q|Oj

m,Σm) where j represents
the jth training sample of the mth expert and Σm =∆ diag(l2lat, l

2
long). The spread of

the multivariate normal distribution is defined in terms of length scales along the
Latitude and Longitude of the corresponding GP expert. This gives rise to one
Gaussian mixture model (GMM) over the training data points of each GP expert.
The responsibilities of this hierarchical GMM are then defined as:

log p(m|Q,Oglobal) =∆ Σxi log p(Q|xi,Σm) (6.2)

In (6.2), xi refers to [Oglobal]i, Σm refers to the covariance of the Gaussian
distribution for the mth GP expert and p(Q|xi,Σm) = N (xi,Σm). This is illustrated
in Fig. 6.2 where all the locations that were unvisited by the robot (m) during its
exploration are referred to as the test set for that robot Um. The responsibilities of a
hierarchical Gaussian mixture model in Eq. (6.2) are such that
log p(m|Q,Oglobal) ∈ [0, 1] and ΣM

m=1 log p(m|Q,Oglobal) = 1. Then, the fused
prediction at probe point Q can be represented as the weighted fusion of predictions
from all models as:

µQ|Om,θm =∆ ΣM
m=1

(
log p(m|Q,Oglobal)µ

Q
m

)
(6.3)

In (6.3), the fused prediction at probe point Q is defined as the sum of predictions
(µQm) weighted by the sum of log-responsibilities of a GMM (log p(m|Q,Oglobal)) for
each expert m ∈ {1, . . . ,M}.

Additionally, the confidence of the fused estimator at the probe point Q can be
explained by the net variance at the probe point Q as follows:

σQ|Om,θm =∆ ΣM
m=1

{
log p(m|Q,Oglobal)[(σ

Q
m)2 + (µQm)2]

}
−

(µQ|Om,θm)2 ,

=ΣM
m=1

(
log p(m|Q,Oglobal)(σ

Q
m)2
)

+

ΣM
m=1

(
log p(m|Q,Oglobal)(µ

Q
m)2
)
−

(µQ|Om,θm)2 .

(6.4)

Since (·)2 is a convex operator, using the Jensen’s inequality [24], we know that
ΣM
m=1

(
log p(m|Q,Oglobal)(µ

Q
m)2
)
≥ (µQ|Om,θm)2. Now, Eq. (6.4) can be interpreted as

the weighted combination of variances of the components plus a correction term which
is always positive. The correction term accounts for the divergence of respective
component means (µQm) from the mean of the mixture (µQ|Om,θm) for the probe point
Q.

2outside the 99.5% confidence bound
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Figure 6.2: FuDGE. Illustration of weighted fusion performed using FuDGE by positioning a
2D Gaussian distribution N (xi,Σm) to evaluate the responsibility of a GP expert over a probe
point. In this Figure, locations marked in green asterisk (*) represent the training locations
that were visited by the robots during their respective missions, while those highlighted by red
asterisk (*) represent the probe points over which the predictions are to be fused and black
squares (�) represent the start location of each of the 4 robots. For ease of visualization,
only the first training sample of each of the GP expert is shown and the process is iteratively
carried out over all query points. For this illustration, 4 experts were considered, each of
which are represented by a Gaussian contour plot centered around their first training sample
respectively.
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Algorithm 3 FuDGE (∀m∈Mµm,∀m∈Mθm, Uglobal,∀m∈MOm)

1: Input:

• ∀m∈Mµm : predictions from all robots

• ∀m∈Mθm : hyper-parameters from all robots

• Uglobal , {U1 ∩ U2 ∩ . . . ∩ UM} : locations for fusing predictions

• ∀m∈MOm : Observations from all robots

2: Output:∀Q∈Uglobal
µQ : FuDGE Predictions

3: for ∀Q ∈ Uglobal do
4: for each robot m do
5: Σm =Diagonal(θ2

m[1], θ2
m[2]) . Construct variance matrix using spatial

length scales
6: LQm =

∑
∀xm∈Om

log(p(Q|xm,Σm)) . Compute the Responsibility
7: end for
8: Normalize LQm such that

∑
∀m∈M LQm = 1

9: µQ =
∑
∀m∈M LQmµ

Q
m . Fuse the weighted predictions from all robots

10: end for
11: return µQ

The FuDGE approach is summarized in Alg. 3 and the details are as follows: The
algorithm requires posterior estimates from all experts (∀m∈Mµm) along with their
respective hyper-parameters (∀m∈Mθm) generated based on corresponding observations
(∀m∈MOm). Upon performing consistency check, the set Uglobal is obtained. Then, for
each probe point Q ∈ Uglobal (line 3), all experts are queried to obtain their learnt
hyper-parameters and the covariance matrix is generated in line 5. Similarly, the
responsibility of each expert is obtained in line 6 by using Eq. (6.2). The responsibilities
are then normalized to transform them into weights in line 8. Finally, a weighted
summation is performed to obtain the fused prediction for the current probe point Q
as shown in line 9. After iterating over all probe points, a list of fused predictions µQ

is returned in line 11.

6.4.1.2 Generalized Product of Experts Model [11]

This ensemble predicts the measurement at a test point as a weighted product of
predictions from all the experts for the said test point. The gPoE model allows
flexibility in the definition of weights (confidence) of each expert which are adjusted
based on the importance of an expert [9]. In the original work, a differential entropy
score was used to define the weight of the experts based on the improvement in
information gain between the prior and the posterior c.f. Definition 6.1. Following
this definition, this work also defines the weights (βm) of the mth expert and fused
predictions generated by an ensemble of M GP experts are obtained as follows:

βm =
1

2
(log(σ2

m∗∗)− log(σ2
m(x∗))) (6.5)
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β̂m =
βm

Σmβm
(6.6)

µgPoEU |O,Θ =∆ ΣgPoE
UU |O,θm

∑M

m=1
β̂mΣ−1

UU |Om,θm
µU |Om (6.7)

(ΣgPoE
UU |O,Θ)−1 =∆

∑M

m=1
β̂mΣ−1

UU |Om,θm
(6.8)

In (6.5), the differential entropy score is defined based on Definition 6.1 and in (6.6)
the confidence weight per probe point x∗ is evaluated by finding the differential entropy
between the prior variance σ2

m∗∗ and posterior variance σ2
m(x∗) for the probe point x∗

such that Σmβ̂m = 1. The limitation however is that this model is over-conservative
and often over-estimates the variance. Additionally, there is no correction term in
the variance to rectify over-estimation and thus, the author proposed a novel fusion
technique discussed above which caters to such limitations.

6.4.1.3 Multiple mobile sensor nodes generating single GP

Given the availability of a fusion center with sufficient processing capabilities that can
fuse the models of all the robots, an obvious question then arises:

What happens if the multiple robots were simply considered as mobile sensor
nodes, each tasked with just gathering observations while the fusion center
acquires all observations and makes a single GP directly?

Using the mobile robot team simply as sensor nodes gathering observations for
the sink node (fusion center) instead of modeling the environmental dynamics has the
following limitations:

• This would lead to a paralelly connected topology wherein all agents are in direct
contact with the fusion center (base station). This transforms the exploration
phase itself from disconnected- decentralized to paralelly connected-centralized
architecture. As such, such the base station fail at some point, the entire team
will get strangulated and the model will be completely lost.

• Acquiring data from all agents in real-time would be an additional challenge
and would increase the computational time of the map phase.

• If the single GP is directly created at the end of the missions of all agents then
the robots would be performing active sensing based on fixed hyper-parameters
which cannot be updated as more data is being acquired.

• The computational complexity is again cubic in the size of the data acquired by
the entire team which is much larger than the current setting.

• Potential congestion

• Vulnerability in case of failure of sink node
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6.5 Map-Reduce Gaussian Process (MR-GP)

Framework

The active sensing architecture along with the fusion mechanism can all be assimilated
into one sequential framework as shown in Fig. 6.3. Thus, first the RC-DAS objective
function can be used to acquire training samples and make one model per robot.
Similar procedure is repeated for all M robots each behaving like a self-sustaining
GP expert in a fully decentralized setting. This is referred to as Map phase. Upon
termination of the mission of all robots and successful retrieval of all M robots at the
base station, a one-shot fusion of all models can be performed to obtain a globally
consistent model. This stage is referred to as the Reduce phase and hence the overall
framework is called Map-Reduce Gaussian Process (MR-GP). The requirement for
the robots to return to the base station for the fusion procedure necessitates the need
for operational range estimation (discussed in Chapter 5) and information acquisition
mechanisms like RC-DAS † (discussed in Chapter 4). This not only allows models to
be fused at the end, but also ensures that no information acquired by any agent goes
in vain.

Figure 6.3: MR-GP framework. Our sequential architecture for Map phase and Reduce
phase. During the Map phase each robot (GP-expert) generates is individual model and
tries to optimize it as far as possible. Upon mission termination from all members of the
team, during the Reduce phase, the base station, performs a point-wise weighted fusion of all
models to obtain a single globally consistent model. The performance of the fused model is
directly influence by the quality of each individual model.
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6.6 Experiments

For empirical analysis, the USA Ozone dataset is used like earlier. Based on the
dataset, the model fusion quality is evaluated in unison with the variety of active
sensing schemes discussed thus far. N.B.: Since NN gathers only correlated
observations, the author omitted the analysis with respect to nearest
neighbors. Only RC-DAS and full-DAS are considered here.

6.6.1 Fusion quality

In this section, the average RMSE is assesssed which represents the average of the
errors of all robots between the estimated model and the ground truth evaluated over
each element of Uglobal.
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(b) Performance of FuDGE using RC-DAS

Figure 6.4: Fusion Performance. Evaluating average fusion performance for full-DAS and
RC-DAS v/s Length of Walk [Ozone Dataset]

Fig. 6.4a shows the fusion performance of full-DAS against the average performance
of independent robots labeled as IndepGP, the state-of-the-art gPoE and the single GP
case evaluated over Uglobal. IndepGP refers to the average of individual performances
of all robots as evaluated over Uglobal. As explained earlier on, this does not mean that
the M GPs are conditionally independent of each other, since they might have had
shared training samples owing to uncoordinated exploration but independence here
is used in the sense of uncoordinated individual GP expert models. It can be seen
that the independent robots tend to incur higher (average) performance error owing
to limited exploration. This error tends to go down as more observations become
available. However, fusion strategies outperform the independent robot models. By
comparing Fig. 6.4a and Fig. 6.4b, it can be observed that full-DAS tends to perform
better than RC-DAS since in this case, the GPs had access to the most uncertain and
hence the most informative training samples. This also helps the fusion model perform
better as some of the experts tend to know slightly more information about a region
as compared to the others, and hence not all experts can be assigned equal weights.
From Fig. 6.4a and Fig. 6.4b, it can be observed that the average fusion performance
of our proposed model is always the best. In essence, the FuDGE can be considered a
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Simple Averaging when the GP experts are equally good (or bad) at predictions for a
probe point while at other times, FuDGE assigns the weights to GP experts based on
the log-likelihood (responsibility) of the GP for the probe point. Another interesting
fact to note here is that, while the error of all fusion techniques for full-DAS tends to
reduce with the increase in the number of observations (length of walk) of each robot,
the error does not follow a monotonically decreasing trend for RC-DAS owing to the
choice of training samples as explained earlier on. Moreover, the FuDGE and gPoE
are approximations of a single GP utilized to assist with efficient robot exploration.
Thus, they incur a slight compromise in accuracy.

In order to guarantee the statistical significance of the author’s claims, the p-values
[25] were calculated for the experiments. For this, the null hypothesis, H0:FuDGE does
not perform better than gPoE and the alternative hypothesis, Ha: FuDGE performs
better than gPoE were defined. Then, for full-DAS and RC-DAS, the p-values of the
z-statistic for the right-tailed test were evaluated as 0.0294 and 0.0090 respectively.
The significance level of α = 0.05 was selected and since p < α for both active sensing
techniques, strong evidence against the null hypothesis allows the null hypothesis to
be rejected. Thus, the performance of FuDGE is significantly better when compared
to that of gPoE.

6.6.2 Path length
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Figure 6.5: Path cost. Evaluating path cost for full-DAS and RC-DAS v/s Length of Walk
[Ozone Dataset]

Since the active sensing schemes (informative path planning schemes discussed in
Chapter 4) assist the data collection that eventually leads to map fusion, it is essential
to also analyse the path cost incurred by both active sensing schemes, whereby the
path cost refers to the net sensing cost and traveling cost incurred by a robot during
its exploration. The results are summarized in Fig. 6.5 which shows the average past
cost representing the average of total path costs incurred by all robots. It can be seen
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that the costs incurred by full-DAS are consistently higher than that of RC-DAS.
This goes to satisfy the author’s claim that model performance can be successfully
traded-off to efficient resource utilization without having to drastically compromise on
any one of them.

In conclusion, it is apparent that both full-DAS and RC-DAS attain similar
performance in terms of fusion quality but RC-DAS does so at lower path costs.

6.6.3 Computational Complexity

(a) Complexity v/s Length of Walk (b) Complexity v/s Number of Robots

Figure 6.6: Computational Complexity. Illustrating the computational complexity of singleGP,
FuDGE and GPoE models.

From Fig. 6.4, it is explicit that FuDGE outperforms existing state-of-art models
but it is also essential to analyze that the performance was not obtained at the cost
of extensive computations. In order to perform a fair comparison between the referred
models, the trajectories of all robots were stored a priori using RC-DAS information
acquisition function. Then, the same trajectories are fed to all models to simulate
real robot exploration and this cost of exploration was accounted as if the model was
performing exploration in real time. Let M represent the size of the team operating
in the field whose domain is D as before. The results hence obtained are summarized
in Table 6.1 and the instance description used herewith are summarized in Table 6.2.

Table 6.1: Computational complexity analysis for FuDGE, GPoE and SingleGP.

Inference Complexity Exploration Complexity Fusion Complexity
SingleGP IS = O(S)3 ES = O(RS) FS = ∅
FuDGE IF = O( S

M
)3 EF = O(RFM) FF = O(FM)

GPoE IG = O( S
M

)3 EG = O(RGM) FG = O(G+M)

In Table 6.1, the computational cost is categorized using 3 components: all costs
referenced with I∗ refer to the cost for performing GP inference, E∗ refer to the
computational cost for active sensing and F∗ refer to the computational cost for fusion.
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Table 6.2: Instances used for computational complexity analysis.

Instance Description
S #(Oglobal)
RS #(D \Oglobal)
F #(Uglobal)
RF #(D \Om)
G #(D)
RG #(D \Om)

To ease the understanding of the readers, a visual representation of Table 6.1 is also
shown in Fig. 6.6 wherein the model complexities are analyzed with the growing
number of observations for a fixed size of team (Fig. 6.6a) and also the impact of
variable size of team (Fig. 6.6b). From Fig. 6.6a, it is clear that both FuDGE and
GPoE are computationally lighter than singleGP and as the number of observations
grow, FuDGE and GPoE are computationally equivalent but FuDGE is more accurate.
In Fig. 6.6b, it is shown that FuDGE and GPoE are better off as opposed to their
SingleGP counterpart as they can efficiently distribute the computational load over
the entire fleet. Thus, based on Fig. 6.6, the 3 fusion models can now be arranged in
decreasing order of complexity as: SingleGP > FuDGE ≥ GPoE. From this, it was
concluded that not only the FuDGE can generate significantly better fused maps as
compared to existing state-of-the-art models, but this is also done at equivalent or
nominally higher computation costs. Consequently, the FuDGE qualifies as a state-
of-the-art fusion model best suited for multi-robot teams operating under resource
constraints in communication devoid environments.

6.7 Summary

This chapter presents and validates a novel fusion approach wherein multiple locally
generated models are fused into a globally consistent model. This approach is scalable
with the size of the team and can even handle heterogenous teams wherein the
heterogeneity could either be in terms of the nature of the robots or the acquisition
function used by each member. Currently, the model has been empirically validated
for scenarios where the number of observations to be gathered by each member of
the team was pre-set by the user and all members used the same acquisition function
for fair comparison to the state-of-the-art fusion models. The FuDGE has proven to
significantly reduce the computational time and enhance the model accuracy.
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Chapter 7

Towards a Spatiotemporal
Environment Monitoring for
Continuous Domains

“ Time and space are not conditions of existence, time and space is a
model of thinking. ”

Albert Einstein,

Former chapters have only considered the (discrete) spatial domain for environment
monitoring and modeling. In reality however, the environmental dynamics evolve over
time and the measurements are continuous signals. To cater to such requirements, now
a continuous spatiotemporal domain will be discussed. The reason for this paradigm
shift is that when a robot is set out to venture in a real-world scenario, information and
measurements are densely packed in the sensing area i.e., information is continuous
and could even be available in overwhelming amounts. In order to be able to extend
the MR-GP framework to such scenarios, it is necessary to account for continous
domains which showcase temporally evolving spatial variations and hence are truly
spatiotemporal in nature.

7.1 Continuous Domain Representation

Most of the previous studies for environment monitoring considered static sensor
placements [1]. The data acquired by such setups are now being used for validation of
GPs being proposed for environment monitoring aided by mobile sensor nodes which
give the freedom to cover more ground at higher spatial resolutions. The only problem
that remains is that the static sensor placement data is discrete and sparse while the
real-world scenarios require continuous and dense maps. For this, motivated by the
works of [2], the author harnessed the strength of GP to interpolate the model acquired
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from the discrete dataset. For this, the discrete (raw) spatiotemporal dataset was
used to train the GP and a very high spatial resolution map was created to replicate
the continous spatiotemporal dynamics. This was then taken as the ground truth and
will be referred to as Ground Truth GP (GTGP).

7.1.1 Comparison with Discrete domain

In contrast to the previous MR-GP framework presented in Chapter 4 and Chapter 6,
the author now transforms the domain from discrete to continuous. The reason for
introducing this domain transformation was that in real world, the robot also faces
measurements as continuous signals. In doing so, several additional research challenges
are introduced:

• The ground truth for a continuous domain is usually not available and hence,
approaches need to be developed to solve this problem.

• The point-sensor model is no longer valid. The sensor receives measurements
as continuous signal from all locations within the coverage area. Hence, the
point-sensor model must now be replaced with a region-sensor model.

• Earlier, measurements were available only at discrete nodes but now,
measurements are available all along the trajectory and also the surrounding
areas within coverage range. Thus, all measurements needs to be processed.
This increases the computational load.

• Owing to increased spatial resolution of measurements, several trajectories need
to be evaluated. Each trajectory would lead to acquisition of different amounts of
information and only the most informative trajectory would need to be selected.

• Previously, it was assumed that the robot always traverses at a constant
velocity and has sufficient computational power to sustain such speeds whilst
generating the model. This assumption may be rendered void owing to
additional computational load.

This chapter touches upon the first problem mentioned i.e., generating the ground
truth for continuous domain using the discrete raw data available.

7.2 Spatiotemporal GP

Spatiotemporal GPs for continous domains can be obtained by considering the regular
GP regression which account for time as an additional input dimension [2]. Another
possibility would be to convolve a spatial radial basis function (rbf) kernel with a
periodic temporal kernel [3]. The latter approach binds the temporal evolution to
be periodic while the former is more liberal in that aspect allowing for temporal
evolutions to take any form necessary. Thus, for the scope of this work, temporal
domain was considered as an additional input dimension. The inputs can now be
represented as x ∈ R3 =∆ [sx1, sx2, t].
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7.2.1 Spatiotemporal Covariance Kernel

In Chapter 3, a squared exponential (rbf) kernel was introduced in Eq. (3.1). Thus
far, the author considered one latent length per dimension i.e., ARD = True in space
and only spatial domain was considered. Most of the environmental phenomenon
are known to be isotropic i.e., uniform spread in either spatial direction and so from
hereon, the all spatial dimensions are tied together and thus, one latent length is
considered for spatial domain and one for the temporal domain. So, now, ARD = False
since, two hyper-parameters have been tied together. Consider spatiotemporal inputs
of the form x ∈ R3 =∆ [s, t], where, s ∈ R2 and t ∈ R. Then, the new spatiotemporal
covariance kernel1 can be represented by:

KST (x,x′) = σ2
sig exp

(
− 1

2

(s− s′)T (s− s′)

l2s
− 1

2

(t− t′)T (t− t′)

l2t

)
(7.1)

where the spatial length scale is given by ls and the temporal length scale is given
by lt. Additionally, correlations between noisy observations can be modeled by:

KST
ε (x,x′) = KST (x,x′) + σ2

nI (7.2)

The hyper-parameters are now given by θ =∆ [σsig, ls, lt, σn].

7.2.2 Comparison with Spatial GP

As opposed to spatial GPs which were discussed previously in Chapter 3, the inputs
now also account for time as an additional dimension. In doing so, the following
additional challenges are introduced:

• When considering the temporal variations along side the spatial ones, it is crucial
to utilize spatiotemporal kernels that have closed form solutions which can be
obtained in polynomial time.

• The memory required to store a spatial kernel is much less than the memory
required to store a spatiotemporal kernel.

• The computational cost for inversion of spatial kernel is lower than that of
spatiotemporal kernel where inversion is required for inference.

• When considering only the spatial domain, the locations visited in one time-step
do not influence those that will be selected at a later time step.

To this end, the author discusses solutions to the foremost challenge mentioned
herewith i.e., tractable spatiotemporal kernel inference.

1The readers are hereby cautioned that there is a slight abuse of notation here. x− x′ does not
represent subtraction between vectors. Rather it denotes pair-wise distance operation resulting in a
matrix where the i, j element represents the distance between [xi,x

′
j ].
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7.3 Experiments

In order to validate and extend the MR-GP architecture to a fully spatiotemporal
setting in a continuous domain, this section considers 3 diverse datasets with distinct
spatial and temporal variations. For each of these datasets, optimal spatiotemporal
kernels were generated by considering time as an additional dimension and interpolation
was performed to obtain GTGP in continuous domain. In what follows, the first part
summarizes the datasets used for empirical validation and the second part shows the
results hence obtained.

7.3.1 Datasets

3 datasets with variable spatial expanse and distinct temporal variations were used
for validation of the MR-GP architecture in a spatiotemporal setting. They are
summarized below:

• USA ozone data2: This dataset is provided by the United States
Environment Protection Agency (EPA) and is considerably large, spanning
across the continental USA with hourly samples dating all the way back to
1987. This dataset was previously used in [2]. The samples gathered are static
sensor readings for temperature, humidity, solar radiation, ozone concentrations
etc. For this work, only the ozone concentration was considered since at lower
altitudes, this is a detrimental environmental pollutant.

The raw data provided mentioned above, reported ozone concentration in [ppb]
gathered from N = 80 static sensors. However, after pruning out the stations
with missing data, only measurements from N = 74 static sensors were retained.
These were then used for training the GP model. To obtain the GTGP for ozone
dataset, the 24 hrs. raw data from 4th August, 2009 was chosen as training input
for a spatiotemporal GP with Squared Exponential covariance from Eq. (7.1).
The GTGP for t = 0.15 day is shown in Fig. 7.1.

• Ireland wind data3: The second dataset in consideration is the daily average
wind speed (in knots = 0.5418 m/s) data collected from year 1961 − 1978 at
N = 12 meteorological stations across the Republic of Ireland. This dataset
was previously used in [4] whereby the authors utilized a non-separable non-
stationary spatiotemporal kernel. Similar to the case of ozone dataset, all missing
data were first pruned out and then the spatiotemporal GTGP was trained over
the data extracted from 24 days. The GTGP for t = 2 day is shown in Fig. 7.2.

• Pacific Northwest precipitation data4: The last data set used for analysis
consists of daily precipitation data collected during the years 1949− 1994 in
the states of Washington and Oregon. Overall N = 167 regions of equal area,

2Dataset web access: http://java.epa.gov/castnet/reportPage.do
3Dataset web access: http://lib.stat.cmu.edu/datasets/
4Dataset web access: http://research.jisao.washington.edu/data sets/widmann/
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Figure 7.1: GTGP for Ozone. Generating continuous domain map for ozone concentration
across continental USA for t = 0.15 day.

Figure 7.2: GTGP for Wind. Generating continuous domain map for wind speeds across
Ireland for t = 2 day.
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spaced approximately 50 km apart, reported the daily precipitation [mm]. To
avoid any negative impacts of extreme values on the inference of GTGP, the
measurements were transformed in the log-scale and as like earlier, all missing
values were filtered out. This dataset was previously used in [1]. Since the
dataset was significantly large, to avoid any memory overflow erros, only the
first 24 days of data were used to train the GTGP. The results obtained for
t = 2 day is shown in Fig. 7.3.

Figure 7.3: GTGP for Precipitation. Generating continuous domain map for precipitation
across Pacific Northwest for t = 2 day.

7.4 Summary

The first hurdle in generating spatiotemporal models for continuous domains is the lack
of the ground truth itself. In this chapter, the author discussed a mechanism to utilize
Gaussian Process (GP) interpolation to generate ground truth over continuous domains
whilst accounting for both spatial and temporal variations. The previously presented
MR-GP architecture is equally applicable in this setting but some additional work
needs to be done. For instance, throughout Chapter 4 and Chapter 6, the models were
presented for discrete spatial domains. Having a discrete setting, the measurements
were only available at the discrete nodes but extending this to a continuous domain
means that measurements are now continuous in nature. This presents new challenges
in terms of increased computational load for both Map phase and Reduce phase
and will be addressed in further works. This work is meant to serve as a pre-cursor
to the extension of MR-GP for continuous spatiotemporal domains but detailed
implementations are left for the next phase of development.
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Chapter 8

Conclusion and Future Works

“ I am not where I need to be, but thank God I am not where I used to
be. I am ok and I am on my way ! ”

Joyce Meyer, 2013

The aim of this project was to make an attempt to bridge the gap between state-of-
the-art machine learning models and cutting edge robots such that machine learning
can make the robots fully autonomous but within the limits of current hardware.
Making machine learning models work on a high performance hardware is one thing
but making the same model work on a real robot hardware is a whole new challenge.
With this work, the author intended to propose models that build upon existing
state-of-the art machine learning models whilst optimizing them for real robots. The
author’s vision is to be able to implement GPs on real robot teams and to see them
observe and model real world environmental phenomenon in real-time. To this end,
several contributions were made as a part of this project to proceed one step closer to
realizing this objective.

8.1 Summary of Contributions

This work makes the following contributions:

• Formulation of active sensing as a bi-objective optimization with conflicting
objectives to manage resources and simultaneously optimize model quality.

• Dynamic weight deduction for components of bi-objective optimization whilst
accounting for residual resources and guaranteeing homing.

• Novel fusion techniques that performs point-wise fusion of predictions from
various estimators weighted by their confidence over predictions. Performed as
a one-pass procedure by the base station only at the end of mission times of all
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robots. Optimized to reduce computation by fusing predictions only over the
locations which remain obscure to all models.

• A novel range estimation framework and generalized it to encompass various
classes of robots and account for various environmental conditions that a robot
may be subjected to during a real mission.

• Extension of MR-GP architecture to account for temporal domain making the
architecture suited for spatiotemporal environmental modeling.

• As opposed to other machine learning setup where the training and test dataset
are pre-determined, in the spirit of active sensing, the author allows the robots
to choose the training and testing sets as deemed necessary to enhance the model
accuracy.

• Both the active sensing and range estimation frameworks are meant to work
even in the harsh conditions and handle uncertainties in the mission as far as
possible.

8.2 Significance of Contributions

The strengths of the contributions made in this work are summarized below:

• It is rather challenging to decide the size of the team required to gather
observations from the target phenomenon. To overcome this, the architecture
was designed for multi-robot settings that can be easily scaled with the size of
the team.

• The architecture can easily accommodate for heterogeneity in the team. This
includes different nature of robots involved in a team like UAVs/UGVs etc.,
along with different active sensing scheme assigned to each agent.

• The MR-GP formulation was designed for robot teams operating in
communication devoid environments. This is usually the case in underwater
active sensing. Thus, the work is well suited to real-world scenarios and does
not bound the robots to be within communication range amongst the team or
with the base station.

• The RC-DAS † acquisition function was shown to be robust to starting
configurations. This is crucial owing to the fact that the environment being
monitored is largely unknown and the quality of the model may be affected by
the gradient of information followed from the start locations. Independence
from starting configuration proves robustness of the architecture.

• The operational range estimation framework can estimate the maximum
attainable range with 93% accuracy for the online model. This is by far the
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state-of-the-art range estimation framework which would prove to be crucial
when the MR-GP will be deployed on real robots and will assist RC-DAS † to
guarantee homing. Not only this, this framework is generic enough to be
utilized for any autonomous exploration mission to place upper bounds on the
net path lengths that can be incurred by the robot under consideration.

• Erstwhile active sensing schemes have looked into adding resource constraints
like [1] but no prior work has tried to solve the homing problem in an information
theoretic setting.

8.3 Further Works

Although the proposed framework has been validated extensively in simulations
and partially for real world scenarios, there are several ways in which the current
architecture can be further enhanced. Some possibilities have been discussed below.
Amongst them, some are classified as necessary extensions which are essential for the
framework to be applied on real robots carrying out missions in real-time as opposed to
sufficient extensions which are simply suggested to make the framework self-sustaining
without relying on external sensor information and/or human supervision. In either of
these categories, the extensions are further sub-divided into Map and Reduce phases
respectively.

8.3.1 Necessary Extensions

• Map Phase:

– Reducing Memory Footprint: Despite adding resource constraints on active
sensing, the memory cost grows as more training data is gathered. This
could be solved by truncating the observations like the works of [2]
wherein only a set of highly correlated training data is retained. Owing to
nautre of the spatiotemporal covariance kernel used in Eq. (7.1), the
correlation decays as the temporal separation increases. Thus, not all
history is important. But, given that the team was fully disconnected and
decentralized, this would also lead to loosing the correlations between
obervations across the agents and must be handled appropriately.

– Location selection over receeding horizon: Currently for the RC-DAS and
RC-DAS † acquisition functions, the termination of the exploration is
executed if the next-best-locations cannot guarantee homing. But instead
of doing one-shot termination, the nth-next-best-location could be allowed
to be selected, if that guarantees homing. This could be useful since
information never hurts although the nth-next-best-location would provide
slightly correlated information where the degree of correlation depends on
the magnitude of n. So, even though the quality of information would be
sub-optimal but it could still prove to be better than no information at all.
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– Delaying hyper-parameter update: The active sensing schemes discussed here
and those used by peers like [1] all utilize point sensing, i.e., measurments
are only obtained from the current location of the robot and the next-best-
location (when attained). In reality however, the sensor covers a certain
region around its location and also measurements are acquired while the
robot is executing the trajectories. A cumulative list of all such observations
should be considered when updating the hyper-parameters of the GPs like
the works of [3, 4].

– Obstacle Avoidance: Obstacles (dynamic/static) have not been accounted
for in the current active sensing architecture. Since the environment is
largely unknown, the robot may encounter obstacles in its path as it
is executing its trajectory to reach the next-best-location but owing to
obstructions, it may need to replan its path.

– Sequential optimization: As most of the data acquired by the robots comes
in sequentially, instead of inverting the whole kernel per iteration to fit
the optimal hyper-parameters, sequential optimization can be utilized. As
explained in the Appendix A.1 of [14], Cholesky factors can be updated
by recyling previously known factors from memory and only adding new
entries corresponding to the new observations. The calculations get a bit
simpler when the observations to be appended are stacked at the bottom of
the observation list, i.e., new entries in Cholesky factors induces addition
of new rows and columns towards the end of the matrix. This allows for a
computationally efficient inference for streaming data making the procedure
amicable to real-robot setups.

• Reduce Phase:

– Non-stationary Heteroscedastic fusion: In the fusion model FuDGE, locally
stationary homoscedastic models were assumed to be sufficient but
sometimes environmental dynamics are highly non-stationary and even
have heteroscedastic noise. While there are statistical tests available which
can be performed a priori by gathering some prior measurements from
static sensors to deduce the heteroscedastic nature, non-stationarity is
largely the property of the model itself. In order to make the model suited
to all regimes of environmental scenarios, it is advisable to fuse the locally
stationary models into one globally non-stationary heteroscedastic model.
Inference in such a setting would become rather challenging and hence
remains open to further investigation.

– Active Fusion for outlier detection: Currently, the FuDGE model is a
passive fusion approach which relies solely on the quality of the input
models being fused. In such a setting, if during exploration, some agent
went rogue owing to sensor failures or improper calculations etc., the
performance of fusion model could be affected. In order to handle such
outliers, it should rather be transformed to an active fusion mechansim
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where the quality of local models and that of the global model are mutually
affected.

8.3.2 Sufficient Extensions

• Map Phase:

– Usage of Area Kernels: In [5], area kernels have be shown to be useful
in merging images of high and low resolution to obtain a fine resolution
fused image. This is computationally light and respects the limitations of
current hardware. However, another possible application of area kernels is
in active sensing. In real world, sensors never gather point observations but
a collections of such observations (also referred to as extroceptive sensing).
Thus, instead of handling point samples, areas/regions can be handled.
Some hints on how to do the inference in such a setting are available in [5].
However, the feasibility to do so in real-time is yet to be investigated.

– Addressing Localization uncertainty: The robot almost never knows its
position with 100% certainty. Since, GPs rely on location tagged training
samples which are referred to as inputs, the uncertainty in inputs
themselves must be accounted for besides the uncertainty in measurements
(measurement noise) and the model uncertainty that are currently
considered in the framework discussed herewith. To this end, some prior
work has been done in [6].

– GP-SLAM: Currently, the environmental monitoring problem is posed
as a mapping problem where the localization information is assumed to
be available from external sensors. Instead, the combined mapping and
localization problem i.e., SLAM problem can be solved with GP-LVM
based Bayes Filter from [7] to endow the team with co-operative localization
techniques and present this as a GP-SLAM problem. SLAM or simultaneous
localization and mapping [8] as known from the current literature, is used
usually in terms of geometric map generation. However, in the scope of
this work, GP-SLAM would be in measurement domain perhaps assisted
by geometric domain to allow the robot to navigate the environment.

– Team co-ordination for efficient exploration: In [9], the researchers present
an interesting approach to bound the robots within their respective sensing
areas and also take into account actuation failures and performance of each
agent to shrink the respective voronoi cell. From information theoretic
perspective, redundancy (sensing overlaps) could prove to be useful since
errors in one model could be rectified by another model. However, in future,
we would like to investigate such team coordination approaches to see if it
leads to better resource management and accurate models.

– Non-myopic path planning: Currently, the information acquisition functions
discussed herewith are strictly myopic i.e., only perform one-step look ahead.
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Perhaps, using some non-linear optimizers like Adam [10], the active sensing
can be transformed into a globally optimal path planning problem.

– Continuous time path planning: The RC-DAS and its successor RC-DAS †

are currently restricted only to spatial domain. Locations observed in one
time slice are considered independent of the others. However, as suggested
by the works of [11], path planning may be extended to consider the set of
locations that are informative across multiple time-steps. However, using
a team of multiple-robots, this would involve co-ordinating the team to
split the key regions amongst the team and hence will be left to future
extensions. Upon successful realization, the MR-GP architecture can also
be used for forecasting as opposed to its current application to interpolation
as was shown in this work.

– Anti-aliasing of observations: Data associations have been assumed to
be perfect. In reality, more than one location within the same locality
or even different localities can exhibit similar measurements. Owing to
such aliasing, signal strength based localization would become a challenge.
Additionally, signal strength based location are known to have an accuracy
of the order to a few meters [12, 13] which the author believes, can be
improved by harnessing co-operative localization across the team.

• Reduce Phase:

– Computational Enhancements: As of now, the fusion architecture utilizes
nested for-loops for iterating over all probe points and evaluating
confidance per expert. This computational cost will increase significantly
when considering the continuous spatiotemporal settings and hence,
further optimization techniques need to be investigated.

• Performance Optimization:

– Parallel processing of Inference and Interpolations: Generating predictions
over the entire spatiotemporal domain with a very high spatial resolution is
usually quite slow. Currently, at every iteration of active sensing, both MLE
and posterior generation are carried out sequentially. However, in order
to optimize performance and distribute computational load over multiple
threads, the MLE thread should run at a significantly higher frequency as
compared to the posterior generation thread. The frequency of operation
of these threads is a function of the data being modeled.
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Chapter 9

Appendix

9.1 Inference using stationary GPs with RBF

Kernels

Lemma 9.1 (Inverse of Partitioned Matrix). If A is non-singular n × n matrix

partitioned as A =

[
A11 A12

A21 A22

]
. Then the inverse of this partitioned matrix is given

by:

A−1 =

[
(A11 − A12A

−1
22 A21)−1 −(A11 − A12A

−1
22 A21)−1A12A

−1
22

−(A22 − A21A
−1
11 A12)−1A21A

−1
11 (A22 − A21A

−1
11 A12)−1

]
(9.1)

Proof. For proof sketch, please refer to [1].

Theorem 9.2 (Posterior over Exponential Kernels). Given a column vector zO of
observed measurements for some set O ⊂ D of the domain D, a GP model can
predict the measurements for any set U ⊂ D \ O using the predictive distribution
p[y∗ ∈ U |y] ∼ N (µU |O,ΣUU |O). Here,

µU |O = µU + ΣUOΣ−1
OO(zO − µO)

ΣUU |O = ΣUU − ΣUOΣ−1
OOΣOU

(9.2)

Proof. Our noisy observations {(xi, yi)}Ni=1 for x ∈ RD and y ∈ R1 can be represented
using some latent function f as:

yi = f(xi) + εi (9.3)

where f ∼ GP (µ(·), kf(·, ·))1 and εi ∼ N (0, σ2). Consider a set of observed inputs
x ∈ O and unobserved inputs x∗ ∈ U . Since, the sum of independent Gaussian random

1Here kf represents the kernel such that cov(f(x), f(x′)) = kf (x, x′)
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variables is also Gaussian, we have:[
y
y∗

]
=

[
f(x)
f(x∗)

]
+

[
ε
ε∗

]
= N

([
µO

µU

]
,

[
ΣOO ΣOU

ΣUO ΣUU

])
+N

([
~0
~0

]
,

[
σ2I ~0

~0 σ2I

])

= N

([
µO

µU

]
,

[
ΣOO + σ2I ΣOU

ΣUO ΣUU + σ2I

]) (9.4)

Let A =

[
ΣOO + σ2I ΣOU

ΣUO ΣUU + σ2I

]
represent the partitioned matrix used above

and V = A−1 represent the inverse of such matrix. Then from Lemma 9.1, we can
obtain the inverse of this partitioned matrix such that

V = A−1 =

[
VOO VOU

VUO VUU

]

=

[
(ΣOO − ΣOUΣ−1

UUΣUO)−1 −(ΣOO − ΣOUΣ−1
UUΣUO)−1ΣOUΣ−1

UU

−(ΣUU − ΣUOΣ−1
OOΣOU)−1ΣUOΣ−1

OO (ΣUU − ΣUOΣ−1
OOΣOU)−1

]
(9.5)

So, the posterior on y∗ is now given by the conditional probability p[y∗ ∈ U |y]
which can be expanded as:

p[y∗ ∈ U |y] =

1

ζ1

·

[
exp

{
−1

2

([
ZU

zO

]
−
[
µU

µO

])T [VOO VOU

VUO VUU

]([
ZU

zO

]
−
[
µU

µO

])}]
(9.6)

where, ζ1 is the normalization constant independent of ZU .
We will now expand the expression within the exp(·) in an attempt to simplify it.

Thus far, we have:([
ZU

zx

]
−
[
µU

µO

])T [VOO VOU

VUO VUU

]([
ZU

zO

]
−
[
µU

µO

])
=(ZU − µU)TVUU(ZU − µU) + (ZU − µU)TVUO(zO − µO)+

(zO − µO)TVOU(ZU − µU) + (zO − µO)TVOO(zO − µO)T

(9.7)

We will retain only the terms dependent on ZU and use the fact that VUO = V T
OU to

get:

p[f(x∗)|y(x)] =
1

ζ2

exp

(
−1

2

[
ZT
UVUUZU − 2ZT

UVUUµU + 2ZT
UVUO(zO − µO)

])
(9.8)
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By completing the square, we can further simplify the expression to:

p[f(x∗)|y(x)] =
1

ζ3

exp

(
−1

2
(ZU − µU |O)TVUU(ZU − µU |O)

)
(9.9)

where µU |O = µU − V −1
UUVUO(zO − µO).

Thus ,

p[f(x∗)|y(x)] ∼N (µU |O, V
−1
UU ) (9.10)

Now, plugging Eq. (9.5) above, we get:

µU |O = µU − V −1
UUVUO(zO − µO)

= µU + (ΣUU − ΣUOΣ−1
OOΣOU)((ΣUU − ΣUOΣ−1

OOΣOU)−1ΣUOΣ−1
OO)(zO − µO)

= µU + ΣUOΣ−1
OO(zO − µO)

(9.11)

and
V −1
UU = ΣUU − ΣUOΣ−1

OOΣOU (9.12)

Lemma 9.3 (MLE using RBF Kernel). The likelihood of seeing a noisy observation
y = f(x) + ε is defined as p(y|X, θ) where X ∈ O represents the observed inputs and
θ represents the hyper-parameters of the rbf kernel defined by Eq. (3.1). Then, the log
likelihood is given by:

L = log(p(y|X,θ)) = −1

2
log |K|︸ ︷︷ ︸

model complexity

−1

2
yTK−1y︸ ︷︷ ︸

model fit

−d
2

log(2π)︸ ︷︷ ︸
normalizer

(9.13)

The optimal hyper-parameters for the rbf kernel are those which maximize the marginal
log-likelihood given in Eq. (9.3). Thus, we define the partial derivatives of L with
respect to the hyper-parameters θ as:

∂L
∂θi

= −1

2

∂ log |K|
∂θi

− 1

2

∂yTK−1y

∂θi
− d

2

∂ log(2π)

∂θi

= −1

2
tr

(
K−1∂K

∂θi

)
− 1

2

(
yTK−1∂K

∂θi
K−1y

)
= −1

2
tr

(
K−1∂K

∂θi

)
− 1

2
tr

(
K−1yyTK−1∂K

∂θi

)
=

1

2
tr

(
(K−1yyTK−1 −K−1)

∂K

∂θi

)
(9.14)

Lemma 9.4 (Derivatives of RBF Kernel w.r.t. θ =∆ [σs, ls, lt, σn]). The derivatives of
the RBF kernel with respect to its parameters are given by:
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∂K

∂σ2
s

= exp

(
−||x− x′||

2l2

)
(9.15)

∂K

∂ls
=

(
−||x− x′||2

l3s

)
∂K

∂σ2
s

∂K

∂lt
=

(
−||x− x′||2

l3t

)
∂K

∂σ2
s

(9.16)

∂K

∂σ2
n

= I (9.17)

9.2 Entropy of GP

Lemma 9.5 (Symmetry of trace of product of 2 matrices). Suppose P ∈ Rm×n and
Q ∈ Rn×m, then tr(PQ) = tr(QP ).

Proof. By the definition of tr(·), we know that
tr(PQ) = Σm

i=1(PQ)ii = Σm
i=1Σ

n
j=1PijQji = Σn

i=1Σ
m
j=1QjiPij = Σm

j=1(QP )jj = tr(QP ).

Corollary 9.6 (Symmetry of trace for 3 matrices). Suppose P ∈ Rm×n, Q ∈ Rn×o

and R ∈ Ro×m then tr(PQR) = tr(RQP ).

Proof. Let S = PQ and T = R. Then from Lemma (9.5), we already know that:

tr(ST ) = tr(TS)

=⇒ tr(PQR) = tr(RQP )
(9.18)

Theorem 9.7 (Entropy of GP). Let ΣUU |O represent the posterior covariance of a GP
for set O ⊂ D representing the observed inputs and set U ⊂ D standing for unobserved
inputs. Let Z∗∗ represent the random measurements for ∗∗ sampled from either set O
or U . Then, the conditional entropy H[ZU |ZD] is denoted by:

H[ZU |ZD] =
1

2
log[(2πe)#(U)|ΣUU |O|] (9.19)

Proof. Consider a column vector of random measurements ZU for inputs belonging to
set U . We know that ZU ∼ N (µU |O,ΣUU |O) with a pdf given by:

ψ(ZU) =
1√

(2π)#(U)|ΣUU |O|
exp

(
−1

2
(ZU − µU |O)TΣUU |O

−1(ZU − µU |O)

)
(9.20)
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Then, by the definition of Shannon entropy over the continuous domain, we have

H[ZU |ZD]

= −
∫
{ψ(ZU) log(ψ(ZU))} dZU

= −
∫ {

ψ(ZU)

[
−1

2
(ZU − µU |O)TΣ−1

UU |O(ZU − µU |O)− log(
√

(2π)#(U)|ΣUU |O|)
]}

dZU

=
1

2
Eψ[tr

{
(ZU − µU |O)TΣ−1

UU |O(ZU − µU |O)
}

] +
1

2
log
[
(2π)#(U)|ΣUU |O|

]
using Corollary (9.6), we get:

=
1

2
Eψ[tr

{
(ZU − µU |O)(ZU − µU |O)TΣ−1

UU |O

}
] +

1

2
log
[
(2π)#(U)|ΣUU |O|

]
=

1

2
Eψ[tr

{
(ZU − µU |O)(ZU − µU |O)T

}
]Σ−1

UU |O +
1

2
log
[
(2π)#(U)|ΣUU |O|

]
=

1

2
tr
{

ΣUU |OΣ−1
UU |O

}
+

1

2
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9.3 Rusti V2.0

9.3.1 Circuit Diagram for Rusti V2.0

The circuit diagram used for the assembling the electronic components of Rusti V2.0
is shown in Fig. 9.1.
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9.3.2 Level Shifter for Rusti V2.0

Figure 9.2: Level shifter
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“ The best fighter is not the one who throws the most punches in the
first round, but the one who is still standing to throw one in the last. ”

Kshitij Tiwari, 2017
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