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An Efficiency-Complexity Controllable Rate Adaptive Lossy Source
Coding — Hybrid Majority Voting Code

Wensheng Lin, Student Member, IEEE, and Tad Matsumoto, Fellow, IEEE

Abstract—This letter proposes a practical source coding
scheme, so-called hybrid majority voting (HMV) code, for lossy
compression with discrete memoryless source. Inspired by the
coding scheme used in the classic rate-distortion theorem, we
find a series of basic MV codes and analyze their rate-distortion
performance. We then present an algorithm to find two compo-
nent MV codes and apply them to lossy compression, group by
group, to construct HMV codes. Finally, we show an example
of joint source-channel coding based on the HMV code. The
performance evaluation indicates that the HMV code makes it
possible to easily control efficiency and complexity.

Index Terms—Lossy source coding, rate-distortion, discrete
memoryless source, rate adaptation, non-linear compression.

I. INTRODUCTION

In coding theory, data compression is a classical topic
including two fundamental categories, i.e., lossless and lossy.
The lossless compression has been well studied during the last
several decades, e.g., Shannon coding [1], Huffman coding [2]
and Lempel-Ziv coding [3], [4]. Regarding lossy compression
for continuous source and multimedia data, there are many
technologies, such as pulse-code modulation (PCM) for con-
tinuous source, moving picture experts group (MPEG) audio
layer 3 (MP3) for audio [5], Joint Photographic Experts Group
(JPEG) [6] for image, and MPEG-4 [7] for video. Even though
the multimedia data is in a digital format, they are basically
continuous sources with correlations between information bits.

Nevertheless, the lossy compression for discrete memoryless
source is not easy, because the distance between the codewords
and the original sequences is considered to be more crucial
than the correlations between symbols. Although the optimal
performance can be achieved for sufficiently long sequence
according to Shannon’s lossy source coding theorem [8], we
need significantly huge memory to store the codebook for joint
typicality coding [9]. For multiterminal lossy source coding,
Wyner and Ziv derive the rate-distortion function for lossy
compression with side information in [10]. Berger [11] and
Tung [12] independently determine the outer and inner bounds
on the achievable rate-distortion region for lossy compression
with two sources. However, not only is it difficult to find
a theoretically optimal codebook with respect to a specified
distortion, but we also have to find diverse codebooks for
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different rate or distortion requirements. Therefore, the joint
typicality coding scheme is hard to implement in practical
systems. In this letter, we are interested in developing a
practical lossy source coding algorithm requiring relatively
low complexity and exhibiting good performance.

Due to its simplicity, puncturing is frequently used in
the design of various source and/or channel coding scheme.
Notice that puncturing can be also regarded as a lossy source
coding scheme. If there is a coding scheme that has a better
performance than puncturing, we can improve the performance
by replacing puncturing with some better coding scheme.
Consider an n-bits binary sequence Xn with X ∼ Bern(0.5),
if Xn is punctured with rate R, the punctured n(1−R) bits has
0.5 probability of error. Consequently, the expected distortion
with puncturing is given by

DP =
0.5 ∗ n(1−R)

n
=

1−R

2
, (1)

which is obviously linear to the rate R. Intuitively, lossy source
coding can only achieve linear performance with linear algebra
method, i.e., multiplying a generation matrix. Puncturing is
equivalent to multiplying a diagonal matrix with the diagonal
elements for the punctured bit being 0 and other diagonal
elements being 1, and hence its performance is linear.
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Fig. 1. The performance of hybrid majority voting code.

However, according to Shannon’s lossy source coding the-
orem, the binary rate-distortion function for Xn is

R = 1−H2(D), (2)

where H2(·) represent the binary entropy function. In the
achievability proof of Shannon’s lossy source coding theorem,
2n sequences xn are mapped to 2nR sequences x̂n such that
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(xn, x̂n) is jointly typical. This joint typicality coding requires
extremely huge memory for storing codebook; however, the
codebook with non-linear mapping can achieve optimal per-
formance as n → ∞. Therefore, a coding scheme containing
non-linear process is the key to make performance closer to
the theoretical limit. Inspired by the joint typicality coding
scheme, we find a rate adaptive lossy source coding scheme,
named hybrid majority voting (HMV) code, which can achieve
the performance shown in Fig. 1. The HMV code can make
a trade off between efficiency and complexity.

The major contributions of this letter are as follows. We
develop a practical lossy compression scheme, i.e., HMV
code, with obviously higher efficiency than puncturing, even
though its coding and decoding algorithms are very simple.
After the theoretical rate-distortion analysis of the HMV code,
we perform a series of simulations to make a performance
comparison between a joint source-channel coding scheme
with the HMV code and that with puncturing. The simulation
result verifies that we can achieve significant performance
gains with the HMV code instead of puncturing.

The rest of this letter is organized as follows. Section II
presents the design and distortion analysis of basic MV code.
Subsequently, we introduce the encoding and decoding algo-
rithms of the HMV code in Section III. Section IV evaluate
the performance of the HMV code utilized in a source-channel
coding scheme through simulation. We finally conclude this
letter in Section V.

II. MAJORITY VOTING CODE

Consider a special case of joint typicality coding, i.e.,
R = 1

n , and we have to map 2n sequences to 2 sequence. It
is not difficult to show that two sequences with all zeros and
all ones are optimal, because they have maximum Hamming
distance n with each other. Since the distance between all ze-
ros/ones and other sequences are smaller than n, the distortion
is smaller compared to using other codeword as the estimate
of sequences. It is also obvious that in order to decrease the
distortion, a sequence should be mapped to all ones if the se-
quence contains more 1 than 0; otherwise, the sequence should
be mapped to all zeros. Then, we use only 1-bit codewords
“0” and “1” to represent two sequences, i.e., all zeros and
all ones, respectively, we have successfully compressed an n-
bits sequence into 1-bit codeword. In summary, we compress
an n-bits sequence into the codeword “1” if the number of
ones is more than n

2 ; otherwise, we compress it into “0”. By
majority voting, we can simply perform the lossy compression
described above, of which the performance becomes closer to
the theoretical bound as n goes large.

Now, we analyze the expected distortion of the MV code.
Without loss of generality, we assuming that we receive the 1-
bit sequence “0”. For an integer l < n

2 , the number of sequence
with l bits errors is

(
n
l

)
. For l = n

2 with even n, only half of
the sequences are mapped to all zeros, and hence the number
of sequence with l bits errors is 1

2

(
n
l

)
. Since there are 2(n−1)

sequences encoded to “0” and all sequences are generated with
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Fig. 2. The performance of majority voting code with diverse sequence length.

the same probability, the expected distortion of the MV code
is calculated as

DMV(n) =

1

2n−1

n−1
2∑

l=0

l

n

(
n

l

)
, for n is odd,

1

2n−1

n
2 −1∑
l=0

l

n

(
n

l

)
+

1

4

(
n
n
2

) , for n is even.

(3)

The performance of the MV code is depicted in Fig. 2, which
demonstrates the expected tendency that the distortion of MV
code becomes close to the theoretical bound for sufficiently
long sequence.

Then, we start lossy compression with arbitrary R based on
MV code. Notice that there are nR bits in encoded sequence.
The most simple way is compressing k = n(1 − R) + 1 bits
into 1 bit and keeping the remaining nR− 1 bits the same as
origin. By this single-compression with MV code (SMV), we
can satisfy the distortion

DSMV(n, k) =

1

2k−1

k−1
2∑

l=0

l

n

(
k

l

)
, for k is odd,

1

2k−1

 k
2−1∑
l=0

l

n

(
k

l

)
+

k

4n

(
k
k
2

) , for k is even.

(4)

The performance of SMV is shown in Fig. 3 for various
values of n. It is sensible that the performance becomes even
worse as n increases except the case with relatively small R.
The reason for this observation is that the remaining nR − 1
bits have not been exploited in lossy compression, and hence
more bits are wasted when n becomes larger.

III. HYBRID MAJORITY VOTING CODE

A. Encoding
For the purpose of utilizing all remaining bits for lossy

compression, a reasonable way is to divide the sequence into
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Fig. 3. The performance of single-compression with MV code.
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Fig. 4. The performance of grouped MV code.

nR groups and then compress group by group. Assuming that
the sequence can be divided into nR groups with equivalent
size s = 1

R , we can obtain the performance curve illustrated in
Fig. 4. It should be noticed that the distortion for R = 1

s with
even s is the same as that for R = 1

s+1 , i.e., the distortion
can be satisfied with lower rate. Therefore, the group with odd
size is better than that with even size.

Now, we extend this idea to general cases with R being
arbitrary number from 0 to 1. By mixing two MV codes with
different odd sizes s and s+2, the average rate between 1

s and
1

s+2 can be satisfied. If we use i groups of the rate 1
s MV code

and j groups of the rate 1
s+2 MV code as component codes, the

average rate and the average distortion is a linear combination
of the rate and distortion of two component codes, respectively.
Since each group of the MV code yields 1 bit compressed
coding result, i+ j = nR. From the total bits in the MV code
groups, we have i · s + j · (s + 2) = n. Consequently, we can
obtain i = n[(s + 2)R− 1]/2 and j = n(1− sR)/2.

The algorithm of the HMV code, consisting of two com-
ponent MV codes, is summarized in Algorithm 1, of which
the gist is to first find appropriate values of s, i and j given

Algorithm 1 Hybrid Majority Voting Code
Input: sequence Xn, R
Output: coded sequence Y nR

set smid = floor(1/R);
if smid is odd then

set s = smid;
else

set s = smid − 1;
end if
set i = n[(s + 2)R− 1]/2 and j = n(1− sR)/2;
for t = 1 to i do

encode t-th group in Xn to Y (t) by the rate 1
s MV code;

end for
for t = i + 1 to i + j do

encode t-th group in Xn to Y (t) by the rate 1
s+2 MV

code;
end for

sequence length n and compression rate R. Then, encode
group by group.

B. Decoding

There are two types of decoding algorithm, i.e., hard de-
coding and soft decoding. The hard decoding algorithm for
the HMV code is also very simple, i.e., repeating the coded
bit s times for the first i-th group and (s + 2) times for the
last j-th group. Consequently, the expected distortion of the
HMV code can be expressed as

DHMV =
i · s ·DMV(s) + j · (s + 2) ·DMV(s + 2)

n
. (5)

The soft decoding yields log-likelihood ratio (LLR) which
is useful for exchanging the mutual information in iterative
decoding of codes having multiple constituency components
[13]. We first transform the received signal into LLR, and
then take the expected distortion into account based on the
correlation model in [14]. Assuming the a priori LLR of
received signal is LLRa, the a posteriori LLR (LLRp) of the
coded bits can be calculated as

LLRp = log
(1− d) · exp(LLRa) + d

(1− d) + d · exp(LLRa)
, (6)

where d is set at DMV(s) and DMV(s + 2) for the group
coded by the rate 1

s and 1
s+2 MV codes, respectively. After

calculating the LLRp of coded (i + j)-bits, the LLRp
X of the

sequence Xn is reproduced by performing repetition of the
corresponding bit in LLRp for s and (s + 2) times in the
groups of the rate 1

s and 1
s+2 MV codes, respectively. In this

way, the LLRp
X can be jointly exploited in further iteration

of decoding, depending on specified algorithm for exchanging
mutual information.

IV. PERFORMANCE EVALUATION

This section shows a design example of practical joint
source-channel coding scheme based on the HMV code and
the turbo code. As illustrated in Fig. 5, the encoder first
executes source encoding and then channel coding, with the



4

ModulatorCC ∏ ACC

Channel encoding
Source 

encoding

DemodulatorCC-1
∏-1

ACC-1

Channel decoding
Source 

decoding ∏

Xn

X̂n

Fig. 5. The simulation system with practical joint source-channel coding
scheme.

TABLE I
BASIC SETTINGS OF SIMULATION PARAMETERS

Parameter Value

Sequence length 10000 bits

The number of sequence 1000

Generator polynomial of CC G = ([3, 2]3)8

Modulation method BPSK

Maximum iteration time 20

source encoding using the HMV code or puncturing for the
performance comparison. In the channel coding, the com-
pressed sequence is encoded by a convolutional code (CC), and
concatenated with an accumulator (ACC) [15] via a random
interleaver Π. After modulation, the encoded sequence is
transmitted though additive white Gaussian noise (AWGN)
channel. In the receiver, the demodulated signal is iteratively
decoded by the decoder of ACC (ACC−1) and the decoder of
CC (CC−1) with extrinsic information transferred via Π and a
deinterleaver Π−1. Finally, the estimate X̂n is generated from
the hard decision of channel decoding result by the decoding
algorithm for the HMV code, or setting the punctured bits at
0.
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Fig. 6. The performance of joint source-channel coding based on HMV code.

With the basic setting of parameters listed in Table I, we
obtain the simulation results depicted in Fig. 6. It is clear that
the joint source-channel coding scheme based on the HMV
code has lower bit error rate (BER) than puncturing, with the

same signal-to-noise ratio (SNR) value. Furthermore, the SNR
floor for the HMV code is also closer to the theoretical bound
derived from the rate-distortion function. This observation
confirms that a coding scheme can get better performance by
replacing the puncturing component with the HMV code.

V. CONCLUSION

This letter has developed a lossy compression scheme,
i.e., the HMV code, with relatively high efficiency and low
complexity for practical use. Based on a special and simplest
case of the joint typicality coding scheme, we have found the
basic MV code and analyze its rate-distortion performance.
Then, we exploited the two MV component codes to construct
the HMV code, for the purpose of adapting arbitrary com-
pression rate. The encoding and hard/soft decoding algorithms
for the HMV code were also presented in detail. Finally, we
conducted a series of simulations to compare the performance
difference between the HMV code and puncturing. The sim-
ulation results verify that the HMV code can achieve better
performance than puncturing. To find some simple component
code in rate u

s , i.e., compress an s-bits sequence group into a
u-bits codeword with better performance and then construct a
new type of hybrid code satisfying lower distortion are left as
future study.
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