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Abstract Environmental boundary estimation is the process of bounding the
region(s) where the measurement of all locations exceeds a certain thresh-
old value. In this paper, we develop a framework for environmental boundary
tracking and estimation in partially observable environments which are pro-
cessed in an online manner. Dedicated sensors mounted on the vehicle are con-
sidered to be capable of on-the-spot field intensity measurements. Focusing on
the limited resources of Unmanned Aerial Vehicles (UAVs), it is important to
track an unknown boundary in a fast manner. Therefore, we present a motion
planning strategy that enables a single UAV to estimate the boundary of a
given target area while minimizing the exploration cost. To do so, we improve
the conventional position controller based framework by integrating a noise
canceling filter and a novel adaptive crossing angle correction scheme. The
effectiveness of the proposed algorithm is demonstrated in three different sim-
ulated environments. We also analyze the performance of framework subject
to various conditions.

Keywords Environment Monitoring · UAV · Boundary Tracking · Online
Estimation

1 Introduction

Since the last decade, estimating the environmental boundary has been drawn
much attention in the robotics community. A wide range of can be possible
where robotic mobility and sensing have a substantial role. For instance, robots
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equipped with dedicated sensors could be deployed for tracking of oil or chemi-
cal spills in the sea [11,4], localization of radiation sources [17,16], exploration
of radioactively contaminated area [22], tracking contaminated cloud [24] or
forest fire [3] or harmful algae blooms [5], monitoring the sea temperature [14],
etc. Such missions are devoted to the gathering of spatial phenomena using
various types of robotic mobility, where sensors observe the measurement in a
point-wise fashion at their locations.

Environmental boundary estimation can be thought of as level set estima-
tion (LSE) problems. One must find a control policy to identify the region
of environment where the measurement of phenomena exceeds some thresh-
old value. Several attempts have been made to accomplish this by utilizing a
known map [6,20]. However, in many practical scenarios, such an a priori map
may not be available. A popular online method is to estimate the boundary
of an unknown field with the aid of multiple robots. This approach primar-
ily benefited from the communication among robots. Since at each time step
multiple robots can report the measurement of several locations, computing
spatial derivatives of the sensor information can be performed faster than a
single robot. Considering estimation on environmental boundaries instead of
the complete area coverage provides a useful abstraction that reduces the ex-
ploration energy consumption. Here, the goal is to estimate the shape of the
target area designated by the robot’s path. However, when the environment is
unknown, it is hard to plan a path that identifies which locations are appealing
and which are not.

In this study, we consider the problem of estimating environmental bound-
ary using a single UAV. UAVs offer the stable motion performance, with hov-
ering capabilities both in indoor and outdoor environments and also with
carrying moderate payloads. This enables them to perform a wide range of
application tasks, which include surveillance, search-and-rescue, exploration
and mapping. The ability to access and navigate in unstructured or cluttered
environments makes UAVs an attractive platform for a variety of such mis-
sions. To achieve this objective, at each time step, the UAV needs to sequen-
tially select the sampling locations given some threshold value. For solving
this problem, we propose a boundary estimation algorithm, which utilizes a
proportional-integral-derivative (PID) controller to determine the turn rate of
UAV [22]. We also provide an optimization technique on the number of sam-
ples needed to achieve a certain accuracy ensuring a loop-closure path. The
reason for doing so is that, in the problem such as the field radiation mon-
itoring, apart from the gathering of spatial information by traveling to each
sensing location, we also have to take into account the time-limited nature of
the mission prescribed for this system (partly due to battery life).

This paper describes a method of tracking and estimating environmental
boundaries for a UAV equipped with point sensor system. For example, in
a large radiation field, the UAV equipped with Geiger-Mullar counter needs
to visit a location in order to measure the radiation level of that location
[10]. This can be achieved using the point-to-point controller which can enable
the navigation capability with negligible localization uncertainty. The sensor
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can then provide the measurement value at the UAV location, and the path
planning system is also able to access the rate at which this measurement
evolves over space. Our proposed algorithm not only estimates the radiation
level from the noisy sensor reading, but it can also predict the future candidate
location without previous knowledge of the phenomena. However, for the sake
of simplicity, we assume that this measurement does not evolve over the time.

To outline these issues, we provide a state space prediction model. We
propose an adaptive angle correction mechanism, which helps the PID con-
troller navigate through non-concave boundaries. Under the assumption that
the measurement is subject to Gaussian white noise, the proposed framework
integrates an Extended Kalman Filter (EKF) to enhance the accuracy of the
boundary path.

The contributions of this work are as follows:

1. we have formulate the boundary estimation problem which does not require
a priori information at all.

2. our algorithm can estimate the boundary in a fast manner while minimizing
the exploration of UAV.

3. the proposed algorithm is complete, which means that the estimation pro-
cess terminates within a finite operation time.

4. focusing on the limited computational capabilities of the UAV, the pro-
posed algorithm can robustly determine the boundary.

2 Related Work

Environmental boundary estimation has been recently highlighted in robotics.
The goal is to seek a path over a target area in which the robot discovers
an isoline in a certain scalar field. The original boundary estimation has been
modified and applied in various applications. One way of dealing with this
problem is to deploy a large scale wireless sensor network over a target area
[23]. In this approach, a sensor array is deployed in such a way that we can
get access to the spatial derivatives of the field at every time. However, static
sensor networks require high density to provide a good accuracy of observation.
Thus, this framework raises two important issues- cost for implementing such
an infrastructure, and computational/communication loads for the estimation
process.

On the other hand, mobile robots equipped with dedicated sensors can
autonomously gather information on the boundary of interest. However, to
derive this benefit, a motion planning algorithm is a necessary condition.

Motion planning algorithms for such systems have gained much popularity
in the robotics community. Many methods assume the availability of an a
priori map of the target field. The objective of these methods is to utilize
the machine learning scheme for level set estimation [6,20]. In addition to the
strong requirement of the availability of an a priori map, such methods suffer
from high computational cost. Hence, when the environment is unknown, the
boundary estimation problem becomes more complex.



4 Abdullah Al Redwan Newaz et al.

Several works have been developed to advocate cases in which the bound-
ary is projected by interpolating the robot localization and the sampled points.
The methods used in most studies require a large number of robots to esti-
mate the boundary shape [12,19]. The goal in this framework is to design a
control strategy for a multi-agent system that has advantages of integrating
the detection, tracking and estimation processes. However, in this work, our
focus is to solve the boundary estimation problem in a completely different
way by controlling a single UAV to have a point-wise access to only a part of
the whole field. In this work, without compromising the estimation accuracy,
we intend to generate a closed boundary path that allows efficient use of the
limited travel time.

Matveev et al. [14] categorize the solution of such problem into two cat-
egories : one is the gradient or derivative dependent approach and the other
is the gradient-free approach. A gradient-based method is computationally
simple and easy to implement especially in the static field. The most popu-
lar gradient-based robotic algorithms were inspired from the snake algorithm,
which was often adopted in image segmentation problems [25]. In [7], a decen-
tralized cooperative boundary tracking algorithm was proposed that generated
an artificial potential field by assuming the direct access to the field gradient.
Several works advocated the problem caused by sensor noises to estimate the
field gradient, and proposed to incorporate a filter into the framework.

The gradient-free bang-bang controller was reported in [1]. Similarly, switch-
ing between two pre-defined steering angles was proposed in [8]. In recent
years, Saldana et al. [18] extended the polynomial approximation [21] to pre-
dict environmental boundary behavior for a single robot. Matveev et al. [13]
demonstrated a sliding mode method for dynamic fields. Baron et al. pro-
posed a PD controller to estimate the contour line in a radial harmonic field
[2]. Later, Towler et al. reported a PID controller to estimate the contour
line in a radiation field accurately [22]. Without a priori knowledge of the
boundary evolution dynamics, such methods can efficiently track a dynamic
boundary. However, these methods rely, more or less, on the initial approxima-
tions/assumptions of the field. In an unknown environment, such assumptions
are prone to violate, putting an extra burden on controller tuning, and may a
threat to performance degradation.

We propose a novel framework that originates from the control law in [22]
and does not employ gradient estimate to track the environmental boundary.
We enhance the basic model by incorporating not only a noise canceling fil-
ter but also a novel adaptive crossing angle correction scheme. Our method
is robust in the sense of minimizing exploration to track the boundary and
does not need any a priori knowledge on the field. Although we demonstrate
our algorithm in a static environment, under the assumption that the environ-
mental dynamics evolves smoothly tractable by the robot motion, it is then
straightforward to implement this method in dynamic environments.
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3 Problem Formulation

In this work, we want a single UAV to have the ability to estimate an unknown
boundary. To enable the robot to estimate such boundary which is defined by
threshold β, it needs to take environmental samples along the boundary to
gather measurements in a point-wise fashion. The objective is to track spatial
sampling points, S, and fit a regression model these with a smoothing function
to estimate the desired boundary. Thus, the problem we want to solve here is
stated as follows:

Given a threshold value β for an unknown environment that may include
non-concave regions exceeding β and the measurements subject to noise wt,
how to accurately track a closed boundary set S in a finite time limit.

Similar to [7,14,1], we also assume that the boundary is described by a
smooth, regular, simple, closed curve.

3.1 Field Characterization

Our focus is to find a region within the environment where a phenomenon is
delimited by a perimeter. This region of interest Ω ∈ R2 is a finite set and
enclosed by a boundary. The measurement of a location in such field can be
defined as a map

z(x) : R2 → R, (1)

that evaluates the strength of the phenomenon at the point x, expressed in
intensity unit.

Definition 1 (Region of interest (ROI)) The region of interest is the
collection of points in the environment where the measurement z(x) is greater
than some threshold value β, i.e. the set {x ∈ Ω|z(x) > β}.

Our boundary of interest S is a simple closed curve that represents the perime-
ter of ROI. Since we want to minimize the robot’s exploration, the ROI can
be determined by tracking the boundary line S only.

Definition 2 (Boundary line) The closed curve is said to be the bound-
ary line if it represents a level set S such that for each point x ∈ Ω, the
measurement satisfies threshold β, i.e. the set

S := {x ∈ Ω|z(x) = β} . (2)

Note that it is common to assume that the measurements varies linearly in
the vicinity of boundary line [13,1]. Therefore, a linear controller is sufficient
enough to sample such kind of boundaries.
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3.2 Spatial Sampling

To sample the environmental boundary S, we use a single UAV to gather
the measurement in a point-wise manner. We assume that only 2D Euclidean
trajectory is sufficient enough to estimate S. Therefore, throughout the paper,
the UAV’s position is represented by x, i.e. x ∈ R2, expressed in the polar
coordinate system.

3
t /3

t

/;
t

O
ref;

0

;
t

Fig. 1: Boundary Estimation: A environmental boundary is estimated by
varying the polar radius ρt and angle θt w.r.t the reference origin Oref

Fig. 1 shows the key concept to make a closed boundary, which is similar
to our previous work [16]. The overall process is designed in two phases: firstly,
we transform the origin of the polar coordinate system to the initial robot’s
neighborhood location denoted by Oref . It is a random location inside the
boundary, where z(Oref ) > β. Secondly, by continuously varying the polar
radius ρ and polar angle θ, we find the level set curve S. Note that, give a
fixed θ, the ρ could be outward or inward direction of the Oref .

3.3 Controller Synthesis

Let at time t the robot 2D-coordinate be represented by the polar angular
position θt and radius ρt such that x := [ρt, θt]. To track the S at each time step
t, a point-to-point controller predicts a relative location u : R+ × [0, 1] → R2

as follows

ut(δρt, δθt) = δρt ×
[
cos δθt
sin δθt

]
, (3)

where δρt and δθt are predicted increments of radius and angle respectively.
These increments are subject to the measurement of the current location z(xt).
The robot is assumed to be able to localize itself within the environment with
a negligible error on the boundary estimation.
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After executing every motion, the distance traveled by the robot to track
the Si can be defined as the curvature of the boundary, denoted by κ. Let l be
the length of the curvature when the robot finishes its tracking by returning
back to the initial position. To approximate a boundary, the robot has to
explore the vicinity of the boundary of interest in such a way that satisfies the
Eqn. (2). Since the measurement affected by sensor noise, we can then explain
the robot’s observation as follows

h(xt) = z(xt) + wt, (4)

where wt is the Gaussian white noise with zero mean. If apriori initial ap-
proximation of S is available, the robot can then estimate the S by n vertices
polygon P ∗n by measuring the Lebesgue similarity δs as follows

δs (S, P ∗n) =

∫ 2π

0

ρ (θ)
α
dθ =

∫
l∈S

κ(l)(1−α)dl, (5)

where α > 0 which represents the polynomial degree and κ := ρ−1. To con-
struct the best P ∗n , Melure and Vitale [15] consider α = 3. However, there are
several flaws in the polynomial approximations detailed as follows:

– if an initial approximation of the boundary is not given, determining the
polynomial degree α is troublesome.

– in order to approximate an area Ai, n ∈ P ∗n should be sufficiently large.
As a result, for an unknown and arbitrary area Ai, it is then difficult to
deterministically choose the value of n.

– it requires to store a large number of variables, resulting in a substantial
increase of memories as well as computational expenses, which restricts the
possibility to perform a wide-scale computational experiment.

On the other hand, removing the assumption on the initial estimation,
the simplest tracking algorithm for a single robot is the bang-bang controller,
where the robot keeps changing its direction subject to threshold β. For in-
stance, when h(xt) < β it moves toward the direction h increases, and it moves
toward the direction h decreases, when h(xt) > β. This controller works well
except for a few drawbacks.

– with large δθt, the tracking becomes very inefficient [1].
– since the robot’s observation is affected by noise w(t), with a large w(t), it

may move in the wrong direction and fail to track the boundary.
– when the boundary has narrow bottlenecks, the controller fails to cover it

[9].

Incorporating the filter for denoising measurements is standard practice
for navigation tasks. However, the crossing angle correction is less common
within robotics. To limit the crossing angle, Jin et al. [1] proposed the following
modification

δθt := sgn(h(xt)− β) (t · ω̃ − 2θ0) /2, (6)
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where θ0 is a preset reference, and ω̃ is the angular velocity of the robot.
Recently, Matveev et al. [13] proposed a side way controller in a dynamic
environment with the following modification

δθt := sgn
(

˙h(xt)− χ[h(xt)− β]
)
, (7)

where χ is a linear function with a preset saturation and ˙h(xt) = h(xt)
dt . How-

ever, tuning such preset parameters for a controller is troublesome, especially
in an unknown environment.

4 Algorithm Description

4.1 State Estimation and Prediction

Let us denote the robot location at time t as xt = (ρt, θt) with respect to Oref .
When the robot visits a location xt, it receives the field measurement for the
corresponding location denoted by z(xt). The robot motion is generated by a
controller subject to somewhat predictive function given by

f(xt, ut) = xt + ut =

[
ρt
θt

]
+

[
δρt
δθt

]
, (8)

where ut = [δρt, δθt]
T is the controller output that represents the next relative

location based on the observation on xt location given by

h(xt) =

 ρt
θt

z(xt)

+

 0
0
wt

 , (9)

where wt is Gaussian white noise. The goal of boundary estimation is to infer
the robot location based on knowledge of the control actions and observations.
The level set curve is generated by accumulating all the robot’s locations. Since
the robot’s observation is affected by the random noise, we use the Extended
Kalman Filter (EKF) to make a better prediction.

4.2 Controller Design

In this section, we describe the process for designing a controller for estimat-
ing environmental boundary with a single robot. For estimating the environ-
mental boundary, the robot needs to explore the environment and exchanges
measurements. Given the state xt, a controller makes use of the corresponding
measurement z(xt) in order to predict the next target state xt+1. We use a
PID controller where the control signal ut is given by

ut =

[
kP · e+ kI ·

∫
edt+ kD · ė

δθt

]
=

[∑3
i=1 e(i)k(i)
δθt

]
, (10)
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where e = [e,
∫
edt, ė]T and k = [kP , kI , kD]T are the vectors containing the

proportional, integration and derivative errors and gain respectively. Given the
current measurement z(xt), the relative location of the robot can be found by
computing the error metrics as follows

e = β − z(xt), ė =
de

dt
. (11)

We can then reformulate the state prediction used in Eqn. (8) by plugging
in the variable ut from Eqn. (10) as follows

f(xt, ut) =

[
ρt+1

θt+1

]
=

[
ρt
θt

]
+

[∑3
i=1 e(i)k(i)
δθt

]
. (12)

This integration over the state naturally takes into consideration the fact that
the error metric of the next relative location is expected to be low: if the robot
takes samples located very close to the boundary then e will be low for most
exploration steps, while if the sampling location is far from the boundary the
e will be larger. However, it does not take into account the angle correction
aspects, an issue for exploration over non-concave boundaries which may lead
to falsely determining the boundary, as noted in [1].

4.3 Adaptive Crossing Angle Correction

In order to accurately track the environmental boundary, the non-concave
regions must be crossed at fine angle correction. The main idea is that initially
a coarse angle increment δθ is used and is reined only in areas that are likely
to contain a non-concave boundary. If the error metric in Eqn. (10) turns out
to be a large value, the procedure can then be activated. The basic operation
of this adaptive angle correction can be explained as follows

δθt+1 = abs

(
δθt − e · atan

(
δθ2t
ρ2t+1

))
. (13)

For a non-concave boundary the error metric e is higher, resulting in large
ρt+1 value. With a large ρt+1, Eqn. (13) returns a small δθt value. As a result,
the robot adds more exploration with fine angular increment in non-concave
surface. Thus, we can rewrite Eqn. (12) as follows

f(xt, ut) =

[
ρt+1

θt+1

]
=

[
ρt
θt

]
+

[ ∑3
i=1 e(i)k(i)

abs
(
δθt − e · atan

(
δθ2t
ρ2t+1

))] . (14)

Eqn. (14) is an accurate prediction to our true boundary estimation objec-
tive. The intuition behind this is that the robot should travel the nonconcave
regions with fine angular increments to better estimate the boundary, while
the concave regions can be travel with coarse angular increment. Using this
reasoning it is simple to adapt the definition of angle correction used in [13,
1]. The angle correction in [13,1] is chosen deterministically, which limits wide
application, while our approach offers an adaptability of how to best explore
any random non-concave regions in an unknown boundary.
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4.4 Boundary Tracking Algorithm

Single robot’s boundary tracking algorithm iteratively chooses a destination
target to minimize the expected error metric of the predicted location based
on the current estimate. A tour through these targets estimates the length of
boundary as follows∫

t

3∑
i=1

e(i)k(i)abs

(
δθt − atan

(
δθ2t
ρ2t+1

)
e

)
δt ≈

∫
l∈S

κ(l)dl. (15)

We can find a closed loop path in solving Eqn. (15) by replacing the boundary
limit from time domain to angular domain. The following theorem establishes
a convergence bound for Boundary Tracking Algorithm 1 in terms of finite
time termination condition.

Theorem 1 (Convergence theorem) When the UAV samples an unknown
environment, with prediction model specified by (14) and control law specified
by (10), we have:

lim
t→∞

f(xt, ut)→ x0. (16)

Proof Let’s assume that the following relationship holds∫ 2π+θ0

θ0

ρδθ =

∫
S

κ(l)dl. (17)

Thus, we can rewrite Eqn (15) as follows∫
t

3∑
i=1

e(i)k(i) · abs
(
δθt − e · atan

(
δθ2t
ρ2t+1

))
δt =

∫ 2π+θ0

θ0

3∑
i=1

e(i)k(i) · abs

(
δθt − e · atan

(
δθ2t

ρ(θt+1)
2

))
.

(18)

Given ρ0 >> δρt and θ0 >> δθt, the requirements in Eqn. (18) met by all

small enough δθt. Since abs
(
δθt − e · atan

(
δθ2t

ρ(θt+1)2

))
> 0 in Eqn. (18), θt

monotonically increases in every iteration. Thus, when t → ∞, then ∃θt that
goes to θ0 + 2π, resulting in termination with finite time limit. Then, the
robot can reach its initial location x0 for the angle θ0 + 2π by overlooking the
increment of δρt, i.e. δρ(θ0 + 2π) ≈ 0.

The overall boundary tracking algorithm is explained in Alg. 1. It is impor-
tant to note that this is not a traditional PID algorithm in [22], as the EKF
based noise cancellation and adaptive angular correction features are incor-
porated into the target state estimation. As a result, this boundary tracking
algorithm exhibits the robust and accurate estimation of an unknown environ-
mental boundary so that the robot naturally minimizes the length of regions
where the estimation accuracy is poor.
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Algorithm 1 Boundary tracking

Require: initial state xt
Ensure: Boundary S
1: S← {xt}
2: while xt(2) < 2π + xt(2) do
3: Get measurement

z(xt) = h(xt)

4: Compute controller output

ut =

[∑3
i=1 e(i)k(i)
δθt

]
=

[
ρt+1

δθt

]
5: Perform angle correction

δθt+1 = abs

(
δθt − e · atan

(
δθ2t
ρ2t+1

))

6: Predict target state with EKF

xt+1 = f(xt, ut)

7: Update boundary
S← ∪{xt+1}

8: end while

5 Simulation Results

The three scenarios are considered in the simulations shown in Fig. 2. The
radiation fields are simulated in Gaussian Mixture Model (GMM) with two
components. The GMM satisfies the following equation

GMM(Θ) =

2∑
i=1

πiN (µi,Σi) , (19)

where each vector component is characterized by normal distributions N with
weights πi, means µi and covariance matrices Σi. The measurement of the field
is represented by the random points distributed according to Eqn. (19). The
robot sensing range is defined by a circle with radius 0.25m. The measurement
of a location is computed by the number of particles inside the robot’s sensing
range.

We have conducted 9 experiments in total for 3 different scenarios with 3
factors. For each scenario, the initial robot position was defined randomly. We
assume that the measurement of a location does not vary on the orientation
of UAV. This is possible if the Omni-directional sensor such as Omni Geiger-
Mullar counter is used for sensing. The measurement of the initial position
was considered as the boundary threshold explained in Eqn. (2) such that
β = z(x0). To sample the environment, the state prediction of the robot was
considered by varying two factors as explained in Section 3: angle correction
and noise cancellation. Each experiment was evaluated into two phases- ex-
ploration phase and estimation phase. The exploration phase corresponds to
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the robot traveling through its predicted location, without further reshaping
it. The estimation phase corresponds to when the exploration phase is finished
and a smooth boundary is generated over explored locations.

Fig. 2 depicts the scenarios considered in our experiments. All the param-
eters for GMM are specified in sub captions of Fig. 2. The ground truth of the
radiation field is visualized by a set of blue contour lines, while the measure-
ments of the field represented by pink dots. The robot’s position is denoted
by the red circle. Given a robot location, the measurement of that location is
computed by the density of pink dots within the red circle. Since the origin of
robot’s coordinate could be any random point inside the contour lines, we did
not explicitly show the origin location.

5.1 Exploration Phase

During this phase, the robot starts from an initial location and generates a
closed path by tracking β. To generate the explored path, we perform 3 ex-
periments for each scenario by varying 3 factors: 1) the robot travels its entire
path with deterministic angle correction, measuring the sensory function z(xt)
without any noise filter. 2) the robot travels its entire path with adaptive angle
correction as explained in Section 3, but any noise filter. 3) the robot travels
its entire path with the adaptive angle correction and the EKF as explained
in Section 3. Since θ is bounded by [0, 2π] and it increases monotonically with
δθt at each step t, the robot can visit only one location per θt.

To access the performance of angle correction, we performed three exper-
iments with three different scenarios. Fig. 3 shows the angle correction over
time. While δθt is acquired at different points in time t, the initial δθ0 is the
same for all algorithms. As we discussed earlier, the robot state is denoted by
xt = [ρt, θt]

T , and the origin of the robot’s coordinate is transformed to nearby
random location x0 where z(x0) > β. Therefore, initially smaller ρt value re-
sults in coarse δθt. As the time proceeds, the robot travels to those locations
where ρt is high value, resulting in the fine δθt by adaptive angle correction.
Fig. 4 shows the estimated boundaries by different algorithms. This explains
the direct consequence of the necessity of angle correction. It is also evident
from Fig 4 that the measurement noise makes it harder to obtain and maintain
an accurate estimate because the error caused by it accumulated over time.
However, it is not the fact that long time adaptive angle correction always
yields an accurate estimate. We reported in Fig 3 that adaptive angle correc-
tion is not an issue when the measurement noise leads the robot in the wrong
estimate. The more interesting observations are reported in Fig 3. Note that
unless the work in [19], the robot needs to explore the boundary of interest at
most one time, resulting in the minimization of required exploration.
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Scenario: 2

measurement
Ground Truth
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(b) The GMM parameters for this radiation field
are µ1 = [1, 2], µ2 = [2, 2], π1 = π2 = 1, Σ1 =
[2, 0; 0, .5],Σ2 = [1, 0; 0, 1]
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Scenario: 3

measurement
Ground Truth
robot footprint

(c) The GMM parameters for this radiation field
are µ1 = [1, 2], µ2 = [2, 3], π1 = π2 = 1, Σ1 =
[2, 0; 0, .5],Σ2 = [1, 0; 0, 1]

Fig. 2: Radiation field: the field is generated using GMM. The measurement
of the field is represented by pink dots and the robot’s initial position is denoted
by red circle.
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(a) In scenario 1, while the deterministic angle correction fails
to track the nonconcave regions, adaptive angle with EKF effi-
ciently correct the angle to track the nonconcave regions.
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(b) In scenario 2. even though adaptive angle and adaptive angle
with EKF exhibit almost similar performance, the angle correc-
tion ranges are different due to noise effect.
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(c) In scenario 3, the adaptive angle with EKF minimize the
redundant path caused by noise.

Fig. 3: Angle correction: the performance of angle correction in rad/sec
is demonstrated by varying 3 factors, namely, adaptive angle, deterministic
angel and adaptive angle with EKF. The performance of the adaptive angle
with EKF outperforms than others.
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Table 1: Hausdorff distance for estimated boundaries

Adaptive
Angle Case (m)

Deterministic
Angle Case (m)

Adaptive
Angle+EKF Case (m)

Scene 1 1.00± 0.07 2.36± 0.45 0.74± 0.05
Scene 2 0.30± 0.05 5.53± 0.09 0.23± 0.01
Scene 3 0.29± 0.2 0.87± 0.11 0.29± 0.00

5.2 Estimation Phase

When the robot finishes its exploration phase, a smooth boundary is estimated
along the traveled locations. We use polynomial curve fitting with order 4 to
generate such a smooth boundary. The magenta lines in Fig 4 are the estimated
boundaries for each exploration phase. In order to evaluate the estimation ac-
curacy, we use the Hausdorff distance to measure how far estimated boundary
space is from the Ground truth. Let S and S∗ be two polynomial representa-
tions of the estimated boundary and the ground truth respectively. We then
define their Hausdorff distance by

dH(S,S∗) = max

{
sup
Sx∈S

inf
Sy∈S∗

d(Sx, Sy) ,

sup
Sy∈S∗

inf
Sx∈S

d(Sx, Sy)

}, (20)

where d is the distance function, sup represents the supremum and inf the
infimum.

Existing works that estimate the environmental boundary require deter-
ministic angle correction, prior estimation, revisiting some locations. In ab-
sence of prior estimation, we therefore propose adaptive angle correction with
EKF to provide an accurate estimation while respecting the limited explo-
ration budget. To compare the accuracy among the estimated boundaries, we
performed 9 experiments. Table 1 summarizes the experiment results with the
respect to Hausdorff distance.The estimated boundary with minimum dH rep-
resents the better estimation accuracy. As it is obvious from the table, the
proposed boundary estimation shows the minimum value compared to others.
This is likely due to the presence of the noise cancellation and an adaptive
angular adjustment features. Despite those features, the dH is relatively high
and indicates poor accuracy.

6 Conclusion

The paper presented an improved PID control law that derives a UAV to track
the boundary of unknown environments. On the one hand, the integration of
EKF in the conventional framework ensures an accurate prediction even in the
presence of the noisy sensor reading. On the other hand, the proposed adaptive
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Fig. 4: Estimation Accuracy: The robot’s explorations represented by red
dots. The blue contour line is the ground truth while the green contour line
is estimated boundary. The adaptive angle correction with EKF always per-
formed better among the others.

crossing angle correction eliminates the extra burden on controller tuning. We
showed that the robot can accurately estimate the boundary by adding more
samples in non-concave regions. Finally, we proved how to estimate a boundary
in a finite time limit.

Three different simulation scenarios were considered to evaluate the effi-
ciency of the proposed algorithm. With the tuning parameters that remain
unchanged in all experiments, the results of similarity analysis show that the
proposed modifications outperform others in all the cases.

Future work includes the extension of the proposed approach towards dis-
tributed mobile agents. Furthermore, implementing the real-world experiment
that considers more sophisticated constraints such as include the experiment
over dynamic scenarios is on the agenda.
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