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Abstract This paper proposes a novel gait generation method for surely
achieving constraint on impact posture in limit cycle walking. First, we in-
troduce an underactuated rimless wheel model without ankle-joint actuation,
and formulate a state-space realization of the control output using the stance-
leg angle as a time parameter through an input-output linearization. Second,
we determine a control input that moves the control output to a terminal value
at a target stance-leg angle during the single-support phase. Third, we con-
duct numerical simulations to observe the fundamental gait properties, and
discuss the relationship between the gait symmetry and mechanical energy
restoration. Furthermore, we mathematically prove the asymptotic stability
of the generated walking gait by analytically deriving the restored mechanical
energy.

Keywords Limit cycle walking · Stability · Hybrid zero dynamics ·
Symmetry · Gait generation

1 Introduction

One of the physical characteristics of limit-cycle walkers including passive-
dynamic walkers [1–9] is one-degree-of-underactuation at ankles. This implies
that they walk actively but without explicitly considering the condition of
the zero moment point (ZMP) [10]. Such underactuated dynamic walkers can
generate a stable waking gait by achieving constraint on impact posture; they
control the relative joint angles except the ankles to the steady terminal values
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by the next impact and fall down as a 1-DOF rigid body in the same position.
It was shown that the stability of the generated gait with constraint on impact
posture is equivalent to that of the hybrid zero dynamics (HZD) or the discrete
behavior of the stance-leg’s angular velocity [4,8,9].

It has been considered difficult to determine the stability and efficiencies
of limit cycle walking without conducting numerical simulations due to the
complexity of a hybrid dynamical system. Theoretically, a sustainable walking
gait can be generated by achieving the following three conditions unless with
an unusual setting of the system parameters.

(C1) The walker completes an output-following control of the relative joint
angles except those of the ankles to the steady terminal ones by the
next impact to fall down as a 1-DOF rigid body in the same position
(constraint on impact posture [4,8,9]).

(C2) The walker has sufficient kinetic energy or momentum to overcome the
potential barrier at mid-stance.

(C3) The condition of unilateral constraint is always satisfied or the ground
reaction force is always kept positive during motion.

The condition (C1) is the most important to guarantee the stability of a limit-
cycle with state jumps and to make the gait analysis easy. If the walking system
satisfies all the three conditions, then the gait stability can be determined
as a one-dimensional return map of the angular velocity of the stance leg
from immediately before or immediately after impact to the next [4,8,9]. For
achieving (C1), however, the control parameter must be suitably chosen by
trial and error in general. The most important parameter among others is the
target settling-time and we must adjust it so that the output-following control
can be completed during the single-support (stance) phases or by the next
impact [8,9].

Based on the observations, in this paper we propose a novel method for
surely achieving the constraint on impact posture by focusing on the property
that the stance-leg angle monotonically increases during the single-support
phases in limit cycle walking. First, we introduce a model of an underactuated
rimless wheel (URW) [8,9] that consists of a rimless wheel (RW) [1,3,9] and
a torso for analysis and develop the mathematical model. Second, we choose
the relative joint angle between the RW and torso as the control output, and
develop a state-space realization for it through an input-output linearization
by using the stance-leg angle as a time parameter. The linearized system for-
mulated is controllable, and the control input for settling the control output
to the terminal value at a target stance-leg angle can be easily determined by
using a controllability grammian. Third, we discuss how the gait properties
change according to the target stance-leg angle or the symmetry of the gener-
ated trajectory through numerical simulations, and mathematically prove that
the HZD of a sufficiently asymmetric gait is always asymptotically stable by
analytically deriving the restored mechanical energy. Throughout this paper,
we report two significant results on limit cycle walking. One is the importance
of the gait asymmetry in mechanical energy restoration, and the other is that
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the two conditions, constraints on impact posture and restored mechanical en-
ergy, are simultaneously achievable for the simplest underactuated limit cycle
walker with a constant inertia matrix.

The subsequent sections are organized as follows. Section 2 describes the
mathematical model of the URW. Section 3 considers an input-output lin-
earization by using the stance-leg angle as a time parameter and develops the
control law for surely achieving the constraint on impact posture. Section 4
analyzes the gait efficiencies through numerical simulations and gives a proof
of the asymptotic stability of the generated walking gait. Finally, Section 5
concludes this paper and describes the future research direction.

2 Model of underactuated rimless wheel

2.1 Equation of motion

The URW model shown in Figure 1 consists of an eight-legged symmetrically-
shaped RW and a torso link [8,9]. The torso link is connected to the RW at the
central position, and the URW can exert a joint torque, u, between the torso
and RW. The inertia moment of the torso about the CoM (center of mass) is I
[kg·m2], and the masses of the RW and torso are m1 and m2 [kg], respectively.
It is assumed without loss of generality that the leg frames are massless. This
condition is just for deriving the simplest equation of motion. The leg’s inertia
moment, however, make a little difference. The CoM positions are at the same
as that of the active joint. The leg length or the radius of the RW is l [m]. The
relative angle between two adjacent leg frames is α(= π/4) [rad].

θ1

θ2

α

g

u

m1

l

m2, I

Fig. 1 Model of underactuated rimless wheel with torso
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In this paper, we assume that the URW always contacts with the ground

at one point without sliding. Let θ =
[
θ1 θ2

]T
be the generalized coordinate

vector. Here, θ1 is the angular position of the RW in the vertical direction,
and θ2 is that of the torso in the horizontal direction. The clockwise direction
is set to the positive direction of rotation. The equation of motion during the
single-support phase then becomes[

Ml2 0
0 I

] [
θ̈1
θ̈2

]
+

[
−Mgl sin θ1

0

]
=

[
1

−1

]
u, (1)

where M := m1+m2 [kg] is the total mass of the URW. We denote Eq. (1) as

Mθ̈ + g (θ) = Su. (2)

As previously mentioned, the unilateral constraint condition (C3) must
be also satisfied during motion as well as the stability of HZD. The vertical
ground reaction force, Fz [N], can be determined as

Fz = M
(
g − lθ̈1 sin θ1 − lθ̇

2

1 cos θ1

)
. (3)

We then consider that a stable walking gait has been successfully generated
only if Fz is always positive during motion. By considering

θ̈1 =
u+Mgl sin θ1

Ml2
, (4)

Eq. (3) can be arranged to the following form without including angular ac-
celerations.

Fz = M cos θ1

(
g cos θ1 − lθ̇

2

1

)
− u sin θ1

l
(5)

2.2 Collision equations

Next, we outline the collision dynamics. As described later, the URW always
achieves the constraint on impact posture, that is, it always falls down as a
1-DOF rigid body while maintaining θ̇1 = θ̇2 immediately before the next
impact. In addition, we assume that the torso is mechanically locked to the
RW during the collision (double-support) phase. This velocity constraint con-

dition is mathematically represented by θ̇
+

1 = θ̇
+

2 . On these assumptions, the
transition equation for the angular velocity at impact becomes

θ̇
+

1 = θ̇
+

2 =
Ml2 cosα+ I

Ml2 + I
θ̇
−
1 . (6)

Under this condition, a strict output following control can be achieved as
described later. On the other hand, in a steady gait the following relation
holds.

θ̇
+

1eq = θ̇
+

2eq = R̄θ̇
−
1eq, R̄ :=

Ml2 cosα+ I

Ml2 + I
(7)
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Note that the subscript “eq” means the equilibrium on the Poincaré section,
that is, the steady state at the collision phase. By subtracting Eq. (7) from
Eq. (6), we get

∆θ̇
+

1 = R̄∆θ̇
−
1 , ∆θ̇

±
1 := θ̇

±
1 − θ̇

±
1eq. (8)

Therefore R̄ is found to be the transition function of the state error for the
collision phase, and we can understand that this phase is stable in terms of
reduction of state error norm because

∣∣R̄∣∣ < 1 holds [8,9].

3 Control design

3.1 Input-output linearization

Let
y := STθ = θ1 − θ2 (9)

be the control output. The first- and second-order derivatives of y with respect
to time then become

dy

dt
=

∂y

∂θ1

dθ1
dt

, (10)

d2y

dt2
=

∂2y

∂θ21

(
dθ1
dt

)2

+
∂y

∂θ1

d2θ1
dt2

. (11)

In the following, we denote the first- and second-order derivatives of y with
respect to θ1 as y′ and y′′ respectively. Eq. (11) is then expressed as

ÿ = y′′θ̇
2

1 + y′θ̈1. (12)

Eq. (12) can be arranged to

y′′θ̇
2

1 = ÿ − y′θ̈1 = S̄
T
θ̈, (13)

where

S̄ :=

[
1− y′

−1

]
. (14)

y′′ then becomes

y′′ = θ̇
−2

1 S̄
T
θ̈ = θ̇

−2

1 S̄
T
M−1 (Su− g (θ)) . (15)

We can determine the control input, u, for achieving y′′ = v as:

u = Γ1

(
θ̇
)−1 (

v + Γ2

(
θ, θ̇

))
, (16)

where

Γ1

(
θ̇
)
:= θ̇

−2

1 S̄
T
M−1S, Γ2

(
θ, θ̇

)
:= θ̇

−2

1 S̄
T
M−1g (θ) . (17)
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The state-space realization of y′′ = v becomes

x′ = Ax+Bv, (18)

where

x =

[
y
y′

]
, A =

[
0 1
0 0

]
, B =

[
0
1

]
.

3.2 Design of v and output trajectory

As previously mentioned, in this paper we propose a novel method to surely
control y′ to zero by the next impact or achieve the constraint on impact
posture during the single-support phase with the assumption that the hip-joint
is mechanically locked at impact. Then the derivative of the control output
with respect to θ1 should satisfy

(y′)
±
=

ẏ±

θ̇
±
1

=
θ̇
±
1 − θ̇

±
2

θ̇
±
1

= 0. (19)

Since θ̇
±
1 > 0 holds, Eq. (19) is equivalent to ẏ± = 0.

We then design the control input, v, in the linear time-invariant (LTI)
system of Eq. (18) to move x from an initial state:

xs := x(θs) =

[
ys
0

]
(20)

to a terminal one:

xe := x(θe) =

[
ye
0

]
. (21)

Note, however, that θs is the starting virtual-time of the output-following
control, and θe is the ending virtual-time of it. Therefore they should satisfy
the magnitude relation θe > θs.

In the following, we design a controller that keeps the control output y an
initial constant value of ys for θ+1 ≤ θ1 < θs and a terminal constant value of
ye for θe ≤ θ1 < θ−1 , and smoothly moves y from ys to ye during the period
between θs and θe.

Since the LTI system (18) is controllable, we can consider the following
control input.

v(θ1) = BTe−ATθ1G (θs, θe)
−1 (

e−Aθexe − e−Aθsxs

)
(22)

Here, G (θs, θe) is a controllability grammian defined as

G(θs, θe) :=

∫ θe

θs

e−Aθ1BBTe−ATθ1dθ1 =

[
1
3

(
θ3e − θ3s

)
− 1

2

(
θ2e − θ2s

)
−1

2

(
θ2e − θ2s

)
θe − θs

]
.

(23)
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The v(θ1) of Eq. (22) is also detailed as

v(θ1) = −6(2θ1 − θe − θs)(ye − ys)

(θe − θs)3
. (24)

This is a linear function of θ1. Where θ1 < θs or θ1 > θe, however, the control
output must be kept constant. This is achieved by y′′ = 0, and finally the
v(θ1) during the single-support phase is then specified as follows.

v(θ1) =


0 (θ1 < θs)

−6(2θ1 − θe − θs)(ye − ys)

(θe − θs)3
(θs ≤ θ1 < θe)

0 (θ1 ≥ θe)

(25)

By substituting Eq. (22) into Eq. (18) and solving it, the state vector x(θ1)
for θs ≤ θ1 < θe can be obtained as

x(θ1) = eAθ1xs +

∫ θ1

θs

eA(θ1−s)Bv(s)ds. (26)

The first element, y(θ1), and the second element, y′(θ1), of x(θ1) are respec-
tively detailed as follows.

y(θ1) = ys −
(θ1 − θs)

2(2θ1 − 3θe + θs)(ye − ys)

(θe − θs)3
(27)

y′(θ1) = −6(θ1 − θe)(θ1 − θs)(ye − ys)

(θe − θs)3
(28)

The y(θ1) draws a cubic curve in the configuration space of θ1-y. The generated
trajectory then consists of a cubic curve of Eq. (27) and straight lines in the
configuration space.

In this paper, we start the output following control immediately after im-
pact and set the boundary conditions as follows.

ys = y+ = −α

2
, ye = y− =

α

2
, θs = θ+1 = −α

2
(29)

Eqs. (25), (27) and (28) then become as follows.

v(θ1) =

−
6α

(
2θ1 − θe +

α
2

)(
θe +

α
2

)3 (
−α

2
≤ θ1 < θe

)
0 (θ1 ≥ θe)

(30)

y(θ1) =


−α

2
−

α
(
θ1 +

α
2

)2 (
2θ1 − 3θe − α

2

)(
θe +

α
2

)3 (
−α

2
≤ θ1 < θe

)
α

2

(
θe ≤ θ1 ≤ α

2

) (31)

y′(θ1) =


−
6α(θ1 − θe)

(
θ1 +

α
2

)(
θe +

α
2

)3 (
−α

2
≤ θ1 < θe

)
0

(
θe ≤ θ1 ≤ α

2

) (32)
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These are time-independent and change shape only according to θe. The y(θ1)
of Eq. (27) is a natural solution in terms of the control of a LTI system. The
control input v(θ1) for it, however, is not continuous at θ1 = θe. The left-hand
limit of v(θ1) where θ1 = θe becomes

v(θ−e ) = lim
θ1↗θe

v(θ1) = lim
θ1↗θe

−6α
(
2θ1 − θe +

α
2

)(
θe +

α
2

)3 = − 6α(
θe +

α
2

)2 , (33)

whereas the right-hand limit becomes

v(θ+e ) = lim
θ1↘θe

v(θ1) = 0. (34)

From the above results, it is shown that v(θ+e ) ̸= v(θ−e ) holds for all α > 0.
The generated trajectory of the control output, y(θ1), is a cubic function of

θ1 as mentioned. To make v(θ1) continuous at θ1 = θe, we must specify y(θ1)
as a polynomial function of θ1 that is at least fifth-order [8,9]. Investigation
of the gait properties with higher-order y(θ1) is an issue in the future.

Figure 2 plots the trajectories of (a) the v(θ1) of Eq. (30), (b) the y(θ1) of
Eq. (31), and (c) the y′(θ1) of Eq. (32) where θs = −α/2 = −π/8 and θe = 0.15
[rad]. To clearly show their properties, we also plotted the lines of θ1 = ±π/8,
θ1 = 0.15, and zero lines. We can see that, for θs ≤ θ1 ≤ θe, the v(θ1) draws
a straight line, y(θ1) draws a cubic curve, and y′(θ) draws a quadratic curve
according to the equations. These are independent of the robot’s physical
parameters and does not change their shapes unless the boundary conditions
are modified. The relationship between the shape of y(θ1) (gait symmetry)
and restored mechanical energy (gait properties) will be discussed in the next
section.

3.3 Singularity and continuity of control input

Note that Γ1

(
θ̇
)
and Γ2

(
θ, θ̇

)
of Eq. (17) have a singularity at θ̇1 = 0, but

it does not matter for the following reason. The control input becomes

u =
v(θ1)

Γ1

(
θ̇
) +

Γ2

(
θ, θ̇

)
Γ1

(
θ̇
)

=
θ̇
2

1v(θ1)

S̄
T
M−1S

+
S̄

T
M−1g(θ)

S̄
T
M−1S

=
Ml2Iθ̇

3

1v(θ1)

L
− MglIθ̇2 sin θ1

L
, (35)

where
L := Ml2θ̇1 + Iθ̇2 (36)

is the angular momentum about the contact point. Therefore the control input
can be determined unless L vanishes.
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4 Gait analysis

4.1 Relationship between gait symmetry and mechanical energy restoration

First, we conduct numerical simulations to observe the typical walking gaits
and how the gait properties change according to the gait symmetry. We set
the physical parameters to the values listed in Table 1.

Figure 3 shows the simulation results of dynamic walking where θe = α/2 =
π/8 [rad]. Here, (a) is the angular positions, (b) the angular velocities, and
(c) the mechanical energy. The physical parameters of the URW are chosen as
listed in Table 1. Figure 4 shows the generated trajectory in the configuration
space of θ1–y. We can see that the generated trajectory is symmetric about
the coordinate origin of the configuration space as in [5–7], and that the URW
falls backward because it cannot overcome the potential barrier at mid-stance.
This is because the URW has the simplest shape of a single inverted pendu-
lum, and it generates time-symmetric trajectories of mechanical energy during
the single-support phases. If the URW does not have the simplest shape, the
trajectory of mechanical energy becomes time-asymmetric and a stable walk-
ing gait can be generated with suitable physical and initial parameters. In
Passive Velocity Field Control (PVFC) [11,12] the contour following speed is
controlled according to the external energy sources, whereas our method con-
trols it according to the body shape or frame asymmetry. In other words, we
can achieve mechanical energy restoration by modifying the shape of the body
frame instead of changing the desired output trajectory or control equation.

In this paper, however, we mainly discuss the relationship between the
gait symmetry in the configuration space and mechanical energy restoration
without changing the simplest body shape. We then adjust θe and investigate
how the generated gait property changes according to the gait symmetry.

Figure 5 shows the simulation results of dynamic walking where θe = 0.20
[rad]. Figure 6 shows the generated trajectory in the configuration space of θ1–
y. From Fig. 6, we can see that the generated trajectory is asymmetric about
the coordinate origin of the configuration space, and that it consists of a part of
a cubic curve and a straight line. Fig. 5 (c) shows that the mechanical energy
is accordingly restored during the single-support phases. In this case, how-
ever, the gait asymmetry is not sufficient and the URW finally falls backward
because overcoming the potential barrier at mid-stance becomes impossible.

Figure 7 shows the simulation results of dynamic walking where θe = 0.15
[rad]. Figure 8 shows the generated trajectory in the configuration space of

Table 1 Physical parameters

m1 1.0 kg
m2 1.0 kg
I 1.0 kg·m2

l 1.0 m
α π/4 rad
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θ1–y. We can see that the generated trajectory is more asymmetric about the
coordinate origin of the configuration space than the previous one, and that
the mechanical energy is accordingly restored more than the previous case
during the single-support phases. In this case, the gait asymmetry is sufficient
and the walking motion converges to a stable limit cycle.
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4.2 Efficiency analysis

Before analysis, we define some criteria for gait efficiencies. Let T [s] be the
steady step period. The walking speed, V [m/s], is then defined as

V :=
∆Xg

T
, (37)

where ∆Xg [m] is the travel distance of the CoM in one step, that is,

∆Xg := 2l sin
α

2
. (38)

Since this is a constant, the walking speed varies in inverse proportion to T .
The transfer efficiency of walking robots is commonly evaluated in terms of
the specific resistance (SR) which is defined as

SR :=
1

Mg∆Xg

∫ T−

0+
|ẏu|dt = 1

Mg∆Xg

∫ T−
e

0+
ẏ |u|dt, (39)

where Te [s] is the instant of time when θ1 reaches θe. The second equality
holds because

ẏ = y′(θ1)θ̇1 = −
6α(θ1 − θe)

(
θ1 +

α
2

)(
θe +

α
2

)3 θ̇1 (40)

and y′(θ1) is a parabola convex upward. Therefore ẏ is non-negative for θs =
−α/2 ≤ θ1 ≤ θe if θ̇1 ≥ 0. The SR implies the expenditure of energy per
unit mass and per unit travel distance. The SR is therefore small means the
generated gait is energy efficient.

Figure 9 plots the gait descriptors with respect to θe. The physical pa-
rameters are chosen as the same in the previous subsection. Here, (a) is the
step period, (b) the walking speed, (c) the specific resistance, and (d) the re-
stored mechanical energy. It seems that the restored mechanical energy, (d),
varies in proportion to θe. The gait descriptors are plotted at intervals of
θe = 0.001 [rad]. From Fig. 9 (d), we can see that the restored mechanical en-
ergy monotonically decreases as θe increases. This is because the generated gait
is symmetrized as θe approaches −θs, and the restored mechanical energy ac-
cordingly decreases to zero. Figs. 9 (a) and (b) imply that the reduction of the
restored mechanical energy makes overcoming potential barrier at mid-stance
more difficult. On the other hand, stable gait generation becomes impossible
as θe decreases. This is because the unilateral constraint condition cannot be
met or the ground reaction force Fz determined by Eqs. (3) or (5) becomes
negative during the single-support phase due to excessive input torque caused
by the fast control.
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Fig. 9 Gait descriptors versus θe

4.3 Restored mechanical energy and asymptotic stability

In this subsection, we mathematically show that the restored mechanical en-
ergy becomes constant according to the proposed method.

The total mechanical energy, E, is given by

E =
1

2
θ̇
T
Mθ̇ + P (θ), (41)

where P (θ) := Mgl cos θ1 is the potential energy. The time derivative of E
satisfies

Ė = θ̇
T
Su = ẏu. (42)

The restored mechanical energy in the (i)th step, ∆Ei, then becomes

∆Ei =

∫ T−
i

0+
ẏudt =

∫ T−
e

0+
ẏudt. (43)
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Following Eq. (9), the second-order derivative of y with respect to time
becomes

ÿ = STθ̈ = STM−1 (Su− g(θ)) . (44)

By multiplying both sides of Eq. (44) by ẏ, we get

ẏÿ =
(
STM−1Su− STM−1g(θ)

)
ẏ. (45)

The time integral of the left-hand side of Eq. (45) for the (i)th step becomes

∫ T−
e

0+
ẏÿdt =

[
ẏ2

2

]T−
e

0+
=


(
y′(θ1)θ̇1

)2

2


T−
e

0+

= 0. (46)

Therefore, the time integral of the right-hand side of Eq. (45) for the (i)th
step becomes ∫ T−

e

0+

(
STM−1Su− STM−1g(θ)

)
ẏdt = 0, (47)

and this is arranged to∫ T−
e

0+
ẏudt =

∫ T−
e

0+

STM−1g(θ)

STM−1S
ẏdt = −

∫ T−
e

0+

MglI sin θ1
Ml2 + I

ẏdt (48)

By considering ẏ = y′(θ1)θ̇1, we can arrange Eq. (48) to∫ T−
e

0+
ẏudt = −

∫ θe

−α/2

MglI sin θ1
Ml2 + I

y′(θ1)dθ1

=
6αMglI

(Ml2 + I)
(
θe +

α
2

)3 ∫ θe

−α/2

(θ1 − θe)
(
θ1 +

α

2

)
sin θ1dθ1

=
6αMglI

(Ml2 + I)
(
θe +

α
2

)3
×
(
2
(
cos θe − cos

α

2

)
+
(
θe +

α

2

)(
sin θe − sin

α

2

))
(49)

Therefore, we can conclude that the value of the restored mechanical energy
of the (i)th step, ∆Ei, is constant and is changed only according to θe.

Figure 10 plots the numerical restored mechanical energy for five values of
the inertia moment, I, with respect to θe. The numerical results are dotted
at intervals of θe = 0.002 [rad]. The analytical solution for each I given by
Eq. (49) is represented with a dotted line. All the dotted lines intersect at
θe = −θs where ∆Ei = 0 holds. We can see that the numerical result is
coincides with the analytical solution in each case. As is the case in Fig. 9, in
all cases overcoming the potential barrier becomes impossible as θe increases
and the ground reaction force becomes negative as θe decreases.
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Fig. 10 Numerical results and their analytical solutions of restored mechanical energy for
five values of I

In the following,∆E denotes the constant restored mechanical energy given
by Eq. (49). Since the constraint on impact posture is achieved, the energy-
loss coefficient, ε = R̄2, becomes constant and the following recurrence formula
holds [9].

K−
i+1 = εK−

i +∆E (50)

Where K−
i is the kinetic energy immediately before the (i)th impact. Since

both ε and ∆E are constants, the limit value of K−
i becomes

lim
i→∞

K−
i =

∆E

1− ε
. (51)

This is a proof of the asymptotic stability of the generated walking gait or the
HZD [9].

Note that we could solve Eq. (47) for the integral from 0+ to Te of ẏu
because the term

STM−1S =
Ml2 + I

Ml2I
(52)

is a constant. This is a unique nature of the URW. In general biped robots,
however, the inertia matrix is not constant and we must consider an approxi-
mate solution.

Figure 11 shows the evolution of the gait descriptors for three values of
I with respect to the step number where θe = 0.15 [rad]. In this case, as
indicated in Fig. 10, stable walking gaits could not be generated for I = 0.120
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Fig. 11 Evolution of gait descriptors for three values of I where θe = 0.15 [rad]

and 0.130 [kg·m2] because the unilateral constraint condition could not be
satisfied. As indicated in Figs. 9 and 10, asymptotically stable gait generation
can be achieved with various θe and the robot’s physical parameters such as
I. We must numerically determine, however, if the setting value of θe is valid
for the physical parameters and vice versa. Here, (a) is the step period, (b)
the walking speed, (c) the specific resistance, and (d) the restored mechanical
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energy. In these figures, we defined the gait descriptors with each step as
follows. Let Ti [s] be the step period of (i)th step. The walking speed for the
(i)th step is then defined as

Vi :=
∆Xg

Ti
, (53)

where ∆Xg is the same as Eq. (38) and is constant. The SR for the (i)th step
is also defined as

SR(i) :=
1

Mg∆Xg

∫ T−
i

0+
|ẏu|dt = 1

Mg∆Xg

∫ T−
e

0+
ẏ |u|dt. (54)

From Fig. 11, we can see that the walking motion monotonically converges to a
limit cycle in all cases, that is, the generated gait is asymptotically stable. Fig.
11 (d) strongly supports that the restored mechanical energy is kept constant
in all cases.

5 Conclusion and future work

In this paper, we proposed a novel method for generating an asymptotically-
stable walking gait that ensures the achievement of the constraint on im-
pact posture. We numerically investigated the fundamental gait properties
and mathematically proved that the generated gait is always asymptotic sta-
bility because the constraint on restored mechanical energy is simultaneously
achieved.

The proposed method can be applied to general mechanical systems that
generate the steady motion as a limit cycle with state jumps. The hybrid zero
dynamics, however, must be inherently stable and must monotonically increase
or decrease with respect to time. Limit cycle walking is the best example of the
application. In the URW model, it is mathematically possible to generate an
asymptotically-stable walking gait according to our method unless it cannot
overcome the potential barrier at mid-stance. As mentioned, this is because
the inertia matrix of the URW model or the term STM−1S are constant.
In different models with variable inertia matrix, however, the same can be
also expected under the condition that the nonlinearity of the model is not so
high. The inertia matrix of the simple biped models also becomes constant by
linearization [8,9]. The validation of stability analysis based on linearization
is a subject of future investigation. Further investigation taking the condition
for overcoming potential barrier into account is also left as a future work.
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